FACULTY OF SCIENCE
UNIVERSITY OF COPENHAGEN

BSc Project

Christian Kjeer Larsen

Formalization of Array Combinators and
their Fusion Rules in Coq

An experience report

Supervisor: Martin Elsman

June 12, 2017



Abstract

There has recently been new large developments in the field of compiler
correctness. Projects like CompCert and Vellvm try to build verified soft-
ware for compilers that are proven correct with respect to its specification.
There has also been new research on efficient implementations of data-
parallel array programming languages on GPU’s. We present a framework
for reasoning about array programs and transformations with respect to
formal semantics using the Coq proof assistant. We attempt some proofs
of correctness of various program transformations that one would do in a
realistic compiler, and we investigate the possibility of extracting programs
for transforming array-programs that are proven correct and then can be
embedded in a real world compiler.
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1. Introduction

In this section we will give a quick introduction to the domain of our work, and
we will explain the goals and the motivation of the work.

1.1 Compiler correctness

The field of compiler correctness deals with showing that a compiler behaves
according to its specification. Compilers like GCC or MSVC typically has large
validation suites that that checks that the compiler behaves appropriately in a
large number of test cases.

Another way of verifying that a compiler behaves according to its specifica-
tion is using formal methods. If there are formal semantics for the programming
languages involved, then one can prove that every step of the compilation
process preserves the program semantics.

Source code transformations and optimizations should also preserve seman-
tics. Simple examples of transformations includes in-lining, constant folding
and common sub-expression elimination.

1.2 Motivation

The main motivation for this project is to investigate methods for verifying
correctness of program transformations. Many compilers do optimizations to
make compiled programs perform better, and some of these optimizations can
introduce bugs in the compiled programs.

A major effort on compiler correctness has been the CompCert [1] C compiler.
It is a verified compiler for a large subset of the C programming language
written in the Coq proof assistant. Being verified means that along side the
compiler is a machine checked proof of its correctness with respect to the
language semantics. CompCert also does optimizations that are verified as
well.

The compiler can then be extracted from the proof assistant and compiled
using the OCaml programming language.

Another large project is CakeML [2], which is a mechanically verified
implementation of a substantial subset of Standard ML developed using the
HOLA4 theorem prover. It has been proved that the CakeML compiler transforms
CakeML programs into semantically equivalent machine code.

The long-term goal of this work is to create a verified fusion engine for
programs written using a data-parallel programming language with various
array combinators. This fusion engine would then be proven correct, extracted
and embedded into an existing compiler.
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1.3 Contribution

Our contribution is the investigation of a possible framework for verifying
program transformations for a data-parallel programming language with
second-order array combinators using the proof assistant Coq. In particular
we will investigate fusion rules for map and filter and verification of their
correctness. Furthermore we see if more complicated encoding techniques
makes proofs easy to formalize.

We have not been able to find existing literature about this topic, so we find
the project quite innovative and new.

We will start by giving some background on second-order array combinators.



2. Second-order array combinators

Second-order array combinators are limited forms of some of the higher order
functions on lists/arrays found in languages like Haskell and SML. They are
limited in the sense that they do not allow function objects as arguments, but
they only allow for syntactic anonymous functions. We will mainly focus on
map and filter in this work.

map : Yaf.(x — B) — [a] — [B] 2.1)
filter : Va.(ox — bool) — [a] — [«] (2.2)

In the case of map, we can define a second order version of this function by
fixing the bound variable, and only allow invocations in the form

map (Ax.f) e (2.3)

Where the intuition is, that x is bound to each element of e in the evaluation of
f, the body of the function.

2.1 APL

A language that pioneered this way of programming was the language APL
developed in the 60s by Kenneth Iverson [3]. It has multidimensional arrays
as its central data type. APL defines a number of built in operators on arrays.
They are used to specify the way that functions are applied on arrays. For
instance one can map the function that increments by 2 onto an array by doing

2+ 71234
3456

Or the reduction with addition can be performed by doing

+/ 1234
10

APL also defines operators for scan, filter and more. Languages in this style were
typically faster than regular interpreted programming languages, because APL
style languages have a lower interpretation overhead, and they can leverage
highly optimized implementations of these operators perhaps even using
parallelism.

APL is a dynamically typed language, and there has been many attempts
at compiling APL down to efficient machine code. Budd [4] noticed that a lot
of APL operators does not alter values, but merely changes representations.
This observation is used to construct an efficient APL compiler. Budd also
talks about the concept of drag-through, which is when an operation is pushed
through other operators.
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Elsman and Dybdal [5] has demonstrated how many of these constructs
can be efficiently compiled down to a typed lower level representation.

This work includes giving explicit types for some of the operators in APL.
One that is relevant for this project is the each operator

each : Yabc.(a — b) — [a]® — [b]© (2.4)

This definition is almost the map function, but the difference is that it works on
multidimensional arrays as well. This property can be seen by the universally
quantified shape parameter c.

2.2 Futhark

One of the primary reasons for doing the project is the programming language
Futhark, that is currently under development at the University of Copenhagen
[6]. Futhark is a purely functional array language and a compiler that generates
highly optimized code for GPUs.

The basis for Futhark is a number of second-order array combinators.
Performance is achieved from semantics-preserving transformations that that
optimizes for temporal and spacial locality of reference.

The correctness arguments for these transformations come from the list-
homomorpishm theory of Bird and Meertens [7]. This project will take another
approach, and try to investigate some of these transformations in a less abstract
setting. We will look into proving correctness of transformation rules using
formal semantics for a small programming language.

2.3 Fusion rules

A common compiler optimization that we want to do in a programming lan-
guage with these array combinators is fusion. One example of an optimization
is fusing two nested maps into one. This optimization removed one array
traversal. In a programming language with higher-order functions, defining a
fusion rule for nested maps is pretty easy

map f (mapge) =map(fog)e. (2.5)

The problem with this example is, that we only allow expressions written like
formula|2.3| because the previous definition needs higher order functions. To
resolve this problem we need to define the previous fusion rule as a syntactic
transformation using substitution. One way of doing this transformation is by
substituting in the function body

map (Ax.f) (map (Ax.g) e) = map (Ax.[x := g]f)e. (2.6)

One potential problem here is, that we can end up repeating computation.
If x appears multiple times in f, then we repeat the evaluation of g. If the
compiler for our language implements common sub-expression elimination,
then we can safely assume that this optimization does not introduce additional
computational overhead.

We can also eliminate the problem by introducing a let binding.

map (Ax.f) (map (Ax.g) e) = map (Ax.let X' & g in[x:=x']f)e (2.7)
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where x’ is fresh. Then we do not introduce more computation, but we bind an
additional variable.
Another fusion rule that one can have is combining filters

filterp(filterqe) = filter Ax.px A gx)e. (2.8)

This rule is simpler, as it does not depend on doing substitution, we can just
insert the two lambda-bodies into a new one, where they are combined using
the A operator.

There are many other fusion rules than these two, but we will mainly focus
on map and filter fusion in our work. Other fusion rules are described in
section[71

Another way to think of these combinators is using category theory. We will
make a quick aside on the categorical properties of some of these combinators.

2.4 A categorical treatment

This section will give a very brief introduction to how category theory can be
used to reason about functions on lists. We will skip the most abstract concepts,
and skip directly to the application to a functional programming language.
This simplification means that morphisms are functions, and objects are types.
This category is the actual category called Hask, that is used in the Haskell
programming language. Some say that Haskell is a direct implementation of
category theory.

A functor is defined as a mapping between categories [8]. More concretely
for two categories A, B, a functor between them is writtenas F : A — B.

A functor consists of two mappings, one takes functions to other functions,
and one takes types to other types. The mapping that takes types to other types
is called the type constructor. The mapping that takes functions to functions is
in Haskell called fmap. It has the type signature

fmap :: (a ->b) ->Fa ->Fb

There are two laws that functors must obey.
1. F(ida) = idpa)
2. F(gof) =F(g) o F(f)

We can state these laws is terms of Haskell code as well. The first law then
states that

fmap id = id
and the second law states that
fmap (g . f) = (fmap g) . (fmap g)

A lot of data data types in Haskell are functors, and we can define a list data
type in Haskell in the following way.

data List a = Nil | Cons a (List a)

And the canonical map function is implemented as follows.
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map :: (a -> b) -> List a -> List b
map £ Nil = Nil
map £ (Cons x xs) = Cons (f x) (map f xs)

Now if List is a functor, then we know directly from the second functor law
that map fusion is correct. We can prove these functor laws for our list type by
induction.

Proof of functor laws

A common proof strategy in Haskell is one of equational reasoning. We can
expand function definitions and do beta-reductions. We can do this style of
reasoning because Haskell is pure and referentially transparent. Then we can
replace equal terms with each other.

We will prove the second functor law for map. We do the proof by structural
induction over the List data type.

