
A Functional Approach

to Web Publishing

(Second Edition)

April 10, 2007

Martin Elsman

Niels Hallenberg

Carsten Varming

SMLserver

A Functional Approach

to Web Publishing

(Second Edition)

Martin Elsman (mael@itu.dk)
IT University of Copenhagen, Denmark

Niels Hallenberg (nh@itu.dk)
Statistics Denmark, Denmark

Carsten Varming (varming@itu.dk)
IT University of Copenhagen, Denmark

April 10, 2007

Copyright c© 2002–2007 by Martin Elsman, Niels Hallenberg, and
Carsten Varming.

Contents

Preface vii

1 Introduction 1
1.1 Web Scripting . 2
1.2 Why Standard ML . 3
1.3 Outline . 3

2 Getting Started 5
2.1 Compiling the Demonstration Web Project 5
2.2 Configuring and Starting Apache 6
2.3 Interfacing to an RDBMS . 7
2.4 Interfacing to Postgresql . 7
2.5 So You Want to Write Your Own Project 8

3 Presenting Pages to Users 11
3.1 The HyperText Transfer Protocol 11
3.2 Time of day . 12
3.3 A Multiplication Table . 16
3.4 How SMLserver Serves Pages . 18
3.5 ML Basis Files . 18
3.6 Compilation . 19
3.7 Loading and Serving Pages . 20
3.8 Logging Messages, Warnings, and Errors 21
3.9 Uncaught Exceptions and Aborting Execution 21
3.10 Accessing Setup Information . 22

4 Obtaining Data from Users 23
4.1 Temperature Conversion . 23
4.2 Quotations for HTML Embedding 25
4.3 A Dynamic Recipe . 27

iii

iv CONTENTS

5 Emulating State Using Hidden Form Variables 33
5.1 Counting Up and Down . 33
5.2 Guess a Number . 34

6 Extracting Data from Foreign Web Sites 39
6.1 Grabbing a Page . 39
6.2 Regular Expressions . 41
6.3 The Structure RegExp . 44
6.4 Currency Service—Continued . 46
6.5 Caching Support . 47
6.6 The Cache Interface . 48
6.7 Memoization . 52
6.8 Caching Version of Currency Service 53

7 Connecting to an RDBMS 57
7.1 What to Expect from an RDBMS 58
7.2 The ACID Test . 59
7.3 Data Modeling . 60
7.4 Data Manipulation . 61
7.5 Three Steps to Success . 64
7.6 Transactions as Web Scripts . 66
7.7 Best Wines Web Site . 70

8 Checking Form Variables 83
8.1 The Structure FormVar . 83
8.2 Presenting Multiple Form Errors 85
8.3 Implementation . 86

9 Authentication 89
9.1 Feeding Cookies to Clients . 90
9.2 Obtaining Cookies from Clients . 92
9.3 Cookie Example . 92
9.4 Storing User Information . 95
9.5 The Authentication Mechanism . 96
9.6 Caching Passwords for Efficiency 99
9.7 Applying the Authentication Mechanism 99

10 Scheduling and Trapping 105
10.1 Initialization . 105
10.2 Scheduling . 106
10.3 Trapping . 108

CONTENTS v

11 Configuration 109

12 Summary 111

A HTML Reference 115
A.1 Elements Supported Inside Body Element 116

A.1.1 Text Elements . 116
A.1.2 Uniform Resource Locators 116
A.1.3 Anchors and Hyperlinks . 116
A.1.4 Headers . 117
A.1.5 Logical Styles . 117
A.1.6 Physical Styles . 117
A.1.7 Definition Lists . 117
A.1.8 Unordered Lists . 118
A.1.9 Ordered Lists . 118
A.1.10 Characters . 118

A.2 HTML Forms . 118
A.2.1 Input Fields . 119
A.2.2 Select Elements . 120
A.2.3 Select Element Options . 121
A.2.4 Text Areas . 121

A.3 Miscellaneous . 121

B The Web Structure 123
B.1 The WEB Signature . 125
B.2 The WEB_CACHE Signature . 129
B.3 The WEB_CONN Signature . 132
B.4 The WEB_COOKIE Signature . 135
B.5 The WEB_DB Signature . 137
B.6 The WEB_DB_HANDLE Signature . 142
B.7 The WEB_DYNLIB Signature . 146
B.8 The WEB_INFO Signature . 147
B.9 The WEB_LOG Signature . 149
B.10 The WEB_LOW_MAIL Signature . 150
B.11 The WEB_MAIL Signature . 152
B.12 The WEB_MIME Signature . 153
B.13 The WEB_SERIALIZE Signature . 154
B.14 The WEB_SET Signature . 156
B.15 The XMLRPC Signature . 158
B.16 The XMLRPC_TYPE Signature . 160

vi CONTENTS

Preface

The ideas behind the SMLserver project came up in 1999 when the first author
was attending a talk by Philip Greenspun, the author of the book “Philip and
Alex’s Guide to Web Publishing” [Gre99]. Philip and his co-workers had been
writing an astonishing 250,000 lines of dynamically typed TCL code to implement
a community system that they planned to maintain, extend, and even customize
for different Web sites. Although Philip and his co-workers were very successful
with their community system, the dynamic typing of TCL makes such a large
system difficult to maintain and extend, not to mention customize.

Although the cost of using statically typed programming languages for Web
applications is a more tedious development cycle, a static type system may cause
many bugs to be found before a Web site is launched and help the programmers
in the development process.

The SMLserver project was initiated in the end of 2000 by the construction of
an embeddable runtime system and a bytecode backend for the MLKit [TBE+01],
an Open Source Standard ML compiler. Once the bytecode backend and the
embeddable runtime system, also called the Kit Abstract Machine (KAM), was
in place, the KAM was embedded in an AOLserver module1 in such a way that
requests for files ending in .sml and .msp (also called scripts) cause the correspond-
ing compiled bytecode files to be loaded and executed. In April 2001, the basic
system was running, but more work was necessary to support caching of loaded
code, multi-threaded execution, and many of the other interesting AOLserver fea-
tures, such as database interoperability.

In 2005, SMLserver was ported to Apache 2.0 including the many great features
of AOLserver, including script scheduling, Oracle and MySQL database support,
caching support, and much more.

SMLserver has been used in practice for building large intranet systems in the
form of a course evaluation system at the IT University of Copenhagen and an
online course registration system.

In the following, we assume that the reader is familiar with the programming

1AOLserver is a multi-threaded Web server provided by America Online (AOL).

vii

viii CONTENTS

language Standard ML and with functional programming in general. There are
several good introductory Standard ML text books available, including [Pau96,
HR99]. The present book is not meant to be a complete user’s manual for
SMLserver. Instead, the book is meant to give a broad overview of the possibilities
of using SMLserver for Web application development. The choice of content and
the examples presented in the book are inspired from more than six years of expe-
rience with developing and teaching the course “Web Publishing with Databases”
at the IT University of Copenhagen.

We would like to thank Lars Birkedal, Ken Friis Larsen, and Peter Sestoft
for their many helpful comments on the project. Peter developed the concept of
ML Server Pages and we are happy that much of the code that Peter wrote for his
Moscow ML implementation of ML Server Pages is reused in the SMLserver project
(in particular, the Msp structure is written entirely by Peter). We would also like
to thank Mads Tofte for his continued encouragement on working on this project.
Mads is a brilliant programmer and has developed several Web applications with
SMLserver, including an alumni systemand a course evaluation system for the IT
University of Copenhagen.

SMLserver is Open Source and distributed under the GNU General Public
License (GPL). More information about the SMLserver project can be found at
the SMLserver Web site:

http://www.smlserver.org

Martin Elsman
Niels Hallenberg
Carsten Varming

Copenhagen, Denmark
February, 2002 (Revised January 2003 and January 2007 for Second Edition)

Chapter 1

Introduction

SMLserver is a Web server module for Apache 2.0, the most popular Web server
on the Internet. SMLserver comes with a compiler for compiling Web applica-
tions written in Standard ML [MTHM97] into bytecode to be interpreted by the
SMLserver module. SMLserver has an extensive Application Programmer Inter-
face (API). For instance, SMLserver provides efficient interfaces to several Rela-
tional Database Management Systems (RDBMSs), including MySQL, Postgresql,
and Oracle.

SMLserver extends Apache by providing the possibility of programming dy-
namic Web pages in Standard ML using its rich language features including data-
types, pattern matching, higher-order functions, parametric polymorphism, and
modules. SMLserver provides a Standard ML interface to much of the Apache
API, thereby giving the Standard ML programmer access to many great features,
including the following:

• Different RDBMSs, including Oracle, Postgresql, and MySQL, may be ac-
cessed through a generic database interface.

• SMLserver provides easy access to HTTP header information, including form
content and cookie information.

• Efficient caching support makes it possible to decrease the load caused by
frequently run database queries, such as the querying of passwords for user
authentication.

• SMLserver supports scheduled execution of scripts.

• SMLserver has an advanced interface for Web applications to send emails.

• SMLserver has support for writing type-safe XML-RPC clients and servers
in Standard ML.

1

2 CHAPTER 1. INTRODUCTION

Besides the above features, SMLserver works well together with other Apache
features and other Apache Modules. For instance, SMLserver works well together
with Apache’s Secure Socket Layer support (SSL), which allows for encrypted com-
munication between the Web server and its clients, and with the Apache Rewrite
Module, which allows for trapping (i.e., filtering) of requests for easy access control.

1.1 Web Scripting

The Common Gateway Interface (CGI) is a standard for interfacing external ap-
plications with a Web server that communicates with clients using the HyperText
Transfer Protocol (HTTP). The situation is pictured as follows:

Application Web Server
CGIExternal

HTTP

The Internet

Browser
Web

The external application, which is also called a CGI program, may be written
in any language that allows the program to be executed on the system. It is
even possible to write Standard ML CGI-scripts with your favorite Standard ML
compiler using the Mosmlcgi library provided with the Moscow ML distribution.

Unfortunately, the traditional CGI approach has a serious drawback: It is slow.
Every time a client requests a page from the Web server, the server must fork a new
process and load the external application into memory before the application is
executed. Moreover, after execution, the operating system must reclaim resources
used by the process. One way of increasing availability and to speed up response
times is to embed an interpreter within a Web server as the following picture
illustrates:

Script

The Internet

Browser
WebHTTP

InterpreterScript
Cache

Web Server

1.2. WHY STANDARD ML 3

Notice that in this setting, scripts are cached in the Web server, which further in-
creases the efficiency of script execution. This is the approach taken by SMLserver.

1.2 Why Standard ML

Standard ML (SML) is a high-level statically typed functional programming lan-
guage.

It is a high-level programming language in the sense that it uses automatic
memory management. In contrast to a low-level programming language, such as
C, the programmer need not be concerned with the allocation and deallocation of
memory. Standard ML supports many other high-level programming language fea-
tures as well, including pattern-matching and exceptions. It even has an advanced
modules language, which enhances the possibilities of program composition.

In contrast to Web applications built with dynamically typed languages such as
TCL, Perl, PHP, or so, systems built with statically typed languages are often more
reliable and more robust. When a change is made to some part of the program, a
static type system enforces (at compile time, that is) the change to integrate well
with the entire program; in a dynamically typed setting, no errors are caught this
early in the development cycle.

Standard ML is a functional language in that it supports higher-order func-
tions; that is, functions may take functions as arguments and return functions as
a result. Although it is a functional language, Standard ML also has support for
imperative features such as mutable data structures like arrays and references.

1.3 Outline

Chapter 2 provides instructions for getting started with SMLserver. Chapter 3
presents two simple examples, which illustrate the basic mechanism for writing
dynamic Web pages with SMLserver. Chapter 4 describes how SMLserver Web
scripts may use data obtained from users. Chapter 5 describes how state in Web
scripts may be emulated using so-called hidden form variables. The concept of
regular expressions and the idea of fetching data from foreign Web sites are cov-
ered in Chapter 6. The general interface for connecting to a Relational Database
Management System (RDBMS) is described in Chapter 7. A mechanism for check-
ing that form variables contain values of the right type is presented in Chapter 8.
Chapter 9 presents a user authentication mechanism based on information stored
in a database and cookie information provided by the client browser. Finally,
Chapter 10 demonstrates SMLserver’s support for scheduling of scripts and trap-
ping (i.e., filtering) of requests to for easy access control. A summary is given in
Chapter 12.

4 CHAPTER 1. INTRODUCTION

All concepts are illustrated using a series of examples, which are all included
in the SMLserver distribution.

Chapter 2

Getting Started

For installation requirements and instructions, please consult the SMLserver Web
site (http://www.smlserver.org) or the file README_SMLSERVER in the source
distribution, which is also available from the SMLserver Web site. In the following
we shall assume that SMLserver is installed on your system and that the command

$ smlserverc -v

salutes you with a greeting from SMLserver.
The remaining sections in this chapter is organised as follows. First, Section 2.1

guides you through compiling your own version of the SMLserver demonstration
Web project. Second, Section 2.2 guides you through configuring Apache for use
with SMLserver and the compiled Web project.

2.1 Compiling the Demonstration Web Project

Start by creating your own web directory and copy the SMLserver demonstration
files to this directory:

$ cd $HOME
$ mkdir web
$ cp -pa /usr/local/lib/smlserver/{www,web_sys,web_demo_lib} \

\ web/

The cp command above assumes that SMLserver is installed in /usr/local and
not in /usr, as it probably would be if SMLserver was installed as a binary package.

Now, change to the web/www directory and type make:

$ cd web/www
$ make

5

6 CHAPTER 2. GETTING STARTED

Building involves invoking smlserverc and mspcomp for compiling libraries and
script files mentioned in the mlb-file web.mlb.

2.2 Configuring and Starting Apache

You are now ready to configure the Apache Web server. Before starting, we note
that different distributions of Apache (for different OS distributions) use different
strategies for configuration. Here we show the details of configuring Apache for
SMLserver on a Linux Debian System.

Follow the following steps:

1. Edit the file /etc/apache2/apache2.conf by adding to DirectoryIndex
the list index.sml.

2. Edit the file /etc/apache2/sites-available/default by (A) changing
DocumentRoot to /home/user/web/www and (B) changing Directory path
to /home/user/web/www, where user is your login name.

3. Create the file /etc/apache2/mods-available/sml.conf with the following
content:

<IfModule mod_sml.c>
AddHandler sml-module .sml
SmlPrjId "web"
SmlPath "/home/user/web/www/"
SmlInitScript "/home/user/web/www/../web_sys/init.sml"

</IfModule>

Again, substitute your own login name for user in the content.

4. Execute the following commands:

$ cd /etc/apache2/mods-enable/
$ sudo ln -s /etc/apache2/mods-available/sml.conf .
$ sudo ln -s /etc/apache2/mods-available/sml.load .

You are now ready to (re)launch Apache with the following command:

$ sudo apache2ctl restart

Point your browser to http://localhost/web/ and enjoy. By executing the com-
mand

2.3. INTERFACING TO AN RDBMS 7

$ ps --cols=200 guax | grep nsd

you should see that Apache is running five or six processes. Apache writes infor-
mation into the file /var/log/apache2/error.log. By looking at the log, you
should see a notice that Apache has loaded the SMLserver module.

2.3 Interfacing to an RDBMS

To get access to an RDBMS from within your SMLserver scripts, an RDBMS sup-
ported by SMLserver must be installed on your system. Supported RDBMS’s
include MySQL, Oracle, and Postgresql (http://www.postgresql.org). The
MySQL and Postgresql databases are supported through unixODBC.1.

Information on how to use SMLserver with Oracle and MySQL is available
from the SMLserver home page. The next section describes how to interface to
the Open Source RDBMS Postgresql.

2.4 Interfacing to Postgresql

This section describes how to set up a database with Postgresql for the pur-
pose of using it with SMLserver. We assume that Postgresql (≥ 8.1) is al-
ready installed on the system. We also assume that SMLserver is configured with
unixODBC support (--enable-odbc) before compilation and installation; see the
file README_SMLSERVER for details.

Follow the steps below:

1. (Re)start the Postgresql daemon process by executing the following com-
mand:

$ sudo /etc/init.d/postgresql-8.1 restart

2. Create a database user with the same name as your user name on the Linux
box:

$ sudo su - postgres
$ createuser -P user

Invent a new password for the database user. Answer yes to the questions
asked by createuser.

1http://www.unixodbc.org

8 CHAPTER 2. GETTING STARTED

3. As user, create a database (also called user) as follows:

$ createdb $USER

You can now use the command psql to control your database and submit
SQL queries and commands to your database. Install the data models for
the demonstration programs by executing the commands

$ cd $HOME/web/web_demo_lib/pgsql
$ psql -c "\i all.sql"

Verify that the database is available using isql:

$ isql psql
> select * from guest;

(You should see a message from Homer Simpson...)

4. Restart Apache by executing the command

$ sudo /etc/init.d/apache2 restart

5. After copying the sample Web directory to $HOME, as described in Section 2.1,
edit the file $HOME/web/web_demo_lib/Db.sml. Make sure that the struc-
ture DbBackend passed to the DbFunctor is the structure Web.DbPgBackend.
The lines defining the Oracle structure and the MySQL structure should be
commented out.

6. Edit the file $HOME/web/web_sys/init.sml. Enable the Postgresql configu-
ration lines.

7. Compile the sample Web project as described in Section 2.1.

8. Go start your Web browser and visit the database examples available from
http://localhost/web/index.sml.

2.5 So You Want to Write Your Own Project

To write your own project, create a new mlb-file and make this project the project
served by SMLserver by updating the Apache configuration file. You can have
only one project associated with each Web server that you run. Use the compiler
smlserverc to compile the library and script-files mentioned in the mlb-file into

2.5. SO YOU WANT TO WRITE YOUR OWN PROJECT 9

bytecode. Once your project is compiled, the Web server answers requests of the
files listed in the scripts...end parts of your mlb-file (see Section 3.5).

Library code to be shared between scripts may be stored anywhere on the
system and mentioned, for example, in the local part in the project file—look in
the sample mlb-file web.mlb for examples.

10 CHAPTER 2. GETTING STARTED

Chapter 3

Presenting Pages to Users

In this chapter we show two examples of dynamic Web pages (also called Web
scripts) written with SMLserver. The first example, which shows the time of
day, takes the form of a regular Standard ML program. It uses the function
Web.Conn.return to return the appropriate HTML code to the user requesting
the page.

The second example, which shows a simple multiplication table, uses the pos-
sibility of writing ML Server Pages (MSP) with SMLserver.

3.1 The HyperText Transfer Protocol

Before we dive into the details of particular dynamic Web pages, we briefly describe
the protocol that is the basis for the World Wide Web, namely the HyperText
Transfer Protocol (HTTP). It is this protocol, which dictates how Web browsers
(such as Microsoft’s Internet Explorer or Netscape Navigator) make requests to
Web servers and how a Web server communicates a response back to the particular
browser.

