
Typed Regions for Tag-Free Garbage Collection

Martin Elsman⋆

IT University of Copenhagen.
Glentevej 67, DK-2400 Copenhagen NV, Denmark.

Email: mael@itu.dk

October, 2002

Abstract. This paper presents an extension to the Tofte-Talpin region
type system, which makes it possible to combine region-based memory
management with a partly tag-free garbage collection algorithm. The
memory discipline is implemented for Standard ML in the ML Kit com-
piler. Experiments show that, for a range of benchmark programs, the
discipline improves performance, both with respect to memory usage and
execution time.

1 Introduction

In implementations of languages that support dynamic reference tracing garbage
collection, such as most Java and ML implementations, tags are often used to
distinguish between different types of values at runtime. The use of tags imposes
a memory overhead, however, which for the most commonly used data structures,
such as tuples, lists, and trees, can be as large as one third of the total memory
usage.

In this paper we present a memory discipline that integrates region-based
memory management and reference tracing garbage collection in such a way
that tagging of commonly used values such as tuples and lists is avoided.

In the Tofte-Talpin region typing rules [18], two values are forced into the
same region, only if their types are identical. This property suggests that, in
systems based on the Tofte-Talpin region typing rules, tags to distinguish differ-
ent types of values at runtime can be moved from individual values to the level
of regions. We show that this “Big Bag of Pages” approach to avoid tagging
improves memory usage and execution time for many programs.

1.1 Combining Region Inference and Garbage Collection

In the region-based memory model, the store is organized as a stack of dynami-
cally expandable regions. At compile time, allocation and deallocation directives
are added to the program by an analysis called region inference. Each value-
creating expression is annotated with information that directs in what region

⋆ Part time at Royal Veterinary and Agricultural University, Denmark

the value goes at runtime. Moreover, if e is some region-annotated expression,
then so is letregion ρ in e end. An expression of this form is evaluated by
first allocating a region on top of the region stack and binding the region to the
region variable ρ. Then e is evaluated, possibly using the region bound to ρ for
holding values. Finally, upon reaching end, the region is reclaimed.

In previous work, Hallenberg et al. [9] integrated garbage collection with
region inference and showed that, for most programs not optimized for region
inference, adding garbage collection reduces memory usage significantly. More-
over, from the point of view of garbage collection, region inference reduces the
pressure on the garbage collector.

The tag-based garbage collection algorithm described in [9] is a generaliza-
tion of Cheney’s copying garbage collection algorithm. Each region is collected
independently: if a value survives a garbage collection, the value belongs to the
same region as before the garbage collection.

1.2 Tag-free Garbage Collection

There are a series of proposals for tag-free garbage collection schemes [2, 7, 8, 19,
1] and nearly tag-free garbage collection schemes [14, 13].

The partly tag-free garbage collection scheme that we present here does not
involve untagging of all values. In particular, unboxed objects (e.g., integers and
booleans) are tagged in our system, which makes it possible to distinguish point-
ers from unboxed objects at runtime. However, the scheme allows for commonly
used data structures, such as tuples, reals, and reference cells, to be untagged,
which can lead to significant time and memory savings. In this work, we inves-
tigate the effect of untagging pairs, which are used for the implementation of
many dynamic data structures, including lists.

As is the case for other techniques that support full untagging, our technique
does not involve traversing the runtime stack to determine types during a garbage
collection [2, 7, 8] or require special type information to be passed to functions
at runtime [19]. By requiring values in certain regions to be of the same kind,
our approach has much in common with BIBOP (Big Bag Of Pages) systems,
with regions as pages [10].

1.3 Contributions of this Paper

The contributions of this paper are threefold. First, in Sect. 2, we present a region
type system that guarantees that regions containing pairs contain no values
of other kinds. Second, based on Cheney’s algorithm for regions [9], which is
summarized in Sect. 3, we present a partly tag-free garbage collection algorithm
in Sect. 4. Third, in Sect. 5, we provide evidence that the algorithm improves
execution times and memory usage compared to the tag-based algorithm. The
paper ends with a conclusion and directions for future work.

2 A Type System with Typed Regions

In this section, we present a type system that forces values of different kinds
of types into different regions. There are two essential ways that our type sys-
tem differs from the Tofte-Talpin type system [18]. First, the Tofte-Talpin type
system does not restrict two values from residing in the same region. Second,
because our system uses a combination of reference tracing garbage collection
and region based memory management, the type system is extended to ensure
that no dangling pointers are introduced during evaluation [6].

2.1 Region Types, Variables, and Effects

A region type, ranged over by κ, is either the token pair, which classifies regions
containing pairs, or the token other, which classifies regions containing other
values than pairs and integers. Integers are unboxed and thus do not reside in
distinguished regions.

