
Typelets — A Rule-Based Evaluation Model for
Dynamic, Statically Typed User Interfaces

Martin Elsman1 and Anders Schack-Nielsen2

1 University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
mael@diku.dk

2 SimCorp, Weidekampsgade 16, DK-2300 Copenhagen, Denmark
anders.schack-nielsen@simcorp.com

Abstract. We present the concept of typelets, a specification technique
for dynamic graphical user interfaces (GUIs) based on types. The tech-
nique is implemented in a dialect of ML, called MLFi,3 which supports
dynamic types, for migrating type-level information into the object level,
so-called type properties, allowing easy specification of, for instance, GUI
control attributes, and type paths, which allows for type-safe access to
type components at runtime. Through the use of Hindley-Milner style
type-inference in MLFi, the features allow for type-level programming
of user interfaces. The dynamic behavior of typelets are specified us-
ing declarative rules. The technique extends the flat spreadsheet pro-
gramming model with higher-order rule composition techniques, exten-
sive reuse, and type safety. A layout specification language allows lay-
out programmers (e.g., end-users) to reorganize layouts in a type-safe
way without being allowed to alter the rule machinery. The resulting
framework is highly flexible and allows for creating highly maintain-
able modules. It is used with success in the context of SimCorp’s high-
end performance-critical financial asset-management system with screens
containing several hundreds of GUI controls located in group-boxes, sub-
tabs, and menu structures and with very complex dependency structures
defined using declarative rule composition.

1 Introduction

Complex GUI applications are often developed using costly and error prone
development procedures for which developers are required to design the precise
static layout of GUI controls, using a so-called designer tool, and develop an
excessive amount of boilerplate side-effecting event-handler functions for which
the host language provides little (or no) type guarantees.

This paper presents a technique to obtain a dynamic GUI given a declarative
description (in terms of a MLFi type declaration) that specifies the type of the
different controls in the user interface as well as possible high-level layout proper-
ties such as relative positions and groupings of controls. The approach supports

3 MLFi is a derivative of OCaml, extended by LexiFi with extensions targeted at the
financial industry.

a large set of composable GUI controls, including ordinary value input fields (for
integers, floats, amounts, etc.), buttons, select boxes, check boxes, date-picking
controls, grid controls, and various grouping controls, such as labeled groups,
tab controls, and more.

For specifying the dynamic behavior of a typelet, the programmer writes
rules, stating, for example, that a change in some fields influence the content of
other fields. The rule-based approach is declarative in the sense that focus is on
“what the end-user gets” instead of “how the end-user gets it”.

Rules may be composed and attached to a typelet in a type-safe way. More-
over, rules are objects for analysis in the sense that it may statically be deter-
mined, for instance, that different rules target the same field or that a subset of
rules form a cyclic dependency. The declarative nature of typelet rules is similar
to the Functional Reactive Programming (FRP) approach, as seen in Fran [7],
Fruit [6], and Flapjax [16].

The typelet implementation is augmented with a type-safe and rule-preserving
layout specification mechanism, that allows for layout programmers (e.g., the
end-user) to freely reorganize layouts using a set of layout combinators.

The contributions of this paper are the following:

1. We present a novel technique for programming dynamic graphical user inter-
faces, based on the notion of types and declarative rules for specifying how
different parts of the GUI interact.

2. We show how the technique can be augmented with a technique for separat-
ing layout from functionality.

3. We describe how this novel declarative approach to programming graphi-
cal user interfaces with success is used in practice in SimCorp Dimension,
a financial asset-management system with typelet-based trade screens con-
taining several hundreds of inter-dependent fields and other controls, such
as grids.

4. Finally, the paper also serves to demonstrate the usefulness of some of the
dynamic type features of MLFi, including type properties, and type paths.

We first present a simple typelet and proceed by showing how MLFi type
properties may be used to control details of layout and GUI behavior. In Sec. 4,
we outline the dynamic type features of MLFi. We then cover the central concept
of rules in Sec. 5 and discuss some details of the implementation in Sec. 6. The
augmented type-safe layout specification mechanism is described in detail in
Sec. 7. Related work is presented in Sec. 8 and Sec. 9 concludes.

