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The effect of a quantum circuit on a quantum state can be expressed by specifying the unitary complex
matrix that the circuit denotes. This notion of denotation can be expressed compositionally by inductively
defining the denotation of sub-circuits and by relating the denotation of a composed circuit by composing
the denotation of sub-circuits. Concretely, the state of an n-qubit quantum computer can be represented by a
2" complex vector and the denotation of an n-qubit quantum circuit can be expressed by a 2" x 2" unitary
complex matrix. Based on the denotational semantics of a quantum circuit, it is straightforward, on a classical
computer, to simulate the effect of the quantum circuit, simply by applying the unitary matrix, denoted by the
circuit, on the incoming state vector. For small n, this strategy works well whereas for larger n (e.g., n > 8),
the size of the unitary matrix becomes a limiting factor. A question emerges. Can we do better?

In this paper we derive a purely functional interpreter for quantum circuits that operates directly on a
circuit without first constructing the unitary matrix that the circuit denotes. The interpreter takes as input an
n-qubit quantum circuit and a complex state vector of size 2" and outputs a resulting state vector also of size
2". We demonstrate the performance benefits of the approach and highlight some of its promises.

1 INTRODUCTION

Most existing quantum-circuit simulation-frameworks are imperative in nature. They are centered
around a programming model with operators that act on a set of qubits and implicitly update the
underlying state space [2, 5, 6, 8, 12, 14, 22, 25, 26]. On the other hand, using a functional approach,
it is possible to simulate the effect of a quantum circuit on the underlying state of a set of qubits by
first establishing the unitary matrix that the circuit denotes and then applying that matrix to the
state vector [24]. However, for general circuits, the space required by such a simulation approach is
much larger than the space required to represent the state of the quantum computer. In general, the
state of an n-qubit quantum computer can be represented in O(2") space on a classical computer,
whereas the unitary matrix denoted by the n-qubit circuit occupies O(22") space.

We show that it is possible to derive (i.e., calculate) a functional quantum-state simulator for
a quantum circuit without representing the unitary matrix that the circuit denotes. We further
demonstrate the performance benefits of the functional interpreter compared to the unitary matrix
approach by presenting running times with the different simulators for an implementation of
Grover’s algorithm [11]. The approach is surprisingly novel and may, for instance, be used for
generating specialised quantum-circuit interpreters.

2 QUBITS, QUANTUM CIRCUITS, AND UNITARY MATRICES

The basic building block of a quantum computer is a qubit, which can be modeled as a two-

dimensional complex vector [a ﬁ]T specifying a linear combination «|0) + f|1) of the basis vectors

|0) and |1) such that || + |B|* = 1 (the ket |0) is defined as |1 O]T and |1) is defined as [0 1]T).
A single-qubit gate operates on a single qubit and can be represented as a 2 X 2 unitary complex

matrix U, meaning U'U = UU = I (norm-preserving and reversible).! Single-qubit gates include
the identity gate I, the Pauli-gates X, Y, and Z, the Hadamard gate H, and the T-gate [17, 20, 29].
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1'We use the notation U for the conjugated transpose of the unitary complex matrix U.
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Fig. 1. A quantum circuit, its functional specification, and the complex unitary matrix that it denotes.

The effect of “applying” the Hadamard gate H to a qubit in the |0) state (i.e., the vector [1 O]T)
puts the qubit in the superposition state %(lo) +|1)). A state of more qubits is modeled as a tensor
product of the individual standard bases. Thus, a two-qubit state can expressed as a four-element

complex vector [a By G]T that denotes a linear combination «|00) + $|01) + y|10) + 0|11) of all
combinations of basis vectors for the individual qubits, where |a|? + |B|2 + |y|* + |0]? = 1 (we
write |ab) = |a) ® |b), for a,b € {0, 1}, where ® denotes tensor-product). The state space grows
exponentially. For a three-qubit system, the state is expressed as an 8-element complex vector.
Single-qubit gates may be composed sequentially and in parallel to form quantum circuits. A
circuit may be drawn using a simple diagram notation with each qubit represented by a horizontal
line, single-qubit operations drawn as boxes, and so-called swaps drawn by connecting two lines
with crosses. Sequential composition corresponds to multiplying unitary matrices and parallel
composition corresponds to forming the tensor-product of two unitary matrices. In the diagram
notation, tensors are implicit and represented as vertical composition whereas sequential composi-
tion is horizontal. So-called control gates provide the possibility that multiple qubits gets entangled,
meaning that it becomes impossible to decompose the state of the involved qubits into states of the
individual qubits. Control gates are drawn by vertically connecting a gate on one qubit line with a
circle on another qubit line. Figure 1 shows a quantum circuit of height 3 (i.e., number of qubits)
composed from a series of basic gates and with qubits connected using control gates and swaps.
Circuits can be represented using a functional language (e.g., Standard ML) type declaration:

datatype ¢ = I | X | Y| Z | H| T ] SW ] Cof c | Ten of ¢ x ¢ | Seq of ¢ * ¢

Here I represents the identity gate, which together with X, Y, Z, H, and T are the basic one-qubit
gates. Notice that, in diagrams, the identity gate is drawn as a horizontal line connecting the input
directly to the output. The gate SW represents the two-qubit swap gate and C is a constructor for
controlled circuits. Circuits may be composed sequentially using the Seq constructor, provided the
sub-circuits operate on the same number of qubits, and in parallel using the Ten constructor. We
use ** as an infix-notation for Ten, which has higher precedence than the ++ infix-notation for Seq.

3 SEMANTICS

The semantics of well-formed circuits is defined inductively as a function that takes a circuit of
height n and returns a unitary complex matrix of size 2" x2" denoting the circuit. The function, which
makes use of libraries for complex numbers and matrices (Appendices A and B), is listed in Figure 2.
The structure C provides operations on complex numbers. For instance, the function C. fromIm takes
areal value and turns it into a complex imaginary number. Auxiliary functions on complex matrices
are defined in Appendix C, including functions for complex matrix multiplication (matmul), complex
tensor products (tensor), functions for converting integer lists to complex matrices (fromIntM),
and a generalised control function, of type mat — mat, following [4]. We note here that the
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fun sem (c:c) : mat =
let val (c@, c1, ci) = (C.fromInt @, C.fromInt 1, C.fromIm 1.0)
val rsqrt2 = C.fromRe (1.0 / Math.sqrt 2.0)
val eipi4 = C.exp(C.fromIm(Math.pi/4.0))
in case c of = fromIntM [[1,0], [0,1]1]
= fromIntM [[0,1], [1,0]]
= M.fromListList [[c0,C.~ ci], [ci,c0]]
= fromIntM [[1,0], [0,~1]]
= M.fromListList [[rsqrt2,rsqrt2], [rsqrt2,C.~ rsqrt2]]
= M.fromListlList [[c1,c@], [c0,eipid4]]
SW = fromIntM [[1,0,0,0], [0,0,1,0], [0,1,0,0], [0,0,0,1]]
Seq(A,B) = matmul (sem B,sem A)
Ten(A,B) = tensor(sem A,sem B)
C A = control (sem A)

— I N < X H

end

Fig. 2. Semantics of circuits.

implementation of matrices is based on so-called pull-arrays, which use a functional representation,
and which may be materialised by piping them (using the infix pipe operator |>) into row-major
flat memory with the function M.memoize. The tensor operation forms the tensor-product A ® B of
two matrices A and B of dimensions m X n and p X g, respectively:

(A®B)ij = A(i/pjlq)Biiap.ing )

Here we write A;; or A(; j) to denote the zero-indexed (i, j)-element of the matrix A (row-major).

Based on the semantics, it is straightforward to define an evaluation function that, given a
well-formed circuit of height h and a state vector of length 2" returns a state vector (also of length
2M) representing the result of “applying the circuit” to the input:

fun eval (c:c, v:vec) : vec = M.matvecmul_gen C.* C.+ (C.fromInt @) (sem c) v

The eval function makes use of a generic function for matrix-vector multiplication, available in the
matrix-library M. As an example, calling the eval function on the circuit c1 and a state corresponding
to the ket [101) (i.e., the state [0 000010 O]T) results in the state [0 000(-i)00 O]T, which
entails that there is a 100 percent probability of finding the resulting system in the basis state [100).?

4 KRONECKER-FREE CIRCUIT INTERPRETATION

We now demonstrate that it is possible to evaluate a circuit directly on an input state vector and
return an output state vector without first creating the unitary complex matrix that the circuit
denotes. We make use of the notion of vectorisation [18], which leads to the observation that

(A® B)vec(V) = vec(BVAT) (2)

where vec(V) is the vector formed by “stacking” the columns of V. When V is a matrix of size m X n,
the vectorisation of V, written vec(V), is the vector of length mn and values vec(V); = Viignm,i/m)-
For a vector v of length mn, the unvectorisation of v, written unvec(v), is the matrix V of size m X n
such that vec(V) = v. Concrete implementations appear in Appendix C.

We now derive a function interp that acts as an interpreter working directly on a circuit. To ease
the reasoning below, when c is some circuit, we write [[c]] to denote the unitary complex matrix

2The high magnitude of basis state index 4 results in a measurement of the state |100). We use a big-endian encoding [17].
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that the circuit denotes (as obtained with sem c). Semantically, the interpreter has the property that
for any well-formed circuit ¢ of height & and complex vector v of length 2", we have

interpco = [[c]lo (3)

We derive the interpreter inductively on the structure of circuits, case by case, starting from 3 and
from the property that [[c]]o = eval (c,0). The resulting function interp is listed in Figure 3.