We assume a denumerably infinite set of region variables, ranged over by ρ.
Each region variable has associated with it a region type. We write rt(ρ) to refer
to the region type associated with ρ. We also assume a denumerably infinite set
of effect variables, ranged over by ǫ, a denumerably infinite set of type variables,
ranged over by α, and a denumerably infinite set of program variables, ranged
over by x and f . An atomic effect, ranged over by η, is either a region variable
or an effect variable. An arrow effect, written ǫ.ϕ, is a pair of an effect variable
and a set ϕ of atomic effects.

2.2 Types and Substitutions

The grammars for types (τ), type and places (µ), type schemes (σ), and type
scheme and places (π) are as follows:

µ ::= (τ, ρ) | α | int τ ::= µ1 × µ2 | µ1

ǫ.ϕ
−→ µ2

σ ::= ∀~α~ǫ~ρ.µ1

ǫ.ϕ
−→ µ2 π ::= (σ, ρ) | µ

A type scheme and place (or type and place) π is well-formed if the sentence
⊢ π can be derived from the following rules:

⊢ α ⊢ int
rt(ρ) = pair

⊢ (µ1 × µ2, ρ)

rt(ρ) = other

⊢ (µ1

ǫ.ϕ
−→ µ2, ρ)

⊢ (τ, ρ)

⊢ (∀~ρ~α~ǫ.τ, ρ)

A region substitution (Sr) is a finite map from region variables to region variables,
such that rt(ρ) = rt(Sr(ρ)) for any region variable ρ ∈ dom(Sr). A substitution
(S) is a triple (Sr, St, Se), where Sr is a region substitution, St is a finite map
from type variables to well-formed type and places, and Se is a finite map from
effect variables to arrow effects. The effect of applying a substitution on a par-
ticular object is to carry out the three substitutions simultaneously on the three
kinds of variables in the object (possibly by renaming of bound variables within

the object to avoid capture). For effect sets and arrow effects, substitution is
defined as follows [15], assuming S = (Sr, St, Se):

S(ϕ) = {Sr(ρ) | ρ ∈ ϕ} ∪ {η | ∃ǫ, ǫ′, ϕ′.ǫ ∈ ϕ ∧ Se(ǫ) = ǫ′.ϕ′ ∧ η ∈ {ǫ′} ∪ ϕ′}

S(ǫ.ϕ) = ǫ′.(ϕ′ ∪ S(ϕ)), where Se(ǫ) = ǫ′.ϕ′

One can show that well-formedness is closed under substitution; if ⊢ π then
⊢ S(π), for any substitution S.

A type scheme σ = ∀~ρ~α~ǫ.τ ′ generalizes a type τ via ~ρ ′, written σ ≥ τ via ~ρ ′,
if there exists a substitution S = ({~ρ ′/~ρ}, St, Se) such that S(τ ′) = τ and
dom(St) = {~α}, and dom(Se) = {~ǫ}. If σ ≥ τ via ~ρ, for some σ, τ , and ~ρ, and S
is a substitution, then S(σ) ≥ S(τ) via S(~ρ).

A type environment (Γ) is a finite map from program variables to type scheme
and places. Following the usual definition of bound variables, we define, for any
kind of object o, the free region variables and the free region and effect variables
of o, written frv(o) and frev(o), respectively. We write fv(o) to denote the free
type, region, and effect variables of o.

2.3 Terms

The grammars for expressions (e) and values (v) are as follows:

v ::= d | (v1, v2) in ρ | λx.e in ρ | fun f [~ρ] x = e in ρ

e ::= v | x | let x = e1 in e2 | e1 e2 | λx.e at ρ | letregion ρ in e

| fun f [~ρ] x = e at ρ | e [~ρ] at ρ | (e1, e2) at ρ | #i e

All values, except integers, are boxed and associated with distinguished regions.
The free (program) variables of some expression (or value) e is written fpv(e).

2.4 Typing Rules

To guarantee safety of garbage collection, we must ensure that no dangling point-
ers are introduced during evaluation, which is not guaranteed by the Tofte-Talpin
region type system [18]. The solution that we apply here is to add additional
side conditions to the typing rules for functions that guarantee the absence of
dangling pointers [6].

First, we define a notion of value containment ; all values in an expression e
is contained in a set of regions ϕ with appropriate region types, if the sentence
ϕ |=v e is derivable from the rules in Fig. 1.