2 Typelet Basics

We first demonstrate the typelet idea with a simple example that allows a user
to enter some personal data and information about whether the user has passed
an introductory programming course. Fig. 1(a) lists a typelet specification for
the user interface. The result of displaying the specification as a GUI is shown
in Fig. 1(b).

type gender = Male | Female

type t = {
name: string;

address: string;

age: int;

gender: gender;

passed_course: bool

}
(a) (b)

Fig. 1. A simple typelet with data entered by the end user.

There are a series of points to be made here. First, notice that MLFi record
field names are used as labels in the GUI; for localization purposes, the im-
plementation allows these names to be overwritten by a resource file. Second,
notice that default controls are selected based on the type of record field names
in the typelet; for instance, a drop down selection box is chosen for the gender

field. Third, the order the controls appear in the GUI matches closely the order
of fields in the typelet. Finally, notice that default values are chosen for each
control.

Typelets also support more dynamic behavior. For instance, if a typelet con-
tains sum-types with data constructors that take arguments, a dynamic GUI
is generated for which the GUI’s representing the data constructor arguments
are replaced and shown based on a left-positioned drop-down list with data
constructor names.

There are many details to consider regarding the layout of even the simple
typelet presented above. For instance, should all fields extend to the right if the
GUI window is enlarged? How can it be specified that a radio button group
is desired instead of a drop down selection box for the gender? How can it be
specified that two controls should appear on the same row?

3 Increasing Control with Type Properties

MLFi supports the notion of type properties, which allows the programmer to
attach arbitrary key-value properties (or key properties) to types. Fig. 2(a) lists
the code for a small example typelet that makes use of type properties setting
the width of controls and for specifying that a control should appear to the right
of another control. The result of displaying the typelet is shown in Fig. 2(b).

A large number of type properties are supported for controlling the layout
for various controls, including the number of digits for float fields, the caption
field for a control, the height, width, and default value for a control, and so on.
As demonstrated by the first two type declarations in the example, it is possible
to make use of ML’s type inference (and the fact that sets of type properties
compose) to ease the annotation of types with type properties.

type ’a r = ’a + [right]

type ’a fixed = ’a + [fixedwidth]

type t = {
name: string; street: string;

no: string r fixed

+ [width="50";

nocaption];

zip: string fixed

+ [width="100"];

city: string r

}
(a) (b)

Fig. 2. Use of type properties to control layout.

Whereas this possibility is great for getting a good initial layout for a user
interface, we shall see in Sec. 7 how so-called typelet layouts allow for separation
of layout specification from functionality.

The typelet implementation makes use of special MLFi features (described
in the next section) for computing a runtime representation for a type and for
inspecting type properties in runtime representations of a type. Using these
features, the typelet implementation allows for the typelet-programmer to make
use of type properties for specifying details of how a control should be displayed
and for specifying default values for controls, and so on.

4 Dynamic Types and Type Paths in MLFi

Before proceeding with presenting how a user may specify rules to give dynamic
behavior to user interfaces, we summarize how MLFi extends OCaml with dy-
namic types and so-called type paths [11].

MLFi provides a universal datatype for representing static types at runtime:

type utype = Int | ...

| List of utype | Option of utype

| Record of (string * utype) list

| Props of utype * (string * string) list

| ...

Notice that the representation allows for the programmer to inspect the type
properties for a type, inferred at compile time and provided to the programmer
using the Props value constructor.

Further, MLFi supports an abstract notion of typed dynamic types, of type
t ttype, for some concrete type t. Values of type t ttype can be constructed
using the simple expression form (ttype_of:t) for injecting the static type t
into a value of type t ttype. Values of type t ttype can easily be converted
into values of type utype, with no computational overhead, using the func-
tion to_utype: ’a ttype -> utype. The type argument to the ttype type

