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Abstract

This project provides a Python context implementation of the Caddie tool
and explains the underlying theory of Combinatory Automatic Differentiation.
A general notion of derivatives and Automatic Differentiation is provided, and
explanatory examples of how Combinatory Automatic Differentiation uses point-
free notation and monad types to implement symbolic differentiation are pre-
sented. A subset is defined for the Python context, and the tool is implemented
for a Gradient Descent optimization task to test the tool’s potential.

1 Introduction
One of the key elements to the success of Neural Networks is the technique of Auto-
matic Differentiation. Automatic Differentiation automates the computation of par-
tial derivatives of functions, which in Neural Networks are used to optimize the
parameters of the network. Derivatives and Automatic Differentiation are also used
in many other fields such as finance, physics, and economics, where derivatives are
being used to observe changes or sensitivities of complex structures.

This project considers the theory of Combinatory Automatic Differentiation, which
uses a point-free compositional approach to symbolic differentiation as the basis for
automatically computing derivatives. The tool that implements this theory is called
Caddie, and the aim of the tool is to generate efficient derivative code to a domain-
specific programming language.

In the project, the underlying theory of Caddie will be explained and modi-
fications to the tool will be implemented to make it work in a Python language
context. Python is commonly used to implement Neural Networks and has many
frameworks, such as PyTorch and TensorFlow, which provide functionality for im-
plementing neural network architectures. Python is therefore an adequate choice for
investigating Caddie’s functionality to derive differentiated code.

1.1 Subject and Problem
This project focuses on the program Caddie and the underlying theory of Combina-
tory Automatic Differentiation.

The project will explain Caddie and the use of point-free notation for automatic
differentiation, and test if the program and theory can be used as a tool in a Python
context. The method is to extend the testing and tooling of Caddie and to implement
examples of usage.

1.2 Contributions
The contributions of this project are the Python context tool Caddiepy, definitions
of a Python subset language, explanatory examples of the background theory, auto-
mated tests, and a context implementation of the tool to inspect its potential.

The Python context tool Caddiepy can differentiate Python programs to linear map
derivative code using a forward-mode and a reverse-mode automatic differentiation.
Consider the Python function:

def f(x): return x[0] * sin(x[1])

By using Caddiepy, the linear map derivative of the function is computed as:
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def f_diff(x1,x2,dx1,dx2): v1 = sin(x2); return ((dx1*v1) +

(x1*(cos(x2)*dx2)))ω→

In the background section, contributions of explanatory examples of the theory
are provided, such as derivative equations, linear map equations, the partial deriva-
tive steps in Automatic Differentiation, translations of variable assignments to point-
free notations, and the application of monad types for differentiation rules used in
Combinatory Automatic Differentiation.

Furthermore, the project contributes with implemented tests of the Caddiepy tool
and shows how Caddiepy can be applied to fit a third-order polynomial to the sine
function by using a Gradient Descent optimization, which resembles a simple neural
network implementation.

1.3 Structure
In section 2, the theoretical basis of the project is provided. The section is divided
into four subsections, where the notions of derivatives, Automatic Differentiation,
Combinatory Adjoints and Differentiation, and the tool for Combinatory Automatic
Differentiation are explained.

Section 3 focuses on the specifications for using Combinatory Automatic Differ-
entiation in a Python context, and discusses the requirements of the tool for reading
and writing Python code.

Section 4 defines a subset of the Python language to be used for the Python con-
text tool, and considers the implementation requirements for obtaining differenti-
ated Python code.

Section 5 explains the implementation of Caddiepy, and shows how the pars-
ing and printing of Python code is implemented to comply with the Python subset
language definitions.

Section 6 explains how to install Caddiepy and how to use the tool.
Section 7 assesses the testing of the tool and provides an example of how Cad-

diepy can be used to fit a third-order polynomial to the sine function with the use of
Gradient Descent optimization.

In section 8, the correctness of Caddiepy is discussed together with its current
limitations. It is examined how the tool can be improved by extending its function-
ality, and how Caddiepy compares to JAX, which is another available Python library
for automatic differentiation.

The final section 9 concludes the project by addressing the subject of the initial
hypothesis and provides suggestions for future development of the Caddiepy tool.

2 Background

2.1 Derivatives
The derivative of a function f (x) describes the rate of change of the function at a
given point x. The derivative expresses the sensitivity to change of a function’s out-
put with respect to the input. More accurately, the derivative of f gives a linear

approximation to f around x [1].
The process of finding a derivative is called differentiation [2]. The most common

definition of a derivative is defined by the Leibniz notation, named after Gottfried
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Wilhelm Leibniz, which is also called the prime notation and is written with the use
of the prime mark [2], e.g. f

↑(x).
The purpose of describing the mathematical definition of derivatives is to work

towards an understanding of Automatic Differentiation which is key to understand-
ing the theoretical foundation for Combinatory Automatic Differentiation and its
purpose as a programming tool.

2.1.1 One-Dimensional Derivative

The Leibnitz derivative of a simple one-dimensional function f : R → R at a point
x ↓ R is given by the number f

↑(x) ↓ R, that is the slope of the tangent line to f at
x. Numerically this slope can be found as an approximated limit by:

f
↑(x) = lim

h→0

f (x + h)↔ f (x)
h

(2.1)

If the limit exists, it said that f is differential at x. This formula can be rewritten
as:

f (x + h) ↗ f (x) + f
↑(x)h (2.2)

to approximate f [1]. When h is smaller, the better the approximation is to f . It is
worth noting that h can also be written as dx, and f

↑(x) as dy, so that:

f
↑(x) =

dy

dx

Formally the language describing an infinitesimal change of h is also called a
perturbation to h, which results in changes to f at x.

By using the Leibnitz derivative equation, the derivative of f (x) = x
2 is found at

x to be:

f
↑(x) = lim

h→0

f (x + h)↔ f (x)
h

= lim
h→0

(x + h)2 ↔ x
2

h

= lim
h→0

x
2 + h

2 + 2xh ↔ x
2

h

= lim
h→0

2x + h

= 2x

when h goes to zero.

2.1.2 Multivariate Derivative

The Leibnitz derivative is a special case derivative, that works on scalars in one
dimension, and it returns a number R. However, it is useful to be able to obtain
derivatives of multiple variables. Instead of understanding a derivative as a single
number, the derivative can be interpreted as a linear transformation. This is called a
linear map, which is a function that maps a vector from n to m dimensions. The linear
map is written as f : Rn ↭ Rm. When the derivative is generalized to a linear map,
we can think of it as a function that takes argument h, written as f

↑(x)(h) [1].
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To define the derivative as a linear map, the approximation in (2.1) can be ex-
tended to:

lim
||h||→0

|| f (x + h)↔ f (x) + f
↑(x)h||

||h||
= 0 (2.3)

which defines the derivative of f at x to be a linear map f
↑(x) : Rn ↭ Rm [1], where

|| · || is the Euclidean norm ||x|| =
√

x2
1 + ... + x2

n. If the linear map f
↑(x) exists, it

means that f is differentiable at x and f is approximated by (2.2).
When derivatives of linear maps in this form are represented by a n↘m matrix, it

is called the Jacobian derivative or Jacobian matrix. The entries in the Jacobian matrix
are the partial derivatives of f at x and they are represented in the form:

f
↑(x) =





∂ f1
∂x1

· · ·
∂ f1
∂xn

...
. . .

...
∂ fm

∂x1
· · ·

∂ fm

∂xn




(2.4)

As an example, consider the function f : R3
→ R2, defined as:

f (x) = (x1x2x3, x1 + x
2
2 + x

3
3)

The derivative f
↑(x) with point x = (x1, x2, x3) is:

f
↑(x1, x2, x3) =





∂ f1
∂x1

∂ f1
∂x2

∂ f1
∂x3

∂ f2
∂x1

∂ f2
∂x2

∂ f2
∂x3



 =

(
x2x3 x1x3 x1x2

1 2x2 3x
2
3

)
(2.5)

Now, if f
↑(x) is moved with a change of h, as defined by (2.2), we have:

f
↑(x)(h) =

(
x2x3 x1x3 x1x2

1 2x2 3x
2
3

)


h1
h2
h3



 =

(
x2x3h1 + x1x3h2 + x1x2h3

h1 + 2x2h2 + 3x
2
3h3

)

which considers the derivative of f at x to be a linear map f
↑(x) : R3 ↭ R2.

The derivative of f in equation (2.5) is more accurately said to be the gradient of
f . The gradient is used for functions with multiple variables and it is expressed with
the symbol nabla as:

≃ f (x1, x2, x3)

The Jacobian derivative is restricted in its form f
↑(x) : Rn

→ Rm, which means
that it only works on scalars and vectors over real numbers. Sometimes it is neces-
sary to differentiate functions over inputs that are in high-dimensional vector spaces
[3], like in the case of neural networks, which can have millions of parameters in the
form of weight matrices and bias vectors, that need to be differentiated. For that, the
Fréchet derivative is used.
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2.1.3 Fréchet Derivative

For a function f : V → W, that transforms vector space V to vector space W on an
input vector x ↓ V, the Fréchet derivative is approximated by:

lim
||h||V→0

|| f (x + h)↔ f (x) + f
↑(x)h||W

||h||V
= 0 (2.6)

where || · ||V is the norm over the vector space V [4]. If the derivative f
↑(x) exists, it

means that f
↑(x) is a linear map f

↑(x) : V ↭ W, and that f is differentiable at x. The
formula can be rewritten such that f is approximated by:

f (x + h) ↗ f (x) + f
↑(x)(h)

Like the Jacobian derivative, the Fréchet derivative of a function f : V → W is
a linear map function that is parameterized by h, which can be written as f

↑(x)(h).
The Fréchet derivative linear map can therefore be expressed as a partial function:

f
↑ : V → (V ↭ W) (2.7)

which takes a vector h ↓ V and transforms it into a linear map derivative [3].
This functional notation is important for the understanding of Caddie, since type

declarations of the functions in the program, will use a similar notation, which will
be described in 2.4.4.