HTTP is a text-based protocol. When a Uniform Resource Locator (URL),
such as http://www.amazon.com, is entered into a Web browser’s location field,
the browser converts the user’s request into a HTTP GET request. Web browsers
usually request Web pages with method GET. When a user follows a link from a
Web page or when a user submits a form with no method specified, the request
is a GET request. Another often used request method is POST, which supports an
unlimited number of form variables with form data of non-restricted size. Other
possible methods include DELETE and PUT. When writing SMLserver applications,
however, you need not know about methods other than GET and POST.

As an example of HTTP in action, consider the case where a user enters the
URL http://www.google.com/search?q=SMLserver into the location field of a

11

12 CHAPTER 3. PRESENTING PAGES TO USERS

Web browser. The URL specifies a form variable q (read: query) with associated
form data SMLserver. As a result, the Web browser sends the following GET request
to port 80 on the machine www.google.com:

GET /search?q=SMLserver HTTP/1.1

The machine www.google.com may answer the request by sending the follow-
ing HTTP response back to the client—the HTML content between <html> and
</html> is left out:

HTTP/1.1 200 OK
Date: Mon, 23 Jul 2001 11:43:32 GMT
Server: GWS/1.11
Set-Cookie: PREF=ID=49cdd72654784880:TM=995888612:LM=995888612;

domain=.google.com;
path=/;
expires=Sun, 17-Jan-2038 19:14:07 GMT

Content-Type: text/html
Transfer-Encoding: chunked

54d
<html>
...

</html>

The HTTP response is divided into a status line followed by a series of response
header lines and some content. Each response header takes the form key:value,
where key is a response header key and value is the associated response header
value. The status line specifies that the HTTP protocol in use is version 1.1 and
that the status code for the request is 200, which says that some content follows
after the response headers. Figure 3.1 lists the most commonly used status codes
and Figure 3.2 lists some commonly used response headers.1

We have more to say about HTTP requests in Chapter 4 where we show how
information typed into HTML forms turns into form data submitted with the
HTTP request.

3.2 Time of day

We shall now see how to create a small Web service for presenting the time-of-day
to a user. The example uses the Time.now function from the Standard ML Basis

1HTTP 1.1 supported status codes and response headers are listed in RFC 2616. See
http://www.ietf.org.

3.2. TIME OF DAY 13

Status Code Description
200 (OK) Indicates that everything is fine. The document

follows the response headers.
301 (Moved Permanently) The requested document has moved and the

URL for the new location is in the Location re-
sponse header. Because the document is moved
permanently, the browser may update book-
marks accordingly.

302 (Found) The requested document has moved temporar-
ily. This status code is very useful because it
makes a client request the URL in the Location
header automatically.

400 (Bad Request) Bad syntax in the client request.
401 (Unauthorized) The client tries to access a password protected

page without specifying proper information in
the Authorization header.

404 (Not Found) The “no such page” response.
405 (Method Not Allowed) Request method is not allowed.
500 (Internal Server Error) The “server is buggy” response.
503 (Service Unavailable) Server is being maintained or is overloaded.

Figure 3.1: The most commonly used HTTP status codes

14 CHAPTER 3. PRESENTING PAGES TO USERS

Header Description
Allow Specifies the request methods (GET, POST, etc.) that a

server allows. Required for responses with status code
405 (Method Not Allowed).

Cache-Control Tells client what caching strategy may be used. Usable
values include:

public: document may be cached

private: document may be cached by user

no-cache: document should not be cached

no-store: document should not be cached and not
stored on disk

Content-Encoding May be used for compressing documents (e.g., with
gzip).

Content-Language Specifies the document language such as en-us and
da. See RFC 1766 for details.2

Content-Length Specifies the number of bytes in the document. A
persistent HTTP connection is used only if this header
is present.

Content-Type Specifies the MIME (Multipurpose Internet Mail Ex-
tension) type for the document. Examples include
text/html and image/png.

Date Specifies the current date (Greenwich Mean Time).
Expires Specifies when content should be considered out-of-

date.
Last-Modified Indicates the last change of the document.
Location All responses with a status code in the range 300–399

should contain this header.
Refresh Indicates an interval (in seconds) at end of which the

browser should automatically request the page again.
Set-Cookie Specifies a cookie associated with the page. Multiple

Set-Cookie headers may appear.

Figure 3.2: Some commonly used response headers

3.2. TIME OF DAY 15

Figure 3.3: The result of requesting the file time_of_day.sml using the Netscape
browser. The HTTP request causes the compiled time_of_day.sml program to
be executed on the Web server and the response is sent (via the HTTP protocol)
to the Web browser.

Library to obtain the present time of day. HTML code to send to the users browser
is constructed using Standard ML string primitives. If you are new to HTML, a
short reference is provided in Appendix A on page 115.

val time_of_day =
Date.fmt "%H.%M.%S" (Date.fromTimeLocal(Time.now()))

val _ = Web.Conn.return
("<html> \
\ <head><title>Time of day</title></head> \
\ <body bgcolor=white> \
\ <h2>Time of day</h2> \
\ The time of day is " ^ time_of_day ^ ". \
\ <hr> <i>Served by \
\ SMLserver \
\ </i> \
\ </body> \
\</html>")

Figure 3.3 shows the result of a user requesting the file time_of_day.sml from
the Web server.

The example uses the Web structure, which gives access to the Web server API;
to get an overview of what functions are available in the Web structure, consult
Appendix B, which lists the Standard ML signature for the structure. The function
Web.Conn.return takes a string as argument and sends an HTTP response with

16 CHAPTER 3. PRESENTING PAGES TO USERS

status code 200 (Found) and content-type text/html to the browser along with
HTML code passed in the argument string.

In Section 4.2 on page 25 we show how support for quotations may be used to
embed HTML code in Standard ML Web applications somewhat more elegantly
than using Standard ML string literals.

In the next section we explore SMLserver’s support for ML Server Pages
(MSP).

3.3 A Multiplication Table

SMLserver supports the execution of dynamic Web pages written using ML Server
Pages (MSP). In this section we show how a dynamic Web page for displaying a
multiplication table is written as an ML Server Page. ML Server Pages are stored
in files with extension .msp. The way in which SMLserver supports msp-files is by
providing a tool mspcomp for compiling an msp-file into an sml-file, which can then
be compiled using smlserverc and served by SMLserver. Section 3.5 on page 18
has more to say about projects and how msp-files are compiled.

Here is how the ML Server Page for displaying a multiplication table looks
like:3

<?MSP
local open Msp infix &&

fun iter f n = if n = 0 then $""
else iter f (n-1) && f n

fun col r c =
$"<td width=5% align=center>"
&& $(Int.toString (r * c))
&& $"</td>"

fun row sz r = $"<tr>" && iter (col r) sz && $"</tr>"
in

fun tab sz = iter (row sz) sz
end
?>

<html>
<body bgcolor=white>
<h2>Multiplication Table</h2>
<table border=1> <?MSP$ tab 10 ?> </table>

3File smlserver_demo/www/web/mul.msp.

3.3. A MULTIPLICATION TABLE 17

Figure 3.4: The result of requesting the file mul.msp using the Netscape browser.
The HTTP request causes the compiled mul.msp program to be executed on the
Web server and the response is sent (via the HTTP protocol) to the Web browser.

<hr><i>Served by SMLserver</i>

</body>
</html>

Figure 3.4 shows the result of a user requesting the file mul.msp from the Web
server. An msp-file contains HTML code with the possibility of embedding Stan-
dard ML code into the file, using tags <?MSP ... ?> and <?MSP$... ?>. The
former type of tag makes it possible to embed Standard ML declarations into the
HTML code whereas the latter type of tag makes it possible to embed Standard
ML expressions into the HTML code. The Msp structure, which the msp-file makes
use of, provides functionality for constructing and concatenating HTML code effi-
ciently, by means of constructors $ and &&, respectively. The functions col, row,
and tab construct the HTML multiplication table. The functions use the function
iter, which constructs HTML code by concatenating the results of repeatedly ap-
plying the anonymous function given as the first argument; the second argument
controls the number of times the anonymous function is called.

18 CHAPTER 3. PRESENTING PAGES TO USERS

3.4 How SMLserver Serves Pages

Before we proceed with more examples of SMLserver Web applications, we de-
scribe how SMLserver Web applications are compiled and loaded and, finally, how
SMLserver scripts (i.e., sml-files) are executed when requested by a client.

Apache supports dynamic loading of modules when the server is started. Mod-
ules that may be loaded in this way include drivers for a variety of database
vendors, a module that enables support for CGI scripts, and a module that en-
ables encryption support, using Secure Socket Layer (SSL). Which modules are
loaded when Apache starts is configurable.

SMLserver is implemented as a module mod_sml.so, which is loaded into
Apache—along with other modules—when Apache starts. When the mod_sml.so
module is loaded into Apache, future requests for files with extension .sml are
served by interpreting the bytecode file that is the result of compiling the re-
quested sml-file. Compilation of sml-files into bytecode files is done by explicitly
invoking the SMLserver compiler smlserverc.

ML Server Pages, (i.e., scripts with extension .msp) may be compiled into
scripts with extension .sml using the mspcomp program that comes with SMLserver.

3.5 ML Basis Files

The SMLserver compiler smlserverc takes as argument an mlb-file, which lists
the sml-scripts that a client may request along with Standard ML library code to
be used by the client-accessible sml-scripts. The result of the compilation is stored
within MLB directories relative to the individual source files. The MLB directories
contain information that allows efficient recompilation of mlb-files upon change of
source code.

Be aware that the project file name must correspond to the string associ-
ated with the entry prjid in the Apache configuration file, which by default is
sources.mlb.

An example ML Basis file is listed in Figure 3.5. The mlb-file specifies that the
two scripts time_of_day.sml and mul.msp.sml are made available for clients by
SMLserver. Assuming the project file name corresponds to the file name mentioned
in the Apache configuration file, upon successful compilation of the project, a user
may request the files time_of_day.sml and mul.msp.sml.

The two example scripts time_of_day.sml and mul.msp.sml (i.e, mul.msp
compiled with mspcomp) may refer to identifiers declared in the files mentioned in
the local-part of the project file (i.e., between the keywords local and in), includ-

3.6. COMPILATION 19

local
$(SML_LIB)/basis/basis.mlb
$(SML_LIB)/basis/web/lib.mlb
../web_demo_lib/Page.sml
../web_demo_lib/FormVar.sml

in
(* Script files; may refer to identifiers declared in
* library files, but cannot refer to identifiers
* in other script files. *)
scripts
time_of_day.sml
mul.msp.sml

end
end

Figure 3.5: An ML Basis file for the two examples in this chapter.

ing identifiers declared by the Standard ML Basis Library4 and the Web library.5

In the local-part of the mlb-file, it is allowed for an sml-file to refer to identi-
fiers declared by previously mentioned sml-files or mlb-files. However, an sml-file
mentioned in the scripts...end part of an mlb-file may not refer to identifiers de-
clared by other files in scripts...end parts of the mlb-file. Thus, in the example
mlb-file, mul.msp.sml may not refer to identifiers declared in time_of_day.sml.

3.6 Compilation

As mentioned, a project is compiled with the SMLserver compiler smlserverc
with the name of the project file (sources.mlb is the default name to use) given
as argument:

smlserverc sources.mlb

The bytecode files (and other information) resulting from compilation of a source
file are stored in a subdirectory named MLB, located in the same directory as the
source file. To work efficiently with SMLserver, you need not know anything about
the content of the MLB directories. In particular, you should not alter the content

4To see what parts of the Standard ML Basis Library that SMLserver supports, consult the
file /usr/local/lib/smlserver/basis/basis.mlb on your system.

5See the file /usr/local/lib/smlserver/basis/web/lib.mlb.

20 CHAPTER 3. PRESENTING PAGES TO USERS

of these directories, although it is safe to remove MLB directories, if you want to
force a recompile of an entire ML Basis File.

To compile an msp-file file.msp into a file file.msp.sml, simply execute the
command:

$ mspcomp file.msp

3.7 Loading and Serving Pages

The first time SMLserver serves an sml-file, SMLserver loads the bytecode for the
Standard ML Basis Library along with user libraries mentioned in the mlb-file
before the bytecode for the sml-file is loaded. Upon subsequent requests for an
sml-file, SMLserver reuses the bytecode already loaded.

After bytecode for a request is loaded, SMLserver executes initialization code
for each library file before the bytecode associated with the request is executed.
Because SMLserver initiates execution in an empty heap each time a request is
served, it is not possible to maintain state implicitly in Web applications using
Standard ML references or arrays. Instead, state must be maintained explicitly
using a Relational Database Management System (RDBMS) or the cache primi-
tives supported by SMLserver (see the WEB_CACHE signature in Appendix B). An-
other possibility is to emulate state behavior by capturing state in form variables
or cookies.

At first, this limitation may seem like a major drawback. However, the limita-
tion has several important advantages:

• Good memory reuse. When a request has been served, memory used for
serving the request may be reused for serving other requests.

• Support for a threaded execution model. Requests may be served simul-
taneously by interpreters running in different threads without the need for
maintaining complex locks.

• Good scalability properties. For high volume Web sites, the serving of re-
quests may be distributed to several different machines that communicate
with a single database server. Making the RDBMS deal with the many si-
multaneous requests from multiple clients is exactly what an RDBMS is good
at.

• Good durability properties. Upon Web server and hardware failures, data
stored in Web server memory is lost, whereas, data stored in an RDBMS
may be restored using the durability features of the RDBMS.

3.8. LOGGING MESSAGES, WARNINGS, AND ERRORS 21

We have more to say about emulating state using form variables in Chapter 5.
Programming with cookies is covered in Chapter 9.

3.8 Logging Messages, Warnings, and Errors

When Apache starts (see Chapter 2), initialization information is written to a
server log file. The location and name of the server log file is configurable but for
many setups, the log file is /var/log/apache2/error.log.

In addition to initialization information being written to the server log file,
the SMLserver module and other Apache modules may also write information to
the server log file when Apache is running. It is also possible for your SMLserver
scripts to write messages to the server log file using the function Web.log. The
function Web.log has type Web.LogSeverity * string -> unit. The structure
Web declares the following values of the type Web.LogSeverity:

Value Description (intended use)
Notice Something interesting occurred.
Info Something interesting occurred.
Warning Maybe something bad occurred.
Error Something bad occurred.
Emergency Something extremely bad occurred. The server will

shut down after logging this message.
Critical Something extremely bad occurred. The server will

shut down after logging this message.
Alert Something extremely bad occurred. The server will

shut down after logging this message.
Debug If the server is in Debug mode, specified by a flag in the

configuration file, the message is printed. If the server
is not in debug mode, the message is not printed.

Allowing SMLserver scripts to write messages to the server log file turns out to be
handy for debugging scripts.

3.9 Uncaught Exceptions and Aborting Execution

We still have to explain what happens when a script raises an exception that is
not handled (i.e., caught) by the script itself. SMLserver deals with such uncaught
exceptions by writing a warning in the server log file explaining what exception is
raised by what file:

[Fri Dec 02 17:00:32 2005] [warn]

22 CHAPTER 3. PRESENTING PAGES TO USERS

/home/varming/apache2worker/htdocs/web/www/web/
upload/MLB/SMLserver/upload_form.sml.uo
raised Fail

There is one exception to this scheme. If the exception raised is the predefined
top-level exception Interrupt, no warning is written to the server log file. In
this way, raising the Interrupt exception may be used to silently terminate the
execution of a script, perhaps after serving the client an error page. The func-
tion Web.exit, which has type unit -> ty, for any type ty, exits by raising the
exception Interrupt.

An important aspect of using the function Web.exit to abort execution of
a script is that, with the use of exception handlers, resources such as database
connections (see Chapter 7) may be freed appropriately upon exiting.

It is important that SMLserver scripts do not abort execution by calling the
function OS.Process.exit provided in the Standard ML Basis Library. The rea-
son is that the function OS.Process.exit has the unfortunate effect of terminating
the Web server main process.6

3.10 Accessing Setup Information

The structure Web.Info provides an interface to accessing information about the
Apache setup, including the possibility of accessing the Web server configuration
file settings. Consult Appendix B to see the signature of the Web.Info structure.

6Recall that each script executes in a separate thread.

Chapter 4

Obtaining Data from Users

One of the fundamental reasons for the success of dynamic Web applications is
that Web applications can depend on user input. In this chapter we present two
small examples of SMLserver applications that query data from users.

The two examples that we present are both based on two files, an HTML file for
presenting a form to the user and an sml-file that accesses the submitted data and
computes—and returns to the user—HTML code based on the user input. HTML
forms provide for many different input types, including text fields, selection boxes,
radio buttons, and drop-down menus. If you are new to HTML forms, a quick
reference is provided in Appendix A.2 on page 118.

4.1 Temperature Conversion

This section presents a Web application for converting temperatures in degrees
Celsius to temperatures in degrees Fahrenheit. The Web application is made up of
one file temp.html containing an HTML form for querying a temperature from the
user and a script temp.sml for calculating the temperature in degrees Fahrenheit
based on the temperature in degrees Celsius.

The Temperature Form

The file temp.html reads as follows:1

<html>
<body bgcolor=white>
<h2>Temperature Conversion</h2>
Enter a temperature in degrees Celcius:

1File smlserver_demo/www/web/temp.html.

23

24 CHAPTER 4. OBTAINING DATA FROM USERS

Figure 4.1: The result of displaying the file temp.html using the Netscape browser.

<form method=get action=temp.sml>
<input type=text name=temp_c>
<input type=submit value="Compute Fahrenheit Temperature">
</form> <hr><i>Served by SMLserver
</i></body>
</html>

The result of displaying the above HTML code in a Web browser is shown in
Figure 4.1. The action of the HTML form is the script temp.sml. When the user
of the HTML form enters a temperature in the text field (20 say) and hits the
“Compute Temperature in Fahrenheit” button, the script temp.sml is requested
from the Web server with the form data temp_c = 20.

Calculating the Temperature in Degrees Fahrenheit

Here is the script temp.sml:2

fun calculate c = concat
["<html> <body bgcolor=white> ",
"<h2>Temperature Conversion</h2> ",
Int.toString c, " degrees Celcius equals ",
Int.toString (9 * c div 5 + 32),
" degrees Fahrenheit. <p> Go ",
"calculate a new temperature.",

2File smlserver_demo/www/web/temp.sml.

4.2. QUOTATIONS FOR HTML EMBEDDING 25

"<hr> <i>Served by ",
"SMLserver</i> </body></html>"]

val _ = Web.Conn.return
(case FormVar.wrapOpt FormVar.getIntErr "temp_c"

of NONE => "Go back and enter an integer!"
| SOME i => calculate i)

The structure FormVar provides an interface for accessing form variables of differ-
ent types.3

The expression FormVar.wrapOpt FormVar.getIntErr results in a function,
which has type string -> int option. The function takes the name of a form
variable as argument and returns SOME(i), where i is an integer obtained from the
string value associated with the form variable. If the form variable does not occur
in the query data, is not a well-formed integer, or its value does not fit in 32 bits,
the function returns NONE. We have more to say about the FormVar structure in
Chapter 8.