constructor is really just a phantom type, which provides for improved type-
safe programming [2, 9, 10, 15]. In concert with the support for dynamic types,
MLFi supports the notion of a universally tagged representation of values, called
variants, which are useful for programming ad-hoc polymorphic functions, with
a “pay-as-you-go” strategy (no overhead forced on ordinary code). MLFi has
a built-in function variantize: t:’a ttype -> ’a -> variant and another
built-in function devariantize: t:’a ttype -> variant -> ’a, which may
fail by raising an exception. Notice here the so-called labeled arguments t:’a ty,
a special feature of MLFi, which allows for the programmer to label particular
arguments. When calling such functions, labeled arguments can be provided ex-
plicitly, as in variantize ~t:(ttype_of:int) 5 or implicitly, in the case of
typed dynamic types, with the compiler looking in the context for a value of the
particular inferred type. In many cases, the programmer can then omit the typed
dynamic type arguments. In the case above, the programmer may simply write
variantize 5. Using the above features, it is straightforward to write pseudo-
ad-hoc polymorphic functions, such as print: t:’a ttype -> ’a -> string.

MLFi also supports the notion type paths, which are values representing
functions for pointing at a subcomponent of a value. Type paths have type
(t,s)tpath where t is a type containing s as a subcomponent. A special type
path is the identity type path of type (t,t)tpath for arbitrary t.

Syntactically, type paths are written using dot-notation (with a prefix dot).
As an example, if {a:{b:int;c:string}; d:bool} is a MLFi type t, then .a.b

is a type path of type (t,int)tpath. Type paths are a little more than selector
functions on types. They compose, using a type path compose operator, but it
is also possible to extract from a type path, at runtime, the sequence of labels
that define the type path. The runtime representation works well together with
dynamic types and variant values.

5 Rules for Specifying Typelet Dynamics

Before we describe the concept of typelet rules in detail, we demonstrate the
concept with a simple temperature typelet:

type ’a ro = ’a + [readonly]

type temp = {celsius: float; fahrenheit: float ro; kelvin: float ro}
open Fields

let calc =

Rule.update (value(.celsius)) (value(.fahrenheit) & value(.kelvin))

(fun c -> (9.0 /. 5.0 *. c +. 32., c +. 273.15)

let low =

Rule.validate (value(.celsius))

(fun c -> if c < -273.15 then Some "Temperature too low" else None)

let () = typelet "Temperature" ~t:(ttype_of:temp) ~rules:[low;calc] ()

Notice first the load of the typelet using the typelet function in the last line.
This function takes as argument a name, the type of the Typelet (i.e., the argu-
ment for ~t), and a list of rules. Notice also that the Fahrenheit and Kelvin fields

are marked readonly using type properties in the type declaration for t. The
dynamic behavior of the typelet is specified using two rules, one that updates
the Fahrenheit and Kelvin fields when there are changes to the Celsius field, and
one that reports an error when a value in the Celsius field becomes invalid. The
resulting typelet is shown in action in Fig. 3.

(a) (b)

Fig. 3. Temperature typelet. Image (a) shows the typelet after evaluation of the update
rule (upon change of the Celsius field). Image (b) shows the typelet after evaluation of
the validate rule on invalid input (Celsius below -273.15 degrees).

In principle, the Rule.update function takes three arguments, (1) a speci-
fication of which source fields the rule depends on, (2) a specification of which
target fields the rule targets, and (3) a MLFi function that accepts a value cor-
responding to the source specification and computes a result corresponding to
the target specification. The source and target specifications are specified using
an algebra over type paths. The algebra over type paths allows for selection of
multiple fields and for referring to basic properties of a field, such as its value or
whether the field is read only or disabled.

The module type for the Fields module is presented in Fig. 4(a).

module type FIELDS = sig

type (’i,’a)t (* ’i : type of the root *)

(* ’a : type of elements pointed to *)

val const : t:’a ttype -> ’a -> (’i,’a)t

val value : (’i,’a)tpath -> (’i,’a)t

val enabled : (’i,_)tpath -> (’i,bool)t

val readonly : (’i,_)tpath -> (’i,bool)t

val restrict : (’i,’a)tpath

-> (’i,’a list)t

val (&) : (’i,’a)t -> (’i,’b)t

-> (’i, ’a*’b)t

end

(a) (b)

Fig. 4. The FIELDS module type (a) and an example of a fields value composed of
three fields (b).

A value of type (a,b)fields for some a and b represents a set of located fields
inside the type a. The diagram in Fig. 4(b) illustrates a case where the fields

value is composed of three fields within a.