The base cases are straightforward as the definitions for the base cases, including the swap gate,
make directly use of the eval function. An exception is the case ¢ = I for which we simply return
the input vector directly. For sequential composition (i.e., the Seq case), the derivation is as follows:

interp (A++B)v = [[A++B]lo = ([[BII[[AlDv = [[BlI([[Allo)
interp B (interp A v) 4)

We derive 4 from the definition of the sem function in Figure 2, from properties of matrix multiply,
and by applying induction twice. For tensor composition (i.e., the Ten case), we have

interp (AxxB) v = [[A**BJJo
= vec([[BIV[[A]]T) where V = unvec v (5)
= vec(([[ATI(IIBIV))T) (6)

Here we derive 5 from 2 and we derive 6 from the property that (XY)” = Y7 X7, for any compatible
complex matrices X and Y. By induction and for any v’ and v” with appropriate lengths, we have

[[Allv’
(B

From 8 and the definition of matrix multiply, we have [[B]]V = (map (interp B) (VT))T and thus

interp Ao’ (7)
interp Bo”’ (8)

(BNV)T = map (interp B) (VT) ©9)

Here map applies a function to each row (i.e., a vector) of a matrix. It now follows from 6, 9, and by
introducing a variable W, that we have

interp (A*xB) v = 1let W =map (interp B) (V1) (10)
in vec(([[ATW)")
From 7 and the definition of matrix multiply, we have [[A[][W = (map (interp A) (WT))T and thus
([[AIW)" = map (interp A) (WT) (11)
It now follows from 10, 11, and by introducing a variable Y, that we have
interp (A*xB) v = let V =unveco (12)
let W =map (interp B) (V1)
let Y =map (interp A) (WT)
in vec(Y)
For control gates (i.e., the C case), we leave it up to the reader to demonstrate that the result vector

can be obtained by catenating the first half of the input vector with the result of interpreting the
controlled circuit on the second half of the input vector, as shown in Figure 3.
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fun interp (c:c) (v:vec) : vec =
case c of I = v
| Seq(A,B) = interp B (interp A v)
| Ten(A,B) = let val V = unvec (pow2(height A),pow2(height B)) v
val W = mapRows (interp B) (M.transpose V)
val Y = mapRows (interp A) (M.transpose W)
in vec Y
end
| C A = Vector.concat [vecTake (pow2(height A)) v,
interp A (vecDrop (pow2(height A)) v)]
| - = eval (c,v)

Fig. 3. Kronecker-free quantum circuit interpreter. The functions pow2 and height are easily defined.
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Fig. 4. Average execution times in seconds (over 10 runs with standard deviation less than two percent) for
simulating Grover’s algorithm with different simulators and different sizes of search problems (used qubits).
Measurements are performed on a 2023 MacBook Pro, Apple M2 Max processor, 32GB of memory, and macOS
15.1.1. Programs are compiled with the MLton 20210117 Standard ML compiler [28].

5 BENCHMARKS AND OUTLOOK

We have implemented Grover’s search algorithm [11] and simulated it with the different simulators
and with different sizes of the search space (different number of qubits). Results are shown in
Figure 4. We use eval to denote unitary simulation, interp to denote Kronecker-free interpretation,
exec to denote interp with so-called mutable array-views, and imp to denote a classic imperative
simulator [9], for which we have not established a relationship to the specified semantics. The
circuit size grows with the size of the search space. With five qubits the search space is 2° and the
number of basic gates used by the algorithm is 157, which include an encoding of the search oracle.
With 16 qubits, the algorithm uses 25.342 basic gates and with 19 qubits and a 2!° search space,
85.369 basic gates are used. For the 19-qubit case, a state-vector for the full system occupies 217+
bytes (a complex number occupies 16 bytes), which amounts to about 8Mb. Using the eval function,
execution time grows quickly due to the space used to hold large unitary matrices and the time used
for matrix processing. The interp function performs much better. The refined simulator exec, which
operates on a global state vector using a combination of one-dimensional and two-dimensional
mutable array-views, provides a further three-times speedup (exec). We consider it future work to
close the performance gap up to the full imperative version imp, which is most likely caused by the
interpretative overhead of manipulating indexes through compositions of index functions.

There are plenty of possibilities for future work, including the possibility for combining the
approach with parallelisation techniques [2, 5, 6, 8, 12, 26], with techniques for statically separating
state spaces [3, 21], with techniques for gate fusion [13, 23], and with techniques for avoiding
state space blow up when possible [1, 19]. Preliminary experiments show promising results with
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respect to specialising the interpreter, using monadic GPU code generation [15], and with using
the approach for deriving gate operations for a data-parallel language [7].