2.2 Automatic Differentiation
2.2.1 Symbolic Differentiation

The method of differentiating functions using the mathematical derivatives described
above is called symbolic differentiation. With this method, functions are derived, which
can be applied to numerical points. In practice, implementing symbolic differentia-
tion is inefficient and results in expression swelling, which will affect the computa-
tional power and scaling [5].

For example, if a function is first defined as f (x) = u(x)v(x), and then the deriva-
tive is computed as f

↑(x) = u
↑(x)v(x) + u(x)v↑(x) by the product rule [6]—for the

sake of argument, let’s say the u(x) and v(x) are very complicated functions, like
neural networks—then the implementation of the symbolic differentiation, will eval-
uate the expression u(x) and v(x) both in f and f

↑, which results in redundant com-
putation [5].

2.2.2 Numerical Differentiation

Instead of first deriving a function f
↑, another option is to approximate the derivative

by using the equations from section 2.1 and apply them directly to a point, since the
function f is known. This method is called numerical differentiation and uses finite or
central differences [5]. The derivative is approximated with a small h.

For example, given the function f (x) = x
3, the derivative at x = 2.33 is f

↑(2.33) =
3 · 2.332 = 16.28671. This can be approximated with equation (2.1) to:

f
↑(2.33) =

f (2.33 + h)↔ f (2.33)
h

↗ 16.28700000

1Computed in Maple
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for h = 10↔5. This approximation is close to the symbolic result of 16.2867.
However, because of round-off errors in computers when h gets significantly

small (around 10↔11), there’s a limit to this method, and depending on the required
precision, this method might not be useful. Also, the computational cost of using
numerical differentiation is quadratic (O(x

2)) [5] and therefore doesn’t scale well for
large computations. However, the method can be useful in practice, since results of
implemented derivatives can be verified by hand using numerical differentiation.

2.2.3 Forward-Mode Automatic Differentiation

The most efficient method to compute derivatives is by using Automatic Differentia-

tion. The goal of automatic differentiation is to have a computer automatically gen-
erate code that implements the derivative calculations as arithmetic steps. In neural
networks, that would be the functional forward pass through the network of units
and layers. The key idea is to take the code that evaluates a function, augment the
code with additional variables, and accumulate the values of the variables by use of
the chain rule [7] and partial differentiation to arrive at the final derivative [5].

Automatic differentiation can handle closed-form mathematical expressions, and
flow control functions like loops, recursion, and procedure calls [5]. It is therefore a
very powerful method. This is also why, automatic differentiation is so fundamental
to neural networks, since gradients can be automatically computed efficiently for
various network architectures.

Forward-mode automatic differentiation starts with evaluating the innermost func-
tions and then works its way out [1]. It first makes a trace for evaluating the variables
and then it propagates through the trace and evaluates the partial derivatives.

For example, consider the function f : R2
→ R:

f (x1, x2) = x1x2 + x
2
2 ↔ sin(x1x2)

The forward-mode evaluation trace is defined as:

t1 = x1

t2 = x2

t3 = t1t2

t4 = t
2
2

t5 = sin(t3)

t6 = t4 ↔ t5

t7 = t3 + t6

To get the derivative of f , we wish to propagate through the trace starting from t1
and then take the partial derivative in each step and store the results as intermediate
tangent variables ṫi. By the chain rule, the intermediate results, with respect to x1, is
accumulated by the expression:

ṫi =
∂ti

∂x1
= ∑

j↓{pre(i)}

∂ti

∂tj

∂tj

∂x1
= ∑

j↓{pre(i)}

ṫj

∂ti

∂tj

where pre(i) is the set of predecessors of the variable i.
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The process is carried out by first taking the partial derivatives with respect to t1
as follows:

ṫ1 =
∂t1
∂t1

= 1

ṫ2 =
∂t2
∂t1

= 0

ṫ3 =
∂t3
∂t1

= t1 ṫ2 + ṫ1t2

ṫ4 =
∂t4
∂t1

=
∂t4
∂t2

∂t2
∂t1

= ṫ2 · 2t2

t̂5 =
∂t5
∂t1

=
∂t5
∂t3

∂t3
∂t1

= ṫ3 · cos(t3)

ṫ6 =
∂t6
∂t1

= ṫ4 ↔ ṫ5

ṫ7 =
∂t7
∂t1

= ṫ3 + ṫ6

When accumulating the results in each intermediate tangent variable, the final
partial derivative results in:

∂t7
∂t1

= t2 ↔ t2 cos(t3)

This is called a single forward pass. To get the partial derivative for the second
parameter x2, we’ll do the same by propagating through the steps and computing
the tangent variables with respect to t2, which will result in:

∂t7
∂t2

= t1 + 2t2 ↔ t1 cos(t3)

By using this method the gradient ≃ f is:

≃ f (x1, x2) =

(
x2 ↔ x2 cos(x1x2)

x1 + 2x2 ↔ x1 cos(x1x2)

)

Forward-mode automatic differentiation is efficient for functions that have few
inputs and many outputs [5]. The partial derivatives of multiple functions can be
evaluated as a Jacobian matrix, where the index of the columns represents m various
functions, and the rows represent the index of the partial derivatives with respect
to n variables, as shown in (2.4). In the case where m is much greater than n, the
forward-mode method can evaluate the full m ↘ n Jacobian matrix using n forward
passes [5]. In situations where there are a lot of inputs and few outputs, Reverse-mode

automatic differentiation is preferred.

2.2.4 Reverse-Mode Automatic Differentiation

Reverse-mode automatic differentiation, which is also called backpropagation, is similar
to the forward-mode method where intermediate variables are augmented for the
partial derivatives. In reverse-mode, the tangent variables are called adjoint variables

[5], and these are computed in reverse order, which means that computation is done
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starting from the outermost function calls and worked inwards. This is the reverse
process of the forward method. The forward method, in simpler terms, starts from
the input and works towards the output. The reverse method starts from the output
and works towards the input. By the chain rule, the intermediate adjoint variables is
accumulated by:

t̄i =
∂ f

∂ti

= ∑
j↓{suc(i)}

∂tj

∂ti

∂ f

∂tj

= ∑
j↓{suc(i)}

∂ti

∂tj

ṫj

where suc(i) is the successor of the variable i. As an example, backpropagating the
function f and using the trace from before, we’ll get the following adjoint variables,
written as t̄i:

t̄7 =
∂t7
∂t7

= 1

t̄6 =
∂t7
∂t6

= 1

t̄5 =
∂t7
∂t5

=
∂t6
∂t5

∂t7
∂t6

= ↔1 · t̄6 = ↔t̄6

t̄4 =
∂t7
∂t4

=
∂t6
∂t4

∂t7
∂t6

= 1 · t̄6 = t̄6

t̄3 =
∂t7
∂t3

= 1

t̄2 =
∂t7
∂t2

=
∂t3
∂t2

∂t7
∂t3

+
∂t4
∂t2

∂t6
∂t4

∂t7
∂t6

+
∂t3
∂t2

∂t5
∂t3

∂t6
∂t5

∂t7
∂t6

= t1 · t̄3 + 2t2 · 1 · t̄6 ↔ t1 · cos(t3) ·↔1 · t̄6

t̄1 =
∂t7
∂t1

=
∂t3
∂t1

∂t7
∂t3

+
∂t3
∂t1

∂t5
∂t3

∂t6
∂t5

∂t7
∂t6

= t2 · t̄3 + t2 · cos(t3) ·↔1 · t̄6

When substituting the adjoint variables t̄1 and t̄2 we get the gradient of f to be:

≃ f (x1, x2) =





∂t7
∂t1
∂t7
∂t2



 =

(
t2 ↔ t2 · cos(t1t2)

t1 + 2t2 ↔ t1 cos(t1t2)

)

which is the same gradient as in the forward method! If we have more than one
output, we’ll have to sweep through the reverse pass for all the other outputs as
well.

Reverse-mode is a memory-intensive process because the intermediate variables
of the trace have to be stored to compute the adjoint variables. In forward-mode, the
trace can be computed together with the tangent variables during the pass [5], which
reduces the memory overhead in comparison to reverse-mode.

The forward- and reverse-mode processes use a Jacobian matrix, which respec-
tively requires n or m sweeps for an m ↘ n matrix [1]. Computing the full Jacobian
with a minimum number of operations is an NP-complete problem, which is known
as the optimal Jacobian accumulation problem [8] [1].

This encourages motivation for finding new theoretical methods to efficiently
compute derivatives at a large scale. Combinatory Adjoints and Differentiation is an
attempt at that. The theory seeks to optimize differentiation without the use of Jaco-
bian matrices.
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2.3 Combinatory Adjoints and Differentiation
Combinatory Adjoints and Differentiation (CAD) [3] proposes a compositional ap-
proach to automatic differentiation. The theory uses the Fréchet derivative, so that
derivatives expand to linear functions on abstract vector spaces, instead of being
limited to scalars, vectors, matrices, or tensors represented as arrays.

The linear function derivatives are represented in combinatory form, which is a
point-free notation. The combinatory differential calculus proposed by CAD is there-
fore symbolic differentiation. The theory defines rules for differentiating functions
into point-free linear maps, which can be applied to numerical points for computing
numerical derivatives.

The key of the theory is to avoid Jacobian matrix calculation, which is computa-
tionally inefficient when matrices become extremely large (think of tensors in neural
networks with millions of entries). For example, instead of keeping a trace and stor-
ing intermediate variables when performing reverse-mode automatic differentiation,
CAD derives adjoints in symbolic point-free notational form. This form is a function,
and can therefore be run using data-parallel computation to optimize the efficiency
when it is implemented.

2.3.1 Forward-Mode Differentiation

The forward-mode differentiation in CAD is represented as a point-free term with
the type:

Term(V → W) → V → Term(W ↘ (V ↭ W)) (2.8)

where V and W are types of abstract representations of vector spaces, and
Term(V → W) is a language for representing functions in combinatory form [3].