The const function provides functionality for expressing a constant field
value whereas the value function gives access to the content of a field. The func-
tions enabled and readonly give access to a field’s enabled property and read-
only property, respectively (as boolean values). The restrict function makes it
possible to refer to the restricted set of valid values for a field; when used in the
target of a rule, the set of valid values for a field may be restricted dynamically.

The & operator may be used to compose field values, as we have seen in the
example. Most of the functions in the Fields module takes a ttype argument.
In normal use of the module, the arguments are passed implicitly by the compiler
and the programmer need not be explicit about these arguments, as can be seen
in the example above.

module type RULE = sig

type ’i t

type (’i,’a) fields = (’i,’a) Fields.t

val update : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields -> (’a -> ’b) -> ’i t

val validate : t:’a ttype -> (’i,’a)fields

-> (’a -> string option) -> ’i t

val button : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields

-> (’a -> ’b) -> (’i,unit)tpath -> ’i t

val grid : (’i,’a)fields -> (’i,’b list)tpath -> (’a * ’b)t -> ’i t

val grid_add : t:’a ttype -> (’i,’a)fields -> (’i,’b list)tpath

-> (’b,’c)fields -> (’a -> ’c) -> ’i t

val default : t:’a ttype -> (’i,’a)fields -> (unit -> ’a) -> ’i t

val subpath : (’i,’a)tpath -> ’a t -> ’i t

val all : ’i t list -> ’i t

val iso : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields

-> (’a -> ’b) -> (’b -> ’a) -> ’i t

val weak_upd : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields -> (’a -> ’b) -> ’i t

...

end

Fig. 5. The RULE module type.

The module type for the Rule module is presented in Fig. 5. As we have
seen earlier, the update function takes as arguments a source field specification,
a target field specification, and an appropriate MLFi function that matches the
source and target specifications. In addition, the function takes as argument two

ttype arguments. As described in Sec. 4, these arguments are provided implicitly
whenever the call site context provides the appropriate values.

(a) (b)

Fig. 6. Illustration of (a) the update rule and (b) the subpath rule.

Fig. 6(a) illustrates the semantics of the update rule. Intuitively, when a
source field is modified, either by an end user or by another rule, the source
values are extracted to form an argument for the MLFi rule function. Hereafter
the function is applied and the result is stored into the target fields denoted by
the target field specifier.

The implementation takes care that each rule is evaluated only once for
each field modification performed by an end user. Rules are not allowed to form
cycles, except through the iso and weak_upd rules (see below), thus rules may
be topologically ordered. Instead of evaluating rules eagerly when triggered by
a change in a source field, rules are dynamically added to a heap structure
when a source field changes value. The heap structure is evaluated by repeatedly
evaluating the topologically lowest ordered rule in the heap. Given that no cycles
appears in the graph defined by the rules and given that each rule satisfies
some validity constraints, the rule evaluation strategy guarantees that rules are
evaluated on consistent data and that each rule is evaluated at most once in
reaction to a field update.

The validate function takes only a source field specifier and a function
that optionally returns an error message (besides from an appropriate ttype

argument). The implementation guarantees that validate functions that have a
specific field in its source field specifier are evaluated before other rules that have
the same field in its source field specifier.

The button function takes four non-ttype arguments, (1) a source field spec-
ifier, (2) a target field specifier, (3) an evaluation function, to be evaluated when
the button is pressed, and (4) a type path to a unit type, which serves to identify
the button in the generated layout.

The grid function lifts a rule that works on a pair of auxiliary GUI data
and data for a grid row to a rule that works on an entire grid, represented as
a list of values (i.e., a list of rows). The grid_add function is used to specify
field data for new rows added to the grid (by the user). The supplied type path
points to the grid. The supplied function takes as argument data specified by the

first fields specifier. The result of the supplied function matches a field specifier
relative to the data for a row in the grid. Those fields in the added row that are
not mentioned in the relative field specifier are filled with default values.

The default function provides functionality for specifying default values
other than the built-in defaults or defaults specified using type properties.

The subpath function makes it possible to lift a rule for some type s to a
rule for a type t that contains s in the sense that there exists a type path from
t to s. The relation between t and s is illustrated in Fig. 6(b). The all function
makes it possible to treat a list of rules as one rule. These two functions are
important for building new rules from existing ones.