In the case that the form variable temp_c is associated with a well-formed
integer that fits in 32 bits, an HTML page is constructed, which presents the
submitted temperature in degrees Celsius, a calculated temperature in degrees
Fahrenheit, and a link back to the temp.html form. The result of a user converting
a temperature in degrees Celsius to a temperature in degrees Fahrenheit is shown
in Figure 4.2.

4.2 Quotations for HTML Embedding

As we have seen in the previous example, embedding HTML code in Standard ML
programs using strings does not look nice; many characters must be escaped and
splitting of a string across lines takes several additional characters per line. This
limitation of Standard ML strings makes it difficult to read and maintain HTML
code embedded in Standard ML Web applications.

Fortunately, many Standard ML implementations support quotations, which
makes for an elegant way of embedding another language within a Standard ML
program. Here is a small quotation example that demonstrates the basics of quo-
tations:

val text = "love"
val ulist : string frag list =
‘

3File smlserver_demo/web_demo_lib/FormVar.sml.

26 CHAPTER 4. OBTAINING DATA FROM USERS

Figure 4.2: The result of a user converting a temperature in degrees Celsius to a
temperature in degrees Fahrenheit.

 I ^text Web programming
‘

The program declares a variable text of type string, a variable ulist of type
string frag list, and indirectly makes use of the constructors of this prede-
clared datatype:

datatype ’a frag = QUOTE of string
| ANTIQUOTE of ’a

What happens is that the quotation bound to ulist evaluates to the list:

[QUOTE "\n I ",
ANTIQUOTE "love",
QUOTE " Web programming\n"]

Using the Quot.flatten function, which has type string frag list -> string,
the value bound to ulist may be turned into a string (which can then be sent to
a browser.)

To be precise, a quotation is a particular kind of expression that consists of a
non-empty sequence of (possibly empty) fragments surrounded by back-quotes:

exp ::= ‘frags‘ quotation
frags ::= charseq character sequence

| charseq ^id frags anti-quotation variable
| charseq ^(exp) frags anti-quotation expression

4.3. A DYNAMIC RECIPE 27

A character sequence, written charseq, is a possibly empty sequence of printable
characters or spaces or tabs or newlines, with the exception that the characters ^
and ‘ must be escaped using the notation ^^ and ^‘, respectively.

A quotation evaluates to a value of type ty frag list, where ty is the type
of all anti-quotation variables and anti-quotation expressions in the quotation.
A character sequence fragment charseq evaluates to QUOTE "charseq". An anti-
quotation fragment ^id or ^(exp) evaluates to ANTIQUOTE value, where value is
the value of the variable id or the expression exp, respectively.

Quotations are used extensively in the sections and chapters that follow. In
fact, to ease programming with quotations, the type constructor quot is declared
at top-level as an abbreviation for the type string frag list. Moreover, the
symbolic identifier ^^ is declared as an infix identifier with type quot * quot ->
quot and associativity similar to @. More operations on quotations are available
in the Quot structure.4

4.3 A Dynamic Recipe

This section provides another example of using quotations to embed HTML code
in your Standard ML Web applications. Similarly to the temperature conversion
example, this example is made up by two files, a file recipe.html that provides
the user with a form for entering the number of persons to serve apple pie and a
script recipe.sml that computes the ingredients and serves a recipe to the user.

The Recipe Form

The file recipe.html contains the following HTML code:5

<html>
<body bgcolor=white>
<h2>Dynamic Recipe: Apple Pie</h2>
Enter the number of people you’re inviting for apple pie:
<form method=post action=recipe.sml>
<input type=text name=persons>
<input type=submit value="Compute Recipe">
</form> <hr> <i>Served by

SMLserver</i>
</body>
</html>

4File /usr/share/smlserver/basis/web/Quot.sml lists the signature for the Quot structure.
5File smlserver_demo/www/web/recipe.html.

28 CHAPTER 4. OBTAINING DATA FROM USERS

Figure 4.3: The result of requesting the file recipe.html using the Netscape
browser.

The result of requesting the page recipe.html using Netscape Navigator is shown
in Figure 4.3.

Computing the Recipe

The script recipe.sml, which computes the apple pie recipe and returns a page
to the user reads as follows:6

fun error s =
(Page.return ("Error: " ^ s)
‘An error occurred while generating a recipe for
you; use your browser’s back-button to backup
and enter a number in the form.‘
; Web.exit())

val persons =
case FormVar.wrapOpt FormVar.getNatErr "persons"
of SOME n => real n
| NONE => error "You must type a number"

fun pr_num s r =
if Real.== (r,1.0) then "one " ^ s
else
if Real.==(real(round r),r) then

6File smlserver_demo/www/web/recipe.sml.

4.3. A DYNAMIC RECIPE 29

Int.toString (round r) ^ " " ^ s ^ "s"
else Real.toString r ^ " " ^ s ^ "s"

val _ = Page.return "Apple Pie Recipe"
‘To make an Apple pie for ^(pr_num "person" persons), you
need the following ingredients:

 ^(pr_num "cup" (persons / 16.0)) butter
 ^(pr_num "cup" (persons / 4.0)) sugar
 ^(pr_num "egg" (persons / 4.0))
 ^(pr_num "teaspoon" (persons / 16.0)) salt
 ^(pr_num "teaspoon" (persons / 4.0)) cinnamon
 ^(pr_num "teaspoon" (persons / 4.0)) baking soda
 ^(pr_num "cup" (persons / 4.0)) flour
 ^(pr_num "cup" (2.5 * persons / 4.0)) diced apples
 ^(pr_num "teaspoon" (persons / 4.0)) vanilla
 ^(pr_num "tablespoon" (persons / 2.0)) hot water

Combine ingredients in order given. Bake in greased 9-inch
pie pans for 45 minutes at 350F. Serve warm with whipped
cream or ice cream. <p>

Make another recipe.‘

When a user enters a number (say 4) in the form shown in Figure 4.3 and hits
the button “Compute Recipe”, a recipe is computed by the recipe.sml program
and HTML code is sent to the user’s browser, which layouts the HTML code
as shown in Figure 4.4. The expression FormVar.wrapOpt FormVar.getNatErr
results in a function with type string -> int option. This function takes the
name of a form variable as argument and returns SOME(n), if a representable
natural number n is associated with the form variable. If on the other hand the
form variable does not occur in the query data or the value associated with the
form variable is not a well-formed integer greater than or equal to zero or the
integer does not fit in 32 bits, the function returns NONE.

Besides the FormVar structure, the recipe program also makes use of a library
function Page.return, which takes a heading and a page body as argument and
returns a page to the client:7

7File smlserver_demo/web_demo_lib/Page.sml.

30 CHAPTER 4. OBTAINING DATA FROM USERS

Figure 4.4: The result of computing a recipe for a four-person apple pie.

4.3. A DYNAMIC RECIPE 31

fun return head body = Web.return
(‘<html>
<head><title>^head</title>
</head>
<body bgcolor=white>
<h2>^head</h2> ‘ ^^
body ^^
‘<hr><i>Served by
SMLserver</i>

</body>
</html>‘)

32 CHAPTER 4. OBTAINING DATA FROM USERS

Chapter 5

Emulating State Using Hidden
Form Variables

We have mentioned earlier how state in SMLserver Web applications may be im-
plemented using a Relational Database Management System. In Chapter 7, we
shall follow this idea thoroughly. In this chapter, on the other hand, we present
some examples that show how state in Web applications may be emulated using
so called “hidden form variables”. The main idea is that no state is maintained
by the Web server itself; instead, all the state information is sent back and forth
between the client and the Web server for each request and response.

The first example we present implements a simple counter with buttons for
counting up and down. The second example implements the “Guess a Number”
game.

5.1 Counting Up and Down

The implementation of the counter consists of one sml-file named counter.sml,
which uses the FormVar functionality (described on page 25 in Section 4.1) to get
access to the form variable counter, if present. If the form variable counter is not
present, a value of 0 (zero) is used for the value of counter. The implementation
also makes use of the function Web.Conn.formvar on which the FormVar structure
is built (see Section 8.3 on page 86). The script counter.sml takes the following
form:1

val counter = Int.toString
(case FormVar.wrapOpt FormVar.getIntErr "counter"

1File smlserver_demo/www/web/counter.sml.

33

34 USING HIDDEN FORM VARIABLES

Figure 5.1: The counter rendered by Netscape Navigator after a few clicks on the
“Up” button.

of SOME c => (case Web.Conn.formvar "button"
of SOME "Up" => c + 1
| SOME "Down" => c - 1
| _ => c)

| NONE => 0)

val _ = Page.return ("Count: " ^ counter)
‘<form action=counter.sml>

<input type=hidden name=counter value=^counter>
<input type=submit name=button value=Up>
<input type=submit name=button value=Down>

</form>‘

Figure 5.1 presents the counter as it is rendered by Netscape Navigator. Notice
that because a request method is not specified, the request method GET is used for
the form, which shows in the location field where the form variable key-value pairs
are appended to the URL for the file counter.sml. In the next example, we shall
see that by using the request method POST, the key-value pairs of form variables
do not turn up in the location field.

5.2 Guess a Number

We now demonstrate how to write a small game using SMLserver. As for the
previous example, the “Guess a Number” Web game is made up of one sml-file
guess.sml. The Web game uses the FormVar functionality explained on page 29
in Section 4.3 to get access to the form variables n and guess, if present. Here is

5.2. GUESS A NUMBER 35

the script guess.sml:2

fun returnPage title pic body = Web.return
‘<html>
<head><title>^title</title></head>
<body bgcolor=white> <center>
<h2>^title</h2> <p>
^(Quot.toString body) <p> <i>Served by SMLserver
</i> </center> </body>
</html>‘

fun mk_form (n:int) =
‘<form action=guess.sml method=post>

<input type=hidden name=n value=^(Int.toString n)>
<input type=text name=guess>
<input type=submit value=Guess>

</form>‘

val _ =
case FormVar.wrapOpt FormVar.getNatErr "n"
of NONE =>

returnPage "Guess a number between 0 and 100"
"bill_guess.jpg"
(mk_form (Random.range(0,100) (Random.newgen())))

| SOME n =>
case FormVar.wrapOpt FormVar.getNatErr "guess"
of NONE =>
returnPage "You must type a number - try again"
"bill_guess.jpg" (mk_form n)

| SOME g =>
if g > n then
returnPage "Your guess is too big - try again"
"bill_large.jpg" (mk_form n)

else if g < n then
returnPage "Your guess is too small - try again"
"bill_small.jpg" (mk_form n)

else

2File smlserver_demo/www/web/guess.sml.

36 USING HIDDEN FORM VARIABLES

returnPage "Congratulations!" "bill_yes.jpg"
‘You guessed the number ^(Int.toString n) <p>
Play again?‘

In the case that no form variable n exists, a new random number is generated and
the game is started by presenting an introduction line to the player along with
a form for entering the first guess. The Web game then proceeds by returning
different pages to the user dependent on whether the user’s guess is greater than,
smaller than, or equal to the random number n.

Notice that the game uses the POST request method, so that the random number
that the user is to guess is not shown in the browser’s location field. Although
in theory, it may take up to 7 guesses for a user to guess the random number,
in practice—with some help from the Web browser—it is possible to “guess” the
random number using only one guess; it is left as an exercise to the reader to find
out how!

Figure 5.2 shows four different pages served by the “Guess a Number” game.

5.2. GUESS A NUMBER 37

Figure 5.2: Four different pages served by the “Guess a Number” game.

38 USING HIDDEN FORM VARIABLES

Chapter 6

Extracting Data from Foreign
Web Sites

The Internet hosts a large set of Web services, readily available for use by your
Web site! Examples of such available services include real-time population clocks
(e.g., http://www.census.gov/cgi-bin/popclock), currency rate services (e.g.,
http://se.finance.yahoo.com), and a large number of stock quote services (e.g.,
http://quotes.nasdaq.com). In this chapter, we shall see how to extract data
from another Web site and how to use the data for content on your own Web site,
using what are called regular expressions.

6.1 Grabbing a Page

The SMLserver API has a built-in function Web.fetchUrl, with type string ->
string option, for fetching a page from the Internet and return the page as a
string. Upon calling Web.fetchUrl, SMLserver connects to the HTTP Web server,
specified by the argument URL, which must be fully qualified. The function does
not handle redirects or requests for protocols other than HTTP. If the function
fails, for instance by trying to fetch a page from a server that is not reachable, the
function returns NONE. Web.fetchUrl has a default timeout of 60 seconds. This
can be changed by configuring “FetchUrlTimeOut” with an integer. The function
fetchUrlTime behaves as fetchUrl, but take a timeout as an argument.

Say we want to build a simple currency service that allows a user to type in
an amount in some currency and request the value of this amount in some other
currency.

First we must find a site that provides currency rates; one such site is Yahoo
Finance: http://se.finance.yahoo.com. By browsing the site we see how to

39

40 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

obtain currency rates. For instance, if we want to exchange one American Dollar
into Danish Kroner then we use the URL

http://uk.finance.yahoo.com/q?s=USDDKK=X.

This URL specifies a form variable s as the string =USDDKK=X, which means that
we are interested in the eXchange rate from USD (US Dollars) to DKK (Danish
kroner). The currencies that we shall use in our service are abbreviated according
to the following table:

Currency Abbreviation
American Dollar USD
Australian Dollar AUD
Bermuda Dollar BMD
Danish Kroner DKK
EURO EUR
Norwegian Kroner NOK
Swedish Kroner SEK

The service that we shall build is based on two files, a simple HTML file
currency_form.html that queries the user for the amount and currencies involved
(see Figure 6.1). The other file, the script currency.sml, is the target of the
HTML form; the first part of the script currency.sml takes the following form:

val getReal = FormVar.wrapFail FormVar.getRealErr
val getString = FormVar.wrapFail FormVar.getStringErr

val a = getReal ("a", "amount")
val s = getString ("s", "source currency")
val t = getString ("t", "target currency")

val url =
"http://se.finance.yahoo.com/q?s=" ^
Web.encodeUrl s ^ Web.encodeUrl t ^ "=X"

fun errPage () =
(Page.return "Currency Service Error"
‘The service is currently not available, probably
because we have trouble getting information from
the data source: ^url.‘
; Web.exit())

6.2. REGULAR EXPRESSIONS 41

Figure 6.1: The Currency Service entry form, currency_form.html.

val pg = case Web.fetchUrl url
of NONE => errPage()
| SOME pg => pg

(* code that extracts the currency rate from ‘pg’
* and presents calculations for the user ... *)

The code constructs the URL by use of the form variables provided by the user.
Notice the use of the function Web.encodeUrl for building the URL; the function
Web.encodeUrl encodes characters, such as & and ?, that otherwise are invalid or
have special meaning in URLs. The returned page pg contains HTML code with
the currency information that we are interested in.

Before we continue the description of the currency example, we shall spend the
next section on the concept of regular expressions. Later, regular expressions are
used to extract the interesting currency information from the page obtained from
Yahoo Finance.

6.2 Regular Expressions

In this section we introduce a language of regular expressions for classifying strings.
A relation called matching defines the class of strings specified by a particular
regular expression (also called a pattern). By means of the definition of matching,
one may ask if a pattern p matches a string s. In the context of building Web
sites, there are at least two important uses of regular expressions:

42 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

1. Checking form data by ensuring that data entered in forms follow the ex-
pected syntax. If a number is expected in an HTML form, the server program
must check that it is actually a number that has been entered. This partic-
ular use of regular expressions is covered in Chapter 8. Regular expressions
can only check syntax; that is, given a date, a regular expression cannot
easily be used to check the validity of the date (e.g., that the date is not
February 30). However, a regular expression may be used to check that the
date has the ISO-format YYYY-MM-DD.

2. Extracting data from foreign Web sites, as in the Currency Service above.

In the following we shall often use the term “pattern” instead of the longer
“regular expression”. The syntax of regular expressions is defined according to the
description in Figure 6.2.

A character class class is a set of ASCII characters defined according to Fig-
ure 6.3.

Potential use of regular expressions is best illustrated with a series of examples:

• [A-Za-z] : matches all characters in the english alphabet.

• [0-9][0-9] : matches numbers containing two digits, where both digits may
be zero.

• (cow|pig)s? : matches the four strings cow, cows, pig, and pigs.

• ((a|b)a)* : matches aa, ba, aaaa, baaa,

• (0|1)+ : matches the binary numbers (i.e., 0, 1, 01, 11, 011101010,. . .).

• .. : matches two arbitrary characters.

• ([1-9][0-9]+)/([1-9][0-9]+) : matches positive fractions of whole num-
bers (e.g., 1/8, 32/5645, and 45/6). Notice that the pattern does not match
the fraction 012/54, nor 1/0.

• <html>.*</html> : matches HTML pages (and text that is not HTML).

• www\.(((it-c|itu)\.dk)|(it\.edu)) : matches the three Web addresses
www.itu.dk, www.it-c.dk, and www.it.edu.

• http://hug.it.edu:8034/ps2/(.*)\.sml : matches all URLs denoting .sml
files on the machine hug.it.edu in directory ps2 for the service that runs
on port number 8034.

In the next section, we turn to see how regular expressions may be used with
SMLserver.

6.2. REGULAR EXPRESSIONS 43

p Definition
. matches all characters
c matches the character c
\c matches the escaped character c, where c is one of |,

*, +, ?, (,), [,], $, ., \, t, n, v, f, r
p1p2 matches a string s if p1 matches a prefix of s and p2

matches the remainder of s (e.g., the string abc is
matched by the pattern a.c)

p* matches 0, 1, or more instances of the pattern p (e.g.,
the strings abbbbbba and aa are matched by the pat-
tern ab*a)

(p) matches the strings that match p (e.g., the string
cababcc is matched by the pattern c(ab)*cc

p+ matches 1 or more instances of the pattern p (e.g., the
pattern ca+b matches the string caaab but not the
string cb)

p1|p2 matches strings that match either p1 or p2 (e.g., the
pattern (pig|cow) matches the strings pig and cow)

[class] matches a character in class; the notion of charac-
ter class is defined below. The pattern [abc1-4]*
matches sequences of the characters a, b, c, 1, 2, 3, 4;
the order is insignificant.

[^class] matches a character not in class. The pattern
[^abc1-4]* matches sequences of all the characters
except a, b, c, 1, 2, 3, 4.

$ matches the empty string
p? matches 0 or 1 instances of the pattern p (e.g., the

strings aa and aba matches the pattern ab?a, but the
string abba does not match the pattern ab?a).

Figure 6.2: The syntax of regular expressions (patterns). The letter p is used to
range over regular expressions. The word class is used to range over classes, see
Figure 6.3.