The forward-mode functional type takes a function f and a value v and returns
the derivative in combinatory form, represented as a point-free notation term
Term(W ↘ (V ↭ W)) containing the value w = f (v), that is the input function f

applied to the input value v, and the linear map Fréchet derivative f
↑, which is a

function. As explained in section 2.1.3, the Fréchet derivative is written as f
↑(x)(h),

which takes the perturbation h as an argument to the point in which the derivative
should be evaluated in.

To get the derivative at a specified point, the CAD derivative is then interpreted
as a term of type:

Term(V ↭ W) → V → W (2.9)

which is the derivative linear map function f
↑(v)(dv). As input, it takes a tangent

differentiable value dv (which corresponds to h in 2.1.3) and a value v, which is the
point the derivative is evaluated in, and returns the derivative value w = f

↑(v)(dv).

2.3.2 Reverse-Mode Adjoint

To obtain a derivative using reverse-mode, CAD applies the theoretical concept of
adjoints, which comes from the branch of mathematics concerned with functional
analysis and vector spaces. The adjoint is the transpose of a linear map [9], and it
is formulated by an induced map between dual vector spaces of linear functionals
[3] [9], which, in this context, are linear maps2 from vectors to scalars. When the

2also called linear form
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derivative linear map is (V ↭ W), the notion of the adjoint linear map is (W ↭
V). The adjoint is the derivative transpose and is considered as the reverse-mode
process.

The reverse-mode method to derive adjoints in CAD is done by applying adjoint
calculation rules to the derivative term obtained from the forward-mode process.
The adjoint derivative of a function f : V → W at v ↓ V is ( f

↑(v))⇐. This means
that rules from Theorem 6.5 [3] are applied to the differential term Term(V ↭ W) in
(2.9), to get the adjoint combinatory term.

When the adjoint combinatory term is derived, the term can then be applied
to values, just like the forward-mode derivative. For reverse-mode differentiation
the flow is ’backward’, therefore, the adjoint derivative calculates a function’s input
differential given a function’s output differential. The adjoint linear map f

↑(v)(h)
should therefore take output adjoint values as the input h.

That is, for a function f : V → W, with input v ↓ V and output w ↓ W:

w = f (v)

the tangent value to the forward-mode derivative is dv, and the adjoint value for the
reverse-mode derivative is dw, so that:

Forward-mode: f
↑(v)(dv)

Reverse-mode: f
↑(v)(dw)

With the notion of the forward- and reverse-mode methods using CAD explained,
the next section gives an overview of the tool for Combinatory Automatic Differen-
tiation, which implements this theory.

2.4 Caddie
Caddie is an abbreviation of Combinatory Automatic Differentiation [10], and it is the
name of the standalone tool that implements the theory of Combinatory Adjoints
and Differentiation. The tool implementation is written in the general-purpose func-
tional programming language Standard ML, and it is accessible on the GitHub repos-
itory:

github.com/diku-dk/caddie

With Caddie it is possible to differentiate programs by using a forward- or reverse-
mode automatic differentiation. The tool aims to create efficient code of differenti-
ated functions, to be used as a source in a high-level language for computing numer-
ical derivatives.

The tool works by first turning an input program into combinatory form. It can
then evaluate the zero-order representation of the program, which is the undiffer-
entiated program, and differentiate the form into a linear map representation. The
linear map combinatory form can be evaluated according to forward- or reverse-
mode specification, which results in a derivative function. The derivative function
can then be returned as high-level language code, intended to be run in a domain-
specific context. This is called the unlinearized differentiated program.

Currently, the tool can differentiate programs written in a specified let-binding
context language that resembles Standard ML. These programs are stored as .cad

files. The tool is run from a terminal and it accepts various options as command-line
arguments.

For example, Caddie can differentiate the program saved in the file ln.cad:
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fun f x = ln(sin(x))

With the following command-line arguments:

./cad --Pdiff ln.cad

the tool gives the output:

Differentiated program (linear map expression):

f x =

ln(sin(x))

f' x =

(pow(-1)(sin(x)) *) :o: (cos(x) *)

f^ x =

(cos(x) *) :o: (pow(-1)(sin(x)) *)

The output first shows the zero-order representation of the program f, then the
linear map derivative f', and finally the adjoint linear map f^.

2.4.1 Point-Free Notation

The combinatory form used in Caddie is a point-free notational form. Point-free
notation comes from Tacit programming, which is also called point-free programming

[11]. It is a programming paradigm where the arguments in function definitions are
not directly exposed. The arguments are implicit so that the function definition is
expressed in a simplified condensed form. For example, the function:

fun f x = ln(x)

takes an argument x and returns the natural logarithm of x. For this function to be
in point-free notation it would be written as:

fun f = ln

Here, the function arguments are explicitly omitted. The reason for expressing
functions in point-free notation is to allow multiple functions to be composed into
sequential combinations that manipulate arguments.

In mathematics, an example of function composition is:

( f ⇒ g)(x) = f (g(x)) = h(x)

In programming, this function composition can be written as:

fun h x = f(g(x))

The mathematical compositional symbol ⇒ allows the functional calls to be evalu-
ated sequentially from the innermost function (right) to the outermost function (left).
This is the same for a point-free functional composition in a program. In CAD, the
function composition in point-free notation would be written as:

let h = f ⇒ g
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Caddie translates expressions to point-free notation before computing the linear
map derivative. The translation of expressions to point-free notation is defined by
a grammar for point-free combinators and a set of rules for translating variable as-
signments. This will be explained in detail in section 2.4.3.

2.4.2 Monad Types

Caddie uses monad types to avoid expression swelling of the combinatory forms
when deriving linear maps. Expression swelling is when the same variables reoccur
in the computational expression several times and cause redundant computation.
This is prone to happen with symbolic differentiation, as explained in section 2.2.1.

Monads are special types used in functional programming. A monad is a type
constructor, denoted by the type M, which is defined by the two operations:

return: α → α M (2.10)
bind: α M → (α → ε M) → ε M (2.11)

The first operation (2.10), which is also called unit [12], returns a monad of type
α M. The operation takes an input of type α and wraps it into a monadic value.

The second operation (2.11), is a monadic bind. The operation takes a monadic
value α M and a function f of type α → ε M. The function f takes a value of type α and
changes α to a ε type, which is wrapped into a monad. The monadic bind operation
therefore takes an input monad α M, unwraps the value α from the monad, applies f

to it, so that α is bound to a ε monad, and returns the monad ε M.
Monads are used to structure computation as a sequence of steps, where addi-

tional information can be wrapped into the context of the monad together with the
value. The return operation lifts the values (and information) into a monad context,
and the bind operation enables chaining monadic computations [12].

In Caddie, the monads are used to keep track of intermediate variable bindings
in the linear maps. The intermediate variable bindings are let-bindings, and there-
fore the monads in Caddie are called let-binding context monads. In the program
implementation, the monad operations are specified in the signature file val.sig,
as:

22 type 'a M

23 val ret : 'a -> 'a M

24 val >>= : 'a M * ('a -> 'b M) -> 'b M

with the monad bind represented by the value name >>=. The value >>= can then be
defined as an infix operator to customize the monadic bind in different contexts of
the program implementation.

To differentiate function compositions f ⇒ g, the infix operator >>= is for example
used to define the monad context of the CAD rule 3 [3]:

(g ⇒ f )[1](x) = let ( f x, f
↑
x) = f

[1](x) in

let (g f x, g
↑
f x) = g

[1]( f x) in
(g f x, g

↑
f x • f

↑
x)

by the following implementation in the function diffM in diff.sml:

3the superscript [1] denotes the pair of a function’s value and its derivative
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73 F.Comp(g,f) => (* g o f *)
74 D f x >>= (fn (fx,f'x) =>

75 D g fx >>= (fn (gfx,g'fx) =>

76 ret (gfx,L.comp(g'fx,f'x))))

The F.Comp datatype has two functions g and f. First, the differentiate operator D
is applied to f x, which returns a monadic value. Then the monadic value is bound
to a new monadic context using the lambda function fn (fx, f'x) =>. Within the
scope of the first lambda function, a new monadic sequence for g fx is defined with
a second lambda function. The second lambda function fn (gfx, g'fx) => returns
the monadic bind context by using the unit function ret. The final context monad is
(gfx,L.comp(g'fx,f'x)), where L.comp is the linear map context monad binding
of the derivative, handled in the lin.sml file.

By using monadic binds, the sequence of which the intermediate variable bind-
ings occur, is structurally reliable, since the monadic context ensures that the inter-
mediate variables are correctly bound within the functional scope of the linear map
derivatives.

For example, consider the same function f from 2.2.1 defined by:

f (x) = u(x)v(x)

then by the product rule, it differentiates to:

f
↑(x) = u

↑(x)v(x) + u(x)v↑(x)

Let now:

u(x) = sin(x)

v(x) = cos(x) · x

symbolically f (x) differentiates to:

f
↑(x) = cos(x) cos(x) · x + sin(x)(↔ sin(x)x + cos(x))

= cos(x) cos(x) · x ↔ sin(x) sin(x)x + cos(x) sin(x) (2.12)

Here, cos(x) and sin(x) appear several times in f
↑(x), which is computationally

redundant when implemented in a program. When this function is differentiated
using Caddie, the input function defined as:

fun f x = sin(x) * (cos(x) * x)

leads to the linear map output:

f' x dx =

let v1 = cos(x)

let v2 = sin(x)

let v3 = (v1 * x)

in (((cos(x) * dx) * v3) + (v2 * (((~(sin(x)) * dx) * x) + (v1 * dx))))

The output shows, that the linear map derivative function implements three in-
termediate variable let-bindings, v1, v2, and v3. These are the monad context vari-
able bindings. By binding the cosine and sine expressions to variables, expression
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swelling in the last line of the linear map is reduced, by using the intermediate vari-
ables, instead of evaluating the cosine and sine expression multiple times, as shown
in equation (2.12).