Our inductive hypothesis is that for all lists xs,

map (g . £) xs = ((map g) . (map £)) xs
We start with the base case.

map (g . f) Nil = map g (map f Nil)
-- unfold map
Nil = map g Nil = Nil

For the inductive case we assume that

map (g . f) xs = map g (map f xs)

And we need to prove that

map (g . f) (Cons x xs) = map g (map £ (Cons x xs))

-- unfold map

Cons ((g . £) x) (map (g . £) xs) = map g (map f (Cons x xs))

-- Use induction hypothesis

Cons ((g . £) x) (map g (map f xs)) = map g (map f (Cons x xs))

-- unfold map

Cons ((g . £) x) (map g (map f xs)) = Cons (g (f x)) (map g (map f xs))
-- function composition

Cons (g (f x)) (map g (map f xs)) = Cons (g (f x)) (map g (map f xs))

And we are done.

This proof strategy is very common when working with data types in Haskell
and other functional programmings languages. If some data type satisfies the
laws for functors, applicatives or monads, then we get some properties handed
to us.

In the remainder of this report we will explore some possible ways of
verifying the fusion rules for map and filter. We start by defining a language to
base our work on.



3. Introducing 1ing (LIst LANGUAGE)

To be able to formalize array combinators and their corresponding fusion rules,
we need to have a language for doing so. It is not feasible to use an already
existing programming language like APL, Futhark or Haskell. They are much
too large for our purpose, and this makes reasoning about the meaning of
various programs very tedious.

Therefore we have chosen to create a small language with only the features
we need for proving properties about array combinators.

3.1 Design

The language is a small pure functional programming language with call by
value semantics. It has no recursion or functions, and all computation must
be expressed in terms of built in combinators. We do not formalize arrays,
but we use lists instead. They are much easier to reason about, and they are
isomorphic to arrays.

This choice means that some of the constructs in the language will not be
accessible to the user, and are only here for reasoning purposes. An array
language will for instance not have nil and cons available. The language
will in essence only have the array combinators available for programming.
Furthermore, to make the programming language useful, it will also need more
general language constructs to make real programs expressible. We have not
included these constructs in this work, because they will make the reasoning
process much more complicated.

Many formalizations of programming languages treat values as a subset of
the syntax, and then define a relation for what it means to be a value. We have
chosen a separate syntax for values, and they are then different objects. This
decision also restricts us to creating only a big-step operational semantics. This
choice is made because this evaluation strategy models more closely the way
that a language like this is implemented in practice.

The language includes natural numbers, booleans, and lists of those values.
The language features includes let-bindings, map, filter, and append.

We will in the rest of this chapter go through the complete syntax, semantics,
and typing rules for the language.

3.2 Syntax

We give the syntax for expressions and values. As stated before, values and
expressions are different syntactic categories.

10
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en=x
| let x < ejinep
|
| true | false
| Se vi=Tn|true | false
| e1 and ey | nil | vy v
|nil|ej:: e
| map (Ax.e1) ez
| filter (Ax.e1) ez
| e1 + ez

3.3 Typing

As described before, we give the syntax for types. We have natural numbers,
booleans and lists in our language.

T := nat | bool | [7]

We have a typing judgment for expressions, and we say that an expression has
type T in some typing environment I". We also give the syntax for this typing
environment

M= -|T,x:7t

We can now give the typing rules for our language. They are what you would
expect. In the cases where we have bindings, we expand the typing environment
with the bound variable.

(x:t)erl

MNex:t (T-Var)

Frep:v™ Tox:Trex:T
Fletx &< e ine: T

7N :nat (TN)
(T-TruE)

(x ¢ dom T)(T-Ler)

'+ e:nat
—— (TS
FSe: nat( )
e — — (T-FaLse
I+ true : bool [+ false: bool( )
'+e;:bool T Fep:bool

I+ e1 and e; : bool

(T-AnD)

lNrer:t Trey:[T]

(T-Nn) Mkep:er:[1]

M+ oil:[1] (TCons)

F»—elz[r] rl—ezl[T]
I'kep +ep:[T]

(T-ArPEND)

Fx:TiFe:T r|-€2:[’[71]
I' F map ()\x.el) ey [Tz]

(x ¢ dom T")(T-Mavr)
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Ix:Tkej:bool TFep:|[T]

I+ map (Ax.e1) e : [T] (x ¢ dom T')(T-FiLtER)

We include typing rules for values as well. They are useful when talking about
type preservation of evaluation rules.

TV-
n: nat( V)
——(TV-TrRug) ———(TV-FaLsE)
true : bool false : bool
— (TV-Nw) viit va:lt] (TV-Cons)
nil: [1] vy 1 [1]

3.4 Semantics

We give a big-step semantics for our language. The semantics takes expressions
to values. For our combinators, we have chosen to formalize them as separate
judgments taking values to values. This models in some sense builtin functions
in a programming language, where the arguments are evaluated beforehand.

We say that an expression e evaluates to a value v in an evaluation context
p. This evaluation context is not unlike a variable table in a compiler. We also
give the syntax for this evaluation context.

pu=-lpxlv

We now give the complete semantics for our language. The interesting cases
are those for append, map, and filter. They refer to an auxiliary judgment using
|J. This judgment is a calculation judgment that calculates the result of append,
map, and filter.

(x|v)ep

Ev-V.
prxlv (Bv-Var)

prerlV pxlVvielv

d Ev-L
prletx<ej iney | Vv (x ¢ dom p)(Ev-Ler)

'_
= = (EV—N) p—elv (EV—S)
prnln prSeln+1
—— (Ev-T Ev-F
pFtrue | true( v-TruE) p+ false | false( v-FaLse)
ke | fal e |t )
brei | false (Ev-AnDF) preiltrie prezl V(EV-ANDT)

prejandep | false prelandey | v

prerlvi prexlw
prerze |viiw

prerlvi prexlvy vi+Hw|v
pre+Heylv

(Ev-NiL) (Ev-Cons)

pFnil | nil

(Ev-ArPEND)
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prexlv prmap(Ax.er)v |V

o Fmap (xey) &3 LV (x ¢ dom p)(Ev-Mar)

prex|v prfilter Ax.e;)v |V
p+ filter (Ax.e1) ez |V

(x ¢ dom p)(Ev-FiLTER)

The append semantics is not unlike how you would implement it in a functional
style. Notice that it takes values to values, and does not depend on anything
else.

nil+Hv|v

vo H vz |l v
(vizw)Hvz vy

(App-N1L) (Aprp-Cons)

The semantics for map and filter are a bit more complicated. Notice that they
depend on the general evaluation of expression. This means that we have to
carry around the evaluation context, and we actually extend it before evaluating
the functional argument. Again the implementation is almost as one would do
it in a functional programming language.

‘ p +map (Ax.e) v |V

Marp-
p +map (Ax.e) nil | nil( AP-NIL)

pxlvikelVv] prmap(Ax.e) vz V)
p Fmap (Ax.e) (vi ::v2) | v] V)

(Mar-Cons)

‘ ptrfilter (Ax.e)v |V

Frurer-N
p+ filter (Ax.e) nil | nil( 1LTER-NIL)

p,xlvikeltrue pkfilter (Ax.e) vz | Vv)

F -Cons-T
pFfilter (Ax.e) (v1:v2) V] V) (Frurer-Cons-TruE)

p,x|vitel false prfilter (Ax.e) vz V)
p Ffilter (Ax.e) (v1 ::v2) V)

(FrLrer-Cons-FALSE)

3.5 Need for mutually inductive semantics

The reason for choosing a separate semantics for append, map, and filter can
seem a bit random, and we will give a quick justification for it. If we imagine
that we try to write evaluation rules without a separate judgment.

e+ nil ey |v erlviivy e lvy vo+H vz |v

App-N1/
el +Hey |V (Arp-Nir)

App-Cons’
e1He vy (Arr-Cons’)
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The case for App-Cons’ is troublesome. v, + v3 | v is not a valid premise.
Remember that our judgment has the form p e | v, and vo + v3 is not a valid
expression. This can be solved by creating a translation from values back to
expressions, but we think it will be very complicated. The consequence for
map and filter is that the rules will be mutually inductive, such that map and
filter will refer back to the general evaluation relation.

This mutual relationship between judgments is something that we need to
tackle when formalizing the semantics. It turns out to be a bit complicated. We
will not do any proofs on paper, but we will state how the theorems would be
stated on paper.



4. Programming in Coq

As mentioned before, the practical part of this project uses the Coq proof
assistant. In this section we will go a bit into detail about how Coq works, and
how it will be used in this project.

4.1 Propositions as types

Before diving into Coq, we need a small aside on the Curry-Howard correspon-
dence [9].

In 1934, the mathematician and logician Haskell Curry observed a rela-
tionship between implications and functions. Later in 1969, William Howard
pointed out that there was a similar relationship between the simply-typed
lambda calculus and natural deduction. He noticed that simplifications of
proofs corresponded to evaluations of programs. Furthermore, the usual
introduction and elimination rules for logical connectives corresponded to
constructors and destructors for different types like pairs, sums and lambda
abstractions.

En essence this connection means that programs correspond to proofs and
types correspond to propositions. This fact is used in Coq, such that if a
theorem is defined as a type, and a proof is given as a program. Then checking
that proof corresponds to type checking that program.