We now introduce a relation G, which we shall use to strengthen the typing
rules for functions to avoid dangling pointers during evaluation. The relation is
derived from the side condition for functions suggested by Tofte and Talpin in
[17, page 50]. The relation G is parameterized over an environment Γ, a function
body e, a set of function parameters X, and the type scheme and place π of the
function:

G(Γ, e,X, π) = ∀y ∈ fpv(e) \X.frev(Γ(y)) ⊆ frev(π) ∧ frv(π) |=v e

ϕ |=v d

ϕ |=v e ρ ∈ ϕ
rt(ρ) = other

ϕ |=v λx.e in ρ

ϕ |=v v1 ϕ |=v v2
ρ ∈ ϕ rt(ρ) = pair

ϕ |=v (v1, v2) in ρ

ρ ∈ ϕ ϕ |=v e
rt(ρ) = other

ϕ |=v fun f [~ρ] x = e in ρ

ϕ |=v x
ϕ |=v e1 ϕ |=v e2
ϕ |=v (e1, e2) at ρ

ϕ |=v e

ϕ |=v λx.e at ρ

ϕ |=v e

ϕ |=v #i e

ϕ |=v e

ϕ |=v fun f [~ρ] x = e at ρ

ϕ |=v e

ϕ |=v e [~ρ] at ρ

ϕ |=v e1 ϕ |=v e2
ϕ |=v e1 e2

ϕ |=v e1 ϕ |=v e2
ϕ |=v let x = e1 in e2

ρ 6∈ ϕ ϕ |=v e

ϕ |=v letregion ρ in e

Fig. 1. Value containment.

The typing rules are shown in Fig. 2 and allow inference of sentences of the
form Γ ⊢ e : π, ϕ, which are read: in the type environment Γ, the expression (or
value) e has type scheme and place π and effect ϕ.

The typing rules are closed under substitution; if Γ ⊢ e : π, ϕ then S(Γ) ⊢
S(e) : S(π), S(ϕ), for any substitution S. This property relies on the garbage
collection safety relation being closed under substitution.

2.5 A Small Step Dynamic Semantics

The dynamic semantics that we present is in the style of a contextual dynamic
semantics [12] and is similar to the semantics given by Helsen and Thiemann
[11, 4], although it differs in the way that inaccessibility to values in deallocated
regions are modeled. Whereas Helsen and Thiemann “null out” references to
deallocated regions (to avoid future access), our semantics keep track of a set
of currently allocated regions and disallow access to regions that are not in this
set.

The grammars for evaluation contexts (E) and instructions (ι) are as follows:

Eϕ ::= [·] (ϕ = ∅)
| letregion ρ in Eϕ\{ρ} (ρ ∈ ϕ)
| Eϕ e | v Eϕ | Eϕ [~ρ] at ρ | let x = Eϕ in e
| (Eϕ, e) at ρ | (v,Eϕ) at ρ | #i Eϕ

ι ::= d | λx.e at ρ | (v1, v2) at ρ
| #1 ((v1, v2) in ρ) | #2 ((v1, v2) in ρ)
| (λx.e in ρ) v | (fun f [~ρ] x = e in ρ) [~ρ ′] at ρ

Contexts Eϕ make explicit the set of regions ϕ bound by letregion constructs
that encapsulate the hole in the context.

The evaluation rules are given in Fig. 3 and consist of allocation and dealloca-

tion rules, reduction rules, and a context rule. The rules are of the form e
ϕ

7−→ e′,

Values Γ ⊢ v : π, ϕ

Γ ⊢ d : int, ∅

{x : µ1} ⊢ e : µ2, ϕ

⊢ µ µ = (µ1

ǫ.ϕ
−→ µ2, ρ)

G(Γ, e, {x}, µ)

Γ ⊢ λx.e in ρ : µ, ∅

rt(ρ) = pair

Γ ⊢ v1 : µ1, ∅ Γ ⊢ v2 : µ2, ∅

Γ ⊢ (v1, v2) in ρ : (µ1 × µ2, ρ), ∅

{f : (∀~ρ~ǫ.µ1

ǫ.ϕ
−→ µ2, ρ), x : µ1} ⊢ e : µ2, ϕ ⊢ π

fv(~α~ǫ~ρ) ∩ fv(Γ, ϕ) = ∅ π = (∀~α~ǫ~ρ.µ1

ǫ.ϕ
−→ µ2, ρ) G(Γ, e, {f, x}, π)

Γ ⊢ fun f [~ρ] x = e in ρ : π, ∅

Expressions Γ ⊢ e : π, ϕ

Γ ⊢ e : π, ϕ ϕ′ ⊇ ϕ

Γ ⊢ e : π, ϕ′

Γ + {x : µ1} ⊢ e : µ2, ϕ ⊢ µ

µ = (µ1

ǫ.ϕ
−→ µ2, ρ) G(Γ, e, {x}, µ)

Γ ⊢ λx.e at ρ : µ, {ρ}

Γ(x) = π ⊢ π

Γ ⊢ x : π, ∅

Γ ⊢ e : (σ, ρ′), ϕ
σ ≥ τ via ~ρ ⊢ (τ, ρ)