The last two rule functions shown, iso and weak_upd, allow for certain kinds
of cycles in the fields dependency graph formed by a particular set of rules. The
iso rule allow the programmer to set up an isomorphism between fields—it is
the obligation of the programmer to guarantee that the supplied functions form
an isomorphism. The weak_upd rule function works like the update function,
except that the rule is triggered only when the change in a source field is due
directly to a modification by an end user. This latter function has proven to be
useful, for instance, for implementing a generic “fill out utility” that allows a
user to select a value in a dropdown box and thereby get the effect that a series
of fields are filled out with computed data, but in such a way that if some value
in the set of filled out fields is edited, the wittness in the dropdown-box is erased.
By using weak update rules for both the “fill out” functionality and the erase
functionality, cycles in the rule evaluation is avoided.

6 Implementation

The implementation of typelets in the SimCorp Dimension asset-management
system, targets the .NET platform via an extension to Microsoft’s Windows
Forms library. Whereas all rules are specified and analyzed in MLFi, the Win-
dows Forms control tree is generated at the .NET side based on a serialized
variant-representation of the type that specifies the layout of the typelet. Besides
from the control-tree, a container tree is also constructed at the .NET side based
on the (variant-representation of the) typelet type. Once both the container-tree
and the control-tree are constructed, the containers are bound to the controls,
which has the effect that changes in the containers will have a visible effect in
the controls. Information about rules is also serialized and communicated to the
.NET side. For each update rule, for instance, event handlers are attached to
the source controls, by traversing the GUI control structure using type-indexed
functions that iterate on the variantized version of the relevant type paths. At
runtime, an attached event handler will, when triggered, collect the argument
represented by a fields value, serialize the argument into MLFi representation,
call the registered MLFi function, and store the result in the fields represented
by the target fields value.

The typelet mechanism is by no means tied to the .NET platform. If desired,
it should be straightforward to replace the .NET part of the framework with,

for instance, a JavaScript/HTML backend using, for instance, SMLtoJs [8] or
js_of_ocaml [23].

6.1 A Computation Monad

The MLFi runtime system is single-threaded and not reentrant, which make it
impractical to let MLFi functions make queries to the database and call ex-
pensive functions (e.g., monte-carlo simulations for contract pricing [13]) on the
.NET side. For this reason, the actual interface provided to the rule programmer
is a slight modification of the RULE module type given in Fig. 5. The actual RULE
module type exposes a monadic interface to computations [18], through a monad
of type ’a m. In effect, the type for the update rule function actually takes the
following form:

val update : ta:’a ttype -> tb:’b ttype

-> (’i,’a)fields -> (’i,’b)fields -> (’a -> ’b m) -> ’i t

Functionality on the .NET-side are exposed to the MLFi programmer as
monadic computations, which may be composed with direct MLFi computa-
tions using the monad’s return and bind functionality. Now, because the com-
posed computations are driven from the .NET-side, the MLFi runtime system
is blocking for entrance only when it is busy computing.

6.2 A Functional-Relational Mapping Scheme

The typelet implementation is also augmented with a typed functional-relational
mapping scheme for mapping data in a typelet into a form acceptable for a
relational database system and vice versa. The mapping forms an isomorphism
between the data in the database and the data in the typelet and is used both
for loading and saving typelet data. In this paper we have focused on the more
dynamic behavior of typelets and we shall not discuss the functional-relational
mapping scheme in more detail here, except by stating that the mapping scheme
is applied for screens where the user may load particular stored data into the
screen, either for presentation purposes or for the purpose of making changes to
the data. Similarly, the mapping mechanism is used whenever data in a screen
needs to be stored.

7 Separating Concerns Using Typelet Layouts

A front-end programmer may specify a complete redesign of a typelet using a set
of combinators to form a so-called typelet layout. Besides from basic combinators
for grouping controls in tab pages and group controls, two basic combinators are
available, namely the pick combinator, which selects (using a type path) a com-
ponent from the typelet (an entire group or a concrete control) and the apply

combinator, which replaces a subcomponent in a layout with an alternative lay-
out. As we shall see, the typelet layout combinators are guaranteed not to alter
the rule semantics of the underlying typelets.