The first system to use this fact was the Automath project initiated by De
Bruijn in 1967 [10]. It relied on the idea to treat proofs as first class objects.
The original Automath system had a small kernel, and it could only do proof
checking, there was no notion of interactive proof development.

4.2 About Coq

Coq is an environment for interactive development of programs and proofs.
Coq is a proof assistant, meaning that is automates routine tasks like checking
that proofs are valid, but it still leaves non-trivial details to the programmer.

Coq is based on a type theory called the Calculus of Inductive Constructions
(CIC). CIC is based on the Calculus of constructions (CoC) which is a higher-
order typed lambda calculus. CoC is strongly normalizing, which means that
every term eventually reduces to a normal form. In practice this property
guarantees that every program we write terminates. CIC expands on CoC by
adding inductive definitions, which is very useful when proving properties
about programming languages.

That CoC has a higher-order type system means that it is possible to have
types that depend on values. This type system is also called a dependent type
system. The canonical example is, that one can have a list type that depends on
the length of the list. For instance one can have a type of lists of integers with
the length 42.

15
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CoC can be seen as an extension to the Curry-Howard correspondence
discussed in the previous section. In this case we extend to correspondence to
be that proofs in the full intuitionistic predicate logic corresponds to terms in
the Calculus of Constructions.

The actual language in which one writes programs is called Gallina, and
because it is based on CIC, all programs are terminating. When doing proofs
in Coq, one typically does not explicitly write Gallina terms, but higher-level
tactics written in a language called Ltac. Ltac gives the possibility of automating
proofs by writing custom decision procedures. These procedures do not need
to be checked, since they generate Gallina terms that are checked by Coq. On

Figure 4.1: Interaction with the Coq system

figure |4.1] one can see the typical way that one would interact with the Coq
system. The user is presented with a list of goals to prove. The user then
interactively develops the proof by writing scripts that use Ltac tactics. Under
the hood, Coq generates Gallina terms that are then type checked. If the proof
is accepted, then the theorem is accepted as well.

One typically writes programs and definitions using the Gallina language,
but proofs are typically written using Ltac scripts. Sometimes the converse is
also true, and it often blurs the distinction between a program and a proof. We
demonstrate this duality when formalizing our semantics.

4.3 Dependently typed programming

The main difference between a normal statically typed functional programming
language like Haskell or ML and a dependently typed programming language
like Cogq, is that we can index types by values.

This feature means that we can create a list type, that is indexed by the
length of the list. Then we can create for instance a function that expects lists of
the same length, and have this property statically checked. This concept goes
even further, and we will use dependent types to ensure that all abstract syntax
trees are well typed by indexing type constructors with both types and typing
environments.

In the remainder of this section we will give a short introduction to depen-
dently typed programming by implementing a heterogeneous list type, that we
will use later in this project. This implementation is partly based on examples
from Adam Chlipalas book on Coq [11]. We will use this implementation later
when defining evaluation contexts, because our language has different types of
values that need to be stored in an evaluation context.
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A heterogeneous list type

As mentioned in the previous section, a dependent type is a type that depends
on a certain value. In a programming language like ML, list are typically
restricted to have elements of the same type. With a dependent type system,
we can create a list type that is indexed by a list of types. Then a member of the
list must have the type in the list that it is indexed by.

We start by declaring a new section in Coq. A section is a way to declare
local variables to a set of definitions

Section hlist.

We then declare a variable for the types in the list of types, and a wrapper for
the actual value that we want to put in the list.

Variable A : Type.
Variable B : A — Type.

Just like a regular list, we have two cases. One for nil and one for cons.

Inductive hlist : list A — Type :=
| HNil : hlist nil
| HCons : V (x : A) (1s : list A), B x — hlist 1s — hlist (x :: 1s).

The case for HNil is simple. We can create a heterogeneous of zero elements
that is indexed by an empty list of types. The case for HCons is a bit more
involved. Here we extend the lists that we index the type by by receiving the
old list and a new element of type x.

An element of the list has type A.

Variable elm : A.

Then we can define a relation that states that some element is a member of a
list. This definition is used for later to retrieve that element from the list.

Inductive member : list A — Type :=
| HFirst : V ls, member (elm :: 1s)
| HNext : V x ls, member 1ls — member (x :: 1s).

Now to use this list we define a function that given a proof of membership
returns that particular element from the list. This function is pretty complicated,
but we will go through it in detail. First we will explain a bit on dependently
typed pattern matching in Coq.

Dependently typed pattern matching

Coq has an extended form of pattern matching that is very useful when doing
dependently typed programming. It has the form

match E as y in (T x1 ... xn) return U with
| Czl ... zm = B

| ...

end.

Here E is the expression that is matched on. It must be in the inductive type
T. The overall type of the match expression is U. The interesting rule is, that
yand x1 ... xnarebound in U. These bindings means that we can refer to
the arguments of the type constructor when declaring the return type. This
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property turns out to be very useful when working with dependent types. We
return to the hlist example.
We define hget as a recursive function

Fixpoint hget 1s (mls : hlist 1s) : member 1ls — B elm :=
match mls with

We delay the member argument to hget, then we can use the argument in a
return clause in a pattern match. This binding is important, because we use
this member argument to deal with contradictory cases.
We start with the HNil case
| HNil = fun mem — match mem in member 1s'

return (match 1ls' with
| nil = B elm

| _ 1 _ = unit
end) with

| HFirst _ = tt

| HNext _ _ _ = tt

end

This case is contradictory, since there is no way to construct a proof of mem-
bership for the empty list. We specify this contradiction in the return clause.
When nil was used to construct the member proof, then we can return the
correct type, since there is no case for it.

We continue with the HCons case

| HCons _ _ x mls'
= fun mem = match mem in member 1s'
return (match 1s' with
| nil = Empty_set
| x"::1s''" = B x' — (member 1s'' — B elm) — B elm

end) with
| HFirst _ = fun x _ = x
| HNext _ _ mem' = fun _ get_mls' = get_mls' mem'

end x (hget mls')

In this case the return clause is even more involved. Like before we pattern
match on the argument used to construct the member proof. When nil was
used to construct the member proof, then we return nothing, since the case
is contradictory. In the other case we delay the recursion by requiring the
recursive function to be passed in.

Then when we hit the correct element with HFirst, we can return it directly,
and otherwise use the delayed recursion. We pass the first element of the list
and use the recursive function as arguments to the last match.

This way of writing programs is very tedious, and requires some care and a
lot of tricks. We will encounter more examples of dependent pattern matching
later in this report .In the next section we will step back a bit, and do some
more basic programs and proofs in Coq.

4.4 A first attempt at proving fusion rules

We can prove some of these properties about functions on lists directly in Coq.
The proofs are done by implementing lists, map and filter in Coq and then
proving the properties as theorems. We use the list definition from the standard
library.
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We can implement map just like one would in a functional programming
language using recursion.

Fixpoint map (T T' : Set) (£f : T — T') (Is : list T) : list T' :=
match 1s with
| nil = nil
| cons x 1s' = cons (f x) (map f 1s')
end.

And now we can prove map fusion directly in Coq as a theorem. The proof
is by induction over the structure of the list. The result follows directly by
applying simplification and rewriting using the induction hypothesis.

Coq has support for extending the language with new notations, we can
use this language feature to define a special notation for function composition.

Notation "f 'o' g" := (fun x = f (g x)) (at level 80, right associativity).

Then we can state the theorem clearly.

Theorem map_fusion : V (T T" T'"' : Set) (£ : T' - T'")
(g: T—T") (Is : 1list ),
map £ (map g 1s) = map (f o g) 1s.
Proof. induction ls. reflexivity.
simpl. rewrite <- IHls. reflexivity. Qed.

In this case the result follows directly from the induction hypothesis. This proof
is actually the same as the one we did about functors in section 2.4 The case
for filter fusion is only a little bit more involved. We need a boolean type for
the predicates and a definition of boolean and and some basic lemmas about
identities for and. They can be seen in the accompanying source code. Filter is
defined as

Fixpoint filter (T : Set) (p : T — bool) (1s : list T) : list T :=
match 1s with
| nil = nil
| cons x 1s' = if p x then cons x (filter p 1s') else filter p 1s'
end.

Now we can state the fusion theorem for filter. In this case the result does
not simply follow from the induction hypothesis. The base case is still pretty
simple, but we have to do case analysis in the inductive case. These proofs are
done by using the destruct tactic. Then in each case we can apply some simple
fact about and, and then the result follows from the induction hypothesis.

Theorem filter_fusion : V (T : Set) (p q : T — bool)
(1s : list T),
filter p (filter g 1s) = filter (fun x = and (p x) (q x)) 1s.
Proof. induction 1s.
- reflexivity.
- simpl. destruct (q t); simpl.
* rewrite IHls. rewrite (and_true_r (p t)). reflexivity.
* rewrite (and_false_r (p t)). rewrite IHls. reflexivity. Qed.