As a final remark, we are not claiming that the derived interpreter presented here is close in
performance compared to state-of-art state vector simulators, such as qsim [27] and QuEST [16],
which combine in-place state-vector updates with techniques for instruction-level vectorisation, gate
fusion, and parallelism to achieve a performance that is magnitudes higher than the performance
of the simple interpreter presented here.
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A APPENDIX: STANDARD ML SIGNATURE FOR COMPLEX NUMBERS

signature COMPLEX = sig
type complex

val
val
val
val
val
val
val
val
val
val
val
val

val
val
val
val
val
val
end

mk : real * real — complex
fromRe : real — complex

fromIm : real — complex

fromInt : int — complex

conj : complex — complex

re : complex — real

im : complex — real

mag : complex — real

~ : complex — complex

+ : complex * complex — complex
- : complex * complex — complex
* : complex * complex — complex
sqrt : complex — complex

exp : complex — complex

abs : complex — complex

pow : complex * complex — complex
fmt : StringCvt.realfmt —

toString : complex

— string

(* negation *)

complex — string

B APPENDIX: STANDARD ML SIGNATURE FOR MATRICES

signature MATRIX = sig

type a t

val fromListList o list list —» a t

val dimensions cat — int x int

val sub cat x int * int - «a

val map (x> B) o at - ft

val map2 P (ax f o y) Dat -t -yt

val listlist cat - a list list

val transpose rat - oat

val memoize rat - at

val tabulate : int *x int * (int*int —» a) —» a t

val row : int > a t — a vector

val col : int > a t — a vector

val pp : int - (a — string) —» a t — string

val ppv : int » (a — string) — a vector — string

val matmul_gen : (axa—a) — (axa—a) > a > at > at - at
val matvecmul_gen : (a*a—a) — (a*a—a) — a — a t — a vector — «a vector

end
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C APPENDIX: AUXILIARY COMPLEX MATRIX OPERATIONS

structure M = Matrix
structure V = Vector (*x Part of Standard ML Basis Library [10] x)

(* Matrix multiplication =)
fun matmul (tl1:mat,t2:mat) : mat =
M.matmul_gen C.x C.+ (C.fromInt @) t1 t2 |> M.memoize

(* Tensor product of two complex matrices =*)
fun tensor (a:mat,b:mat) : mat =
let val (m,n) = M.dimensions a
val (p,q) = M.dimensions b
in M.tabulate(m x p, n * q,
fn (i,j) = C.*x (M.sub(a,i div p,j div q),
M.sub(b,i mod p,j mod q))
) |> M.memoize
end

(* Control matrix on square complex matrices %)

fun control (a:mat) : mat =
let val n = M.nRows a
in M.tabulate(2*n,2%*n, (*x1 0 0 0 %)
fn (r,c) = if r >= n andalso c >= n (* 01 0 0 %)

then M.sub(a,r-n,c-n) (* 0 a b %)
else if r = ¢ then C.fromInt 1 (* @ @ c d *)
else C.fromInt @)

end

(* List-to-matrix conversion =)
fun fromIntM (is:int list list) : mat = M.fromListList (map (map C.fromInt) is)

(* Row-major flattening and unflattening *)
fun flatten (m:mat) : vec =
let val (r,c) = M.dimensions m
in V.tabulate(r x ¢, fn i = M.sub(m,i div c,i mod c))
end
fun unflatten (r,c) (v:vec) : mat =
M. tabulate(r,c,fn (i,j) = V.sub(v,i*c+j))

(* Column-major flattening and unflattening =*)
fun vec (m:mat) : vec = M.transpose m |> flatten
fun unvec (r:int,c:int) (v:vec) : mat = unflatten (r,c) v |> M.transpose

(x Take and drop elements from a vector *)
fun vecTake (n:int) (v:vec) = V.tabulate(n, fn i = V.sub(v,i))
fun vecDrop (n:int) (v:vec) = V.tabulate(V.length v - n, fn i = V.sub(v,i+n))

(* Map a function over the rows of a matrix =)
fun mapRows (f:vec—vec) (a:mat) : mat =
List.tabulate(M.nRows a, fn i = f(M.row i a)) |> M.fromVectorlList



	Abstract
	1 Introduction
	2 Qubits, Quantum Circuits, and Unitary Matrices
	3 Semantics
	4 Kronecker-Free Circuit Interpretation
	5 Benchmarks and Outlook
	References
	A Appendix: Standard ML Signature for Complex Numbers
	B Appendix: Standard ML Signature for Matrices
	C Appendix: Auxiliary Complex Matrix Operations