44 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

class Definition
c class containing the specific character c
\c class containing the escaped character c, where c is

one of |, *, +, ?, (,), [,], $, ., \, t, n, v, f, r.
c1-c2 class containing ASCII characters in the range c1 to

c2 (defined by the characters’ ASCII value)
the empty class

class1class2 class composed of characters in class1 and class2

Figure 6.3: The syntax of character classes. Character classes are ranged over by
class.

6.3 The Structure RegExp

SMLserver contains a simple interface for the use of regular expressions:

structure RegExp :
sig
type regexp
val fromString : string -> regexp
val match : regexp -> string -> bool
val extract : regexp -> string -> string list option

end

The function RegExp.fromString takes a textual representation of a regular ex-
pression (pattern) and turns the textual representation into an internal represen-
tation of the pattern, which may then be used for matching and extraction. The
function RegExp.fromString raises the exception General.Fail(msg) in case
the argument is not a regular expression according to the syntax presented in the
previous section.

The application RegExp.match p s returns true if the pattern p matches the
string s; otherwise false is returned. The following table illustrates the use of the
RegExp.match function:

Expression Evaluates to
match (fromString "[0-9]+") "99" true
match (fromString "[0-9]+") "aa99AA" false
match (fromString "[0-9]+.*") "99AA" true
match (fromString "[0-9]+") "99AA" false
match (fromString "[0-9]+") "aa99" false

6.3. THE STRUCTURE REGEXP 45

The second expression evaluates to false because the pattern [0-9]+ does not
match the strings aa and AA. A number of additional examples are available in the
file smlserver_demo/www/web/regexp.sml.

The application RegExp.extract r s returns NONE if the regular expression
r does not match the string s. It returns SOME(l) if the regular expression r
matches the string s; the list l is a list of all substrings in s matched by some
regular expression appearing in parentheses in r. Strings in l appear in the same
order as they appear in s. Nested parentheses are supported, but empty substrings
of s that are matched by a regular expression appearing in a parenthesis in r are
not listed in l.

For a group that takes part in the match repeatedly, such as the group (b+)
in pattern (a(b+))+ when matched against the string abbabbb, all matching sub-
strings are included in the result list: ["bb", "abb", "bbb", "abbb"].

For a group that does not take part in the match, such as (ab) in the pattern
(ab)|(cd) when matched against the string cd, a list of only one match is returned,
a match for (cd): ["cd"].

Again, the use of regular expressions for string extraction is best illustrated
with a series of examples:

• Name and telephone. The application

extract "Name: ([a-zA-Z]+);Tlf: ([0-9]+)"
"Name: Hans Hansen;Tlf: 55 55 55 55"

evaluates to

SOME ["Hans Hansen", "55 55 55 55"]

• Email. The application

extract "([a-zA-Z][0-9a-zA-Z\._]*)@([0-9a-zA-Z\._]+)"
"name@company.com"

evaluates to SOME ["name","company.com"]. The application

extract "([a-zA-Z][0-9a-zA-Z\._]*)@([0-9a-zA-Z\._]+)"
"name@company@com"

evaluates to NONE.

• Login and Email. The application

46 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

extract "(([a-zA-Z][0-9a-zA-Z._]*)@[0-9a-zA-Z._]+,?)*"
"joe@it.edu,sue@id.edu,pat@it.edu")

evaluates to

SOME ["joe", "joe@it.edu,", "sue", "sue@id.edu,",
"pat", "pat@it.edu"]}.

For more examples, consult the file regexp.sml in the demonstration directory
smlserver_demo/www/web/.

6.4 Currency Service—Continued

We are now ready to continue the development of the Currency Service initiated
in Section 6.1. Recall that we have arranged for a page containing currency infor-
mation to be fetched from the Yahoo Finance Web site. What we need to do now
is to arrange for the currency information to be extracted from the fetched page,
which is available as a string in a variable pg. By inspection, we learn that at one
time pg contains the following HTML code:

<table>
...
AUDSEK=X</td><td>200.0</td><td>23:18</td>
<td>5.468220</td><td>1,093.64</td></tr>

</table>

The pattern .+AUDSEK.+<td>([0-9]+).([0-9]+)</td>.+" may be used to
extract the rate 5.468220. With this pattern, it is not the value 200.0 that is
extracted, because with regular expressions, it is always the longest match that is
returned.

Here is the remaining part of the script currency.sml—continued from page 41:

val pattern = RegExp.fromString
(".+" ^ s ^ t ^ ".+<td>([0-9]+).([0-9]+)</td>.+")

fun getdate() =
Date.fmt "%Y-%m-%d" (Date.fromTimeLocal (Time.now()))

fun round r =
Real.fmt (StringCvt.FIX(SOME 2)) r

6.5. CACHING SUPPORT 47

val _ =
case RegExp.extract pattern pg
of SOME [rate1, rate2] =>
(let

val rate = Option.valOf
(Real.fromString (rate1^"."^rate2))

in
Page.return ("Currency Service - " ^ getdate())
‘^(Real.toString a) (^s) gives you
^((round (a*rate))) (^t).<p> The rate used
is ^(round rate) and is obtained from
^url.<p>
New Calculation?‘

end handle _ => errPage())
| _ => errPage()

The function RegExp.extract returns the empty string if there is no match, which
is likely to happen when Yahoo Finance changes the layout of the page.

6.5 Caching Support

It can happen that small easy-to-write services become tremendously popular.
One example of such a Web service is Bill Gates Personal Wealth Clock (available
from http://philip.greenspun.com/WealthClockIntl), which estimates your
personal contribution to Bill Gates’ wealth, using stock quotes from either NAS-
DAQ (http://quotes.nasdaq.com) or Security APL (http://qs.secapl.com),
public information about the world population from the U.S. Census Bureau
(http://www.census.gov/cgi-bin/ipc/popclockw), and the estimated holding
of Microsoft shares owned by Bill Gates. The Web site provides a precise descrip-
tion of the math involved. As of January 7, 2003, the Web site estimates that each
and every person in the world has contributed $9.87 to Bill Gates.

This service got popular around the summer 1996 with a hit rate of two requests
per second. Such a hit rate is extreme for a service that obtains data from two
external sites; not only is it bad netiquette to put an extreme load on external
sites for querying the same information again and again, but it almost certainly
causes the Web site to break down, which of course lowers the popularity of the
site.

There is a simple solution; have your Web server cache the results obtained
from the foreign services for a limited amount of time. The wealth clock does not
depend on having up-to-the-minute information (e.g., updates every 10 minutes

48 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

are probably accurate enough). The SMLserver API has a simple caching interface
that can be used to cache data so that requests may share the same information.
Another use of the cache mechanism is for authentication, which is covered in
Chapter 9.

6.6 The Cache Interface

SMLserver has a simple type safe caching interface that can be used to cache data
so that information computed by some script invocation can be used by subsequent
script invocations. The cache functionality is implemented as a structure Cache,
which matches the signature WEB_CACHE listed below:1

signature WEB_CACHE =
sig
datatype kind = WhileUsed of Time.time option * int option

| TimeOut of Time.time option * int option
type (’a,’b) cache
include WEB_SERIALIZE
type name = string

val get : ’a Type * ’b Type * name * kind -> (’a,’b) cache

val lookup : (’a,’b) cache -> ’a -> ’b option
val insert : (’a,’b) cache * ’a * ’b * Time.time option -> bool
val flush : (’a,’b) cache -> unit

val memoize : (’a,’b) cache -> (’a -> ’b) -> ’a -> ’b
val memoizeTime : (’a,’b) cache -> (’a -> ’b * Time.time option) ->

’a -> ’b
val memoizePartial : (’a,’b) cache -> (’a -> ’b option) -> ’a -> ’b
val memoizePartialTime : (’a,’b) cache ->

(’a -> ’b * Time.time option) option ->
’a -> ’b

end

A cache of type (α,β) cache maps keys of type α Type to values of type β
Type. The WEB_SERILIZE signature defines a set of base types (i.e., Int, Real,
Bool, Char and String) and a set of type constructors to build new types (i.e.,
Pair, Option, List and Triple). A cache has a cache name, which is represented
by a Standard ML string.SMLserver supports two kinds of caches:

1The structure Cache is accessed through the Web structure.

6.6. THE CACHE INTERFACE 49

• Timeout caches. For caches of kind TimeOut(SOME(t), s), an entry inserted
with timeout SOME(t′) expires min(t, t′) from insertion. If an entry is inserted
with NONE, t is used and vice versa. If both are NONE no timeout occurs. If
s is SOME(s’) then the cache will not grow larger than s′. Otherwise the
cache might grow very large. If supplied with a timeout this kind of cache
guarantees that the cache is updated with freshly computed information,
even if the cache is accessed constantly.

This cache strategy is well suited for caching HTML pages obtained from
foreign sites. In Section 6.8, we shall see how the Currency Service of Sec-
tions 6.1 and 6.4 is extended to cache currency information obtained from a
foreign site.

• Keep-while-used caches. An entry inserted with timeout t′ in a cache of
kind WhileUsed(SOME(t), s) expires when it has not been accessed within
min(t, t′). This kind of cache is useful for caching authentication information,
such as passwords, so as to lower the pressure on the RDBMS. If s is provided
the cache will not grow large than this.

The function get obtains a cache given a domain type, a range type, a cache
name, and a cache kind. The first time get is called with a particular domain
type (aType), a particular range type (bType), a particular cache name (cn) and
a particular cache kind (ck), a new cache is constructed. If a cache c with cache
name cn and cache kind ck already exists, then there are two possibilities to
consider:

1. If the cache c is a mapping from aType to bType, then c is returned.

2. If the cache c is not a mapping from aType to bType, then a new cache c’ is
created and returned.

It is possible to create two caches with the same name, but only if they describe
mappings of different type or they are defined with different cache kinds.

Conceptually one can think of the function get as having the constrained (or
bounded) polymorphic type [FP02]

∀α ≤ Type, β ≤ Type . name * kind -> (α, β) cache

where Type denotes the set of types supported by the cache interface. As an
example, the following expression constructs a cache named mycache, which maps
pairs of integers to lists of reals:

get (Pair Int Int, List Real, "mycache", WhileUsed (NONE, SOME(9*1024)))

50 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

Figure 6.4: The example uses a cache to store a mapping from email addresses to
pairs of names and user ids. Cached values are accessible 20 seconds after the last
use.

The cache interface also provides functions for adding entries (insert), looking
up entries (lookup) and flushing caches (flush). The function flush deletes all
entries in a cache, but the cache still exists. A cache cannot be deleted.

Caching Demonstration

In the remainder of this Section, we present a small caching demonstration, which
implements the mapping from email addresses to pairs of names and user ids.2

Figure 6.4 shows the entry form.
The entry form shows first the name of cache used, the cache kind and cache

type. Below the table, you see three links. Clicking the links will change the cache
kind used for caching entries. Notice, that three different caches are created if you
click the three links.

The cache kind is passed as a hidden form variable, with name kind, to the
script cache_add.sml:3

2File smlserver_demo/www/web/cache.sml.
3File smlserver_demo/www/web/cache_add.sml.

6.6. THE CACHE INTERFACE 51

val kind = Option.valOf (Web.Conn.formvar "kind") handle _ => "Size"

val cache =
let
val k =
case kind of

"WhileUsed" =>
Web.Cache.WhileUsed (SOME(Time.fromSeconds 20),SOME(10000))

| "TimeOut" =>
Web.Cache.TimeOut (SOME(Time.fromSeconds 20), SOME(10000))

| "Size" => Web.Cache.WhileUsed (NONE, SOME(10000))
in
Web.Cache.get (Web.Cache.String,
Web.Cache.Pair Web.Cache.Int Web.Cache.String, "users", k)

end

The function get is used to obtain a cache with the specified name (users),
the chosen cache kind (variable k) and cache type. We use the type constructor
Pair to build the range type using the base types Int and String. A timeout
value of 20 seconds is used for cache kinds WhileUsed and TimeOut. A cache size
of 100 bytes is used for cache kind Size.

The script cache_add.sml also processes the email, user id and name entered
in the entry form at the left:

val new_p = (* new_p true if new value added *)
case (Web.Conn.formvar "email", Web.Conn.formvar "name",

Web.Conn.formvar "uid", Web.Conn.formvar "timeout") of
(SOME email, SOME name, SOME uid, SOME timeout) =>
Web.Cache.insert(cache,email,
(Option.getOpt(Int.fromString uid,0) ,name),
Option.map Time.fromSeconds (Int.fromString timeout))

| _ => false

val head = if new_p then "New Value added"
else "Key already in Cache"

val _ = Page.return ("Caching Demonstration" ^ ": cache_add.sml")
(‘^head <p>

‘ (*^^ ‘Pretty printing the cache:
<pre>

52 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

^(Web.Cache.pp_cache cache)
</pre><p> ‘*) ^^ ‘

Go back to
Cache Demo Home Page.‘)

We use user id 0, in case the user id given in form variable uid is not an integer.
The code to lookup a name in the cache is in the script cache_lookup.sml.

Again, the cache kind is passed as a hidden form variable and used to obtain the
cache. The variable cache contains the cache obtained with function get; this is
similar to cache_add.sml and not shown below. The function lookup is used to
lookup the entry associated with the email stored in the form variable email. The
function lookup returns NONE if the email address is not in the cache:4

val kind = ...
val cache = ...

fun returnPage s = Page.return "Caching Demonstration"
(‘^s <p>

Using cache kind: ‘ ^^ (pp_kind kind) ^^ ‘<p>

Go back to
Cache Demo Home Page.‘)

val _ = (* new_p is true if new value added *)
case Web.Conn.formvar "email"

of NONE => Web.returnRedirect "cache.sml"
| SOME email =>
returnPage
(case Web.Cache.lookup cache email

of SOME(uid,name) => "Name and userid for " ^
email ^ " is: (" ^ name ^ "," ^
(Int.toString uid) ^ ")"

| NONE => "No name in cache for " ^ email)

6.7 Memoization

The function memoize adds caching functionality (i.e., memoization) to a function.
Assuming that the function f has type int -> string * real and c is an appro-

4File smlserver_demo/www/web/cache_lookup.sml.

6.8. CACHING VERSION OF CURRENCY SERVICE 53

priately typed cache, the expression memoize c f returns a new function f ′, which
caches the results of evaluating the function f . Subsequent calls to f ′ with the
same argument results in cached pairs of strings and reals, except when a result
no longer lives in the cache, in which case f is evaluated again.

Consider the Fibonacci function with type int -> int:5

fun fib 0 = 1
| fib 1 = 1
| fib n = fib (n-1) + fib (n-2)

To implement a cached version of fib we create a cache (named fib) with
cache type (int,int) cache:

val cache =
Web.Cache.get(Web.Cache.Int, Web.Cache.Int, "fib",

Web.Cache.WhileUsed(SOME(Time.fromSeconds 20),
SOME(10000)))

To implement a memorized version of fib we can do the following:

val fib_m n = (Web.Cache.memoize cache fib) n

However, the function fib_m only caches the result, not the intermediate re-
sults. First evaluating fib_m 1000 and then fib_m 999 will not be different from
evaluating fib 1000 and then fib 999. After evaluating fib_m 1000 the cache
will only contain one entry, which cannot be used when evaluating fib_m 999.

The following implementation does store intermediate results in the cache,
which is also the implementation you find in file cache_fib.sml:

fun fib_m 0 = 1
| fib_m 1 = 1
| fib_m n = fib’ (n-1) fib’ (n-2)

and fib’ n = (Web.Cache.memoize cache fib_m) n

6.8 Caching Version of Currency Service

In this section we demonstrate the memoization function memoize in the context of
the Currency Service of Sections 6.1 and 6.4. Similarly to the Bill Gates Personal
Wealth Clock, our Currency Service should not access Yahoo Finance on each and

5File smlserver_demo/www/web/cache_fib.sml.

54 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

every access. Instead, the currency rates obtained from Yahoo are cached in 300
seconds (five minutes).

Notice the distinction between the cache strategies TimeOut and WhileUsed;
the service should not make use of the cache strategy WhileUsed because rates
must be updated every 300 seconds—irrespectively of whether the service is ac-
cessed every minute. Here is the script currency_cache.sml,6 which implements
the cached version of the Currency Service:

structure C = Web.Cache

val getReal = FormVar.wrapFail FormVar.getRealErr
val getString = FormVar.wrapFail FormVar.getStringErr

val a = getReal ("a", "amount")
val s = getString ("s", "source currency")
val t = getString ("t", "target currency")

val url = "http://se.finance.yahoo.com/m5?s=" ^
Web.encodeUrl s ^ "&t=" ^ Web.encodeUrl t

fun errPage () =
(Page.return "Currency Service Error"
‘The service is currently not available, probably
because we have trouble getting information from
the data source: ^url.‘
; Web.exit())

fun getdate () =
Date.fmt "%Y-%m-%d" (Date.fromTimeLocal (Time.now()))

fun round r = Real.fmt (StringCvt.FIX(SOME 2)) r

val pattern = RegExp.fromString
(".+" ^ s ^ t ^ ".+<td>([0-9]+).([0-9]+)</td>.+")

val cache = C.get (C.String,C.Option C.Real,"currency",
C.TimeOut (SOME(Time.fromSeconds(5*60)),

SOME(10000)))

6File smlserver_demo/www/web/currency_cache.sml.

6.8. CACHING VERSION OF CURRENCY SERVICE 55

val fetch = C.memoize cache
(fn url => case Web.fetchUrl url

of NONE => NONE
| SOME pg =>
(case RegExp.extract pattern pg

of SOME [r1,r2] =>
Real.fromString (r1 ^ "." ^ r2)

| _ => NONE))

val _ =
case fetch url of
NONE => errPage ()

| SOME rate =>
Page.return
("Currency Exchange Service, " ^ getdate())
‘^(Real.toString a) ^s gives ^(round (a*rate)) ^t.<p>
The exchange rate is obtained by fetching<p>
^url<p>
New Calculation‘

The program creates a cache cache that maps strings (base type String) to
optional reals (constructed type Option Real).

The anonymous function passed to the function memoize tries to fetch a page
from Yahoo Finance and extract the currency rate for the currencies encoded in the
argument URL. Now, when passed to the function memoize, the fetching function
is executed only if no currency rate is associated with the argument URL in the
cache named currency. Notice that only currency rates are stored in the cache,
not the entire fetched pages.

56 CHAPTER 6. EXTRACTING DATA FROM FOREIGN WEB SITES

Chapter 7

Connecting to a Relational
Database Management System

Until now, the Web applications that we have looked at have been in the category
of “Web sites that are programs.” In this chapter, we exploit the possibility of
implementing Web applications that fall into the category “Web sites that are
databases.” The ability of a Web application accessing and manipulating informa-
tion stored in some sort of database drastically widens the kind of Web applications
that one can build.

There are many possible ways in which a Web application may keep track of
data between sessions. One possibility is to use the file system on the machine
on which the Web server runs for storing and reading data. Another possibility
is to use some sort of Web server support for maintaining state between sessions
to create and manipulate task-specific data structures. Yet another possibility is
to use some proprietary relational database management system for storing and
accessing data.