This exercise was pretty easy, but it does not really adequately encode what we
are trying to do. We want to prove the properties about our own language, and
not Coq. To achieve this goal we use Coq as a meta-language for encoding the
constructs we want to prove properties about.



5. Encoding in Coq

In this section we will go through the Coq encoding of the language described
in section 3, and all of the decisions made with respect to the representation.
We will also prove some meta-theorems about the language. In particular
determinism and totality of evaluation. An overview of the implementation
can be found in Appendix|A|

5.1 Representing bindings

A large part of formalizing programming languages is dealing with variable
bindings. In our small language let, map and filter introduce bindings. In
other programming languages, bindings are introduced with constructs like
lambda abstractions and pattern matching. In this section we will go into detail
about various ways of formalizing variable binding.

First order methods

One class of methods, the so-called first order methods, uses ordinary data
structures like numbers and strings to encode variables.

Names

Using names for variables models the reasoning on paper directly. The variable
x is represented as the string x in the meta-language. The problem with this
approach is that capture avoiding substitution must be implemented as a
program. In the case of two binders, where one variable shadows the other,
and one wants to substitute in a term for a variable then one would need to
deal with this problem explicitly.

For instance one could have the following term,

letx &< yin(let x =3 inx+x)

where one would want to remove the outer let by substituting y for x, where
one would also have to rename all instances of x in y.

Reasoning about this process mechanically quickly becomes very tedious.
An incomplete formalization using names is included in the accompanying
source code.

De Bruijn indices

Another technique for dealing with bindings removes the problem of shadowing
by using a different method of representing bound variables [12].

This technique was first introduced by De Bruijn in 1972 for formalizing the
lambda calculus. It uses natural numbers the encode the depth of the variable

20
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relative to its binder. The previous example would be encoded as
let _ < v, in(let _ < 3 in vy +vy).

The subscripts indicate what binder the variable is bound to. The problem here
with free variables is, that the encoding is very unnatural. You have to define
what it means to point into some context. This context could then be the typing
context, or some evaluation context which maps variables to types or values.

Also when manipulating syntax, one has to define several operations to
manipulate these indices. Some of these operations are

Lifting This operation increments indices of free variables in an expression.
We lift variables whenever we do an operation under a binder.

Substitution This operation substitutes a term for a variable. This operation is
going to be necessary when implementing the fusion rules.

We choose to use De Bruijn indices to encode bindings in our formalization.
We will quickly go though one more popular way of representing bindings that
is also used in practice.

Higher order abstract syntax (HOAS)

In the previous sections we described various first-order methods of encoding
bindings. With higher-order methods one uses the binding constructs of the
meta-language to encode bindings in the target language. The best known
higher-order method is called higher-order abstract syntax.

This method uses a function to encode each binding. This technique is
the canonical method for encoding bindings in Twelf [13], which is another
framework for encoding deductive systems like programming languages. The
advantage of this method is that one essentially gets substitution handed for
free. A disadvantage is that it limits the way one can express bindings. If one
would like to formalize dynamic scoping, HOAS would make it very difficult.
Another disadvantage is, that the meta-language needs to be stronger. Standard
HOAS cannot be encoded in Coq, but parametric HOAS can. Chlipala discusses
this topic further in [11, chapter 17], and we will not go into further details here.

5.2 Syntax

With the choice of encoding for bindings settled, we need to encode the abstract
syntax of the language. There are two major techniques of encoding syntax,
intrinsic and extrinsic encoding.

Extrinsic encoding

With an extrinsic encoding, one would have separate definitions for syntax and
and typing judgment. For (a subset of) our language, the syntax would be
encoded in Coq in the following way

Inductive exp : Type :=
| evar : nat — exp
| econst : nat — exp



CHAPTER 5. ENCODING IN COQ 22

| enil : exp
| econs : exp — exp — exp
| emap : exp — exp — exp.

One would then encode the possible types for expressions in the following way

Inductive ty : Type :=
| TNat : ty
| TList : ty — ty.

And then finally one would encode the typing judgment from section 3.3|as
another judgment. Then whenever one would prove some property, the proof
for well-typedness would be carried around everywhere. This way of reasoning
quickly becomes very tedious, and there is another technique that fixes some
of these problems. We will discuss this technique in the next section. A small
formalization in an untyped style can be found in the accompanying source
code.

Intrinsic encoding

A method not widespread in the Coq community is using an intrinsic encoding
of expressions. This encoding is also known as a Church-style encoding. The
idea of this encoding is that we only assign meanings to well typed terms. An
intrinsic encoding of the simply-typed lambda calculus in Coq was performed
by Benton, Hur, Kennedy and McBride [14], and some of the work here will
be based on that. We will also use De Bruijn-indices for variables, but De
Bruijn-indices are also made a bit more complicated by the intrinsic encoding.

The main idea is to make sure that all expressions are well-typed by
construction. The problem with doing this encoding is that requires more
sophisticated types in the meta-language. In this case we are in luck, because
the type system in Coq is very expressive, as we will see in the remainder of
this project.

We start by defining a typing environment as a list of types.

Definition env := list ty.

Now the syntax is indexed by this environment. Furthermore we define the
syntax as a GADTH such that every expression constructor has a specific
type. Whenever we need to construct a variable, we need to give a proof that
the variable is a member of the typing environment. Notice that whenever
we extend the environment, we put the type in the beginning of the typing
environment. I have left out some constructors for brevity, but they can be seen
in the accompanying code.

Inductive exp G : ty — Type :=

| evar : V t, member t G — exp G t

| econst : nat — exp G TNat

| esucc : exp G TNat — exp G TNat

| enil : V t, exp G (TList t)

| econs : V t, exp Gt — exp G (TList t) — exp G (TList t)

| elet : V tl1 t2, exp G t1 — exp (tl :: G) t2 — exp G t2

| emap : V tl t2, exp (tl :: G) t2 — exp G (TList t1) — exp G (TList t2)

LGeneralized Algebraic Data-Type
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Itis quite obvious that we actually have encoded the typing rules from Section[3.3
as well. Set inclusion is encoded as the member judgment from section [4.3|

By using the Arguments declaration in Coq, we can tell it to infer the typing
environment and the quantified types automatically. This inference makes the
encoding much nicer to work with. The declaration looks like

Arguments enil [G t].

Where G and t are now inferred automatically by Coq. Values for our language
are encoded in a similar fashion.

Now as an example we can encode the program that adds one to every
element of the list [4, 5]

map (Ax.S x) (4 :: 5 = nil)

as

Example inc : exp nil (TList TNat) :=
emap (esucc (evar HFirst)) (econs (econst 4) (econs (econst 5) enil)).

The nil in the type of inc denotes that the typing environment is empty. We
can also ask Coq what type this expression has.

Coq < Check emap (esucc (evar HFirst)) (econs (econst 4) (econs (econst 5) enil)).
emap (succ (evar HFirst)) (econs (econst 4) (econs (econst 5) enil))
: exp ?G (TList TNat)
where
?G : [ |- list ty]

Here ?7G is any environment. We can go even further and ask about the type
of evar (HNext HFirst). This term is some free variable, that points into the
second element of the evaluation context.

Coq < Check evar (HNext HFirst).
evar (HNext HFirst)

cexp (7x @ 7t :: ?1s) 7t
where
7t 0[] tyl
?x [ |- tyl]

Now Cogq infers that the type of the expression is the type of the second variable
in the context.

5.3 Semantics

Now that we have defined the syntax of expressions, we need to encode the
semantics as well. We have chosen to explore two different methods. One is
denotational semantics, where we in this case give expressions meaning by
mapping them onto regular Coq terms. The other is operational semantics,
where we encode the evaluation judgment defined in section|3.4. We use aliberal
interpretation of what denotational semantics means. In most programming
language theory texts, denotational semantics maps terms onto domain theory,
but the principle is the same. We denote expressions with a semantics from
another domain.
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Denotational semantics

In this section we actually write an interpreter for our language. This inter-
pretation is what we mean when we say that we denote expressions by Coq
terms.

The first thing we need is a mapping from types in our language to types in
Cog. Now the dependent type system comes in handy. We define a recursive
function that denotes the types. It has to be recursive, since we can have
arbitrary nesting of lists.

Fixpoint tyDenote (t : ty) : Type :=
match t with
| TBool = bool
| TNat = nat
| TList t = list (tyDenote t)
end.

This function is then used to calculate the return type for the function that
interprets expressions. For brevity we have only include some of the rules,
corresponding to the syntax defined in Section Note that we return a
function that expects the environment as input. Then it is easy to expand the
environment as we recurse under binders. We also leverage the map function
in Coq to calculate the result of a map.

Fixpoint expDenote G t (e : exp G t) : hlist tyDenote G — tyDenote t :=
match e with
evar _ x = fun s = hget s x
econst n = fun _ = n
esucc e = fun s = S (expDenote e s)
enil _ = fun _ = nil
econs _ el e2 = fun s = (expDenote el s) :: (expDenote e2 s)
elet _ _eel =
fun s = expDenote el (HCons (expDenote e s) s)
| emap _ _ ef e =
fun s = let f := fun x = expDenote ef (HCons x s)
in map f (expDenote e s)

end.