In Caddie, the let-binding context monads of the forward-mode and reverse-
mode linear maps of a function are defined as:

D f : V ⇑ (W↘ (V ⇓→ W)) M Forward-mode (2.13)
Adj(D f) : V ⇑ (W ⇓→ V) M Reverse-mode (2.14)

Looking back at the previous example of F.comp, we now see that the return con-
text monad tuple (gfx,L.comp(g'fx,f'x)) is of the same type as the return type of
D in (2.13); the function value is in the first component and the linear map derivative
is in the second component, which is wrapped in a monad using ret.

2.4.3 Semantics

The semantics of Caddie is specified for function expressions, point-free notation,
and linear maps.

Functions in Caddie are defined by unary and binary operators and expressions.
The unary operators are symbolized as rho (ϱ) and the binary operators are symbol-
ized as diamond (⇔). These operators follow the grammar:

ϱ := ln | sin | cos | exp | pow r | ↖ (2.15)
⇔ := + | ⇐ | ↔ (2.16)

where := means assignment to one of the statements, that are separated by a bar
(|), like match-cases. Here, r denotes the range of all reals r ↓ R, and ↖ is the tilde
symbol for negation. Expressions e are defined by the grammar:

e := r | x | ϱ e | e ⇔ e | (e, e) | π i e | (e) | let x = e in e (2.17)

Expressions can be a real, a variable x, a unary or binary operation on expres-
sions, a tuple, a projection (denoted by π where i is an integer index larger than
zero), a single expression in parenthesis, or a variable let-binding.

Expressions can be translated into point-free notation denoted by the letter p. The
point-free notation grammar is defined by:

p := p ⇒ p | π i | K e | p ↘ p | ↫ | Id | ϱ | ⇔ | (p) (2.18)

where ⇒ is function composition, K is a constant function, ↘ is element-wise function
application, ↫ is duplication (dup), and Id is the identity. The exact definitions are
defined in lambda calculus terms as:

↫ : λx.(x, x)

π 1 : λ(x, y).x
π 2 : λ(x, y).y
K e : λ_.e
Id : λx.x
↘ : λ( f , g).λ(x, y).( f (x), g(y))

⇒ : λ( f , g).λx. f (g(x))
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This grammar defines the point-free combinators, which are used in the transla-
tion of input expressions to point-free notation. The translation to point-free notation
is done with the use of variable assignment rules. The rules define how explicitly de-
clared variables from an expression environment are mapped to point-free notation
compositions of projections. That means, that explicit variables are removed from
the expression and the projection function is used to project out the variables when
the point-free notational form is applied to an environment. The projection function
is composed into a point-free composition, just like any other function, as explained
in 2.4.1.

The translation rules are defined by:

|x|δ = δ(x)

|r|δ = K r

|ϱ e|δ = ϱ ⇒ |e|δ

|e1 ⇔ e2|δ = ⇔ ⇒ (|e1|δ ↘ |e2|δ)⇒ ↫
|let x = e1 in e2|δ = |e2|(δ ⇒ π 2, x : π 1) ⇒ (|e1|δ ↘ Id)⇒ ↫

|(e1, e2)|δ = (|e1|δ ↘ |e2|δ)⇒ ↫
|π i e|δ = π i ⇒ |e|δ

|(e)|δ = |e|δ

where δ denotes the range over variable assignments x1 : p1, ..., xn : pn, and e is an
expression environment as defined by (2.17). This means that in the range δ, variable
x1 is assigned point-free notation p1, and variable xn is assigned point-free notation
pn. The symbolic definition |e|δ means that the expression e is translated into point-
free notation by having the variables in the expression assigned point-free notation.

To give a better understanding of how the point-free notation translation is ap-
plied, consider the expression:

let x = 5 in

let y = 8 in

x + y

This is the expression environment e. To translate this to point-free notation, the
translation rules are applied to the definition |e|δ. Initially, δ is empty; there have
been no assignments. The expression is a let-binding expression, so first the let-
binding rule is applied, and then recursively the other rules are applied until the
expression is translated to a point-free notation.

It is done by the following:

|let x = 5 in let y = 8 in x + y|δ δ{}

=|let y = 8 in x + y|δ ⇒ (|5|δ ↘ Id)⇒ ↫ δ{x : π 1}
=|x + y|δ ⇒ (|8|δ ↘ Id)⇒ ↫ ⇒(K 5↘ Id)⇒ ↫ δ{x : π 1 ⇒ π 2, y : π 1}
=+ ⇒(|x|δ ↘ |y|δ)⇒ ↫ ⇒(K 8↘ Id)⇒ ↫ ⇒(K 5↘ Id)⇒ ↫ δ{x : π 1 ⇒ π 2, y : π 1}
=+ ⇒(π 1 ⇒ π 2 ↘ π 1)⇒ ↫ ⇒(K 8↘ Id)⇒ ↫ ⇒(K 5↘ Id)⇒ ↫ δ{x : π 1 ⇒ π 2, y : π 1}

The variable assignments δ are kept on the right, and on the left, the point-free
notation translation is applied. First, the let-binding rule is used on the let-binding
of x. Then, the let-binding rule is used again on the second binding y. The variables
x and y are assigned numerical values, so these values are translated to the constant
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function K r. Finally, the binary operation + is translated, and x and y are translated
to projections using the accumulated projections in δ.

The initial expression e is now in point-free notation. It is a function composition,
so if an environment or argument is now passed to this point-free notational expres-
sion, it will return the result of x + y. For example, if 9 is passed to the expression, it
gives:

(+ ⇒ (π 1 ⇒ π 2 ↘ π 1)⇒ ↫ ⇒(K 8↘ Id)⇒ ↫ ⇒(K 5↘ Id)⇒ ↫)(9)
=(+ ⇒ (π 1 ⇒ π 2 ↘ π 1)⇒ ↫ ⇒(K 8↘ Id)⇒ ↫ ⇒(K 5↘ Id))(9, 9)
=(+ ⇒ (π 1 ⇒ π 2 ↘ π 1)⇒ ↫ ⇒(K 8↘ Id)⇒ ↫)(5, 9)
=(+ ⇒ (π 1 ⇒ π 2 ↘ π 1)⇒ ↫ ⇒(K 8↘ Id))((5, 9), (5, 9))
=(+ ⇒ (π 1 ⇒ π 2 ↘ π 1)⇒ ↫)(8, (5, 9))
=(+ ⇒ (π 1 ⇒ π 2 ↘ π 1))((8, (5, 9)), (8, (5, 9))
=(+)(5, 8)
=13

which is the expected result.
Linear maps denoted by m are defined by the grammar:

m := ↫ | (+) | ↖ | π i | 0 | Id | m ↙ m | m • m | (e⇔) | (⇔e) | (m) (2.19)

where ⇔ is a bilinear map function, ↙ is the element-wise linear map application
corresponding to the point-free ↘ operator, and • is linear map function composition
similar to the point-free ⇒ operator.

2.4.4 Differentiation

Differentiation in Caddie is defined by the differentiation operator D of the following
type:

D : (V → W) ⇑ V ⇑ (W↬ (V ⇓→ W)) (2.20)

Here, the type declaration of D is declared in non-monadic form. The declaration
uses three different arrows to denote the various expression levels used in Caddie.

The declaration distinguishes between the functions at a expression level, denot-
ing the signatures of functions, and functions at a meta level, which describes the
vector space transformation declarations. The result is a type signature that contains
three types of transformations, which are symbolized by the arrows; the functional
expression transformation, the derivative linear map transformation, and the meta vec-
tor space transformation, given by:

→ expression transformation
⇓→ linear map transformation(↭)

⇑ vector space meta transformation

The reason for this complicated type declaration comes from the Term definition
in (2.8), which uses the Fréchet linear map (2.7).

The differentiate operator returns a tuple consisting of the result value W of the
function (V → W) and the linear map (V ⇓→ W)4. ↬ denotes a meta-pair of the vector
spaces.

4The Fréchet linear map (2.7) would in Caddie be written as V ⇑ (V ⇓→ W)
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Differentiation using the D operator is defined on point-free notation according
to the definitions from [10] shown in figure 1. Primitive function operators ϱ are
differentiated by D ϱ.

The forward-mode automatic differentiation process in Caddie can be defined for
a point-free expression at x as:

f' x = let (_,m) = D p x

in m

where the linear map m is returned by the let-expression.

Figure 1: Differentiation definitions, cited from the Caddie repository [10].

The reverse-mode differentiation process uses the adjoint of the derivative linear
map, as explained in 2.3.2, by applying the definitions shown in figure 2. The adjoint
operator Adj is defined by the type:

Adj : (V ⇓→ W) ⇑ (W ⇓→ V) (2.21)

The adjoint operator takes a linear map derivative as input and transposes the
linear map to an adjoint linear map. The reverse-mode differentiation process is
then defined as a let-binding operation on a point-free notation with respect to an
argument x, as:

f^ x = let (_,m) = D p x

in Adj m

where the notation f^ is the reverse-mode derivative.

2.4.5 Standard ML Implementation

The Caddie tool is written in Standard ML, which is an imperative functional pro-
gramming language.

20/42



Bachelor Project 2024–25
Application of Combinatory Automatic Differentiation in a Python Context

DIKU
March 18, 2025

Figure 2: Adjoint definitions, cited from the Caddie repository [10].

The Caddie implementation consists of a source folder with eleven different im-
plementation files and signatures which are: ad, ast, cad, diff, exp, fun, lin, prim,
rel, term_val, and val. These modules are the main part of the program. The im-
plementation also uses other files that provide functionality for running the tool in
the terminal, and it uses an external library package for the parsing implementation
called sml-parse [13].

The main program call is implemented in cad.sml at the end of the file as:

292 fun main () =

293 let val parseRes = parseEval()

294 val compRes = compile parseRes

295 val transRes = translate compRes

296 val diffRes = differentiate transRes

297 val udiffRes = unlinearise diffRes

where the flow of the differentiation process is serialized in a let-binding. First, the
input is parsed into an abstract syntax tree (AST), then it is compiled to an internal
expression for the tool, then the expression is translated to point-free notation and
differentiated, and finally translated to an unlinearized result.

Standard ML provides functionality for writing let-expressions. This is an essen-
tial feature that enables the monad bindings needed for Caddie.