The front-end programmer may choose to redesign the entire standard layout
(as induced by the type for the underlying typelet) or use parts of the standard
layout in the defined layouts. Typelet layouts are first class entities and there is
no limit to the number of layouts that can be associated with a typelet. Typelet
layouts are typed in the sense that they are defined for particular typelets (or
typelet library components). The typing ensures that we can give appropriate
meaning to a typelet layout.

Typelet programmers write typelet layouts in an embedded domain specific
language for layouts. Fig. 7 lists the module type for the language.

module type LAYOUT = sig

type ’i t (* Layout for ’i-typelets *)

type caption = string

type halign = Left | Center | Right

type valign = Top | Middle | Bottom

val grp : ’i t -> ’i t (* Grouping environment *)

val (%%) : ’i t -> ’i t -> ’i t (* Horizontal sequencing *)

val (@@@) : ’i t -> ’i t -> ’i t (* Vertical stacking *)

val box : caption -> ’i t -> ’i t (* Wrap box around a layout *)

val tab : ’i t list -> ’i t (* Show boxes as tabs *)

val halign : halign -> ’i t -> ’i t (* Horizontal alignment *)

val valign : valign -> ’i t -> ’i t (* Vertical alignment *)

val hspace : int -> ’i t (* Horizontal space *)

val vspace : int -> ’i t (* Vertical space *)

val caption : caption -> ’i t -> ’i t (* Use the provided caption *)

val pick : (’i,’a)tpath -> ’i t (* Pick standard layout item *)

val apply : (’i,’a)tpath -> ’a t (* Apply alternative layout *)

-> ’i t -> ’i t

(* Derived combinators *)

val emp : ’i t (* Empty layout *)

val all : ’i t (* Complete type layout *)

val hide : (’i,’a)tpath -> ’i t (* Hide pointed-to item *)

-> ’i t

val lift : (’i,’a)tpath -> ’a t (* Lift pointed-to item *)

-> ’i t

val (%) : ’i t -> ’i t -> ’i t (* Padded sequencing *)

val (@@) : ’i t -> ’i t -> ’i t (* Padded stacking *)

end

Fig. 7. The LAYOUT module type.

The grouping environment introduced by grp allows the layout programmer
to organize layouts in a grid style with proper alignment of columns and rows. In
a group environment (e.g., in an argument to grp or box), the programmer may
use the % and @@ combinators to separate items and rows (of items), respectively.

The alignment and space combinators give programmers control over the
positioning of items without allowing programmers to work with absolute po-
sitioning. Notice that layouts should adapt properly to resizing of typelets and
that layouts should position themselves properly, also on limited space.

The pick combinator allows the programmer to pick a layout from the type
as pointed to by the type path argument. The apply combinator applies a given
layout to a pointed-to item in a larger layout.

The tab combinator takes a list of boxes, which may either be constructed
using the box combinator or picked from the typelet (by picking an existing tab
element, a box, or an existing tab group).

It is possible, and often straightforward, to define derived combinators such
as the hide and lift combinators. For instance, the hide combinator is imple-
mented as follows:

let hide tp = apply tp emp

The interface imposes some restrictions. For instance, we have deliberately
chosen not to allow the programmer to overwrite the default minimum size and
width-flexibility of a control. Thus, picking a date control yields a date control
with the same width, height, and caption as the picked control. Also, we do not
attempt to capture, at the type level, which components are shown or whether
an item is a box or another kind of object. This choice is deliberate; we want
to keep the layout concept simple without cluttering the types with additional
type parameters.

Fig. 8 demonstrates various features of the layout programming interface,
including regrouping. Notice that the type currency is defined elsewhere as a
sum datatype, which present themselves as a drop-down control.

It is natural to ask for properties of the pick and apply combinators. In
particular, we would expect the following property to hold:

Property 1. For all type paths p, it holds that all = apply p (pick p) all.

Typelet layouts may be registered with the typelet at typelet definition time
or loaded and linked dynamically using MLFi’s dynamic linking features. Fig. 9
shows a layout for an input screen for an interest rate swap, a complex financial
instrument used by most financial institutions for hedging interest rate risk.
Data can be entered by the user in any order and the rule machinery calculates
a number of derived values whenever sufficient information is typed in by the
user.