Here we really see the value of the dependent type system. In the case for
numerical constants, we can just return the natural number. In a traditional
functional language, one would typically wrap the value in an abstract data
type, and then one would have to unwrap it afterwards.

To show how to prove simple things using this semantic, we can try to prove
that let x < e in x evaluates to the same value as e forall e. It turns out that
this result follows directly from expanding the definition of let.

Lemma let_id : VGt (e : exp G t) s,
expDenote (elet e (evar HFirst)) s = expDenote e s.
Proof.
intros. simpl. reflexivity.
Qed.

We are not really there yet. Just like in Section 4.4} this formalization does not
adequately encode what we want. We are still just proving properties about
Coq terms in some sense. Now we have just defined our own syntax for it. In
the next section we will go through encoding the actual semantics in Cogq.
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Operational semantics

It requires a bit more care to encode the big-step semantics for our language.
As a warm-up exercise we encode the semantics for append, since it does not
depend on the general evaluation.

We encode evaluation judgments as inductive types. Here we define the
judgment vi + v, |l v as

Inductive CApp : V t,
val (TList t) — val (TList t) — val (TList t) — Prop :=

We specify the types here, since we also implicitly encode the typing require-
ments. This judgment is a relation between three lists of values, two arguments
and one result. Just like in Section 3.4, we have two cases to encode.

| CAppNil : V t (v : val (TList t)), CApp (vnil t) v v
| CAppCons : V t v (vl : val t) v2 v3,
CApp v2 v3 v — CApp (vcons vl v2) v3 (vcons vl v).

The first case states that the result of appending any list to the empty list is that
list. The second case encodes the recursive case.

To check that this encoding works, we can then prove that this append
semantics is deterministic. On paper this lemma would be stated as

Lemma. Ifvi + vy | vthenifvi +vo |V thenv ="V
In Coq this lemma is written as

Lemma capp_determ : V t (vl v2 v3 v4 : val (TList t)),
CApp vl v2 v3 — CApp vl v2 v4 — v3 = v4.

Just like on paper this lemma is proven by induction over the first derivation.
The result follows directly from the induction hypothesis.

Proof.
intros t vl v2 v3 v4 HH'.
dependent induction H; dependent destruction H'.
- reflexivity.
- rewrite (IHCApp v0). reflexivity. assumption.
Qed.

The dependent tactics work like the ordinary ones, but they automatically
eliminate contradictory cases where the types do not match.

Things get a bit more complicated when we have to encode the evaluation
judgment for expressions. We start by defining the typing context and the
evaluation context

Definition ty_ctx := list ty.
Definition ev_ctx G := hlist val G.

The hlist is the implementation from Section 4.3 Now we can encode the
evaluation judgment, p - e | v, as

Inductive Ev : V G t, ev_ctx G — exp Gt — val t — Prop :=

Because the map and the filter judgments also depend on the evaluation
judgment, we have to make this definition mutually inductive
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with CMap : V G tl1 t2,

ev_ctx G — val (TList tl1) —

exp (tl1 :: G) t2 — val (TList t2) — Prop := ...
with CFilter : V G t,

ev_ctx G — val (TList t) —

exp (t :: G) TBool — val (TList t) — Prop := ...

For map and filter, we also encode in the judgment that we expand the typing
context with the relevant types. We will now go through the encoding of some
of the non-trivial constructs.

Variables In the evaluation rule for variables, we require that the variable
is a member of the evaluation context. We can use the member proof from
the abstract syntax tree for this rule. Then we can use hget to retrieve the
appropriate value from the context. This definition looks a lot like the rule for
variables from the operational semantics.

| Evwar : V GR t (m : member t G),
Ev R (evar m) (hget R m)

We find this encoding very elegant, and it is very easy to express in Coq.

let-bindings Just like when we expanded the typing context when we
defined the syntax, we have to expand the evaluation context. This encoding is
done using HCons from the hlist implementation. We expand the context for
the body by the result of evaluating the bindee. The type inference is not quite
strong enough, so we write explicit types for the expressions.

| EvLet : V (G : ty_ctx) (R : ev_ctx G) tl t2 vl (v2 : val t2)
(el : exp G t1) (e2 : exp (tl :: G) t2),
Ev R el vl — Ev (HCons vl R) e2 v2 — Ev R (elet el e2) v2

map and filter Here we have to deal with the fact, that we have defined a
mutually inductive semantics. The evaluation rule for map is pretty straight
forward

| EvMap : V (G : ty_ctx) (R : ev_ctx G) tl t2
(el : exp (tl :: G) t2) (e2 : exp G (TList tl1)) v v',
EvR e2 v — CMap R v el v' — Ev R (emap el e2) v'

This encoding means that the function parameter, el, will have one bound
variable, and e2 will have some list type. We require that the list evaluates to
some value. We then hand this evaluation off to the CMap judgment. The map
judgment takes list values to list values. It has two cases, one for cons and one
fornil

| CMapNil : V (G : ty_ctx) (R : ev_ctx G) tl t2
(e : exp (tl :: G) t2),
CMap R (vnil tl1) e (vnil t2)
| CMapCons : V (G : ty_ctx) (R : ev_ctx G) tl1 t2
(e : exp (tl1 :: G) t2) vl v2 vl' v2',
Ev (HCons vl R) e vl' — CMap R v2 e v2' — (Map R (vcons vl v2) e (vcons vl'

The interesting case is the cons case, where we refer back to the evaluation
judgment. We bind the first element of the list to the evaluation context, and we
evaluate the function parameter with the variable bound. We then require that

v2')
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the rest of the list is evaluated with CMap as well. This requirement corresponds
to a recursive call in a functional programming language.

filter is implemented in a similar way. When implementing denotational
semantics, we proved a property about wrapping an expression in a let, and
we can prove the same property using operational semantics.

Lemma let_id_sound2 : V t G (R : ev_ctx G) (e : exp G t) (vl v2 : val t),
EvR e vl — Ev R (elet e (evar HFirst)) v2 — vl = v2.
Proof. intros.
apply EvLet with (e2 := (evar HFirst)) (v2 := vl1) in H.
apply (ev_determ H) in HO®.
exact H®. constructor. Qed.

By using an intrinsic encoding, we actually get some proofs for free. For instance
we know that evaluation is type preserving, this type-reserving encoding means
that we know that the following lemma holds.

Lemma. Ifl'+e:T,pte|vandTl and p agreethenv: . I'and p agree if for
every x : T € I' then thereisax | v € p such thatv: T.

We do not have to deal with this agreement of typing and evaluation
contexts, because the evaluation context is indexed by the typing context, so
we have this agreement by construction.

We are almost ready to do some proofs about our language. We are still
missing one small detail. It turns out that the induction principle that Coq
generates for this inductive type is not strong enough to prove interesting
properties. To solve this problem we need to write our own induction principle.

5.4 Induction principles

To understand how induction principles work in Coq, we step back a bit, and
try to understand a simple induction proof in depth. Say, we wanted to prove
that Yn € N.n = n + 0. This is easily done in Coq by induction on n.

Theorem plus_.n.® : Vn : nat, n=n + 0.

Proof. induction n. reflexivity.
simpl. rewrite <- IHn. reflexivity. Qed.

Under the hood, Coq uses an induction principle for natural numbers to do
this induction. We can inspect this induction principle by printing nat_ind.

nat_ind : V P : nat — Prop,
PO —> (Vn:nat, Pn > P (Sn)) - Vn:nat, Pn

This is actually a function, that when given a predicate from natural numbers
to propositions, a case for zero, and an inductive case gives us a theorem in
return. We can apply this principle as a regular function.

Theorem plus_.n_0' : V n : nat, n =n + 0.
Proof. apply (nat_ind (fun n : nat = n = n + 0)).
- reflexivity.

- intros. simpl. rewrite <- H. reflexivity. Qed.

We could also have given proofs for the base case and the inductive cases
directly as arguments to nat_ind, but we just chose to use tactics instead to
generate the proof terms. There is also a shortcut for using other induction
principles. Then one writes
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induction n using nat_ind with (P := funn = n = n + 0)

instead. This short-hand gives some cleaner names for the induction hypothesis.
Now with further understanding of induction in Coq, we can do some proofs
about our language.

A very simple property that we might want to prove about our language
is that evaluation is deterministic. We have already proven that the append
function is deterministic, and we will prove determinism for evaluation of
expressions in the same way:.

Theorem ev_determ : V Gt (R : ev_ctx G) (e: exp G t) vl v2,
EvR e vl - EvVR e v2 — vl = v2.

If we proceed by induction on the first evaluation derivation, we hit the case
for map. We can try to write a lemma for map in the same way as we did for
append, but we will fail, since determinism of map depends on determinism of
general evaluation. The generated induction principle does not capture this
mutual relationship.

Coq luckily has support for custom induction principles, and we can write
one using the Scheme command.