The implementation of Caddie is expressed in compact code, following a func-
tional programming form. It utilizes patterns and anonymous lambda functions to
allow for higher-order functionality and programming structure.

Caddie can take .cad files as input programs to be differentiated. The .cad files
are written in an unspecified let-binding context language that resembles a subset
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of Standard ML. The .cad files allow for specialized operator symbols tailored for
Caddie, like scalar multiply *>.

With the theoretical notion of derivatives and an overview of the Caddie tool, the
following section will address requirements for contextualizing Combinatory Auto-
matic Differentiation with the Python language.

3 Analysis
This section focuses on the modifications that need to be made to Caddie so that the
tool will work in a Python context. It is mainly concerned with the programming
language specifications of the input and output files to Caddie.

3.1 Python Context Caddie
Currently, Caddie works on .cad files, written in a functional style language using
let-expressions, that resemble Standard ML. For Caddie to work in a Python context,
the tool has to be able to read and derive programs written in the Python language.
It is therefore a requirement that the input files and the unlinearized outputs of the
modified Caddie tool can be run as Python programs in a Python interpreter.

The modified tool for using Combinatory Automatic Differentiation in a Python
context will be called Caddiepy.

3.2 Requirements for Reading Python Input
The Python language is a dynamically-typed language, which evaluates variable
types during the run of a program. Python is not designed as a functional program-
ming language and it is therefore very different from the Standard ML language that
Caddie is built on.

Let-expressions do not exist in Python. Therefore let-expressions have to be writ-
ten in a different way in Python, which conveys the same grammar. The translation
of a functional programming style to an imperative procedural style might cause
complications, which should be anticipated as much as possible.

Projection # and scalar multiplication *> are features that do not exist in Python
either. These operators have to be translated to a Python syntax that needs to work
with Caddiepy.

The mathematical operators described in 2.4.3, like natural logarithm ln, nega-
tion ↖ and the power function pow, also have to be translated to a Python syntax, and
changes have to be made to Caddie so that the Python input programs are parsed
correctly and compiled to readable internal expressions.

The function declarations in the .cad language only allows a single parameter for
the input; for example, fun f x. To have multiple argument values in the function,
projection, symbolized as #, is used to project values out from x, as in the example
fun x = (#1 x) + (#2 x). This limitation has to apply to the Python input context
as well.

Many mathematical operators are not native to Python. It, for example, requires
external libraries to compute cosine and sine in the interpreter, and vector and matrix
operations are not native to Python either. Therefore, the external Python library
NumPy [14] will have to be used, to be able to execute the Python programs in a
Python interpreter, when mathematical operations are in use.
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3.3 Requirements for Deriving Python Output
Caddie can generate various outputs of the differentiation process. The option --Pdiffu

generates the unlinearized differentiated code output of a program. This is the out-
put that needs to be modified so that the derived output is written in Python.

Caddie outputs a differentiated program as a functional let-expression context
language with a similar language definition as the input .cad files. For example, the
output differentiated programs use prj1 for projection of element one, instead of #1
as .cad files.

The translation of the let-expression context language to a Python context output
will need to be similar to the Caddiepy input requirements. The let-expressions have
to be translated to a Python equivalent expression, and mathematical operators will
have to follow the syntax of available Python operators.

Ideally, it should be possible to derive a second-order derivative of a program, by
running Caddiepy on a first-order differentiated program output; so that a workflow
using the tool can follow the sequence: input to a first-order unlinearized differen-
tiated output to a second-order unlinearized differentiated output. To do this, the
input and output programs will have to follow the same language definition.

Currently, it is not possible to derive second-order derivatives with Caddie be-
cause of the discrepancy of syntax between the input .cad files and the unlinearized
output. For example, the Caddie unlinearized differentiated programs generate
function declarations with multiple parameters; an input function f xs might be
differentiated to f' (x1,x2,x3) (dx1,dx2,dx3). This differentiated output, cannot
be used as input for Caddie, since only a single argument is allowed for the function
declaration in input files.

The Python context translation for Caddiepy will have the same issue because the
unlinearized output is translated from the linearized differentiated program used
internally in Caddie. It is necessary to consider a definition for the Python language
used for Caddiepy.

4 Design
This section considers the Python language definition to be used for Caddiepy. The
section provides a grammar definition for a subset of Python, which translates the
let-expression context language in Caddie to a Python context.

Furthermore, the section describes how differentiated unlinearized Python out-
put code should be generated, and how the generated code should relate to the
Python subset grammar definitions.

4.1 Python Subset Language
As discussed in the analysis section 3.2, input files to Caddiepy have to be written
in the Python language, but not all language definitions of Python will be able to
work with Caddiepy. Therefore, a subset of the Python language that is tailored
to Caddiepy will be defined. The subset language defines the input programs for
Caddiepy. The requirement is that the Python subset language can run as scripts
in a Python interpreter and that it can be differentiated by Caddiepy. The subset
language is defined in the sections below.
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4.1.1 Functions, Variables, and Parameters

Inputs to Caddiepy are functions since the objective is to differentiate functions. The
input files are stored as Python scripts using the .py file naming. The .py input files
should always start with function declarations that follow the form:

def var(param): funexp (4.1)

where var are variable names, param is a single parameter, and funexp are function
expressions. The typewriter font denotes the written program syntax and italicized

words are context-free grammar definitions.
Variable names var, can be any combination of letters, underscore, or digits, that

follows the string literal definition of Python [15]. A variable name cannot be a single
digit, or start with a digit, but a starting letter can precede a number like f2. The
same is valid for a parameter. It is defined as:

var := [a-zA-Z_][a-zA-Z0-9_]⇐ (4.2)
param := var (4.3)

where the symbol := denotes derivation to various definitions of the grammar and
the string literal of var is defined as a regular expression.

Function expressions are defined by the two definitions:

f unexp := varbind; f unexp (4.4)
| return exp (4.5)

The first case is variable bindings varbind followed by a semicolon, followed re-
cursively by a function expression. The second case is a return statement followed
by an expression exp.

Function declarations always have to end with a return statement, and variable-
bindings are separated by the semicolon. The full Python language is known for its
indentation whitespace syntax to separate statements. For Caddiepy to work, and
make the translation from a let-binding context language to a Python subset lan-
guage, statements are strictly separated by semicolon. Indentation will be ignored
by the Caddiepy parser, but it won’t be ignored in a Python interpreter. Therefore,
to be able to run a Python subset language file in both programs, indentation to sep-
arate statements is not allowed.

It is important to note that named function declarations of the Python subset
language only take a single parameter as input. This means that if an input consists
of multiple arguments, projections will have to be used in the function expression.
Projections will be defined further down in the section.

Variable bindings varbinds are defined as:

varbind := var = exp (4.6)

where variables are assigned the result of an expression. This corresponds to the let-
binding context expression, written as let x = e in e, as in the definition (2.17).
Python doesn’t have let-binding definitions in the language. The let-binding context
is syntactically translated to the combined use of a variable binding and the semi-
colon, as shown in funexp.
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4.1.2 Expressions

Expressions are defined as:

exp := num (4.7)
| var (4.8)
| unop exp1 (4.9)
| binop exp1 exp2 (4.10)
| (exp,exps) (4.11)
| var[i] (4.12)
| (exp) (4.13)

exps := exp, exps (4.14)
| exp (4.15)

where num are any numbers of reals in R, and unop are unary operators taking an
expression as argument, and binop are binary operators taking two expressions as
arguments. A tuple can have two or more expression declarations.

Projections in Caddie are defined with π and an index i excluding zero. In the
Python subset language, this is translated to an array-indexing using var[i], where
the index i is any natural number N0, including zero.

4.1.3 Binary and Unary Operators

In Caddie, the unary and binary operators are defined respectively using the sym-
bols ϱ and ⇔ as explained in 2.4.3. For the Caddiepy Python subset language, the
operators are denoted by unop and binop.

Unary and binary operators are defined as:

unop := log(exp) (4.16)
| sin(exp) (4.17)
| cos(exp) (4.18)
| exp(exp) (4.19)
| pow(exp, num) (4.20)
| - exp (4.21)

binop := exp + exp (4.22)
| exp - exp (4.23)
| exp * exp (4.24)

where log is the natural logarithm, pow is the power function, - is negation, and exp

is the exponential. For the unary and binary functions to work in a Python inter-
preter, the Python subset language is extended using the NumPy framework. Some
functional operations are not native to Python, such as log, sin, and cos, and there-
fore need the use of an external library to run in the Python interpreter. Caddiepy
does not depend on an external library, however.
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4.2 Differentiated Unlinearized Output
The unlinearized Python output of Caddiepy should follow similar grammar defini-
tions as the input, defined in 4.1. However, function expressions should be able to
have multiple parameters instead of just one, so that the tangent and adjoint values
to the linear maps, as described in 2.3.2, can be passed as arguments. This will allow
a differentiated Python function to be declared as f_diff(x,dx).

The function declaration grammar of the unlinearized output is therefore defined
as:

def var(params): funexp (4.25)

where parameters are defined as:

params := param, params (4.26)
| param (4.27)

This means that the Python output code can have multiple variables in the func-
tion declarations, as def f(x1,x2,dx1,dx2), but the input Python code is only al-
lowed to have a single input variable as def f(x). As discussed in 3.3, differentiated
outputs from Caddiepy cannot be re-differentiated, since the function definitions of
the input and output differ. Caddiepy is limited to only first-order differentiation.

Python code indentation is not allowed for the output either, and the semicolon is
used instead. Unary and binary operators and expressions follow the same grammar
as in 4.1.

5 Implementation
This section describes the implementation of Caddiepy. The section shows how the
parser of the original program is modified to work with the Python subset language
and how the pretty printer is modified to print Python code. The main modifications
to the parser are implemented in ast, and the printing of the unlinearized Python
output is implemented in term_val, prim, and cad.

5.1 Caddiepy
To keep track of the development of Caddiepy, the project is hosted on a GitHub
repository:

github.com/kdsoup/caddiepy

It makes the project publicly available and the development process is kept or-
ganized by having version control on the project code. New implementations are
configured via branches, which are merged into a main branch when implementa-
tions are ready to be included in the project.