8 Related Work

There is a large body of related work. One strand of related work includes
work on providing type-safe language bindings for constructing graphical user

type leg = {legno: int; underlying: string option;

fixedrate: float option; currency: currency}
type tradedata = {tdata1: string; tdata2: string}
type tlet = {tradeid: string; nominal: float;

receiveleg: leg; payleg: leg; tradedata: tradedata}
open Layout

let leg = pick(.underlying) @@

pick(.fixedrate) @@

pick(.currency)

let l2 : tlet t =

pick(.tradeid) % pick(.nominal) @@

grp(box "Receive"

(lift(.receiveleg)leg) %

box "Pay"

(lift(.payleg)leg)) @@

pick (.tradedata)

(a) (b)

Fig. 8. An example typelet layout (a) and it’s effect on the typelet presentation (b).

interfaces in functional languages [3, 19, 14] either using monads or by using the
effectful features of a language for controlling the behavior of a GUI. A specific
monadic combinator library for constructing GUI’s is the Clean iTask library [17,
20], which primarily focuses on allowing the programmer to generate a workflow
GUI from a declarative specification of the GUI and the workflow. Compared
to the iTask framework, typelets do not address how windows are opened and
closed, but rather on how fields, grids, and controls change upon changes in a
field.

Like the typelet library, many GUI libraries make use of phantom types [2,
9, 15] as a mechanism for providing increased type-safety, for instance through
modeling single-inheritance [10]. Phantom types are used in the typelet imple-
mentation both for the Fields, Rule, and Layout modules to restrict the com-
posability of values.

Another branch of related work is the large body of work on functional re-
active programming [5–7, 16, 22], which has served as inspiration for the rule
mechanism for typelets. In particular, using a topological ordering of rules and
a heap data structure to guarantee that rules are triggered at most once upon
a change of input is directly influenced by previous work on implementations of
functional reactive programming [8]. The work on flowlets [1] combines work on
functional reactive programming with formlets [4], which, as typelets, focuses
much on composability of GUI components.

Other related work investigates the possibility of synthesizing user interfaces
and event handling code for interdependent fields based on formal descriptions
specified by the programmer in a domain specific language for specifying the
logic dependencies. Both the work on property models [12] and the work on Plato
[21], a compiler for interactive web forms, follows this direction. In the typelet

Fig. 9. Input screen for an interest rate swap, a complex financial instrument used by
most financial institutions for hedging interest rate risk.

approach, cyclic dependencies are only supported in a controlled way, through
iso-rules and weak rules, and programmers need to be explicit about such cyclic
dependencies, which makes it straightforward to express to programmers the
requirements for composing user interface components.

9 Conclusion

We have presented the concept of typelets, which have been designed for con-
structing trade screens for the SimCorp Dimension asset management system.
Each trade screen can have more than 400 individual fields located in nested tab-
structures and group controls. Together with a functional-relational mapping (for
storing and loading database content), the typelet implementation forms a dy-
namic GUI mechanism, which is declarative and statically typed, but also highly
flexible.

Acknowledgments

The authors want to thank the Instrument Modelling Language team at SimCorp
for many interesting discussions and the PADL’14 reviewers for their helpful and
insightful feedback. This research has been partially supported by the Danish
Strategic Research Council, Program Committee for Strategic Growth Technolo-
gies, for the research center HIPERFIT: Functional High Performance Comput-
ing for Financial Information Technology (hiperfit.dk) under contract number
10-092299.

References

1. Joel Bjornson, Anton Tayanovskyy, and Adam Granicz. Composing reactive GUIs
in F# using WebSharper. In Proceedings of the 22nd International Symposium
on the Implementation and Application of Functional Languages (IFL’10), pages
203–216. Springer-Verlag, 2011.

2. Matthias Blume. No-longer-foreign: Teaching an ML compiler to speak C “na-
tively.”. In Workshop on Multi-language Infrastructure and Interoperability (BA-
BEL’01), September 2001.

3. M. Carlsson and T. Hallgren. Fudgets–a graphical user interface in a lazy functional
language. In Proceedings of the ACM Conference on Functional Programming and
Computer Architectures (FPCA’93), pages 321–330. ACM Press, 1993.

4. Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop. The essence of form
abstraction. In Sixth Asian Symposium on Programming Languages and Systems
(APLAS’08), 2008.

5. A. Courtney, H. Nilsson, and J. Peterson. The Yampa arcade. In Proceedings of
the 2002 ACM SIGPLAN workshop on Haskell, pages 7–18. ACM Press, 2002.

6. Antony Courtney and Conal Elliott. Genuinely functional user interfaces. In
Proceedings of the 2001 Haskell Workshop, September 2001.

7. Conal Elliott and Paul Hudak. Functional reactive animation. In ICFP’97, New
York, NY, USA, 1997. ACM.

8. Martin Elsman. SMLtoJs: Hosting a Standard ML compiler in a web browser.
In Proceeding of ACM SIGPLAN 2011 International Workshop on Programming
Language And Systems Technologies for Internet Clients (PLASTIC’2011). ACM
Press, October 2011.

9. Martin Elsman and Ken Friis Larsen. Typing XHTML Web applications in
ML. In International Symposium on Practical Aspects of Declarative Languages
(PADL’04). Springer-Verlag, June 2004.

10. Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. In Interna-
tional Conference on Theoretical Computer Science (TCS’2002), August 2002.

11. Alain Frisch. Runtime types. In LexiFi blog, December 2011. Slides available from
http://www.lexifi.com/blog/runtime-types.

12. Jaakko Järvi, Mat Marcus, Sean Parent, John Freeman, and Jacob N. Smith.
Property models: from incidental algorithms to reusable components. In 7th In-
ternational Conference on Generative Programming and Component Engineering
(GPCE’08), pages 89–98, October 2008.

13. Simon Peyton Jones, Jean-Marc Eber, and Julian Seward. Composing contracts: an
adventure in financial engineering. In Fifth International Conference on Functional
Programming (ICFP’00), September 2000.

14. Daan Leijen. wxHaskell: A portable and concise GUI library for Haskell. In
Proceeding of the 2004 ACM SIGPLAN Haskell Workshop. ACM Press, September
2004.

15. Daan Leijen and Erik Meijer. Domain specific embedded compilers. In ACM
Conference on Domain-specific languages. ACM Press, 2000.

16. Leo A. Meyerovich, Arjun Guha, Jacob Baskin, Gregory H. Cooper, Michael Green-
berg, Aleks Bromfield, and Shriram Krishnamurthi. Flapjax: a programming lan-
guage for ajax applications. In OOPSLA’09, New York, NY, USA, 2009. ACM.

17. Steffen Michels, Rinus Plasmeijer, and Peter Achten. iTask as a new paradigm for
building GUI applications. In Proceedings of the 22nd International Symposium
on the Implementation and Application of Functional Languages (IFL’10), pages
153–168. Springer-Verlag, 2011. Selected papers.

18. Eugenio Moggi. Notions of computation and monads. Information and Computa-
tion, 93:55–92, 1989.

19. R. Noble and C. Runciman. Gadgets: Lazy functional components for graphical
user interfaces. In Seventh International Symposium on Programming Languages,
Implementations, Logics and Programs (PLILP’95), pages 321–340. Springer-
Verlag, September 1995.

20. Rinus Plasmeijer, Peter Achten, Pieter Koopman, Bas Lijnse, Thomas van Noort,
and John van Groningen. iTasks for a change—type-safe run-time change in
dynamically evolving workflows. In Proceedings of the 20th International Work-
shop on Partial Evaluation and Program Manipulation (PEPM’11), pages 151–160.
ACM Press, 2011.

21. Ricardo Rocha and John Launchbury. Plato: A compiler for interactive web
forms. In International Symposium on Practical Aspects of Declarative Languages
(PADL’11). Springer-Verlag, 2011.

22. Meurig Sage. FranTk a declarative GUI language for Haskell. In Proceedings
of the fifth ACM SIGPLAN International Conference on Functional Programming
(ICFP00), pages 106–117. ACM Press, 2000.

23. Jérôme Vouillon. Js of ocaml. Documentation at
http://ocsigen.org/js of ocaml/manual/.