What we argue in the following is that, unless you have some very good reasons,
you want data on the server to be maintained exclusively by a Relational Database
Management System (RDBMS), perhaps with the addition of some simple caching
support.

Let us assume for a moment that you have constructed a Web based system
that uses the local file system for storing and accessing data. By request from the
management department, you have constructed a Web based system for managing
employee data such as office location, home addresses, and so on. The system
that you came up with even has a feature that allows an employee to maintain
a “What am I doing now” field. You have spent weeks developing the system.
Much of the time was spent designing the layout of the data file and for writing
functions for parsing and writing employee data. You have tested the system with

57

58 CHAPTER 7. CONNECTING TO AN RDBMS

a few employees added to the data file and you have even been careful using locks to
prevent one Web script from writing into the data file while some other Web script
is reading it, and vice versa. The system is launched and the employees are asked
to update the “What am I doing now” field whenever they go to a meeting or such.
For the three managers and the 20 employees in the management department, the
system works great; after two weeks, the success of your Web based employee
system has spread to other departments in the organization. Gradually, more
departments start using your system, but at some point people start complaining
about slow response times, especially around lunch-time where everyone of the 300
employees that now use the system wants to update the “What am I doing now”
field.

After a few days of complaints, you get the idea that you can read the data
file into an efficient data structure in the Web server’s memory, thereby getting
quicker response and update times, as long as you write log files to disk that say
how the data file should be updated so as to create a valid data file. After a few
more weeks of development—and only a little sleep—the system finally performs
well. You know that there are issues that you have not dealt with. For example,
what happens if somebody shuts down the machine while a log file is written to
disk? Is the system then left in an inconsistent state?

You start realizing that what you have been doing the last month is what some
companies have been doing successfully for decades; you have developed a small
database management system, although tailored specifically to your problem at
hand and very fragile to changes in your program. You decide to modify your
Web application to use a database management system instead of your home-
tailored file-based system. But there are many database management systems to
choose from! The next sections tell you something about what properties you want
from a database management system.

7.1 What to Expect from an RDBMS

Decades of research and development in the area of database management systems
have resulted in easily adaptable systems, which efficiently solve the problem of
serving more than one user at the same time. In some systems, such as the Oracle
RDBMS, readers need not even wait for writers to finish! Here is a list of some of
the features that an RDBMS may provide:

• Methods for query optimizations. An RDBMS supports known methods for
optimizing queries, such as index creation for improving query performance.

• Data abstraction. Through the use of SQL, an RDBMS may help program-
mers abstract from details of data layout.

7.2. THE ACID TEST 59

• Support for simultaneous users. RDBMS vendors have solved the problems
of serving simultaneous users, which make RDBMSs ideal for Web purposes.

• System integration. The use of standardized SQL eases system integration
and inter-system communication.

• Failure recovering. A good RDBMS comes with support for recovering from
system failures and provides methods for backing up data while the system
is running.

7.2 The ACID Test

If you want to sleep well at night while your Web site is serving user requests, you
want your RDBMS of choice to support transactions. Basically, what this means
is that you want your RDBMS to pass the ACID test [Gre99]:

• Atomicity. A transaction is either fully performed or not performed. Ex-
ample: When money is transferred from one bank account to another, then
either both accounts are updated or none of the accounts is updated.

• Consistency. A transaction sends a database from one consistent state to
another consistent state. Transactions that would send the database into an
inconsistent state are not performed. Example: A bank may specify, using
consistency constraints, that for some kinds of bank accounts, the account
balance must be positive. Transaction specifying a transfer or a withdrawal
causing the balance on such an account to be negative are not performed.

• Isolation. A transaction is invisible to other transactions until the transac-
tion is fully performed. Example: If a bank transaction transfers an amount
of money from one account to another account while at the same time an-
other transaction computes the total bank balance, the amount transferred
is counted only once in the bank balance.

• Durability. A complete transaction survives future crashes. Example: When
a customer in a bank has successfully transferred money from one account
to another, a future system crash (such as power failure) has no influence on
the effect of the transaction.

Two RDBMSs that pass the ACID test are the proprietary Oracle RDBMS and
the Open Source RDBMS Postgresql, both of which are supported by SMLserver.

The language used to communicate with the RDBMS is the standardized Struc-
tured Query Language (SQL), although each RDBMS has its own extensions to

60 CHAPTER 7. CONNECTING TO AN RDBMS

the language. SQL is divided into two parts, a Data Definition Language (DDL)
and a Data Manipulation Language (DML).

Although this book is not meant to be an SQL reference, in the next two
sections, we discuss the two parts of the SQL language in turns.

7.3 Data Modeling

The term “data modeling” covers the task of defining data entities (tables) and
relations between entities. The SQL data definition language contains three com-
mands for creating, dropping and altering tables, namely create table, drop
table, and alter table.

create table

The SQL command create table takes as argument a name for the table to
create and information about the table columns in terms of a name and a data
type for each column. The following create table command specifies that the
table employee be created with five columns email, name, passwd, note, and
last_modified.

create table employee (
email varchar(200) primary key not null,
name varchar(200) not null,
passwd varchar(200) not null,
note varchar(2000),
last_modified date

);

There are a variety of column data types to choose from and each RDBMS has its
own extensions to SQL, also in this respect. The column data type varchar(200)
specifies that the column field can contain at most 200 characters, but that shorter
strings use less memory. The column data type date is used for storing dates.

The command also specifies some consistency constraints on the data, namely
that the columns email, name, and passwd must be non-empty—specified using the
not null constraint. The primary key constraint on the email column has two
purposes. First, it specifies that no two rows in the table may have the same email
address. Second, the constraint specifies that the RDBMS should maintain an
index on the email addresses in the table, so as to make lookup of email addresses
in the table efficient.

7.4. DATA MANIPULATION 61

alter table

The alter table command is used to modify already existing tables, even when
data appears in the table. The alter table command takes several forms. The
simplest form makes it possible to drop a column from a table:1

alter table employee drop last_modified;

Here the column last_modified is eliminated from the table. A second form
makes it possible to add a column to a table:

alter table employee add salary integer;

In this example, a column named salary of type integer is added to the employee
table. The update command may be used to initialize the new column as follows:

update employee set salary = 0 where salary = NULL;

drop table

The drop table command is used to remove a table from a database. As an
example, the command

drop table employee;

removes the table employee from the database.

7.4 Data Manipulation

The four most useful SQL data manipulation commands are insert, select,
delete, and update. In this section, we give a brief overview of these commands.

insert

Each insert command corresponds to inserting one row in a table. An example
insert command takes the following form:

insert into employee (name, email, passwd)
values (’Martin Elsman’, ’mael@it.edu’, ’don’’tforget’);

1This form is not supported by the Postgresql 7.2 RDBMS.

62 CHAPTER 7. CONNECTING TO AN RDBMS

There are several things to notice from this insert command. First, values to
insert in the table appears in the order column names are specified in the command.
In this way, the order in which column names appeared when the table was created
has no significance for the insert command. Second, not all columns need be
specified; only those columns for which a not null constraint is specified in the
create table command must be mentioned in the insert command—for the
remaining columns, null values are inserted. Third, string values are written in
quotes (’. . .’). For a quote to appear within a string, the quote is escaped by
using two quotes (’’). Here is another example insert command:

insert into employee (email, name, passwd, note)
values (’nh@it.edu’, ’Niels Hallenberg’, ’hi’, ’meeting’);

select

The select command is used for querying data from tables. Here is an example
querying all data from the employee table:

select * from employee;

The result includes the two rows in the employee table:

email name passwd note
mael@it.edu Martin Elsman don’tforget null
nh@it.edu Niels Hallenberg hi meeting

Notice that only one quote appears in the passwd string “don’tforget”.
The select command allows us to narrow the result both horizontally and

vertically. By explicitly mentioning the columns of interest, only the mentioned
columns appear in the result. Similarly, the select command may be combined
with where clauses, which narrows what rows are included in the result. Consider
the following select command:

select name, passwd
from employee
where email = ’mael@it.edu’;

The result of this query contains only one row with two columns:

name passwd
Martin Elsman don’tforget

7.4. DATA MANIPULATION 63

Because the column email is primary key in the employee table, the RDBMS
maintains an index that makes lookup based on email addresses in the table effi-
cient; thus, the data model we have chosen for employees scales to work well even
for millions of employees.

The select command may be used in many other ways than shown here; in
the sections to follow, we shall see how the select command can be used to select
data from more than one table simultaneously, through what is called a join, and
how the group by clause may be used to compute a summary of the content of a
table.

update

As the name suggests, the update command may be used to update a number
of rows in a table. The following example update command uses a where clause
to update the content of the note column for any employee with email-address
nh@it.edu—of which there can be at most one, because email is a key:

update employee
set note = ’back in office’
where email = ’nh@it.edu’;

Here is an example that updates more than one column at the same time:

update employee
set note = ’going to lunch’,

passwd = ’back’
where email = ’mael@it.edu’;

After the two update commands, the employee table looks as follows:

email name passwd note
mael@it.edu Martin Elsman back going to lunch
nh@it.edu Niels Hallenberg hi back in office

delete

The delete command is used to delete rows from a table. As for the select
and update command, one must be careful to constrain the rows that are effected
using where clauses. An example delete command that deletes one row in the
employee table looks as follows:

delete from table employee
where email = ’mael@it.edu’;

64 CHAPTER 7. CONNECTING TO AN RDBMS

7.5 Three Steps to Success

When developing Web sites backed by a database, we shall often commit to the
following three steps:

1. Development of a data model that supports all necessary transactions. This
is the hard part.

2. Design of a Web site diagram that specifies names of scripts and how scripts
link to each other. Do not underestimate the importance of this part.

3. Implementation of scripts, including the implementation of database trans-
actions using the SQL data manipulation language. This is the easy part!

We emphasize that the easy part of developing a Web site backed by a database
is the third part, the implementation of scripts for supporting the appropriate
transactions. Not surprisingly, the more time spent on the first two parts, the
better are the chances for a satisfactory result.

In general, the construction of a data model results in the creation of a file
containing SQL data definition language commands for defining tables and perhaps
data manipulation commands for inserting initial data in the tables.

The construction of a data model for the employee example results in a file
employee.sql2 containing only a few data definition language commands and two
insert commands for inserting example data in the table:

drop table employee;
create table employee (
email varchar(200) primary key not null,
name varchar(200) not null,
passwd varchar(200) not null,
note varchar(2000),
last_modified date

);
insert into employee (name, email, passwd)
values (’Martin Elsman’, ’mael@it.edu’, ’don’’tforget’);

insert into employee (email, name, passwd, note)
values (’nh@it.edu’, ’Niels Hallenberg’, ’hi’, ’meeting’);

Notice that the employee.sql file contains a drop table command; this command
turns out to be useful when the employee.sql file is reloaded upon changes in the
data model.

2File smlserver_demo/web_demo_lib/pgsql/employee.sql.

7.5. THREE STEPS TO SUCCESS 65

Gomael@it.eduEmail:

New search?

Go

Note:

Passwd:

lunch

search.smlindex.html

Search Employee Found: Martin Elsman

update.sml

Figure 7.1: Web site diagram for the employee example. Administrator pages for
adding and deleting employees are not shown.

To load the data model in a running Postgresql RDBMS, run the program
psql with the file employee.sql as argument:

% psql -f employee.sql
DROP
psql:employee.sql:9: \

NOTICE: CREATE TABLE/PRIMARY KEY will create implicit \
index ’employee_pkey’ for table ’employee’

CREATE
INSERT 167792 1
INSERT 167793 1

For larger data models, it is important to give the data model more thought,
perhaps by constructing an Entity-Relation diagram (E-R diagram) for the model;
we shall see an example of such an E-R diagram in Section 7.7.

A simple Web site diagram for the employee example is shown in Figure 7.1.
The boxes in the diagram represents the different HTML pages that the employee
Web application may send to the user. An edge in the diagram represents either
a link or a form action. A labeled edge represents an update transaction on the
database.

The entry page to the employee example may be implemented as a simple
HTML form with action search.sml:3

<html>
<head><title>Search the Employee Database</title></head>
<body bgcolor=white>

<center> <h2>Search the Employee Database</h2> <p>

3File smlserver_demo/www/web/employee/index.sml.

66 CHAPTER 7. CONNECTING TO AN RDBMS

<form action=search.sml method=post>
Email: <input type=text name=email>
<input type=submit value=Search>

</form>
</center>

</body>
</html>

Because the result of submitting the form is dependant on the content of the
employee table, HTML code for the result page must be computed dynamically,
which is what the file search.sml does (see the next section). Moreover, if a user
with a valid password chooses to update the note for a given user, we arrange for
the employee table to be updated by executing an SQL update command from
within the update.sml script. When the transaction is finished executing, the
script sends an HTTP redirect to the client, saying that the client browser should
request the file search.sml.

7.6 Transactions as Web Scripts

SMLserver scripts may access and manipulate data in an RDBMS through the use
of a structure that matches the WEB_DB signature.4 Because SMLserver supports
the Oracle RDBMS, the Postgresql RDBMS, and MySQL, there are three struc-
tures in the Web structure that matches the WEB_DB signature, namely Web.DbOra,
Web.DbPg, and Web.DbMySQL. The example Web server project file includes a file
Db.sml, which binds a top-level structure Db to the structure Web.DbPg; thus,
in what follows, we shall use the structure Db to access the Postgresql RDBMS.
Figure 7.2 lists the part of the RDBMS interface that we use in the following.

To access or manipulate data in an RDBMS, SMLserver scripts need not explic-
itly open a connection to the RDBMS. Instead, the opening of connections is done
at the time the Web server (i.e., Apache) is started, which avoids the overhead of
opening connections every time a script is executed.

A database handle identifies a connection to an RDBMS and a pool is a set
of database handles. When the Web server is started, one or more pools are
created. At any particular time, a database handle is owned by at most one
script. Moreover, the database handles owned by a script at any one time belong
to different pools. The functions shown in Figure 7.2 request database handles
from the initialized pools and release the database handles again in such a way
that deadlocks are avoided; a simple form of deadlock is caused by one thread
holding on to a resource A when attempting to gain access to a resource B, while

4See the file smlserver_demo/web_demo_lib/WEB_DB.sml.

7.6. TRANSACTIONS AS WEB SCRIPTS 67

signature WEB_DB =
sig
val dml : quot -> unit
val fold : ((string->string)*’a->’a) -> ’a -> quot -> ’a

val oneField : quot -> string
val oneRow : quot -> string list
val zeroOrOneRow : quot -> string list option

val seqNextvalExp : string -> string
val qq : string -> string
val qqq : string -> string
...

end

Figure 7.2: Parts of the WEB_DB signature.

another thread holds on to resource B when attempting to gain access to resource
A.

The WEB_DB function dml with type quot->unit is used to execute a data ma-
nipulation language command, specified with the argument string, in the RDBMS.
On error, the function raises the exception General.Fail(msg), where msg holds
an error message. Data manipulation language commands that may be invoked
using the dml function include the insert and update statements.

The four functions fold, oneField, oneRow, and zeroOrOneRow may be used
to access data in the database. In all cases a select statement is passed as an
argument to the function. The function fold requires some explanation. An
application fold f b sql executes the SQL statement given by the quotation sql
and folds over the result set. The function f is the function used in the folding
with base b. The first argument to f is a function that maps column names into
values for the row. The function raises the exception General.Fail(msg), where
msg is an error message, on error. See the script wine.sml listed on page 75 for
an example that uses the fold function.

Because the number of database handles owned by a script at any one time
is limited to the number of initialized pools, nesting of other database access
functions with the fold function is limited by the number of initialized pools.

The function qq, which has type string->string, returns the argument string
in which every occurrence of a quote (’) is replaced with a double occurrence (’’).

68 CHAPTER 7. CONNECTING TO AN RDBMS

Thus, the result of evaluating qq("don’tforget") is the string "don’’tforget".
The function qqq is similar to the qq function with the extra functionality that
the result is encapsulated in quotes (’...’).

The script search.sml, which implements the employee search functionality,
looks as follows:5

fun returnPage title body = Web.return
(‘<html>
<head><title>^title</title></head>
<body bgcolor=white>
<center><h2>^title</h2><p>‘ ^^ body ^^
‘</center>

</body>
</html>‘)

val email = FormVar.wrapFail
FormVar.getStringErr ("email","email")

val sql = ‘select name, note
from employee
where email = ^(Db.qqq email)‘

val _ =
case Db.zeroOrOneRow sql of
SOME [name, note] =>
returnPage "Employee Search Success"
‘<form action=update.sml method=post>

<input type=hidden name=email value="^email">
<table align=center border=2>

<tr><th>Name:</th>
<td>^name</td></tr>

<tr><th>Email:</th>
<td>^email</td></tr>

<tr><th>Note:</th>
<td><input name=note type=text value="^note">
</td></tr>

<tr><th>Password:</th>
<td><input name=passwd type=password>

<input type=submit value="Change Note">

5File smlserver_demo/www/web/employee/search.sml.

7.6. TRANSACTIONS AS WEB SCRIPTS 69

Figure 7.3: The result of searching for an employee with email nh@it.edu

</td></tr>
</table>

</form><p>
Try a new search?‘

| _ =>
returnPage "Employee Search Failure"
‘Use the back-button in your Web browser
to go back and enter another email address‘

The expression FormVar.wrapFail FormVar.getStringErr (var,name) returns
an error page to the user in case form variable var is not available or in case
it contains the empty string. The argument name is used for error reporting.
Searching for an employee with email nh@it.edu results in the Web page shown
in Figure 7.3. The script update.sml looks as follows:6

val getString = FormVar.wrapFail FormVar.getStringErr

val email = getString ("email","email")
val passwd = getString ("passwd","passwd")
val note = getString ("note", "note")

6File smlserver_demo/www/web/employee/update.sml.

70 CHAPTER 7. CONNECTING TO AN RDBMS

val update = ‘update employee
set note = ^(Db.qqq note)
where email = ^(Db.qqq email)
and passwd = ^(Db.qqq passwd)‘

val _ =
(Db.dml update;
Web.returnRedirect ("search.sml?email="

^ Web.encodeUrl email))
handle _ =>
Page.return "Employee Database" ‘Update failed‘

The function Web.returnRedirect returns a redirect, which causes the browser
to request the script search.sml from the server. The email address is sent along
to the search.sml script as a form variable. The value is URL encoded to support
characters other than letters and digits in the email address.

7.7 Best Wines Web Site

We now present a somewhat larger example. The example constitutes a wine
rating Web site, which we call Best Wines. The Best Wines Web site allows users
to rate and comment on wines and to see the average rating for a wine in addition
to other user’s comments.

Recall the three steps to the successful construction of a Web site backed by a
database:

1. Development of a data model that supports all necessary transactions

2. Design of a Web site diagram that specifies names of scripts and how scripts
link

3. Implementation of scripts, including the implementation of database trans-
actions using the SQL data manipulation language

The next three sections cover these steps for the Best Wines Web site.