Γ ⊢ e [~ρ] at ρ : (τ, ρ), ϕ ∪ {ρ, ρ′}

Γ ⊢ e1 : (µ′ ǫ.ϕ0−→ µ, ρ), ϕ1

Γ ⊢ e2 : µ′, ϕ2

Γ ⊢ e1 e2 : µ, ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ǫ, ρ}

rt(ρ) = pair

Γ ⊢ e1 : µ1, ϕ1 Γ ⊢ e2 : µ2, ϕ2

Γ ⊢ (e1, e2) at ρ : (µ1 × µ2, ρ), ϕ1 ∪ ϕ2 ∪ {ρ}

Γ ⊢ e : (µ1 × µ2, ρ), ϕ i ∈ {1, 2}

Γ ⊢ #i e : µi, ϕ ∪ {ρ}

Γ ⊢ e : µ, ϕ ρ 6∈ frev(Γ, µ)

Γ ⊢ letregion ρ in e : µ, ϕ \ {ρ}

Γ ⊢ e1 : π, ϕ1 Γ + {x : π} ⊢ e2 : µ, ϕ2

Γ ⊢ let x = e1 in e2 : µ, ϕ1 ∪ ϕ2

Γ + {f : (∀~ρ~ǫ.µ1

ǫ.ϕ
−→ µ2, ρ), x : µ1} ⊢ e : µ2, ϕ ⊢ π

fv(~α~ǫ~ρ) ∩ fv(Γ, ϕ) = ∅ π = (∀~α~ǫ~ρ.µ1

ǫ.ϕ
−→ µ2, ρ) G(Γ, e, {f, x}, π)

Γ ⊢ fun f [~ρ] x = e at ρ : π, {ρ}

Fig. 2. Typing rules.

which says that, given a set of allocated regions ϕ, the expression e reduces (in

one step) to the expression e′. Next, the evaluation relation
ϕ

7−→∗ is defined as

the least relation formed by the reflexive transitive closure of the relation
ϕ

7−→.

We further define e ⇓ϕ v to mean e
ϕ

7−→∗ v, and e ⇑ϕ to mean that there exists

an infinite sequence, e
ϕ

7−→ e1
ϕ

7−→ e2
ϕ

7−→ · · ·.

2.6 Type Safety

The proof of type safety is based on well-known techniques for proving type
safety for statically typed languages [12, 20]. We shall not present the complete
proofs here, but refer the reader to [6], which includes proofs for a similar system.

Allocation and Deallocation e
ϕ

7−→ v

λx.e at ρ
ϕ∪{ρ}
7−→ λx.e in ρ (v1, v2) at ρ

ϕ∪{ρ}
7−→ (v1, v2) in ρ

fun f [~ρ] x = e at ρ
ϕ∪{ρ}
7−→

fun f [~ρ] x = e in ρ
letregion ρ in v

ϕ
7−→ v

Reduction and Context e
ϕ

7−→ e
′

(λx.e in ρ) v
ϕ∪{ρ}
7−→ e[v/x] let x = v in e

ϕ
7−→ e[v/x]

(fun f [~ρ] x = e in ρ)[~ρ ′] at ρ′
ϕ∪{ρ}
7−→ λx.e[~ρ ′/~ρ][(fun f [~ρ] x = e in ρ)/f] at ρ′

#1 ((v1, v2) in ρ)
ϕ∪{ρ}
7−→ v1 #2 ((v1, v2) in ρ)

ϕ∪{ρ}
7−→ v2

e
ϕ′∪ϕ
7−→ e′ ϕ ∩ ϕ′ = ∅ Eϕ 6= [·]

Eϕ[e]
ϕ′

7−→ Eϕ[e
′]

(1)

Fig. 3. Evaluation rules.

We first state a property saying that a well-typed expression is either a value
or can be separated into an evaluation context and an instruction:

Proposition 1 (Unique Decomposition). If ⊢ e : π, ϕ, then either (1) e is
a value, or (2) there exists a unique Eϕ′ , e′, and π′ such that e = Eϕ′ [e′] and
⊢ e′ : π′, ϕ ∪ ϕ′ and e′ is an instruction.

Proof. By induction on the structure of e. ⊓⊔

A type preservation property (i.e., subject reduction) for the language can
be stated as follows:

Proposition 2 (Preservation). If ⊢ e : π, ϕ and e
ϕ

7−→ e′ then ⊢ e′ : π, ϕ.

Proof. By induction on the derivation e
ϕ

7−→ e′. ⊓⊔

Proposition 3 (Progress). If ⊢ e : π, ϕ then either e is a value or else there

exists some e′ such that e
ϕ

7−→ e′.

Proof. If e is not a value, then by Proposition 1 there exists a unique Eϕ′ , ι, and
π′ such that e = Eϕ′ [ι] and ⊢ ι : π′, ϕ ∪ ϕ′. The remainder of the proof argues

that ι
ϕ∪ϕ

′

7−→ e′′, for some e′′, so that Eϕ′ [ι]
ϕ

7−→ Eϕ′ [e′′] follows from (1). ⊓⊔

Theorem 4 (Type Soundness). If ⊢ e : π, ϕ, then either e ⇑ϕ or else there
exists some v such that e ⇓ϕ v and ⊢ v : π, ϕ.