The source code is taken from the original Caddie project [10]. The core imple-
mentations of Caddie have not been altered for Caddiepy, since it is necessary to
keep the foundational combinatory automatic differentiation implementation intact.
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5.2 Modifying the Parser
Parsing of the Python input program happens in the abstract syntax tree module ast
when parse_prg is called. The input program is first tokenized with the help of the
sml-parse SimpleToken module, and then parsed with p_prg.

The beginning of the input Python program starts with a function declaration,
as defined in 4.1.1. p_prg is implemented by expecting def as the first identifier
to be parsed, and then parsing the remaining function declaration and body. It is
implemented as:

552 val rec p_prg : rprg p =

553 fn ts =>

554 ( ((((((((p_kw "def" ->> p_var) >>- p_symb "(") >>> p_var) >>- p_symb

")") >>- p_symb ":") >>> p_e) oor (fn (((f,x),e),r) => [(f,x,e,r)]))

??* p_prg) (op @)

ω→

ω→

555 ) ts

The functions p_kw, p_var, and p_symb parses keywords, variables, and symbols,
and custom operators are used from the sml-parse library to combine the parsed
results5. The function p_e parses the remaining body of the program using several
helper functions in recursive calls.

The operators for addition, subtraction, and multiplication remain implemented
from the source code. The simultaneous recursive parse function p_ae is imple-
mented to parse expressions according to the Python subset language definitions:

491 and p_ae : rexp p =

492 fn ts =>

493 ( ((p_kw "return") ->> p_e)

494 || ((p_var >>> ((p_symb "=" ->> p_e) >>> (p_symb ";" ->> p_e))) oor

(fn ((v,(e1,e2)),r) => Let(v,e1,e2,r))) (* Variable bindings *)ω→

495 || ((p_e_prj >>> ((p_symb "[" ->> p_index) >>- p_symb "]")) oor (fn

((e,i),r) => Prj(i,e,r)))ω→

496 || ((p_var >>> p_ae) oor (fn ((v,e),r) => App(v,e,r)))

497 || (((((p_kw "pow" ->> p_symb "(") ->> p_ae) >>- p_symb ",") >>>

(p_real >>- p_symb ")")) oor (fn ((e,f),r) => Pow(f,e,r)))ω→

498 || ((((p_kw "log" ->> p_symb "(") ->> p_e) >>- p_symb ")") oor (fn

(e,r) => App("ln",e,r)))ω→

499 || (p_var oor Var)

500 || (p_zero oor (fn ((),i) => Zero i))

501 || (p_int oor Int)

502 || (p_real oor Real)

503 || ((p_seq "(" ")" p_e) oor (fn ([e],_) => e | (es,r) => Tuple

(es,r)))ω→

504 ) ts

For projection, two additional helper functions p_e_prj and p_index are imple-
mented to specifically parse projections of input arguments. The p_index function
maps the zero-indexing of arrays to one-indexing of projections for the internal tool
expressions and prevents indexes from being negative integers. The functions are
implemented as:

5see PARSE.sig for explanation on the operators.
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486 and p_e_prj : rexp p =

487 fn ts =>

488 ( (p_var oor Var)

489 ) ts

416 val p_index : int p =

417 fn ts =>

418 case ts of

419 (T.Num n,r)::ts' =>

420 (case (Int.fromString n, List.exists (fn c => c = #"." orelse c = #"-"

) (String.explode n)) ofω→

421 (SOME n, false) => OK (n+1,r,ts')

422 | _ => NO(locOfTs ts, fn () => "non-negative int"))

423 | _ => NO(locOfTs ts, fn () => "non-negative int")

For handling negation, which uses the same symbol as subtraction, a new parsing
grammar p_e1 is added and is implemented as:

480 and p_e1 : rexp p =

481 fn ts =>

482 ( (((p_symb "-") ->> p_e1) oor (fn (e,r) => Sub (Zero r,e,r))) || p_ae

483 ) ts

The parsing of negation is implemented as a grammar level between multipli-
cation in p_e0 and the atomic expressions in p_ae. The reason for this is to avoid
ambiguous parsing of the negation symbol and subtraction symbol. Negation is
evaluated as a subtraction operator, where the negated expression is subtracted from
zero.

The additional reserved keywords for Caddiepy are: def, return, log, and pow,
implemented in the parser as:

398 val kws_py = ["def", "return", "log", "pow"]

Keywords for the operators: cos, sin, and exp are already part of the parse imple-
mentation elsewhere in the ast file, so modifications of the operators are not needed
for parsing the Python input syntax; it is the same.

5.3 Modifying the Unlinearized Output
To generate the unlinearized differentiated output, the pretty printer in term_val

is modified. The term_val module evaluates the entire differentiated expression
and prints all the intermediate computations needed to generate the output pro-
gram code. The pretty printing function specifically writes the string output of the
unlinearized code. The pretty printer for Caddiepy is named pp_py.

The pp_py function is called in the unlinearised function, as part of the main
program code in cad.sml, as shown in 2.4.5. In unlinearised, the Python function
declaration is printed and pp_py is called to evaluate the body of the function. It is
implemented as:
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278 val pling = if rad_p() then "_diff_reverse" else "_diff"

279 val () =

280 if print_diff_unlinearised_p() then

281 ( println "# Unlinearised differentiated program (python):"

282 ; List.app (fn (f,arg,d,gM,_) =>

283 ( println_py ("def " ^ f ^ pling ^ "(" ^ V.pp_py

arg ^ "," ^ V.pp_py d ^ ")" ^ ":")ω→

284 ; println (V.ppM_py "" V.pp_py gM)

285 ; println "")

286 ) prg'

The pp_py function evaluates the internal value expressions of the program and
writes strings of Python code for the output, as defined in section 4.2:

77 fun pp_py v =

78 case v of

79 R r => real_to_string r

80 | T vs => "" ^ String.concatWith "," (map pp_py vs) ^ ""

81 | Uprim(p,v) => Prim.pp_uprim_py (p, pp_py v)

82 | Add(v1,v2) => "(" ^ pp_py v1 ^ " + " ^ pp_py v2 ^ ")"

83 | Bilin(p,v1,v2) => "(" ^ Prim.pp_bilin_py p (pp_py v1) (pp_py v2) ^ ")"

84 | Var v => v

85 | Z => "0"

86 | Prj(i,v) => "(" ^ pp_py v ^ "[" ^ Int.toString (i-1) ^ "]" ^ ")"

87 | _ => die (pp v ^ " not defined for Caddiepy!")

For Caddiepy, that is the values of reals, tuples, primitive functions, addition,
bilinear functions, variables, projection, and zero.

A function pp_uprim_py is added for printing primitive functions in compliance
with the Python subset language. The primitive functions are the operators sin, cos,
log, exp, - (negation), and pow. The function is implemented in prim as:

25 fun pp_uprim_py (p: uprim, v: string) =

26 case p of

27 Sin => "sin(" ^ v ^ ")"

28 | Cos => "cos(" ^ v ^ ")"

29 | Ln => "log(" ^ v ^ ")"

30 | Exp => "exp(" ^ v ^ ")"

31 | Neg => "-" ^ v

32 | Pow r => "pow(" ^ v ^ "," ^ real_to_string r ^ ")"

The bilinear functions are the linear algebra operators for scalar and vector com-
putations. Only multiplication is implemented for the bilinear operators in Cad-
diepy. The Python syntax is generated with pp_bilin_py as:

48 fun pp_bilin_py b v1 v2 =

49 case b of

50 Mul => v1 ^ "*" ^ v2

In addition to pp_py the function ppM_py and ppM0_py are modified too in term_val.
ppM0_py implements the function scope of defined function declarations so that vari-
able bindings are separated by semicolon and that function expressions end with the
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explicit return statement before the return expression, as defined by the grammar
in 4.1.1:

69 fun ppM0_py (ind:string) (pp:v->string) (pp0:'a -> string) ((x,bs): 'a M) :

string =ω→

70 case bs of

71 nil => ind ^ "return " ^ pp0 x

72 | _ => let val bs = List.map (fn (var,v) => ind ^ "" ^ var ^ " = " ^ pp v

^ ";") bsω→

73 in String.concatWith " " bs ^ " " ^ ind ^ "return " ^ pp0 x

74 end

The functions ppM_py and ppM0_py are the pretty printer of the sequence of monad
bindings from the internal program.

5.4 Line Comments
The handling of Python comment lines is implemented in the SimpleToken.sml file,
that is part of the external sml-parse library. Python comment lines start with # and
end with a newline \n. All characters in the comment line are not tokenized.

The reason for implementing it in the tokenizer and not in the parser is that the
parser parses the program from tokens. If the comment line is tokenized, characters
in the comment are processed as either symbol, id, or number tokens. This is unde-
sirable since the tokens would have to be discarded or ignored so that they are not
included in the parse tree, which over-complicates the process. It is therefore better
to modify the tokenizer to ignore the Python line comments.

The tokenizer in SimpleToken handles a Python comment by implementing the
comment state called CommentP. The state iterates through a Python comment string
until a newline is reached. The implementation is shown below:

53 | CommentP (l0,"#") => (l',CommentP(l0,""),ts)

54 | CommentP (l0, "") =>

55 if c = #"\n" then (l',BeginS,ts)

56 else (l',CommentP(l0,""),ts)

57 | BeginS =>

58 if c = #"#" then (l',CommentP (l,"#"),ts)

6 User Guide
Guidance on how to setup Caddiepy and use the tool is provided in Appendix A.
The guide is also available on the repository: github.com/kdsoup/caddiepy.

7 Evaluation

7.1 Testing
To verify that the Caddiepy program works as expected, a series of tests are imple-
mented. There are three kinds of testing: reading of input files, writing of output
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files, and unit tests of the differentiated Python functions. The tests are organized in
the folder test into the subfolders: input, output, and unit.