Data Model and Transactions

The data modeling process attempts to answer questions that focus on application
data. What are the primary data objects that are processed by the system? What

7.7. BEST WINES WEB SITE 71

name
year comments fullname

email

rating

ratingwine

Figure 7.4: E-R diagram for the Best Wine Web site. The fork in the diagram
specifies that the relation between the wine-entity and the rating-entity is a one-
to-many relation; to every one wine there may be many ratings.

attributes describe each object? What are the relationships between objects?
What are the processes that access and manipulate objects?

As the first part of developing a data model for the Best Wines Web site, we
construct an Entity-Relationship diagram (E-R diagram) for the Web site, which
leads to the construction of SQL data modeling commands for the data model. The
second part of the data modeling process focuses on developing the appropriate
transactions for accessing and manipulate data.

An entity-relationship diagram is composed of three types of components:

1. Entities, which are drawn as rectangular boxes

2. Attributes, which are drawn as ellipses

3. Relationships, which connects entities

When an E-R diagram is constructed for a Web site, it is a straightforward task to
develop the corresponding SQL data modeling commands. In fact, entities in the
E-R diagram map directly to table names and attributes map to column names in
the associated tables. Before we say what relationships map to, consider the E-R
diagram for the Best Wine Web site in Figure 7.4.

The E-R diagram contains two entities, wine and rating. Attributes asso-
ciated with the wine entity include a name and a year (vintage) for the wine.
Attributes associated with the rating entity include a user’s comments, the user’s
fullname and email, and a rating. Notice that the diagram does not say any-
thing about the data types for the attributes.

The relationship between the entities wine and rating is a one-to-many re-
lationship, that is, to every one wine there may be many ratings. This type of
relationship is pictured in the diagram as a fork. In general, there are other types

72 CHAPTER 7. CONNECTING TO AN RDBMS

of relationships besides one-to-many relationships, including one-to-one relation-
ships and many-to-many relationships. Before an E-R diagram can be mapped
to SQL data modeling commands, many-to-many relationships are broken up by
introducing intermediate entities.

SQL data modeling commands corresponding to the E-R diagram in Figure 7.4
look as follows:7

create sequence wid_sequence;
create table wine (

wid integer primary key,
name varchar(100) not null,
year integer,
check (1 <= year and year <= 3000),
unique (name, year)

);
create table rating (

wid integer references wine,
comments varchar(1000),
fullname varchar(100),
email varchar(100),
rating integer,
check (0 <= rating and rating <= 6)

);

The first command creates an SQL sequence, with name wid_sequence, which we
shall use to create fresh identifiers for identifying wines.

The two entities wine and rating are transformed into create table com-
mands with columns corresponding to attributes in Figure 7.4. Data types for the
columns are chosen appropriately. The relationship between the two tables is en-
coded by introducing an additional column wid (with data type integer) in each
table. Whereas the column wid in the wine table is declared to be primary (i.e.,
no two rows have the same wid value and an index is constructed for the table,
making lookup based on the wid value efficient), a referential integrity constraint
on the wid column in the rating table, ensures that a row in the rating table
is at all times associated with a row in the wine table. Additional consistency
constraints guarantee the following properties:

• The year column is an integer between one and 3000

• No two rows in the wine table is associated with the same name and the
same year

7File smlserver_demo/web_demo_lib/pgsql/rating.sql.

7.7. BEST WINES WEB SITE 73

• A rating in the rating table is an integer between zero and six

A list of possible transactions and associated SQL data-manipulation com-
mands are given here:

Wine insertion:

insert into wine (wid, name, year)
values (1, ’Margaux - Chateau de Lamouroux’, 1988);

Rating insertion:

insert into rating
(wid, fullname, email, comments, rating)

values
(1, ’Martin Elsman’, ’mael@it.edu’, ’Great wine’, 5);

Wine comments:

select comments, fullname, email, rating
from rating where wid = 1;

Wine index:

select wine.wid, name, year,
avg(rating) as average, count(*) as ratings

from wine, rating
where wine.wid = rating.wid
group by wine.wid, name, year
order by average desc, name, year;

The difficult transaction is the wine index transaction, which is used in the
construction of the main page of the Best Wine Web site (see Figure 7.8). The
select command computes the average ratings for each wine in the wine table.
The transaction makes use of the group by feature of the select command to
group rows with the same wid, name, and year columns. For each of the resulting
rows, the average rating for the grouped rows is computed as well as the number
of rows that are grouped in each group.

Web Site Diagram

A Web site diagram for the Best Wines Web site is shown in Figure 7.5. The Web
site is made up of four scripts, three of which construct pages that are returned

74 CHAPTER 7. CONNECTING TO AN RDBMS

rate it
rate it

go

go

Best Wines

Pomerol *****
Margaux ****

Comment:

Name:
Email:
Rating:

add.sml

Rate new:

Back to Best Wines

Pomerol, 1997
M. Elsman ***** Great
Hallenberg **** Good

index.sml

wine.sml

add0.sml

Figure 7.5: Web site diagram for the Best Wine Web site.

to users. The fourth script add0.sml implements the rating-insert transaction for
inserting a rating in the rating table.

The next section describes the implementation of each of the SMLserver scripts.

Implementation of SMLserver Scripts

The scripts index.sml, wine.sml, add.sml, and add0.sml make use of function-
ality provided in a structure RatingUtil. We shall not present the structure
RatingUtil here, but only show its signature:8

signature RATING_UTIL =
sig
(* [returnPage title body] returns page to browser. *)
val returnPage : string -> string frag list -> unit

(* [returnPageWithTitle title body] returns page
* to browser with title as h1-header. *)
val returnPageWithTitle :
string -> string frag list -> unit

(* [bottleImgs n] returns html code for

8File smlserver_demo/web_demo_lib/RatingUtil.sml.

7.7. BEST WINES WEB SITE 75

* n bottle images. *)
val bottleImgs : int -> string

(* [mailto email name] returns mailto anchor. *)
val mailto : string -> string -> string

end

The SMLserver scripts also make use of the structure FormVar presented in Chap-
ter 8.

The script wine.sml

The script wine.sml lists user comments for a specific wine. The script assumes a
form variable wid that denotes the wine. The script uses the Db.fold function (see
page 67) to construct a page with the comments associated with the specific wine.
The page is returned to the user using the RatingUtil.returnPageWithTitle
function. Here is the listing of the script wine.sml:9

(* Present comments and ratings for a specific wine *)
val wid = FormVar.wrapFail FormVar.getNatErr
("wid","internal number")

val query =
‘select comments, fullname, email, rating
from rating
where wid = ^(Int.toString wid)‘

val lines = Db.fold
(fn (g,r) =>
let val rating =

case Int.fromString (g "rating") of
SOME i => i

| NONE => raise Fail "Rating not integer"
in
‘<tr><th> ^(RatingUtil.bottleImgs rating)
<td> ^(g "comments")
<td> ^(RatingUtil.mailto (g "email") (g "fullname"))‘

end ^^ r) ‘‘ query

val body =

9File smlserver_demo/www/web/rating/wine.sml.

76 CHAPTER 7. CONNECTING TO AN RDBMS

Figure 7.6: The Best Wines comment page.

‘<table width=95% bgcolor="#dddddd" border=1>
<tr><th>Rating<th>Comment<th>Rater‘ ^^ lines ^^

‘</table>
<p>Back to Best Wines‘

val name = Db.oneField
‘select name from wine
where wid = ^(Int.toString wid)‘

val _ = RatingUtil.returnPageWithTitle
("Ratings - " ^ name) body

The result of a user requesting the script wine.sml with the form variable wid set
to 1 is shown in Figure 7.6. The function RatingUtil.mailto is used to present
the name of the raters as mailto-anchors.

The script add.sml

The script add.sml assumes either (1) the presence of a form variable wid or (2)
the presence of form variables name and year. In case of (1), the name and year of

7.7. BEST WINES WEB SITE 77

the wine are obtained using simple select commands. In case of (2), it is checked,
also using a select command, whether a wine with the given name and year is
present in the wine table already; if not, a new wine is inserted in the wine table.
Thus, before a rating form is returned to the user, the wine to be rated will be
present in the wine table. Here is the listing of the script add.sml:10

structure FV = FormVar
val (wid, name, year) =
case FV.wrapOpt FV.getNatErr "wid" of
SOME wid => (* get name and year *)
let val wid = Int.toString wid

val query =
‘select name, year from wine
where wid = ^wid‘

in case Db.oneRow query of
[name,year] => (wid, name, year)

| _ => raise Fail "add.sml"
end

| NONE =>
let val name = FV.wrapFail

FV.getStringErr ("name","name of wine")
val year = FV.wrapFail
(FV.getIntRangeErr 1 3000)
("year", "year of wine")

val year = Int.toString year
val query = ‘select wid from wine

where name = ^(Db.qqq name)
and year = ^(Db.qqq year)‘

in
case Db.zeroOrOneRow query of
SOME [wid] => (wid, name, year)

| _ => (* get fresh wid from RDBMS *)
let val wid = Int.toString

(Db.seqNextval "wid_sequence")
val _ = Db.dml
‘insert into wine (wid, name, year)
values (^wid,

^(Db.qqq name),
^(Db.qqq year))‘

10File smlserver_demo/www/web/rating/add.sml.

78 CHAPTER 7. CONNECTING TO AN RDBMS

in (wid, name, year)
end

end

(* return forms to the user... *)
val _ =
RatingUtil.returnPageWithTitle
("Your comments to ‘‘" ^ name ^ " - year " ^ year ^ "’’")
‘<form action=add0.sml>
<input type=hidden name=wid value=^wid>
<textarea rows=5 cols=40 name=comment></textarea>

Email:
<input type=text name=email size=30>

Name:
<input type=text name=fullname size=30>

Rate (between 0 and 6):
<input type=text name=rating size=2>
<input type=submit value="Rate it">
<p>Back to Best Wines
</form>‘

A rating form for the wine “Margaux - Chateau de Lamouroux” is shown in Fig-
ure 7.7.

The script add0.sml

The script add0.sml implements the rating-insert transaction. Here is the listing
of the script:11

structure FV = FormVar
val comment = FV.wrapFail FV.getStringErr
("comment", "comment")

val fullname = FV.wrapFail FV.getStringErr
("fullname", "fullname")

val email = FV.wrapFail FV.getStringErr
("email", "email")

val wid = Int.toString(FV.wrapFail FV.getNatErr
("wid","internal number"))

val rating =
Int.toString(FV.wrapFail (FV.getIntRangeErr 0 6)

11File smlserver_demo/www/web/rating/add0.sml.

7.7. BEST WINES WEB SITE 79

Figure 7.7: The wine rating form. Users are asked to provide ratings between 0
and 6.

80 CHAPTER 7. CONNECTING TO AN RDBMS

("rating","rating"))

val _ = Db.dml
‘insert into rating (wid, comments, fullname,

email, rating)
values (^wid, ^(Db.qqq comment), ^(Db.qqq fullname),

^(Db.qqq email), ^rating)‘

val _ = Web.returnRedirect "index.sml"

The form variable functions provided in the FormVar structure are used to return
error messages to the user in case a form variable is not present in the request or
in case its content is ill-formed.

The function Web.returnRedirect is used to redirect the user to the Best
Wines main page after the insert transaction is executed.

The script index.sml

The script index.sml implements the Best Wines main page. It presents the
rated wines, listing the wine with the highest average rate first. Here is the script
index.sml:12

(* the complex query that calculates the scores *)
val query =
‘select wine.wid, name, year,

avg(rating) as average,
count(*) as ratings

from wine, rating
where wine.wid = rating.wid
group by wine.wid, name, year
order by average desc, name, year‘

fun formatRow (g, acc) =
let val avg = g "average"

val avgInt =
case Int.fromString avg of
SOME i => i

| NONE => case Real.fromString avg of
SOME r => floor r

| NONE => raise Fail "Error in formatRow"

12File smlserver_demo/www/web/rating/index.sml.

7.7. BEST WINES WEB SITE 81

val wid = g "wid"
in acc ^^
‘<tr><td>^(g "name")

(year ^(g "year"))
<th> ^(RatingUtil.bottleImgs avgInt)
<td align=center>^(g "ratings")
<td>rate it</tr>‘

end

val _ = RatingUtil.returnPageWithTitle "Best Wines"
(‘<table width=95% bgcolor="#dddddd" border=1>
<tr><th>Wine<th>Average Score (out of 6)

<th>Ratings<th> ‘ ^^
(Db.fold formatRow ‘‘ query) ^^
‘</table>
<form action=add.sml>
<h2>Rate new wine - type its name and year</h2>
Name:<input type=text name=name size=30>
Year:<input type=text name=year size=4>
<input type=submit value="Rate it...">
</form>‘)

The implementation uses the function RatingUtil.bottleImgs to generate HTML
code for showing a number of bottle images. The result of presenting the Best
Wines main page to a user is shown in Figure 7.8.

82 CHAPTER 7. CONNECTING TO AN RDBMS

Figure 7.8: The main page for the Best Wine Web site.

Chapter 8

Checking Form Variables

Checking form variables is an important part of implementing a secure and stable
Web site, but it is often a tedious job, because the same kind of code is written in
all scripts that verify form variables. The FormVar module, which we present in
this chapter, overcomes the tedious part by defining several functions, which may
be used to test form variables consistently throughout a large system.

8.1 The Structure FormVar

The idea is to define a set of functions corresponding to each type of value used in
forms. Each function is defined to access values contained in form variables of the
particular type. For instance, a function is defined for accessing all possible email
addresses in a form variable. In case the given form variable does not contain a
valid email address, errors are accumulated and may be presented to the user when
all form variables have been checked. To deal with error accumulation properly,
each function takes three arguments:

1. The name of the form-variable holding the value

2. The name of the field in the form; the user may be presented with an error
page with more than one error and it is important that the error message
refers to a particular field in the form

3. An accumulator of type errs, used to hold the error messages sent back to
the user

The functions are named FormVar.getTErr, where T ranges over possible form
types. In each script, when all form variables have been checked using calls to
particular FormVar.getTErr functions, a call to a function FormVar.anyErrors

83

84 CHAPTER 8. CHECKING FORM VARIABLES

structure FormVar :
sig
exception FormVar of string
type errs
type ’a formvar_fn = string * string * errs -> ’a * errs

val emptyErr : errs
val addErr : Quot.quot * errs -> errs
val anyErrors : errs -> unit

val getIntErr : int formvar_fn
val getNatErr : int formvar_fn
val getRealErr : real formvar_fn
val getStringErr : string formvar_fn
val getIntRangeErr : int -> int -> int formvar_fn
val getEmailErr : string formvar_fn
val getUrlErr : string formvar_fn
val getEnumErr : string list -> string formvar_fn

val wrapOpt : ’a formvar_fn -> (string -> ’a option)
val wrapExn : ’a formvar_fn -> (string -> ’a)
val wrapFail : ’a formvar_fn -> (string * string -> ’a)
...

end

Figure 8.1: The signature of the FormVar structure (excerpt).

returns an error page if any errors occurred and otherwise proceeds with the re-
mainder of the script. If an error page is returned, the script is terminated.

An excerpt of the FormVar interface1 is given in Figure 8.1. The type formvar_fn
represents the type of functions used to check form variables. For instance, the
function getIntErr has type int formvar_fn, which is identical to the type

string * string * errs -> int * errs

If it is not desirable to return an error page, the programmer may use one of the
following wrapper functions to obtain appropriate behavior:

1File smlserver_demo/web_demo_lib/FormVar.sml.

8.2. PRESENTING MULTIPLE FORM ERRORS 85

Wrapper function Description
FormVar.wrapOpt Returns SOME(v) on success, where v is the form

value; returns NONE, otherwise
FormVar.wrapExn Raises exception FormVar on error
FormVar.wrapFail On failure, a page is returned. The differ-

ence from the getTErr functions is that with
wrapFail only one error is presented to the user

Many of the examples in this document make use of the FormVar wrapper functions
in combination with the getTErr functions. The Currency Service described in
Section 6.8 on page 53 is a good example.

8.2 Presenting Multiple Form Errors

We now turn to an example that uses the multi-error functionality of the FormVar
structure. The example constitutes a simple email service built from two scripts,
one that presents a form to the user (mail_form.sml) and one that sends an email
constructed on the basis of the form content contributed by the user (mail.sml).
The script mail_form.sml looks as follows:2

Page.return "Send an email"
‘<form action=mail.sml method=post>
<table>
<tr><th align=left>To:</th><td align=right>
<input type=text name=to></td></tr>

<tr><th align=left>From:</th><td align=right>
<input type=text name=from></td></tr>

<tr><th align=left>Subject:</th><td align=right>
<input type=text name=subject></td></tr>

<tr><td colspan=2><textarea name=body cols=40
rows=10>Fill in...</textarea></td></tr>

<tr><td colspan=2 align=center>
<input type=submit value="Send Email"></td></tr>

</table>
</form>‘

The action of the form is the script mail.sml. When the user presses the “Send
Email” submit button, the script mail.sml is executed with the form variables
to, from, subject, and body set to the values contributed by the user. Here is
the script mail.sml:3

2File smlserver_demo/www/web/mail_form.sml.
3File smlserver_demo/www/web/mail.sml.

86 CHAPTER 8. CHECKING FORM VARIABLES

structure FV = FormVar

val (to,errs) = FV.getEmailErr ("to", "To", FV.emptyErr)
val (from,errs) = FV.getEmailErr ("from", "From", errs)
val (subj,errs) = FV.getStringErr ("subject", "Subject", errs)
val (body,errs) = FV.getStringErr ("body", "Body", errs)
val () = FV.anyErrors errs

val _ = Web.Mail.send {to=to, from=from,
subject=subj, body=body}

val _ = Page.return "Email has been sent"
‘Email with subject "^subject" has been sent to ^to.<p>
Send another?‘

Notice the use of the function anyErrors from the FormVar structure; if there
are no errors in the form data, execution proceeds by sending an email using the
Web.Mail.send function and a message saying that the email has been sent is
presented to the user with the Page.return function. Otherwise, if one or more
errors were found analyzing the form data, an error page is presented to the user;
the result of a user submitting the mail form with an invalid “From” field and an
empty “Subject” field is shown in Figure 8.2.

For another example of using the multi-error functionality of the FormVar struc-
ture, see the file smlserver_demo/www/web/formvar_chk.sml.

8.3 Implementation

The FormVar structure is based on the function Web.Conn.formvar, which provides
a more primitive way of accessing form variables submitted with a request. The
function Web.Conn.formvar has type string->string option and returns the
query data associated with the connection and the argument key, if available.4

In addition to the use of the Web.Conn.formvar function, the implementation
of the FormVar structure also makes use of regular expressions (see Section 6.2).

4A function Web.Conn.formvarAll with type string->string list makes it possible to access
all values bound to a particular form variable.