Proof. By induction on the number of rewriting steps, using Proposition 2 and
Proposition 3. ⊓⊔

We now introduce the notion of context containment, written ϕ |=c e, which
expresses that when e can be written on the form Eϕ′ [e′], values in e′ may
be contained in regions in the set ϕ ∪ ϕ′, where ϕ′ are regions on the stack
represented by the evaluation context Eϕ′ . The definition of context containment
is given in Fig. 4. The following containment theorem states that, for well-typed
programs, containment is preserved under evaluation:

ϕ |=c x
ϕ |=v v

ϕ |=c v

ρ 6∈ ϕ ϕ ∪ {ρ} |=c e

ϕ |=c letregion ρ in e

ϕ |=c e ϕ |=v e′

ϕ |=c let x = e in e′

ϕ |=c e ϕ |=v e′

ϕ |=c e e′
ϕ |=v v ϕ |=c e

ϕ |=c v e

ϕ |=c e

ϕ |=c e [~ρ] at ρ

ϕ |=c e ϕ |=v e′

ϕ |=c (e, e
′) at ρ

ϕ |=v v ϕ |=c e

ϕ |=c (v, e) at ρ

ϕ |=c e

ϕ |=c #i e

Fig. 4. Context containment.

Theorem 5 (Containment). If ⊢ e : π, ϕ and ϕ′ |=c e and e
ϕ

′

7−→ e′ then
ϕ′ |=c e

′.

Proof. By induction on the structure of e. ⊓⊔

The containment theorem states that evaluation allocates only in regions that
are either global or present on the region stack, represented by the evaluation
context. Moreover, at any point during evaluation, no region contains a value
that does not conform to the region type of the region.

3 Garbage Collecting Regions

Before we present the partly tag-free garbage collection algorithm, we first give
an overview of the tag-based garbage collection algorithm [9], on which the partly
tag-free algorithm is built.

The store consists of a stack and, separate from the stack, a region heap. The
stack consists of activation records, which are pushed on the stack at function
entry and popped on exit. The sizes of activation records are determined stati-
cally. The region heap consists of a set of fixed-size region pages, some of which
are linked together in a free-list. At runtime we distinguish between two kinds
of regions [3]:

Finite regions. Regions inferred to hold only one value at a time. The size of
the region is the maximal size of the values that may be allocated in the
region. Finite regions are allocated in activation records on the stack and
usually contain tuples and closures.

Infinite regions. Regions inferred to hold an unbounded number of values. An
infinite region is represented by a linked list of region pages, pointed to by a
region descriptor, which resides in an activation record on the stack. Infinite
regions usually contain lists and other recursive data structures.

Values that fit in one word, such as integers, are implemented unboxed and
therefore do not reside in distinguished regions.

3.1 Region Pages

Every region page starts with a region page descriptor. It contains a pointer
to the next region page in the region. It also contains an origin pointer, which
points back to the region descriptor of the region.

All region pages used by regions have the same fixed size (1 kb) and are
aligned at 1 kb boundaries, which makes it possible to determine, given a pointer
to some value, the region page header for the region page holding the value.
The function regiondesc(p) returns the region descriptor associated with the
region holding the value pointed to by p by accessing the associated region page
descriptor as described above and then extracting the origin pointer from it.

3.2 Infinite Regions and Region Descriptors

A region descriptor is a quadruple (e, fp, a, rs), where e is an end pointer pointing
to the end of the most recently allocated page in the region; a is an allocation
pointer pointing to the first available free location in the most recently allocated
page in the region; fp is the first-page pointer pointing to the first page of the
region; and rs is a region status, which is a two-valued mark for identifying,
during a garbage collection, if there are values to scan in the region. In the
implementation, the region status mark occupies only one bit and is encoded
in one of the pointer fields in the region descriptor. Figure 5 shows an example
runtime stack containing three region descriptors and one finite region.

Allocating a value is done at a if there is enough space in the region page;
otherwise, the region is extended with a region page taken from the free-list.
An infinite region is allocated by requesting a region page from the free-list and
updating a region descriptor. When an infinite region is popped, its region pages
are appended to the free-list; this operation can be done in constant time.

3.3 Cheney’s Algorithm for Regions

The tag-based garbage collection algorithm is based on Cheney’s stop and copy
algorithm [5]. Intuitively, each region is associated with a from-space and a to-
space. When (e, fp, a, rs) is some region descriptor, a plays the dual role of the

✲

✲

✛

✲

✲
✛

✻ ✻

✻ ✻

✻

✲

✛

✻

r1 r2

e fp a e fp a

r4

e fp a

r3

Fig. 5. A runtime stack containing three region descriptors and a finite region (r3).

allocation pointer for the mutator and the allocation pointer for the garbage
collector. Scan pointers are kept in a scan stack; there is no scan pointer in the
region descriptor. In the following, when r is some region descriptor, we use the
notation r → a to refer to the allocation pointer in r; we use similar notation to
access the other components of a region descriptor.