7.1.1 Input Tests

It is tested if Caddiepy can read and evaluate Python script input files, and if the
Python scripts are evaluated correctly. The Python files are written in the Python
subset language defined in section 4.

The testing is done by using a Makefile setup that automates the process with
bash commands. The Python subset scripts are passed as inputs to Caddiepy, and
Caddiepy evaluates the scripts by using the --Pexp and --Ptyped options. These
commands instruct Caddiepy to return the evaluated expression and type of the
input script.

The printed output from Caddiepy is written to a .out file. The automated test-
ing checks if the evaluated .out file is the same as the expected output stored in the
.out.ok files. The bash command diff is used to check for differences. If the files
match, Test <filename>: OK is written to a .res file. If there is a mismatch, the
error is written to the .res file. A complog.txt file is added with the result output
from the testing. When running Makefile in the terminal, a printed test overview is
written to the terminal.

The Makefile test setup is modified from the Caddie tool [10], which has a similar
test setup for verifying the .cad input files.

7.1.2 Output Tests

To verify that Caddiepy prints the correct unlinearized output, automated tests are
implemented using Makefile. The test setup is similar to the input tests.

The Makefile bash commands generate unlinearized differentiated outputs of the
input test files, using the Caddiepy option --Pdiffu. The differentiated results are
written to .py files and the generated output Python files are compared to .ok files,
to check for differences in the files. The .ok files are the expected differentiated out-
put. If there are differences between the generated and expected files, errors will be
logged to a complog.txt file. A brief test report overview is printed on the terminal
as well.

7.1.3 Unit Tests

The Python module Unittest [16] is used to test that the input Python programs and
the differentiated code from Caddiepy, can run as Python scripts and that they run
correctly. This is implemented as unit tests, which are run with numerical values
on the input functions and on the differentiated linear map output functions. Each
unit test is composed into the three parts of arrange, act, and assert, to make the tests
legible [17].

The automated unit tests verify that all written input Python test functions—
from the folder ../test/input—can run as Python programs and compute numeri-
cal results. An expected manually calculated result is compared to the Python input
function result using assertAlmostEqual. The assert statement checks that the nu-
merical results are within a six decimal accuracy of the expected result 6. The unit
tests for the Python input functions are implemented in test_input.py.

6
assertEqual is not able to check decimal approximation, therefore assertAlmostEqual is preferred.
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The same unit test method is used for testing the differentiated Python functions.
These functions are the differentiated programs in the folder ../test/output. The
unit tests verify that both the derivative and adjoint code can run as Python scripts
and that the numerical differentiated results are correct. The numerical results of
the derivative and adjoint linear map functions are compared against an expected
manually calculated result.

The test results of the unit tests are written to a log file and printed to the terminal
when the tests are run using Makefile. If the tests are run in the terminal with
Python, the results are only printed to the terminal output.

7.1.4 Results

The functionality of Caddiepy is tested with Python programs, that follow the defi-
nitions of the grammar in 4.1. Thirteen test files cover the testing of the binary- and
unary operators, function declarations, variable bindings, and expressions. These
are the .py files located in the ../test/input folder.

The results of the input, output, and unit tests, all show successful results. For
the input and output tests, 13 out of 13 tests complete successfully, and all of the 26
unit tests pass successfully.

A full coverage of the test results is available in Appendix B. Test results can
be reproduced by running the makefile command: make test from the src folder in
the terminal. The Python unit tests can be run independently from the ../test/unit
folder with the command: python -m unittest -v.

7.1.5 Continuous Integration Testing using GitHub Action

To make sure that new changes to the Caddiepy tool are working correctly, it is pos-
sible to configure continuous integration testing using GitHub Actions. This will
ensure that code that is pushed to branches on the project on GitHub first will have
to be verified by a test flow implemented using .yml files [18]. This is not imple-
mented for the project, but it is good practice to enable test runs like this, to ensure
that new implementations will not break the main project code when it is merged in.

7.2 Gradient Descent Implementation
It is desirable to know if Caddiepy can be used in a programming context beyond
the unit tests and standalone tool control in the terminal. To test that Caddiepy
can be used in a Python context program, a simple optimization implementation is
provided, available in the ../src/sine folder.

The Python program fits a third-order polynomial to the sine function using a su-
pervised learning approach, that resembles the training of a simple neural network.

By using a basic Gradient Descent algorithm [19], the coefficients of the third-
order polynomial a + bx + cx

2 + dx
3 are optimized to minimize the loss between the

output values of the sine function y and the observed values from the approximated
polynomial ŷ.

The coefficients a, b, c, d are first initialized to random values (weights), and then
Gradient Descent is applied for 2000 iterations. The main implementation is taken
from the PyTorch website [20]. However, instead of using the standard automatic
differentiation steps, as explained in 2.2, Caddiepy is employed to derive the adjoint
of the loss function, to compute the gradients of the coefficients for the Gradient
Descent algorithm.
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By declaring the loss function as:

def l(x): a = x[0]; b = x[1]; c = x[2]; d = x[3]; t = x[4]; return pow(((a + b

* t + c * t * t + d * t * t * t) - sin(t)), 2.0)ω→

with Caddiepy, the reverse-mode adjoint is computed to:

def l_diff_reverse(x1,x2,x3,x4,x5,dy): v1 = (x3*x5); v2 = (x4*x5); v3 =

(v2*x5); v4 = ((2*((((x1 + (x2*x5)) + (v1*x5)) + (v3*x5)) + -sin(x5)))*dy);

v5 = (v4*x5); v6 = (x2*v4); v8 = (v5*x5); v9 = (x3*v5); v10 = (v1*v4); v13

= (v8*x5); v14 = (x4*v8); v15 = (v2*v5); v16 = (v3*v4); v17 =

(cos(x5)*-v4); v18 = (((v6 + (v9 + v10)) + ((v14 + v15) + v16)) + v17);

return v4,v5,v8,v13,v18

ω→

ω→

ω→

ω→

ω→

The differentiated loss function is then applied to compute the gradients for op-
timizing the coefficients, as seen on line 32 in the implementation:

20 for t in range(2000):

21 # Forward pass: compute predicted y
22 # y = a + b x + c x^2 + d x^3
23 X = [a, b, c, d, x]

24 y_pred = a + b * x + c * x ** 2 + d * x ** 3

25

26 # Compute and print loss
27 loss = np.square(y_pred - y).sum()

28 if t % 100 == 99:

29 print(t, loss)

30

31 # compute gradients of a, b, c, d with respect to loss using adjoint
CADω→

32 grad_a, grad_b, grad_c, grad_d, _ =

lossdx.l_diff_reverse(a,b,c,d,x,1.0)ω→

33

34 # Update weights
35 a -= learning_rate * grad_a.sum()

36 b -= learning_rate * grad_b.sum()

37 c -= learning_rate * grad_c.sum()

38 d -= learning_rate * grad_d.sum()

The polynomial fitted to the sine function gives the result:

Result: y = 0.03298233259390022 + 0.8545375859770113 x + -0.005690001200831127

x^2 + -0.09301699490471449 x^3ω→

and it is visualized in Figure 3 with the sine function.

8 Discussion
This part discusses the correctness of the Caddiepy tool, where the implementation
lacks functionality, and how the tool can be improved. Caddiepy is briefly compared
to JAX, which uses Jacobian matrices and traces.
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Figure 3: Third-order polynomial fitted to the sine function using Caddiepy for computing
gradients.

8.1 Correctness
From the tests conducted in the evaluation, Caddiepy seems to work reliably. The
Gradient Descent implementation shows that the tool can be used in a Python pro-
gramming context.

Currently, the discrepancy between the allowed parameters of the input function
declarations and the differentiated output function declarations breaks the consis-
tency of the Python subset language. The input programs can only have a single pa-
rameter, and the output program can have multiple parameters. It would be better to
allow for multiple parameters in the function declarations of the input programs as
well. This will allow for higher-order derivatives (programs can be re-differentiated)
and it will be easier to implement functions into a Python programming context,
which can be differentiated with Caddiepy.

8.2 Limitations
Caddiepy, so far only works on scalar operations, which is shown in the Gradient
Descent example. To fully take advantage of the mathematical theory of vector space
differentiation inherent in Combinatory Automatic Differentiation, Caddiepy should
be able to operate on linear algebra between vectors and matrices.

In neural network implementations, where tensors of weights and bias are rep-
resented as array matrices, it is crucial to be able to perform matrix multiplication
using dot product operators. The Python subset language should therefore be ex-
tended to include operator definitions such as dot for dot-product and cross for
the cross-product. This can be done in a Python context with functionality from
NumPy. Furthermore, options to be able to perform summation on vector elements
or sequentialized products will improve the functionality of Caddiepy, and allow for
implementations of fully connected neural network architectures, where for exam-
ple, summation is a crucial operation between the layers.
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8.3 Extending the Functionality
8.3.1 Bilinear Operators

As discussed in the limitations of Caddiepy, the tool should be extended to include
bilinear operators, such as the dot-product and cross-product, which can be used in
a Python programming context.

The Python subset language can be extended to include definitions for the bilin-
ear operators, such that a grammar might be defined as:

bilinop := cross(exp1, exp2) (8.1)
| dot(exp1, exp2) (8.2)

Furthermore, it would be useful to allow for computations such as the Euclidean
norm and transpose of a matrix.

8.3.2 Lambda Functions

Instead of defining every function as a named function for Caddiepy, it is beneficial
to extend the Python subset language to include anonymous function expressions.

Anonymous functions in Python are declared with the term lambda. The lambda
function doesn’t need the return statement, they’ll just return the expression. The
lambda functions can take one or more parameters as arguments and a parameter
can also be a variable binding. The lambda function is defined as:

lambda lambda_params : exp (8.3)

where the parameters are defined as:

lambda_params := param, lambda_params (8.4)
| varbind, lambda_params (8.5)
| param (8.6)

However, the anonymous lambda function doesn’t allow variable bindings in
the body of the function, as the named functions do. Therefore, the lambda function
cannot be used as a substitute for a let-binding expression. It is not possible to write
something like:

lambda x, y: y = 2; x + y

The assignment of y = 2 in the expression body is not allowed.
There is a workaround to this where lambda functions are nested, to make vari-

able bindings in the expressions as a form of let-binding, but quickly this kind of
programming becomes difficult to write and read. It is better to avoid it and use
named function declarations instead of variable bindings in the function scope.