8.3. IMPLEMENTATION 87

Figure 8.2: When a user submits the email form with invalid entries, such as an
invalid email address and an empty subject field, the user is presented with an
error page that summarizes all errors.

88 CHAPTER 8. CHECKING FORM VARIABLES

Chapter 9

Authentication

Dynamic Web sites often make use of an authentication mechanism that provides
some form of weak identification of users. The traditional authentication mecha-
nism allows users of a Web site to login to the Web site, by providing an email
address (or some user name) and a password. There are several reasons for adding
an authentication mechanism to a Web site:

• Access restriction. If some information is available to only some users, a
mechanism is necessary to hide the restricted information from unprivileged
users.

• User contributions. If users are allowed to contribute content on the Web
site, it must be possible for the system to (weakly) identify the user so as to
avoid spam content. Also, the user that contributes with the content, and
only that user, should perhaps be allowed to modify or delete the contributed
content.

• Personalization. Different users of a Web site have different needs and differ-
ent preferences concerning page layout, and so on. By adding personalization
to a Web site, there is a chance of satisfying more users.

• User tracking. A particular user’s history on a Web site may be of great
value, perhaps for an administrator to see what content the user has seen
when answering questions asked by the user. For an in-depth discussion
about what a user tracking system may be used for, consult [Gre99].

• User transactions. If the Web site is an e-commerce site, for instance, a secure
authentication mechanism, perhaps based on SSL (Secure Socket Layer), is
necessary to allow a user to perform certain transactions.

89

90 CHAPTER 9. AUTHENTICATION

In this chapter we present a simple authentication mechanism, based on cookies
(see the next section) and on a user table stored in a database. The authentication
mechanism makes it possible for users to have a machine-generated password sent
by email. Hereafter, users may login to the Web site using their email address
and the newly obtained password. The authentication mechanism also provides
functionality for users to logout, but the main feature of the authentication mecha-
nism is a simple programmer’s interface for checking whether a user is logged in or
not. It is straightforward to add more sophisticated features to the authentication
mechanism, such as a permission system for controlling which users may do what.

9.1 Feeding Cookies to Clients

Cookies provide a general mechanism for a Web service to store and retrieve per-
sistent information on the client side of a connection. In response to an HTTP re-
quest, a server may include a number of cookies in the header part of the response.
The cookies are installed on the client (e.g., Netscape and Internet Explorer) and
are automatically sent back to the Web server in later requests to the Web service.

Although a client sends a cookie back only to the Web service that issues the
cookie, one cannot count on cookies to be a secure mechanism for transferring data
between a Web service and its clients. As is the case with form data, cookies are
transmitted in clear text, unless some encryption mechanism, such as SSL (Secure
Socket Layer), is used. There are other problems with cookies. Because they
are often stored locally on client computers, other users that have access to the
computer may have access to the cookie information (Windows 98). Also, most
client Web browsers support only a limited number of cookies, so if a Web service
sends a cookie to a browser, then it is uncertain for how long time the cookie
remains on the client.

Despite the problems with cookies, it is difficult to build a useful authentication
mechanism without the use of cookies. In particular, authentication mechanisms
entirely based on form variables require a user to login to the Web site whenever
the user visits the site. Also of importance is that authentication mechanisms
entirely based on form variables require more tedious programming than when
cookies are used, because authentication information is required on all links and
form actions.

SMLserver implements the following Cookie interface:

structure Cookie :
sig
exception CookieError of string
type cookiedata = {name : string,

9.1. FEEDING COOKIES TO CLIENTS 91

value : string,
expiry : Date.date option,
domain : string option,
path : string option,
secure : bool}

val allCookies : unit -> (string * string) list
val getCookie : string -> (string * string) option
val getCookieValue : string -> string option

val setCookie : cookiedata -> unit
val setCookies : cookiedata list -> unit
val deleteCookie : {name : string, path : string option}

-> string
end

The function setCookie request the cookie to be included in the header part of
the HTTP response (instructing the client to store the cookie). The function
takes as argument a record with cookie attributes. The name and value attributes
are mandatory strings, which are URL encoded so that it is possible to include
characters other than letters and digits in the strings. The function raises the
exception CookieError if the name or value attribute contains the empty string.
The function setCookies generalizes the setCookie function by taking a list of
cookies as argument.

The expiry attribute is a date that defines the life time of the cookie. The
cookie is removed from the browser when the expiration date is reached.1 The
life time of a cookie with no expiry attribute is the user’s session only. A cookie
may be removed from a client by specifying an expiration date in the past (or by
using the function deleteCookie). To generate an expiration date that lasts in
60 seconds from the present time, the following Standard ML code may be used:

let open Time
in Date.fromTimeUniv(now() + fromSeconds 60)
end

Notice that the symbolic identifier + in the expression above refers to the identifier
Time.+, which has type Time.time * Time.time -> Time.time.

1The date string format used in cookies is of the form Wdy, DD-Mon-YYYY HH:MM:SS GMT.

92 CHAPTER 9. AUTHENTICATION

9.2 Obtaining Cookies from Clients

When a user requests a URL, the user’s browser searches for cookies to include
in the request. The cookie’s domain attribute is compared against the Internet
domain name of the host being requested. The cookie is included in the request if
there is a tail match and a path match according the the definitions below.

A tail match occurs if the cookie’s domain attribute matches the tail of the fully
qualified domain name of the requested host. So for instance, a domain attribute
“it.edu” matches the host names “www.it.edu” and “adm.it.edu”. Only hosts
within the specified domain may set a cookie for a domain and domains must have
at least two periods (.) in them to prevent matching domains of the form “.com”
and “.edu”. The default value of the domain attribute is the host name of the
server that generates the cookie.

A path match occurs if the pathname component of the requested URL matches
the path attribute of the cookie. For example, there is a path match if the path-
name component of the requested URL is /foo/bar.html and the cookie’s path
attribute is /foo. There is no path match if the pathname component of the re-
quested URL is index.html and the cookie’s path attribute is /foo. The default
path attribute is the pathname component of the document being described by
the header containing the cookie.

A cookie containing the secure attribute is transmitted on secure channels
only (e.g., HTTPS requests using SSL). Without the secure attribute, the cookie
is sent in clear text on insecure channels (e.g., HTTP requests).

The functions allCookies, getCookie, and getCookieValue may be used to
access cookies and their values. The cookie name and value are URL decoded by
the functions.

If SMLserver fails to read the cookies transmitted from a browser, the exception
CookieError is raised. This error indicates an error on the browser side.

9.3 Cookie Example

To demonstrate the cookie interface, we present a simple cookie example consisting
of three scripts cookie.sml, cookie_set.sml, and cookie_delete.sml.

The entry page is implemented by the cookie.sml script. It shows all cookies
received in the header of the request and displays two forms; one for adding cookies
and one for removing cookies. Figure 9.1 shows the result of a user requesting the
file cookie.sml.

The code for listing all cookies uses the function Web.Cookie.allCookies:

val cookies =

9.3. COOKIE EXAMPLE 93

Figure 9.1: The result of a user requesting the file cookie.sml with two cookies
foo1 and foo2.

94 CHAPTER 9. AUTHENTICATION

foldl (fn ((n,v),a) => ‘ ^n : ^v ‘ ^^ a)
‘‘ (Web.Cookie.allCookies())

Notice that the use of quotations in the application of foldl ensures that the
HTML list is built efficiently, without the use of string concatenation.

The action of the “Set Cookie” form is the script cookie_set.sml, which re-
turns a redirect to the cookie.sml script, with a cookie included in the response
header. The redirect is implemented using the function Web.Conn.returnRedirectWithCode:2

structure FV = FormVar

val cv = case FV.wrapOpt FV.getStringErr "cookie_value"
of NONE => "No Cookie Value Specified"
| SOME cv => cv

val cn = case FV.wrapOpt FV.getStringErr "cookie_name"
of NONE => "CookieName"
| SOME cn => cn

val clt = case FV.wrapOpt FV.getIntErr "cookie_lt"
of NONE => 60
| SOME clt => clt

val cs = case FV.wrapOpt FV.getStringErr "cookie_secure"
of SOME "Yes" => true
| _ => false

val expiry = let open Time Date
in fromTimeUniv(now() + fromSeconds clt)
end

val cookie = Web.Cookie.setCookie
{name=cn, value=cv, expiry=SOME expiry,
domain=NONE, path=SOME "/", secure=cs}

val _ = Web.Conn.returnRedirectWithCode(302, "cookie.sml")

The variables cn, cv, cs, and clt contain the form values received from the first
entry form in the page returned by the cookie.sml script.

The action of the “Delete Cookie” form is the script cookie_delete.sml:3

2File smlserver_demo/www/web/cookie_set.sml.
3File smlserver_demo/www/web/cookie_delete.sml.

9.4. STORING USER INFORMATION 95

val cn =
case FormVar.wrapOpt FormVar.getStringErr "cookie_name"
of NONE => "CookieName"
| SOME cn => cn

val _ = Web.Cookie.deleteCookie{name=cn,path=SOME "/"}

val _ = Web.Conn.returnRedirectWithCode(302, "cookie.sml")

The cookie name cn is the value received from the second entry form in the page
returned by the cookie.sml script.

9.4 Storing User Information

The authentication mechanism presented below makes use of information about
users stored in a person table in a database (see Chapter 7). The SQL for creating
the person table looks as follows:4

create table person (
person_id int primary key,
password varchar(100) not null,
email varchar(20) unique not null,
name varchar(100) not null,
url varchar(200)

);

Each person in the table is uniquely identified by a number person_id. Moreover,
it is enforced by a consistency constraint that no two persons have the same email
address. The name and url columns provide additional information about a user
and the password column holds passwords that are compared to the passwords
entered when users login.

An SQL sequence person_seq is used for creating unique person_id numbers,
dynamically. Two people are inserted in the table by default:

create sequence person_seq start 3;

insert into person (person_id, password, email, name, url)
values (1, ’Martin’, ’mael@it.edu’, ’Martin Elsman’,

’http://www.itu.dk/~mael’);

4File smlserver_demo/web_demo_lib/pgsql/person.sql.

96 CHAPTER 9. AUTHENTICATION

insert into person (person_id, password, email, name, url)
values (2, ’Niels’, ’nh@it.edu’, ’Niels Hallenberg’,

’http://www.itu.dk/~nh’);

Now that the table for storing user information is in place, it is possible to describe
the authentication mechanism in detail.

9.5 The Authentication Mechanism

The authentication mechanism is implemented by a library structure Auth and a
series of SMLserver scripts for managing the issuing of passwords, sending pass-
words to users, serving login forms to users, and so on:5

• auth_form.sml. Serves a “Login form” to users

• auth.sml. Processes the “Login form” submitted by a user; stores a cookie
containing person_id and password (the password entered in the form, that
is) on the client browser

• auth_logout.sml. Stores a cookie on the client browser with an expiration
date in the past; redirects to a predefined index page

• auth_new_form.sml. Serves a “Registration form” to users, querying the
user for email address, name, and home page address

• auth_new.sml. Processes the “Registration form” submitted by a user; cre-
ates a password and a unique person_id for the user and enters a column
for the user in the person table; sends an email to the user with the newly
created password and serves a page with instructions that an email with a
password is available in the user’s mail-box

• auth_send_form.sml. Serves a form to the user, asking for an email address

• auth_send.sml. Processes the form served by the auth_send_form.sml
script; sends an email to the entered email address with the corresponding
password

The three forms are shown in Figure 9.2. The library structure Auth provides
functionality for checking whether a user is logged in (functions verifyPerson
and isLoggedIn), for issuing passwords (function newPassword), and so on:6

5We do not present the sources for these SMLserver scripts here; the interested reader may
find all sources in the directory smlserver_demo/www/web/.

6File smlserver_demo/web_demo_lib/Auth.sml.

9.5. THE AUTHENTICATION MECHANISM 97

Figure 9.2: The three different forms presented by the authentication mech-
anism. The forms correspond to the SMLserver scripts auth_form.sml,
auth_send_form.sml, and auth_new_form.sml, respectively.

98 CHAPTER 9. AUTHENTICATION

structure Auth :
sig
type person_id = int
val loginPage : string
val defaultHome : string
val siteName : string
val verifyPerson : unit -> person_id option
val isLoggedIn : unit -> bool
val newPassword : int -> string
val sendPassword : person_id -> unit

end

The function newPassword takes as argument an integer n and generates a new
password constructed from n characters chosen randomly from the character set
{a . . . zA . . . Z2 . . . 9} \ {loO}.

The function sendPassword takes a person_id as argument and sends an email
with the user’s password to the user. The three strings loginPage, defaultHome,
and siteName are configuration strings that default to the login page provided by
the authentication mechanism, the default page that the user is forwarded to once
logged in, and the name of the Web site.

The function verifyPerson returns SOME(p) if the user (1) is logged in, and (2)
is identified by the person_id p; otherwise the function returns NONE. The imple-
mentation of the function checks if cookies with the names auth_person_id and
auth_password are available, and if so, proceeds by checking that the password in
the database is identical with the password in the cookie. For reasons having to
do with caching of passwords (Section 9.6), we define a function verifyPerson0,
which the function verifyPerson calls with a function for extracting a password
for a user from the database:

fun verifyPerson0 (getPasswd: string -> string option)
: person_id option =
(case (Web.Cookie.getCookieValue "auth_person_id",

Web.Cookie.getCookieValue "auth_password")
of (SOME person_id, SOME psw) =>
(case getPasswd person_id

of NONE => NONE
| SOME db_psw =>
if db_psw = psw then Int.fromString person_id
else NONE

)
| _ => NONE

9.6. CACHING PASSWORDS FOR EFFICIENCY 99

) handle Web.Cookie.CookieError _ => NONE

fun verifyPerson() =
verifyPerson0 (fn p => Db.zeroOrOneField

‘select password from person
where person_id = ^p‘)

9.6 Caching Passwords for Efficiency

It is unsatisfactory that a Web site needs to query the database for password
information every time a user accesses a restricted page. The solution is to use the
SMLserver caching mechanism to avoid looking up passwords for users that have
been accessing the Web site within the last 10 minutes (600 seconds).

To implement this idea, the function verifyPerson is modified as follows:

fun verifyPerson() =
let fun f p =

Db.zeroOrOneField
‘select password from person
where person_id = ^p‘

val cache = Web.Cache.get (Web.Cache.String, Web.Cache.String,
"auth", Web.Cache.WhileUsed

(SOME (Time.fromSeconds 600), SOME 10000))
fun g = Web.Cache.memoizePartial cache f

in verifyPerson0 g
end

For a discussion of the function Web.Cache.memoizePartial, see Section 6.6.
Note that if we were to implement scripts that allow users to modify their

passwords, we would, of course, need to flush the cache appropriately when users
modify their passwords. This is done by the function Web.Cache.flush, presented
in Section 6.6 on page 48.

9.7 Applying the Authentication Mechanism

We shall now see how a Web site may apply the authentication mechanism to
restrict the transactions and content available to a particular user. The example
application that we present serves as a link database to keep track of Web sites
developed with SMLserver. The idea is that all visitors of the Web site have access
to browse the list of Web sites submitted by SMLserver users. At the same time,

100 CHAPTER 9. AUTHENTICATION

only registered users can add new Web sites to the list or delete entries that they
have previously entered.

The first step in the design is to define a data model that extends the data
model for the authentication mechanism (the person table). The following defini-
tion of the table link serves the purpose:7

create table link (
link_id int primary key,
person_id int references person not null,
url varchar(200) not null,
text varchar(200)

);

Each link in the table is identified with a unique link_id and each link is associated
with a person in the person table. The two columns url and text constitute the
link information provided by a user.

The next step in the development is to define a Web site diagram for the link
database Web site. Such a Web site diagram is pictured in Figure 9.3, which
also pictures the scripts for the authentication mechanism. The figure shows a
diagram with all SMLserver scripts for the Web site. Scripts that present forms
are pictured as boxes whereas scripts that function as transactions on the database
(or have other effects, such as sending emails) are pictured by their name. As a
side remark, we add that a user should have access to delete only those Web site
entries that the particular user has added.

Now that the Web site diagram for the link database is in place, we are ready
to provide implementations for the scripts in the diagram. In the following, we
present two of the involved scripts, link/index.sml, which shows user-submitted
links, and link/delete.sml, which deletes a link submitted by the user.8 The
script link/index.sml, which is the most involved of the scripts, is implemented
as follows:9

val person = Auth.verifyPerson()

val query =
‘select person.person_id, person.name, link_id,

person.url as purl, link.url, link.text
from person, link
where person.person_id = link.person_id‘

7File smlserver_demo/web_demo_lib/pgsql/link.sql.
8The directory smlserver_demo/www/web/link/ holds all involved scripts.
9File smlserver_demo/www/web/link/index.sml.

9.7. APPLYING THE AUTHENTICATION MECHANISM 101

delete

logout

auth send.sml

auth.sml

passwd

ok send

email

register

link/add.sml link/delete.sml

auth logout.sml

link/index.sml

Add web-site

Martin delete
SMLserver Martin
VoteAboutIt

LINKS:

ok

email

auth send form.smlauth new form.sml

name
homepg

email

ok

link/add form.sml

text

ok

URL

auth form.sml

Figure 9.3: Web site diagram for the link database. SMLserver scripts pictured
under the dashed line are restricted to users that are logged in; the other SMLserver
scripts are accessible for all visitors.

102 CHAPTER 9. AUTHENTICATION

fun delete g =
if Int.fromString (g "person_id") = person
then
‘ delete‘

else ‘‘

fun layoutRow (g, acc) =
‘<table width=100% cellspacing=0 cellpadding=0

border=0><tr>
<td width=50%>^(g "text")
<td>added by ^(g "name")
<td align=right>‘ ^^ delete g ^^

‘</tr></table>‘ ^^ acc

val loginout =
case person
of NONE =>
‘To manage links that you have entered, please
login.‘

| SOME p =>
let val name = Db.oneField

‘select name from person
where person_id = ^(Int.toString p)‘

in ‘You are logged in as user ^name - you may
logout.‘

end

val list = Db.fold layoutRow ‘‘ query

val _ =
Page.return "Web sites that use SMLserver"
(loginout ^^ ‘‘ ^^ list ^^
‘<p>Add Web site‘)

The script uses the function Auth.verifyPerson to present delete links for those
Web site entries that a user is responsible for. Moreover, if a user is already
logged in, a “Logout” button is presented to the user, whereas a “Login” button
is presented if the user is not logged in. The result of a user requesting the file is
shown in Figure 9.4.

The script link/delete.sml is implemented by the following Standard ML

9.7. APPLYING THE AUTHENTICATION MECHANISM 103

Figure 9.4: The result of a user requesting the file link/index.sml.

code:10

val person_id =
case Auth.verifyPerson()
of SOME p => p
| NONE => (Web.returnRedirect Auth.loginPage

; Web.exit())

val link_id = FormVar.wrapFail
FormVar.getNatErr ("link_id", "Link id")

val delete =
‘delete from link
where person_id = ^(Int.toString person_id)
and link_id = ^(Int.toString link_id)‘

val _ = Db.dml delete
val _ = Web.returnRedirect "index.sml"

Notice that users that are not logged in, but somehow request the file, are redi-
rected to the default login page provided in the Auth structure. Also notice that
a user can delete only those links that the user is responsible for.