Cheney’s algorithm for regions applies Cheney’s algorithm locally on each
region and uses the stop criteria: ∀r ∈ Reg : (r → a) = sr, where Reg is the set
of region descriptors on the stack and sr is the scan pointer of r. The stop criteria
is implemented using the scan stack, which consists of those scan pointers sr for
which sr 6= (r → a).

The garbage collector never allocates into from-spaces. At the start of a
garbage collection, the region stack is traversed and region pages in from-space
areas (pointed at by r → fp) are linked together to form a single global from-
space area. Next, for every region descriptor r on the stack, r → fp is initialized
to point at a fresh region page taken from the free-list. Moreover, r → a is
initialized to point at the beginning of the page pointed to by r → fp and r → e
at the end of the page pointed to by r → fp. While collection is in progress,
region pages are allocated from the free-list, which is disjoint from the global
from-space area. After garbage collection, the global from-space area is appended
to the free-list in a constant-time operation.

The Cheney algorithm extended to regions is outlined in Fig. 6. In a call
cheney(r, s, a), the argument r is the address of a region descriptor of a re-
gion; it plays the role of the to-space. The for-loop scans the value pointed
at by s and calls the function evacuate on all fields inside the value. The call
next_value(s, r) proceeds to the value following the value pointed at by s in r
(which may entail proceeding to the next region page in the region).

fun evacuate(p) {

if (is_int(p)) return p;

if (is_fwd_ptr(*p))

return *p;

r = regiondesc(p);

a = acopy(r,p);

if (r->rs == NONE) {

r->rs = SOME;

push_onto_scanstack(a);

}

*p = a; // set fwd-ptr

return a;

}

fun cheney(r,s,a) {

while (s != a) {

for (i=1; i<sz_tag(*s); i++)

(s+i) = evacuate((s+i));

s = next_value(s,r);

}

r->rs = NONE;

}

fun collect_regions() {

while (s = pop_scanstack()) {

r = regiondesc(s);

cheney(r, s, r->a);

}

Fig. 6. Cheney’s algorithm for regions.

Next consider the function evacuate. Integers passed to the function are
returned unmodified. Given a pointer p to a value in from space, the function
determines if a forward pointer is installed, in which case the forward pointer is
returned. To determine if a forward pointer is installed, the function is_fwd_ptr

is used, which examines the tag word identified by the pointer p to see if it is a
pointer (i.e., that the two lower bits are zero).

If no forward pointer is installed, the function regiondesc(p) returns the
address of the region descriptor of the region containing the value pointed to by
p (see Sect. 3.1). The function acopy(r, p) allocates a copy of the value pointed
to by p in the region described by r and returns the address of the new copy.
(acopy extends the region with a new page, if necessary.) The region status field
rs in the region descriptor is NONE if sr = (r → a) and SOME if sr 6= (r → a). The
field rs is set to NONE in function cheney when the queue of unscanned values in
the region becomes empty. Notice that because a region is composed of region
pages, it is not always the case that sr ≤ (r → a), but sr = (r → a) does signify
that all values in the region have been scanned.

The algorithm maintains the invariant that the region status r → rs of some
region descriptor r is SOME if and only if either sr is on the scan stack or r denotes
a region that is currently being scanned. In the implementation, the region status
is encoded as a bit in one of the pointer fields in the region descriptor.

Finally, collect_regions repeatedly calls cheney on one region at a time
until the scan stack is empty.

4 Tag-free Collection of Pairs

Based on the tag-based garbage collection algorithm outlined in the previous
section, we now present a refined algorithm for partly tag-free garbage collec-
tion of regions. We first refine the layout of region page descriptors and region
descriptors as follows:

– Region page descriptors are refined to include a space status, which speci-
fies whether the page is part of to-space or part of from-space. Using the
alignment properties and the space status of region pages, the function
in_tospace(p) can determine if an object pointed to by p is located in a
region page in to-space or from-space.

– Region descriptors are refined to include a region type, which allows the
function is_pairregion(r) to determine if a region contains untagged pairs.

The space status of a region page descriptor and the region type of a region
descriptor can be encoded as bits in pointer fields in the respective descriptors.