Scheme Ev_mut := Induction for Ev Sort Prop
with CMap_mut := Induction for CMap Sort Prop
with CFilter_mut := Induction for CFilter Sort Prop.

This definition states that we want Coq to generate a mutual induction principle
for all three judgments. We can inspect the induction principle to see what Coq
generates.

Ev_mut : V
(P :V (G: list ty) (t : ty) (e : ev.ctx G) (e® : exp G t) (v : val t),
Ev e ed v — Prop)
(PO : V (G : list ty) (tl t2 : ty) (e : ev_ctx G)
(v : val (TList t1)) (e® : exp (tl :: G) t2) (v® : val (TList t2)),
CMap e v e®d v — Prop)
(Pl : V (G : list ty) (t : ty) (e : ev_ctx G) (v : val (TList t))
(e® : exp (t :: G) TBool) (vO® : val (TList t)),
CFilter e v e® v® — Prop), (* All cases *) PG t e e v el.

This principle means that we have to specify three induction hypothesis, one for
each judgment. Then Coq can give us a theorem P that holds for all expressions.
By further inspecting the induction principle we can see that in the case for map
we get PO as a premise, which is exactly what we want.

We also have to prove that P® holds for CMap and that P1 holds for CFilter.
We can now use this induction principle in our proof for determinism.

Proof.
intros.
generalize dependent v2.
induction H using Ev_mut.

Coq complains that it cannot find instances for P, PO and P1. We need to supply
them manually. We just has to check the type signature for the induction
hypothesis and fill in the goal for Prop.
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induction H using Ev_mut with
(P := fun (G : list ty) (t : ty) (R : ev_ctx G)
(e : exp Gt) (v :val t)
(ev : EVRev) > Vv2, EVRev2 — v =v2)
(PO® := fun (G : list ty) (tl t2 : ty) (R : ev_ctx G)
(v : val (TList t1)) (e : exp (tl :: G) t2) (v® : val (TList t2))
(ev : C(Map Rv e v®) = V v2, (Map Rv e v2 — v0 = v2)
(P1 := fun (G : list ty) (t : ty) (R : ev_ctx G)
(v : val (TList t)) (e : exp (t :: G) TBool) (v® : val (TList t))
(ev : CFilter R v e v0) = V v2, CFilter Rv e v2 — v0 = v2).

Notice that in PO and P1 we write a possible induction hypothesis for determin-
ism of CMap and CFilter respectively. Then we get determinism for CMap and
CFilter as an hypothesis when doing the proof for Ev. Now the proof can be
completed. This proof can be seen in the accompanying code.

We also prove totality of expression evaluation. Totality means that every
expression evaluates to a value. This is not as easy as determinism, and the
proof can be seen in the accompanying source code. The mutually inductive
semantics makes things a bit complicated again. These proofs are done on the
syntax of e. We define two helper lemmas

Lemma cmap_total : VGt t' (R : ev_ctx G) (e : exp (t :: G) t') (vs : val (TList t)),
(VW v, 3v', Ev (HCons vR) e v') — J vl, (Map R vs e vl.

Lemma cfilter_total : VGt (R : ev_ctx G) (e : exp (t :: G) TBool) (vs : val (TList t)),
(V v, 3 vb, Ev (HCons v R) e vb) — 3 vl, CFilter R vs e vl.

In essence they assume totality for expressions, and use that to prove totality of
the map and filter judgments. Now totality for expressions follows.

Theorem ev_total : VGt (R : ev_ctx G) (e : exp G t),
Jdv, EVR e v.

This theorem turns out to be useful when dealing with the short circuiting and
operator. It will probably not be the case that all expressions evaluate to a value
if we add function calls and recursion to the language.

We can now proceed to actually implementing and proving properties about
the fusion rules.



6. Correctness of fusion rules

We have defined our language and its semantics. It is now time to prove the
fusion rules correct. We first have to define the rules in Coq.

6.1 Defining the rules in Coq

Since we have decided to work with intrinsically typed syntax, we have to work
a bit harder to define the rules. With the untyped syntax, one could just rewrite
the abstract syntax tree, but with intrinsic types, implementation of the rules
and proofs of type-preservation must be given at the same time.

Substitution

As described in section 2, we need to define a notion of substitution for our
language to be able to formalize map fusion. In contrast to formalizations of
the lambda calculus, we do not use substitution in the evaluation rules. The
way we defined substitution is heavily influenced by [14].

A substitution is defined as a function that given a proof of membership in
a typing context G gives us an expression typed in a context G'.

Definition Sub G G' := V t, member t G — exp G' t.

The idea is that this substitution is a list of substitutions mapping variables
at each index to some expression. We define the identity substitution as the
substitution that just maps variables to themselves.

Definition idSub {G} : Sub G G := @evar G.

Now consSub extends a substitution by mapping the next variable to an
expression. We use the Program tactic to write this function, because it
simplifies pattern matching on GADTs.

Program Definition consSub {G G' t} (e:exp G' t) (s:Sub G G') : Sub (t::G) G' :=
fun t' (v: member t' (t::G)) =
match v with
| HFirst _ = e
| HNext _ _ v' = s _ v'
end.

We define a shorthand for defining a substitution.

Notation "{| e ; .. ; £ |}" := (consSub e .. (consSub f idSub) ..).

In section[5.1|we stated that lifting is one of the operations that one would like
to define when using De Bruijn indices. Instead of lifting, we define a more
general notion of renaming instead.

Definition Ren G G' := V t, @member ty t G — G@member ty t G'.

30
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Which means that a typing context can be renamed if all variables are members
of both contexts. With this definition we can define lifting of renaming,
renaming of expressions, shifting of expressions, shifting of substitutions, and
finally substitutions in expressions. All of the helper functions can be found in
the accompanying source code. Now we can define substitutions in expressions
by recursively applying the substitution on all variables. We have not included
all cases in the report.

Fixpoint subExp G G' t (s : Sub G G') (e : exp G t) :=

match e with

| evar _ x = s _ x

| econst n = econst n

| esucc e = esucc (subExp s e)

| enil _ = enil

| econs _ el e2 = econs (subExp s el) (subExp s e2)
|
|

elet _ _ el e2 = elet (subExp s el) (subExp (subShift s) e2)
emap _ _ el e2 = emap (subExp (subShift s) el) (subExp s e2)
end.

Notice that we shift the substitution whenever we have bindings.

Function composition with substitution

Since we do not have function objects, we have a different notion of function
composition. A function is an expression with its free variable at the first index.
A function f : t; — t; is encoded as an expression £ : exp (tl :: G) t2
for some G. For some other functiong : exp (t2 :: G) t3, we have that the
composition is a new expression compose f g : exp (tl :: G) t3. Wetry
to write this function in Coq.

Definition compose tl t2 t3 G
(f : exp (tl1 :: G) t2)
(g : exp (t2 :: G) t3) : exp (tl :: G) t3 :=
subExp {| f |} g.

Coq complains, because it expects that g has type exp (t2 :: tl :: G) t3.
We need to weaken this expression to be typed in a larger typing context. We
can easily implement this function as well.

Definition shift2Exp G t1 t2 t3 : exp (t2 :: G) t3 — exp (t2 :: tl :: G) t3.
Now we can define composition
Definition compose tl t2 t3 G

(f : exp (tl1 :: G) t2)

(g : exp (t2 :: G) t3) : exp (tl :: G) t3 :=
subExp {| f |} (shift2Exp _ g).

We are now ready to define the fusion transformations.

Program transformations

The first fusion rule that we try to define is filter fusion. This rule is easier than
map fusion because we do not need substitution to implement to implement
this rule. We try to define it naively just as you would in a language like ML.
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Definition filter_fusion' t G (e : exp G t) : exp G t :=
match e with
| efilter t' p el = match el with
| efilter t' q body = efilter (eand p q) body
| _ = e end
| _ = e end.

Coq rejects this definition, because it cannot infer that e has the same type
as the second match expression. we need to explicitly convince Coq of this
equality by giving it a proof for the fact. This proof requires a few tricks. One
way of solving this problem is by constructing the program interactively.

The refine tactic makes it possible to give a term with holes to be filled
later. We start by giving the type

Definition filter_fusion t G (e : exp G t) : exp G t.

Then we give a term that looks like the previous one, but with a few changes.
We use a trick where we defer argument binding in a pattern match until later.
We defer the argument so that it can be referenced in the return clause of the
dependent pattern match.

refine

(match e in exp _ t' return exp G t' — exp G t' with

| efilter te p em = (fun 1t (em' : exp G 1t) =
match em' in exp _ 1t return (TList te = 1t — _) with
| efilter t' q eb = fun Heq _ = efilter (eand _ q) eb
| _ = fun _e = e
end) (TList te) em _

| - = fune = e

end e).

We annotate the match expression with a different return type. The interesting
case is the inner match. We know intuitively that the type te must be the
same as t' in the inner match. We solve this problem by requiring a proof of
their equality to be passed in. Furthermore p does not have the correct type,
therefore we leave it as a hole.