8.3.3 Array Functions and Conditionals

Definitions of if-else conditionals and map-functionality are proposed on the Com-
binatory Automatic Differentiation repository page [10], which is not implemented

35/42



Bachelor Project 2024–25
Application of Combinatory Automatic Differentiation in a Python Context

DIKU
March 18, 2025

in Caddiepy, and it is not defined for the Python subset language. With if-else condi-
tionals, more complex algorithmic programming structures can be implemented. It
is therefore desirable to implement differentiation of the conditionals and extend the
parser and pretty printer in Caddiepy to handle the if-else syntax, and even expand
it to handle if-then-else too.

Array functionalities such as map and reduce, are relevant when targeting Cad-
diepy to work in a neural network implementation. Reduce can be employed as
a summation or sequentialized product. Definitions for arrays are not defined for
Caddiepy, so instead tuples can be used as iterable representations in Python, and
the array functions can be defined as:

arr f un := tuple(range(i)) (8.7)
| tuple(map( f un, arr)) (8.8)
| reduce( f un, arr, num) (8.9)

where i is a positive zero-index and range is the iota function which initializes a
range from zero up to i. For map and reduce, arr is a tuple representation of an array,
and f un is a named function or lambda function expression. However, to extend the
Python context to include these operators, differentiation and point-free notation of
the operators have to be defined and implemented as well.

8.3.4 Complex Numbers

It is worth considering if Caddiepy should be able to handle complex numbers. For
example, the result of the equation below is a complex number, when the natural
logarithm is applied to a negative number:

ln(3.0 · cos(2.0)) = ln(3.0 ·↔0.4161468365)
= 0.2218951804 + 3.141592654 I

A way of handling this would be to implement complex numbers as tuples, with
the first element representing the real part and the second element the imaginary.
This makes it possible to differentiate a function with Caddiepy, where the com-
plex numbers are treated as tuples of scalars. The Pretty Printer in Caddiepy can
then be extended to print the complex number tuple representation to num + numj,
which can be used in a Python context. However, as suggested in the paper by [21]
linearity cannot be taken for granted in complex arithmetic, and therefore different
assumptions hold for differentiation with complex numbers. Further study of how
differentiation with complex numbers should be implemented with Combinatory
Automatic Differentiation might therefore be needed.

8.4 Other Tools
JAX is a tool for Python that is designed for optimal array computation in large-scale
machine learning, and it has functionality for automatic differentiation. JAX uses
Jacobian-Vector products (JVP) for its computation of forward-mode automatic dif-
ferentiation and Vector-Jacobian products (VJP) for its reverse-mode automatic dif-
ferentiation [22]. The automatic differentiation is implemented with the use of traces
for intermediate representations in the process, as explained in 2.2, and thereby in-
creases the memory usage when the depth of the Jacobian matrices expands.

When looking at the type definition of the forward-mode VJP, expressed in Haskell-
like signatures [22]:
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jvp :: (a -> b) -> a -> T a -> (b, T b)

it represents a linear map, where T a is the tangent variable, which is very simi-
lar to the forward-mode differentiation in Caddiepy, defined in (2.20). This sug-
gests potential similarities between the two tools, which might be worth studying,
especially since the Combinatory Automatic Differentiation approach avoids the
memory-intensive Jacobian computations and refrains from using traces, also called
tapes by [23], to store intermediate values for the backpropagation process.

Another approach is the Futhark implementation for automatic differentiation
with nested parallelism, which is introduced in [24]. The theory proposes reverse-
mode automatic differentiation as VJP, which eliminates the use of tapes by exploit-
ing nested function scopes. The technique enables differentiation of loop-conditionals,
and the map and reduce operators, which is relevant for Combinatory Automatic
Differentiation.

9 Conclusion
This project demonstrates that the theory and implementation of Combinatory Au-
tomatic Differentiation can be used in a Python context and that the tooling has po-
tential for neural network implementations in Python.

It was explained, how the theory of the Fréchet derivative was implemented in
Caddie, and how the use of monad types and point-free notation allowed symbolic
differentiation to take a compositional form to avoid expression swelling and pro-
vide efficient computation.

By changing the parser and the pretty printer in Caddie, the tool was modified
to work in a Python context. The modified tool is called Caddiepy, and the Python
context was defined as a subset of the Python language to comply with functionality
restrictions as part of a development and design process.

The tool was tested with unit tests to verify the functionality, and a context imple-
mentation was provided to demonstrate how Caddiepy can be utilized to compute
the gradients in a simple supervised optimization task.

9.1 Future Work
Caddiepy should be extended to work with bilinear operators, such as the dot prod-
uct so that the tool can integrate in neural network implementations with multiple
layers and activations functions, where parameters are represented as matrices.

The Python subset language should be extended so that multiple arguments are
permitted in the input functions to allow for the computation of second-order deriva-
tives, and to make it more seamless to implement functions in a Python program-
ming context that can be differentiated with Caddiepy. Furthermore, it would be
useful to extend Caddiepy with array functionality operators such as map and re-
duce, to be able to serialize equations.

There’s great potential for the tool, and it would be exciting to see Caddiepy be-
ing used in more involved differentiation tasks for computing gradients in complex
algorithmic structures.
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A Caddiepy Setup and Use Guide

A.1 Setup
To be able to run Caddiepy, the Standard ML compiler toolkit MLKit is required. The
toolkit is available at github.com/melsman/mlkit. The MLKit repository provides
instructions for installing the toolkit. For macOS ARM computers, MLKit has to be
installed using Rosetta.

When MLKit is installed, download or clone the Caddiepy repository at
github.com/kdsoup/caddiepy. In the terminal, navigate to the caddiepy folder and
type the command make. The Makefile command will compile the Caddiepy source
code to an executable program using MLKit. The executable named ./cad is avail-
able in the src folder.

Python and NumPy are required to be able to run the Python scripts.

A.2 How to Use
To run the program, navigate to the src folder in the terminal, and type:

./cad --Pdiffu some-file.py

With this command, Caddiepy will compute the unlinearized linear map deriva-
tive of the input python file some-file.py, and print the result to the terminal. To
get the adjoint linear map of an input program, type:

./cad -r --Pdiffu some-file.py

where -r is the reverse-mode option command.
Caddiepy has the following options, which are listed by typing ./cad --help:

-r

Apply reverse mode AD.

--verbose

Be verbose.

-e ()

Expression to be evaluated after loading of program files.

--help

Print usage information and exit.

--version

Print version information and exit.

--Ptyped

Print program after type inference.

--Pexp

Print internal expression program.

--Ppointfree

Print point free internal expression program.

--Pdiff

Print differentiated program.

--Pdiffu

Print unlinearised differentiated program.
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B Test Report

-------T E S T --- R E P O R T-------

-------------- I N P U T --------------

Combinatory AD (CAD) for Python v0.0.1

Test add: OK

Test cos: OK

Test exp: OK

Test ln: OK

Test mul: OK

Test neg: OK

Test pow: OK

Test proj: OK

Test simple1: OK

Test simple2: OK

Test simple3: OK

Test sin: OK

Test sub: OK

Tests succeeded: 13 / 13

Test errors: 0 / 13

See complog.txt

---------------------------------------

------------ O U T P U T --------------

Combinatory AD (CAD) for Python v0.0.1

Test add: OK

Test cos: OK

Test exp: OK

Test ln: OK

Test mul: OK

Test neg: OK

Test pow: OK

Test proj: OK

Test simple1: OK

Test simple2: OK

Test simple3: OK

Test sin: OK

Test sub: OK

Tests succeeded: 13 / 13

Test errors: 0 / 13

See complog.txt

---------------------------------------

-------------- U N I T ----------------

test_add (test_input.TestPyInputFiles.test_add) ... ok

test_cos (test_input.TestPyInputFiles.test_cos) ... ok

test_exp (test_input.TestPyInputFiles.test_exp) ... ok

test_ln (test_input.TestPyInputFiles.test_ln) ... ok
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test_mul (test_input.TestPyInputFiles.test_mul) ... ok

test_neg (test_input.TestPyInputFiles.test_neg) ... ok

test_pow (test_input.TestPyInputFiles.test_pow) ... ok

test_proj (test_input.TestPyInputFiles.test_proj) ... ok

test_simple1 (test_input.TestPyInputFiles.test_simple1) ... ok

test_simple2 (test_input.TestPyInputFiles.test_simple2) ... ok

test_simple3 (test_input.TestPyInputFiles.test_simple3) ... ok

test_sin (test_input.TestPyInputFiles.test_sin) ... ok

test_sub (test_input.TestPyInputFiles.test_sub) ... ok

test_add (test_output.TestPyOutputFiles.test_add) ... ok

test_cos (test_output.TestPyOutputFiles.test_cos) ... ok

test_exp (test_output.TestPyOutputFiles.test_exp) ... ok

test_ln (test_output.TestPyOutputFiles.test_ln) ... ok

test_mul (test_output.TestPyOutputFiles.test_mul) ... ok

test_neg (test_output.TestPyOutputFiles.test_neg) ... ok

test_pow (test_output.TestPyOutputFiles.test_pow) ... ok

test_proj (test_output.TestPyOutputFiles.test_proj) ... ok

test_simple1 (test_output.TestPyOutputFiles.test_simple1) ... ok

test_simple2 (test_output.TestPyOutputFiles.test_simple2) ... ok

test_simple3 (test_output.TestPyOutputFiles.test_simple3) ... ok

test_sin (test_output.TestPyOutputFiles.test_sin) ... ok

test_sub (test_output.TestPyOutputFiles.test_sub) ... ok

----------------------------------------------------------------------

Ran 26 tests in 0.001s

OK

make[1]: *** No rule to make target `-i', needed by `all'. Stop.

make: [test] Error 2 (ignored)
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