When pairs are untagged, a pair value is represented by a pointer to a word
in memory preceding the two words that make up the pair. Thus, from the
mutator’s point of view, the pair looks as if it is tagged. However, the mutator
never tries to inspect the tag—it can use only the components of the pair. The
garbage collection algorithm, however, can use the is_pairregion function to
determine if the value is a pair and then arrange that forward pointers into to-
space are stored in one of the components of the pair. Following these ideas, the
evacuate and cheney functions are refined as shown in Fig. 7.

fun evacuate(p) {

if (is_int(p)) return p;

r = regiondesc(p);

if (is_pairregion(r)) {

if (in_tospace(*(p+1)))

return *(p+1);

a = acopy_pair(r,p);

*(p+1) = a; // set fwd-ptr

} else {

if (is_fwd_ptr(*p))

return *p;

a = acopy(r,p);

*p = a; // set fwd-ptr

}

if (r->rs == NONE) {

r->rs = SOME;

push_onto_scanstack(a);

}

return a;

}

fun cheney(r,s,a) {

if (is_pairregion(r)) {

while (s+1 != a) {

(s+1) = evacuate((s+1));

(s+2) = evacuate((s+2));

s = next_pair(s,r);

}

} else {

while (s != a) {

for (i=1; i<sz_tag(*s); i++)

(s+i) = evacuate((s+i));

s = next_value(s,r);

}

}

r->rs = NONE;

}

Fig. 7. Tag-free collection of pairs.

Two new auxiliary functions next_pair and acopy_pair are used, which are
identical to the functions next_value and acopy, although specialized for pairs.

4.1 Implementation Details

The partly tag-free garbage collection algorithm is implemented for Standard
ML in the ML Kit compiler [16]. Besides from modifying the code generator not
to emit code for storing tags in infinite regions of type pair, the algorithm is
extended to handle finite regions and so-called large objects, which are objects
that do not fit in region pages.

Although finite regions are not collected by the garbage collector, the garbage
collector does scan values in finite regions, which requires tagging of such values.
From the point of view of the mutator, there is no difference between pairs in
finite regions and pairs in infinite regions, except that the mutator writes a tag
word when it stores a pair into a finite region. The details of extending the
algorithm to work for finite regions, without traversing values in finite regions
more than once, are outlined in [9].

To manage large objects efficiently and to allow efficient natural representa-
tions of certain data types, such as strings and arrays, large objects associated
with a region are allocated using malloc and stored in a linked list, pointed to
from a field in the region descriptor. Upon deallocation of a region, large objects
in the associated linked list are deallocated using free. Large objects are never
copied by the garbage collector but may need to be scanned by the collector. To
determine whether a pointer points to a large object or an object in a region,
large objects are tagged and aligned at 1 kb boundaries to distinguish them from
region pages.

5 Measurements

In this section, we present evidence that our tag-free garbage collection algorithm
improves execution times and memory usage compared to the fully tag-based
garbage collection algorithm for regions [9].

All benchmark programs are run on a 750Mhz Pentium III Linux box with
512Mb RAM. Times reported are user CPU times and memory usage is the sum
of the maximum stack size, the maximum size of allocated large objects, and
the maximum size of allocated region pages, as reported by the runtime system.
Experiments are performed with the ML Kit version 4.1.2 [16] for a range of
benchmark programs, spanning from small micro-benchmarks (msort) to larger
programs, such as vliw and mlyacc.

The benchmark results are shown in Fig. 8. The first column shows the size
of each benchmark in lines of source code. The next three columns show the
memory usage with and without tagging of values and the improvements in
percentages. The following three columns (# GC) show the number of garbage
collection for each of the two settings and the improvements in percentages.
With one exception (i.e., tsp), untagging of pairs has a positive effect on either
memory usage or the number of garbage collections (the tsp benchmark makes
no use of pairs.) The mlyacc benchmark uses slightly less memory when pairs
are tagged than when they are untagged, which is caused by a garbage collection
being run at a point with more live (i.e., reachable) data.

Memory (kb) # GC Time (s)

Program Lines
tag
pairs

untag
pairs % tag

pairs
untag
pairs % tag

pairs
untag
pairs %

vliw 3676 1756 1633 7 43 38 12 5.7 5.6 2
logic 346 317 290 9 2565 2302 10 8.0 7.1 11
tyan 1018 2006 1806 10 357 289 19 7.4 6.3 15
tsp 493 7854 7854 11 11 6.5 6.5
DLX 2836 2893 2365 18 3 2 33 7.4 6.8 8
ratio 619 1026 950 7 35 27 23 6.7 6.7
lexgen 1318 3056 2791 9 168 123 27 6.6 5.9 11
mlyacc 7353 2397 2440 -2 361 284 21 6.8 6.0 12
simple 1052 1701 1567 8 9 9 6.9 6.5 6
professor 276 140 139 1 838 575 31 6.4 6.4
msort 81 5929 5423 9 8 8 6.1 5.6 8
kitlife 230 64 62 3 2 2 5.6 5.6

Fig. 8. Benchmark statistics.