Now Coq presents us with 2 goals to prove. We need to give a term of type
exp (t' :: G) TBool butphastypeexp (te :: G) TBool. Asa premise we
have that TList te = TList t'. Then it follows by injectivity that p has the
correct type.

injection Heq. intros. rewrite <- H. exact p.

Now Coq presents us with the last goal. Weneed toshow that TList te = TList te.
This proof is trivial. Coq would have been equally satisfied with q instead of
p. It would have the correct type, but the resulting program would not have
the expected behavior. If we go back to thinking about propositions as types,
then the type of filter_fusion is the proposition, and the implementation is
the proof of the proposition. If we imagine a proof with p and a proof with
q, then they both would have been valid proofs, but if we were to run them
as programs (and we are) then, only one of them would have the expected
behavior.

This kind of programming really blurs the distinction between programs
and proofs. We can inspect the resulting program by using Print, but the term
is way too large to fit in the report.
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We can define map fusion using the compose function that we defined in the
previous section. It looks similar to filter_fusion, and the implementation
can be seen in the accompanying source code.

6.2 Proofs

Because we have defined the transformations on intrinsically typed syntax, we
get type preservation for free. One could state this on paper as

Lemma IfT'+e:tthenTl + map_fusion(e): T.
In this section we attempt to prove filter fusion and map fusion correct with
respect to both semantics. We start with the denotational semantics.

Denotational semantics

The easiest proof is the one about filter fusion. We need to prove that for all
expressions, if we apply filter_fusion to it, then we get the same result.

Theorem filter_fusion_sound t (e : exp nil t) s:
expDenote e s = expDenote (filter_fusion e) s.

We prove this theorem by case analysis, and in essence the proof looks a lot
like the one we did in section

The main lemma that the correctness of map fusion relies on is that our
substitution is correct. We state this lemma by proving that the result of
evaluating the composition is the same as putting the result of evaluating one
function into the environment and then evaluating the other function.

Lemma compose_sound : V tl t2 t3 GR (f: exp (tl1 :: G) t2) (g: exp (t2 :: G) t3) vi,
expDenote g (HCons (expDenote f (HCons vl R)) R) =
expDenote (compose f g) (HCons vl R).

This proof has some issues. The way we defined composition is very complex,
and we have a lot of definitions on top of each other. We did not manage to
prove that this composition is sound.

If we assume the composition is sound, then it follows directly that map
fusion is sound.

Theorem map_fusion_sound t (e : exp nil t) s :
expDenote e s = expDenote (map_fusion e) s.

The proof strategy is the same as for filter fusion, and the full proofs can be
found in the accompanying source code.

Operational semantics

When proving properties about the operational semantics, we have to deal
with the fact that it is defined as a relation, and not a total evaluation function.
The proofs are going to have a different structure, where we assume that an
expression evaluates to a value, and then we need to prove that when the
transformation is applied to the expression, it evaluates to the same thing. The
theorem for filter fusion is defined as follows
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Theorem filter_fusion_sound2 : V t G (R : ev_ctx G) (e : exp G t) (v : val t),
EvR e v —» Ev R (filter_fusion e) v.

The theorem for filter fusion relies on two lemmas. One states that if the right
conjunct evaluates to false, then the entire and expression evaluates to false.

Lemma and_r_false : V G (R : ev_ctx G) (el e2 : exp G TBool),
Ev R e2 vfalse — Ev R (eand el e2) vfalse.

And another lemma states that CFilter can be fused.

Lemma cfilter_fusion : V t G (R : ev_ctx G) (el e2 : exp (t :: G) TBool)
(vl v2 v3 : val (TList t)),
CFilter R vl el v2 — CFilter R v2 e2 v3 — CFilter R vl (eand e2 el) v3.

Notice how cleanly the lemmas and theorems are stated. The theorem for map
fusion is stated as follows.

Theorem map_fusion_sound2 : V t G (R : ev_ctx G) (e : exp G t) (v : val t),
EvR e v — Ev R (map_fusion e) v.

Just like before we delegate most of the work to two lemmas. One states that
composition is sound

Lemma compose_sound2 : V tl t2 t3 G (R : ev_ctx G)
(el : exp (tl :: G) t2) (e2 : exp (t2 :: G) t3)
(vl : val t1) (v2 : val t2) (v3 : val t3),
Ev (HCons vl R) el v2 — Ev (HCons v2 R) e2 v3 —
Ev (HCons vl R) (compose el e2) v3.

And another lemma to state that CMap can be fused

Lemma cmap_fusion : V tl t2 t3 G (R : ev_ctx G)
(el : exp (tl :: G) t2) (e2 : exp (t2 :: G) t3)
(vl : val (TList t1)) (v2 : val (TList t2)) (v3 : val (TList t3)),
CMap R vl el v2 — CMap R v2 e2 v3 — CMap R vl (compose el e2) v3.

Just like in the proofs using denotational semantics, we did not manage to proof
that composition is sound. So if we assume that our notion of composition is
sound, then we know that both map and filter fusion are sound with respect to
both semantics. The full proofs can be found in the accompanying source code.

6.3 Code extraction

The final thing we want to explore is the possibility of using Coq’s code
extraction capabilities, and the possibility of using the extracted code in a
realistic compiler. In [15] Swiertstra describes some of the challenges he faced
when extracting code from Coq and tried to incorporate it into an existing
Haskell code base.

The extraction process generates code for all functions and data types. The
problem arises when we need to interface with non-Coq code. Coq gives us the
possibility to replace certain definitions with user-defined ones. For instance
we can replace a generated boolean type with the equivalent Haskell type.

Extract Inductive bool =
"Bool" ["True" "False"].

But we could just as well have written
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Extract Inductive bool =
"Bool" ["False" "True"].

The code would still type check, but the behaviour would be radically different.

In our case we can have a lot of impedance-matching problems. Our language
encoding is radically different from one that you would use in a realistic
compiler. We would need to write intermediate code to convert between
different encodings. If the compiler that the code would be embedded in does
not use De Bruijn indices, then one would need to convert named variables to
De Bruijn indices.

We try to generate Haskell code for the map fusion rule by writing

Extraction Language Haskell.
Extraction map_fusion.

Then Coq outputs the following Haskell code

map_fusion :: Ty -> (List Ty) -> Exp -> Exp
map_fusion _ g e =
case e of {
Emap t2 t3 g0 em ->
case em of {
Emap t4 t2' f eb -> Emap t4 t3 (compose t4 t2' t3 g f
(eq_rec_r t2' (\gl _ _ -> gl) t2 g0 em __))
- —> e};
_ > e}

We see that Coq did not manage to remove all equality proofs. The difficulty
of defining transformations on intrinsically typed syntax also gave problems
for code extraction. If we inspect the generated data types, we also see that

the extractor did not generate a GADT in Haskell even though it is supported.

Most projects that use extraction use OCaml and not Haskell. We can see if the
OCaml extractor generates simpler code.

let map_fusion _ g e = match e with
| Emap (_, t3, g0, em) ->
(match em with
| Emap (t4, t2', f, eb) -> Emap (t4, t3, (compose t4 t2' t3 g f g0), eb)
[ - > e
| - > e

This extracted code looks simpler, but the difficulty is still to make sure that all
expressions are well-typed when fed into the extracted code.

These examples illustrate some of the problems with a more unnatural
encoding. Some of the proofs are tightly coupled with definitions and hard to
extract.

eb;



7. Related work

In this section we will explain how fusion is performed in other compilers, and
how some of the concepts used in our work can be used in other ways with
array programming.

7.1 Other fusion rules in Futhark

In Futhark [6] some other SOACs and fusion rules are also used. Futhark is a
data-parallel programming language designed for running on GPUs. I addition
to the ordinary SOACs like map, reduce and filter. Futhark also has support
for streaming SOACs. The rationale for streaming SOACs is that GPUs have a
large, but fixed amount of parallelism that can be exploited. Whenever that
amount of parallelism is exceeded, it can be beneficial to sequentialize parts of
the computation.

The stream_map SOAC recieves a number of input arrays. It then produces
an arbitrary amount of output arrays with the mapped function applied on
each output array. Futhark then also defines a rule for introducing this SOAC.

map f = stream_map (map f) (7.1)
and some fusion rules, for instance
stream_mapf o map g = stream_map (f o map g). (7.2)

Futharks stream_red generalises stream_map by allowing each chucked array
to produce an additional result that can be passes from chunk to chunk. The
article explains how this construct is very useful when implementing k-means
in a data-parallel way. This SOAC also has some fusion rules that can allow for
certain optimizations.

partial_map

In our own work we dealt with filter fusion. There is also a rule to push a filter
through a map

filterp o mapf =mapf o filter(pof) (7.3)

This can be useful when fusing larger programs. The problem with this is that
we repeat the computation of f. We can try to solve this by introducing a new
SOAC,

partial_map : Yaf, (¢ — Boption) — [x] — [B]. (7.4)

This combinator has some really nice properties, for instance we can fuse it
with a map
partial_mapf o map g = partial_map (f o g) (7.5)

36
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eliminating the repeated computation that we had before. We can introduce
partial_map from a filter with the following rule

filterp = partial_map (Ax.if p x then SOME x else NONE). (7.6)

This construct is considered for implementation in Futhark. And can possibly
make some programs with filter more efficient.

7.2 Deforestation in GHC

In functional programming languages, programs are often composed of many
small functions that use lists as intermediate data structures. Programming
languages like Haskell and SML also include large libraries of list-manipulating
functions that are easily combined to form more complicated programs.

One problem with this approach is that one has to allocate all these inter-
mediate data structures, and these allocations may cause inefficiencies. This
problem is solved by a process called deforestation. Gill, Launchbury and Jones
[16] describe a simple method for deforestation that was implemented in the
Glascow Haskell compiler in 1993.

They standardize the way lists are produced, and the way lists are consumed
in a program.

Consuming lists The observation is, that many programs that consume lists
can be written using the higher order function foldr.

foldr (@) id [x1,%2, ..., Xn] =x1 ® (x2 ® (- - - (xn, ® id))) (7.7)

Producing lists They also observe that building a list can be abstracted using
a build function
build g = g cons nil (7.8)

Now the foldr/build rule states that
foldr kz (buildg)=gkz (7.9)

From the article, a formula for map is given using both build and foldr. This
time we will write it in Haskell syntax.

map f xs = build (\c¢ n -> foldr (\a b -> ¢ (£ a) b) n xs)

Using foldr/build rule, and simple beta reduction we can perform map fusion.

map £ (map g xs)
-- Unfolding map
= build (\c n -> foldr (\a b -> c (£ a) b) n (map g xs)) =
-- Unfolding map
= build (\c n -> foldr (\ab ->c (fa) b) n
(build (\c n -> foldr (\a b -> ¢ (g a) b) n xs)))
-- Applying foldr/build rule
= build (\c n -> (\c n ->
foldr (\ab ->c (ga)b)nxs) (\ab ->c (f a) b) n)
-- Beta reduction
= build (\c n -> foldr (\a b -> (\ab ->c (f a) b) (g a) b) n xs)
-- Beta reduction
= build (\c n -> foldr (\a b -> ¢ (£ (g a)) b) n xs)
-- Refold map
=map (\a -> f (g a)) xs =map (£ . g) xs
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This method works well for some programs, but not all programs on lists
can be easily written using foldr/build. The article mentions that especially
programs involving zip are a lot harder.

Correctness of the rule is justified in the article by a concept called free
theorems. We will not go into further detail about free theorems here.

7.3 Dependently typed arrays

The canonical example of dependently typed programming is length indexed
lists. In Coq this looks like

Inductive vect A : nat — Type :=
| Nil : vect A O
| Cons : Vn, A— vect An — vect A (Sn).

If we let Coq infer A and n then we can create a list by writing

Coq < Check (Cons 1 (Cons 2 (Cons 3 Nil))).
Cons 1 (Cons 2 (Cons 3 Nil))
: vect nat 3

Coq now tells us that this lists has length 3. Now one can use this inductive
type to for instance write a zip function that expects two lists of the same length,
and then have this property statically checked.

This concept is taken even further in [17] where Trojahner and Grelck
propose a type system for static verification of array programs. Their type
system make it possible to define for instance shape-generic array addition by
extending scalar addition. Their type system is a weaker form of dependent
types that is used to express constraints between array ranks, shapes, and
values.

7.4 Vellvimm

In the introduction we mentioned CompCert as a large development in the
verified compiler community. Another large development is the Vellvm
project [18]. It is a Coq formalization of the semantics of a subset of the LLVM
intermediate language. It is intended for verification of LLVM software.

When writing a LLVM-based compiler, one writes a translator from the
high level language to the LLVM intermediate language. Then the LLVM
tools provide an array of transformations including optimizations, program
transformations and static analyses. Then the resulting LLVM intermediate
code can be translated to the target architecture. The goal of Vellvm is
then to formalize this intermediate language to be able to verify program
transformations with respect to both static semantics and operational semantics.
Vellvm provides several operational semantics, where the most general is a
small-step, non-deterministic evaluation relation.

configr S — S’ (7.10)

Where config is a collection of function tables, globals and modules. S and §’
are machine states which consist of memory M and stack frames Z.
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They have also used the code extraction capabilities of Coq to extract an
interpreter for LLVM code that can then be used for running the LLVM test
suite. Because a nondeterministic relation cannot be executed directly, they
have defined another deterministic semantics which they prove similar to the
small-step semantics and then extract.

With the Vellvm framework they formalize SoftBound, which is a hardening
transformation which protects C programs from memory safety violations.
They then use Vellvm to verify the correctness of SoftBound with respect to
the operational semantics of LLVM. This is very close to what we did with
our fusion rules. We checked that they preserved the semantics of all source
programs.

The Vellvm project is closer to what we want to do than CompCert, but
Vellvm is a very large project which is tens of thousands of lines of Coq code,
and on top of that it uses code from CompCert as well.



8. Conclusion

In this work we ended up formalizing a programming language with second-
order array combinators. We formalized it in Coq using an intrinsically typed
syntax and De Bruijn indices for binders. We formalized both a denotational
semantics and a more traditional big-step operational semantics. Both of these
use an evaluation context to simulate the use of a variable table. We also
formalized some very basic fusion rules on this syntax. We started work on
proving that these fusion rules are correct, but we did not complete it.

We are not really happy with the way that composition is defined. If one
expands all the relevant definitions, the resulting code is very large. This makes
it difficult to figure out exactly what lemmas are needed.

Formalizing programming language theory is hard work. It takes a large
amount of trial and error to separate good ideas from bad ideas. The literature
on the subject is hard to understand, and they often formalize the simply-typed
lambda calculus, and a large part of this work is abstracting away the parts that
we needed for this formalization. We evaluate some of the choices made in this
project.

8.1 Using Coq

We think that Coq has been a good choice for this project. It is very mature,
and there are many resources available for learning idiomatic Coq patterns.
There has been many larger developments using Coq, and research on new
techniques for working with Coq is still underway.

One problem is that Coq has a pretty steep learning curve, and working
with dependent types is especially difficult. Maybe this will become better in
the future, but at the moment we find it suboptimial. Some of these problems
can be solved using more advanced tactics, but we still had major problems.

8.2 Choice of encoding

One major advantage of the chosen encoding is how cleanly the theorems are
stated. Since type-preservation is implicit, the only thing that is stated is the
semantic properties that we want to prove.

The problem in a lot of the proofs is that the definitions are very large.
When dealing with both intrinsically typed syntax and De Bruijn indices, you
juggle around with a lot of equality proofs. Some of these problems may come
from lack of experience and non-idiomatic Coq usage.

It is also very tedious to do inductive proofs with mutually inductive
definitions. We had a problem when doing proofs over the syntax about some
properties of evaluation relation.
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8.3 Future work

The first task would be to finish the two admitted proofs about compose. This
would involve a lot of proofs about the way that substitution is defined. It could
also be interesting to look into proof automation, because it would be really
handy to just define a fusion rule, and then the proofs could follow almost
automatically. Adam Chlipala talks a lot about proof automation is his book
[11].

It would obviously make a lot of sense to add more language features to
make it possible to reason about more complicated constructs like pairs and
multidimensional arrays.

It could also be beneficial to investigate whether other encodings are easier
to work with. In this work we only really focused on one type of encoding, but
a lot of different encodings are in use on various projects.

Another direction could be to try to investigate whether other proof assis-
tants/theorem provers would make things simpler. Working with dependent
types is a lot easier in Agda because it relies on Axiom K, which makes as-
sumption about identity proofs and simplify dependent pattern matching
significantly.
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A. Source code overview

In this appendix we will give an overview of the accompanying source code
and a guide to running it. The newest version of the code can be found on
https://github.com/christiankjaer/soac-coq.

A.1 Included files

hlist.v This file contains the heterogeneous list implementation described in

section

ling_syntax.v This file contains the complete specification of the syntax for
both expressions and values using intrinsic types and De Bruijn indices.

ling_semantics.v This file contains the both the denotational semantics and
the big-step operational semantics for the language as well as the induction
principle.

ling.v This file contains all the program transformations, custom tactics, and
all the proofs.

simple/proofs.v This file contains the proofs mentioned in section 4.4/and
definitions of foldr and build from section[7.2]

untyped/ling.v This file contains the beginning of a formalization using
names and untyped syntax.

untyped/debruijn.v This file contains the beginning of a formalization using
De Bruijn indices and untyped syntax. It uses the Autosubst library]!|

A.2 Running the code

The code is tested with Coq 8.7 The simplest way to run the code is to run

$ coqtop -1 ling.v
# Lots of output

One can step through the proofs by using either Proof General?|or CoqIDE (in-
cluded in the Coq distribution). Using one of these tools is highly recommended,
because using the Coq system is a highly interactive experience.

1https://www.ps .uni-saarland.de/autosubst/
2https://coq.inria. fr/download
3ht‘cps://proofgeneral .github.io/
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