The last three columns show the time (in seconds) for executing each bench-
mark with and without tagged pairs; improvements are shown in percentages.
A comparison of the numbers with numbers obtained when garbage collection
is disabled shows that, with respect to time, the untagging of pairs provides
two kinds of savings. First, for programs that allocate many pairs in infinite re-
gions, storing tag words for each pair is expensive. Second, for programs that use
much memory, the effect that untagging of pairs has on the number of garbage
collections significantly influences the overall time used for garbage collection.

6 Conclusion and Future Directions

We have presented a region type system, which guarantees that values of certain
kinds (e.g., pairs) are stored in distinguished regions. Based on Cheney’s algo-
rithm for regions [9] and the guarantee provided by the region type system, we
have presented an algorithm for partly tag-free garbage collection. Experimental
results demonstrate that the algorithm improves memory usage and execution
time, compared to the tag-based algorithm.

There are several directions for future work. First, it would be interesting to
investigate if support for tag-free garbage collection of values other than pairs
would have significant influence on memory usage and execution time.

Second, there are at least two ways the interaction between region inference
and garbage collection can be improved. In particular, arranging that garbage
collection can be initiated at arbitrary allocation points—instead of only at func-
tion entry points—may improve memory usage for some programs. Moreover,
combining region inference with a multi-generational garbage collection scheme,
where each region is associated with several generations, would make it possible

to garbage collect no longer reachable, newly allocated values without inspecting
the entire heap.

References

1. Shail Aditya, Christine H. Flood, and James E. Hicks. Garbage collection for
strongly-typed languages using run-time type reconstruction. In LISP and Func-
tional Programming, pages 12–23, 1994.

2. AndrewW. Appel. Runtime tags aren’t necessary. Lisp and Symbolic Computation,
2:153–162, 1989.

3. Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. From region inference to von
Neumann machines via region representation inference. In Proceedings of the 23rd
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pages 171–183. ACM Press, January 1996.

4. Cristiano Calcagno, Simon Helsen, and Peter Thiemann. Syntactic type soundness
results for the region calculus. Information and Computation, 173(2), 2002.

5. C. J. Cheney. A non-recursive list compacting algorithm. Communications of the
ACM, 13(11):677–678, November 1970.

6. Martin Elsman. Garbage collection safety for region-based memory management.
In Proceedings of ACM SIGPLAN Workshop on Types in Language Design and
Implementation (TLDI’03). ACM Press, January 2003. To appear.

7. Benjamin Goldberg. Tag-free garbage collection for strongly typed programming
languages. In Proceedings of SIGPLAN ’91 Conference on Programming Language
Design and Implementation, pages 165–176, June 1991.

8. Benjamin Goldberg and Michael Gloger. Polymorphic type reconstruction for
garbage collection without tags. In Proceedings of the 1992 ACM Conference on
LISP and Functional Programming, pages 53–65. ACM Press, 1992.

9. Niels Hallenberg, Martin Elsman, and Mads Tofte. Combining region inference and
garbage collection. In Proceedings of ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI’02). ACM Press, June 2002.

10. David R. Hanson. A portable storage management system for the icon program-
ming language. Software—Practice and Experience, 10:489–500, 1980.

11. Simon Helsen and Peter Thiemann. Syntactic type soundness for the region calcu-
lus. In Proceedings of the 4th International Workshop on Higher Order Operational
Techniques in Semantics, September 2000. Published in Volume 41(3) of the Elec-
tronic Notes in Theoretical Computer Science.

12. Greg Morrisett. Compiling with Types. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA 15213, December 1995.

13. Greg Morrisett, David Tarditi, Perry Cheng, Chris Stone, Robert Harper, and
Peter Lee. The TIL/ML compiler: Performance and safety through types. In 1996
Workshop on Compiler Support for Systems Software (WCSSS’96), February 1996.

14. D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. TIL: A type-
directed optimizing compiler for ML. In Proceedings of ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI’96), pages 181–192,
1996.

15. Mads Tofte and Lars Birkedal. Unification and polymorphism in region inference.
In Proof, Language, and Interaction. Essays in Honour of Robin Milner, May 2000.

16. Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Ole-
sen, and Peter Sestoft. Programming with regions in the ML Kit (for version 4).
Technical Report TR-2001-07, IT University of Copenhagen, October 2001.

17. Mads Tofte and Jean-Pierre Talpin. A theory of stack allocation in polymorphically
typed languages. Technical Report DIKU-report 93/15, Department of Computer
Science, University of Copenhagen, 1993.

18. Mads Tofte and Jean-Pierre Talpin. Region-based memory management. Infor-
mation and Computation, 132(2):109–176, 1997.

19. Andrew P. Tolmach. Tag-free garbage collection using explicit type parameters. In
Proceedings of the 1994 ACM Conference on LISP and Functional Programming,
pages 1–11. ACM Press, 1994.

20. Andrew K. Wright and Matthias Felleisen. A syntactic approach to type soundness.
Information and Computation, 115(1):38–94, 1994.