10File smlserver_demo/www/web/link/delete.sml.

104 CHAPTER 9. AUTHENTICATION

Chapter 10

Scheduling and Trapping

SMLserver supports three ways of executing scripts besides execution of scripts
based on requests made by clients, namely execution of scheduled scripts, execution
of trapping scripts and execution of initialization scripts.

It is possible to schedule a script to be executed periodically. This feature
can be used to ensure that some state in the server or database is kept up to
date. It can also be used for periodic checks on external ressources (e.g., that
an external Web site is accessible; this is also known as an uptime monitor; see
http://eveander.com/arsdigita/free-tools/uptime.html).

It is possible to trap requests for specific files in SMLserver, in such a way that
a specific trap script is executed instead of the requested file. This feature can be
used to control access to Web content.

In order to setup scheduled scripts and other configuration parameters, it is
possible to execute a specific SML script at server initialization time.

When executing the initialization file, there is no connection to a client. It
is therefore not possible to use functions that depend on a connection. For in-
stance, one cannot use the function Web.Conn.return, as described on page 132.
Functions that fails in this way raises the exception Web.MissingConnection.

10.1 Initialization

To have an initialization script executed at boot time, follow the steps below:

1. Write an initialization script. We have provided one in the web_sys directory
~/web/web_sys/init.sml. See Chapter 2.

2. Include the initialization script in your mlb-file. We have included the ini-
tialization script ~/web/web_sys/init.sml in the mlb-file web.mlb. See
Chapter 2.

105

106 CHAPTER 10. SCHEDULING AND TRAPPING

3. Tell Apache to execute the initialization script at initialization time. This is
done by adding the following to the <IfModule mod_sml.c> Apache config-
uration entry:

Initialization script to schedule script execution and
register trapping of URL requests; remember to include
the initialization script in the project file.
SmlInitScript "../web_sys/init.sml"

See also Chapter 2 on configuration of Apache for use with SMLserver.

To check that it works, restart Apache as described in Chapter 2. Then con-
sult the log file (/var/log/apache2/error.log) and look for the text executing
init.sml....

10.2 Scheduling

The signature WEB specifies the following functions to control scheduling of script
execution:

signature WEB =
sig
...
val schedule : string -> string option -> Date.date

-> Time.time -> unit
val deSchedule : string -> unit
val scheduleScript : string -> string option -> int -> unit
val scheduleDaily : string -> string option

-> {hour:int, minute:int} -> unit
val scheduleWeekly : string -> string option

-> {day:Date.weekday, hour:int, minute:int}
-> unit

...
end

After an application schedule f s d i, the script determined by the file f is
scheduled to execute the first time at date and time d with interval i using s as
host. If s is not supplied then localhost is used as host. Usually, calls to the
schedule function appears in the initialization script (e.g., init.sml).

After an application scheduleScript f s d, the script determined by the
location on the server f is scheduled to execute every d seconds using s as host.

10.2. SCHEDULING 107

The s is interpreted like in schedule. Usually, calls to the scheduleScript function
appears in the initialization script (e.g., init.sml).

After an application scheduleDaily f s {hour,minute}, the script deter-
mined by the location on the server f is scheduled to execute every day at the
specified time (hour and minute). The hour and minute are interpreted modulo
24 and 60. The s is interpreted like in schedule.

After an application scheduleWeekly f s {day,hour,minute}, the script de-
termined by the location on the server f is scheduled to execute every week at the
specified time (day, hour, and minute). The hour and minute are interpreted
modulo 24 and 60. The s is interpreted like in schedule.

After the application deSchedule f, any scheduling of the script determined
by the location on the server f is canceled.

We have included a small script log_time.sml that logs the time of day in the
/var/log/apache2/error.log file:1

val time_of_day =
Date.fmt "%H.%M.%S" (Date.fromTimeLocal(Time.now()))

val _ = Web.log(Web.Notice, "time_of_day: " ^ time_of_day)

You can do the following experiment (if you installed SMLserver as described
in Chapter 2 then it should work out of the box):

1. Make sure that log_time.sml appears in your project file (e.g., web.mlb).

2. Insert the following SML code in the file init.sml:

val time_of_day =
Date.fmt "%H.%M.%S" (Date.fromTimeLocal(Time.now()))

val _ = Web.log(Web.Debug, "time of day: " ^ time_of_day)
val _ = Page.return "Time of day" (‘

<body bgcolor=white>
The time of day is ‘ ^^
Quot.fromString time_of_day ^^ ‘.‘)

The script log_time.sml is executed every 10 minutes.

1File smlserver_demo//www/web/log_time.sml.

108 CHAPTER 10. SCHEDULING AND TRAPPING

3. Make sure that the script init.sml is executed at boot time, that is, try
restart Apache and check the error log file. If it does not work, then check
that init.sml appears in your project file, and make sure that init.sml
appears in the Apache configuration file.

It works when you see something similar to the following in your error log
file:

[Wed Dec 07 18:04:44 2005] [debug] mod_smllib.c(172): [client 127.0.0.1]
time of day: 18.04.44

10.3 Trapping

Trapping is setup using appropriate Apache modules. These are configured in the
Apache configuration file and SMLserver is almost unaware of such mechanisms.

The url function provides the url from each internal redirect in a list where the
current url is in front and the initial url is in the back. In the following example the
module mod rewrite is used to redirect all request from a directory to a particular
script.

From the Apache configuration:

DocumentRoot "/home/user/web/www"
<Directory /home/user/web/www/secret>
RewriteEngine On
RewriteBase /secret
RewriteRule .* server.sml

</Directory>

Here requests to anything in /secret/ is redirected to /secret/server.sml

Chapter 11

Configuration

Configuration of SMLserver is divided into two parts; configuration of Apache
and configuration of the library and your application. By keeping these concerns
apart, the configuration of your application does not clutter up the configuration
of Apache and vice versa. Thus the impact of the Apache configuration file on
your project is kept at a minimum.

In the main Apache configuration entry for SMLserver, settings for SmlPrjId
and SmlPath must be provided. A setting for SmlInitScript is optional.

SmlPrjId: The name of the project file (e.g. web).

SmlPath: The path to the project files (e.g. /home/user/web/www/).

SmlInitScript: A script to be run at Apache initialization time. This file typi-
cally handles configuration of your application and any other administrative
tasks you would like (e.g. /home/user/web/www/../sys/init.sml).

SMLserver provides two functions for supporting configuration of your appli-
cation, as described in the information structure in the library (Web.Info):

val configGetValue : (’a Type.Type * string) -> ’a option
val configSetValue : (’a Type.Type * string * ’a) -> unit

The configSetValue function lets you map a string to a value of the type given
in the first argument. configGetValue lets you retrieve the value from the given
string. As the first argument to configGetValue you must provide the same type
as you gave configSetValue. A runtime check asserts this, and raises Domain if
violated. You may only call configSetValue in your initialization script. If this
rule is violated, the exception Web.Forbidden is raised.

With this scheme every change to the initialization script (your configuration)
requires a recompilation of the project to take effect. If this is not appropriate you

109

110 CHAPTER 11. CONFIGURATION

can create you own configuration file and parse it in the initialization script.1 We
feel that this gives you a maximum of flexibility.

Example of use:

init.sml: val _ = Web.Info.configSetValue
(Web.Info.Type.Int, "Number of users",10)

myproject.sml: val numberOfUsers = getOpt(Info.configGetValue(
Web.Info.Type.Int, "Number of users"),5)

1You have to program this yourself.

Chapter 12

Summary

This book provides a tutorial overview of programming dynamic Web applications
with SMLserver through the presentation of a series of examples. Starting with
the basic mechanism for serving dynamic pages to users, the book covers topics
such as achieving and validating data from users, fetching data from foreign Web
sites, interfacing to Relational Database Management Systems (RDBMSs), and
authenticating users.

SMLserver is already used for a series of real-purpose Web sites, including an
evaluation system, an alumni system, and a course registration system for the IT
University of Copenhagen.

Experience with SMLserver demonstrates that the strict type system of Stan-
dard ML combined with its advanced language features, such as modules and
higher-order functions, ease maintainability and extensibility. If used properly, the
advanced language features make separation of code from presentation straight-
forward and increase reusability of code.

Although it is possible to create large Web sites with SMLserver, there are
currently a few features missing, which we plan to add to SMLserver soon. Among
the features missing are support for XML and XSLT translations, support for the
Oracle clob datatype and a SOAP interface.

We have implemented several improvements to SMLserver since the previous
publication of this book, including a typed cache interface and caching of region
pages which speeds up script execution considerably.

We have also implemented the possibility of periodic execution of scripts using
the SMLserver API. Similarly, we have added support for an initialization file to be
executed at server start up. We have also implemented a simple trap mechanism
for supporting filtering.

For technical issues concerning SMLserver, see also [EL04], [EH03], and [EH02].

111

112 CHAPTER 12. SUMMARY

Bibliography

[EH02] Martin Elsman and Niels Hallenberg. A region-based abstract machine
for the ML Kit. Technical Report TR-2002-18, Royal Veterinary and
Agricultural University of Denmark and IT University of Copenhagen,
August 2002. IT University Technical Report Series.

[EH03] Martin Elsman and Niels Hallenberg. Web programming with
SMLserver. In Fifth International Symposium on Practical Aspects
of Declarative Languages (PADL’03). Springer-Verlag, January 2003.

[EL04] Martin Elsman and Ken Friis Larsen. Typing XHTML Web appli-
cations in ML. In International Symposium on Practical Aspects of
Declarative Languages (PADL’04). Springer-Verlag, June 2004.

[FP02] Matthew Fluet and Riccardo Pucella. Phantom types and subtyping.
In Second IFIP International Conference on Theoretical Computer
Science (TCS’02), pages 448–460, August 2002.

[Gre99] Philip Greenspun. Philip and Alex’s Guide to Web Publishing. Morgan
Kaufmann, May 1999. 596 pages. ISBN: 1558605347.

[HR99] Michael R. Hansen and Hans Rischel. Introduction to Programming
using SML. Addison-Wesley, 1999. ISBN 0-201-39820-6.

[MTHM97] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[Pau96] Lawrence C Paulson. ML for the Working Programmer (2nd Edi-
tion, ML97). Cambridge University Press, 1996. ISBN 0-521-56543-X
(paperback), 0-521-57050-6 (hardback).

[TBE+01] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Højfeld Olesen, and Peter Sestoft. Programming with re-
gions in the ML Kit (for version 4). Technical report, IT University

113

114 BIBLIOGRAPHY

of Copenhagen and Royal Veterinary and Agricultural University of
Denmark, September 2001.

Appendix A

HTML Reference

An HTML start tag is a name included in angle-brackets like <name>, perhaps
decorated with attributes as in <name attr=arg>. An HTML end tag is a name
included in angle-brackets and pre-fixed with a slash (/) as in </name>. An HTML
element is either some text not including < and >, a start tag, or a start tag and
an end tag, with the same name, surrounding another HTML element. Examples
of HTML elements include

• <title> A small element </title>

• some text

An HTML document is composed of a single element <html> ... </html> com-
posed of head and body elements as follows:

<html>
<head> ... </head>
<body> ... </body>

</html>

For compatibility with older HTML documents, the <html>, <head>, and <body>
tags are optional.

A head element may include a title element—other element types are sup-
ported as well:

<title> ... </title>

The title element specifies a document title. Notice that the title does not appear
on the document. Instead it may appear in a window bar identifying the contents
of the window. The title element is also what is used as the title of the document
when it is bookmarked in a browser.

115

116 APPENDIX A. HTML REFERENCE

A.1 Elements Supported Inside Body Element

The following sections describe elements that may be used inside the body element
of a document.

A.1.1 Text Elements

<p>
Start a new paragraph.

<pre> ... </pre>
Encloses preformatted text to be displayed as is. Preformatted text may in-
clude embedded tags, but not all tag types are permitted.

<listing> ... </listing>
Example computer listing; embedded tags are shown as is and tabs work.

<blockquote> ... </blockquote>
Include a section of quoted text.

A.1.2 Uniform Resource Locators

A Uniform Resource Locator (URL) is of the form

resourceType:additionalInformation

where resourceType may be file, http, telnet, or ftp (other resource types
exist as well). Each resource type relates to a specific server type, each of which
performs a unique function and thus requires different additionalInformation. For
example, URLs with resource type http are of the form

http://host.domain:port/pathname

The colon followed by a TCP port number is optional, and is used when a server
is listening on a non-standard port; the standard port for HTTP is port 80.

A.1.3 Anchors and Hyperlinks

An anchor specifies a location in a document. A hyperlink may be used to refer
to a location in a document or to an entire document.

Specify a location anchorName in a document.

A.1. ELEMENTS SUPPORTED INSIDE BODY ELEMENT 117

 ...
Link to location anchorName in the present document.

 ...
Link to location anchorName in document specified by URL.

 ...
Link to file or resource specified by URL.

 ...
Link to file or resource URL with form variable arguments n1=v1 ... nn=nv,
separated by &.

To be precise, the anchorName and form variable arguments included in the name
and href attributes in the examples above are part of the URL.

A.1.4 Headers

<h1> ... </h1> Highest significant header
<h2> ... </h2>
<h3> ... </h3>
<h4> ... </h4>
<h5> ... </h5>
<h6> ... </h6> Lowest significant header

A.1.5 Logical Styles

 ... Emphasis
 ... Strong emphasis

A.1.6 Physical Styles

 ... Boldface
<i> ... </i> Italics
<u> ... </u> Underline
<tt> ... </tt> Typewriter font

A.1.7 Definition Lists

<dl>
<dt> First term
<dd> Definition of first term
<dt> Next term

118 APPENDIX A. HTML REFERENCE

<dd> Definition of next term
</dl>

The <dl> attribute compact, which takes no argument, can be used to generate a
definition list that uses less space.

A.1.8 Unordered Lists

 First item in list
 Next item in list

A.1.9 Ordered Lists

 First item in list
 Next item in list

A.1.10 Characters

&keyword;
Display a particular character identified by a special keyword. For example
the entity & specifies the ampersand (&), and the entity < specifies
the less than (<) character. Notice that the semicolon following the key-
word is required. A complete listing of possible keywords are available from
http://www.w3.org.

&#ascii;
Display a character using its ascii code. The semicolon following the ASCII
numeric value is required.

A.2 HTML Forms

HTML forms allow documents to contain forms to be filled out by users. An
HTML form element looks like this: <form> ... </form>.

Inside a form element, the following four elements are allowed—in addition to
other HTML elements:

• <input>

A.2. HTML FORMS 119

• <select> ... </select>

• <option>

• <textarea> ... </textarea>

A document may contain multiple form elements, but form elements may not be
nested. Attributes to the form elements include:

action="URL":
Specifies the location of the program to process the form.

method="dataExchangeMethod"
The method chosen to exchange data between the client and the program
to process the form: The most important methods are GET and POST (see
Section 3.1).

A.2.1 Input Fields

An input element <input type="inputType">, which has no associated ending
tag, specifies that the user may enter information in the form. The attribute type
is required in input elements. In most cases, an input field assigns a value to a
variable with a specified name and a specified input type. Some possible input
types are listed in the following table:

inputType Description
text Text field; size attribute may be used

to specify length of field.
password As text, but stars are shown instead of

the text that the user enters.
checkbox Allows user to select zero or more options.
radio Allows user to choose between a number of options.
submit Shows a button that sends the completed form to

the server specified by the attribute action
in the enclosing form element.

reset Shows a button that resets the form variables to
their default values.

hidden Defines a hidden input field whose value is sent
along with the other form values when the form is
submitted. This input type is used to pass state
information from one Web script to another.

Additional attributes to the input element include:

120 APPENDIX A. HTML REFERENCE

name="Name"
where Name is a symbolic name identifying the input variable.

value="Value"
where the meaning of Value depends on the argument for type.

For type="text" or type="password", Value is the default value for the
input variable. Password values are not shown on the user’s form. Anything
entered by the user replaces any default value defined with this attribute. For
type="checkbox" or type="radio", Value is the value that is submitted to
the server if that checkbox is selected. For type="reset" or type="submit",
Value is a label that appears on the submit or reset button in place of the
words “Submit” and “Reset”.

checked (no arguments)
For type="checkbox" or type="radio", if checked is present, the input field
is selected by default.

size="Width"
where Width is an integer value representing the number of characters dis-
played for the type="text" or type="password" input field.

maxlength="Length"
where Length is the maximum number of characters allowed within type="text"
or type="password" variable values. This attribute is used only in combi-
nation with the input types text and password.

A.2.2 Select Elements

The select element <select> ... </select> allows a user to select between a
number of options. The select element requires an option element for each item
in the list (see below). Attributes and corresponding arguments include:

name="Name"
where Name is the symbolic identifier for the select element.

size="listLength"
where listLength is an integer representing the maximum number of option
items displayed at one time.

multiple (no arguments)
If present, more than one option value may be selected.

A.3. MISCELLANEOUS 121

A.2.3 Select Element Options

Within the select element, option elements are used to define the possible values
for the enclosing select element. If the attribute selected is present then the
option value is selected by default. In the following example all three options may
be chosen but Standard ML is selected by default.

<select multiple>
<option>Haskell
<option selected>Standard ML
<option>C

</select>

A.2.4 Text Areas

A text area of the form

<textarea> default text </textarea>

defines a rectangular field where the user may enter text data. If “default text”
is present it is displayed when the field appears. Otherwise the field is blank.
Attributes and corresponding values include:

name="Name"
where Name is a symbolic name that identifies the form variable associated
with the <textarea>.

rows="numRows" and cols="numCols"
Both attributes take an integer value which represents the number of rows
and number of columns in the text area.

A.3 Miscellaneous

<!-- text -->
Place a comment in the HTML source.

<address> ... </address>
Present address information.

Embed an image in the document. Attributes:

src: Specifies the location URL of the image.

122 APPENDIX A. HTML REFERENCE

alt: Allows a text string to be put in place of the image in clients that
cannot display images.

align: Specifies a relationship to surrounding text. The argument for align
can be one of top, middle, or bottom.

border=0: Leaves out the border on the image img when it appears within
....

Forces a line break immediately and retains the same style.

<hr>
Places a horizontal rule or separator between sections of text.

Appendix B

The Web Structure

The Web structure gives access to the Web server API.
The structure Web implements the WEB signature, which holds often used func-

tionality and sub-structures matching a series of signatures. Reading signatures is
a good way of familiarizing yourself with an API.

In the sections to follow, we present the following signatures:

WEB (Page 125): Main Web API.

WEB_CACHE (Page 129): Support for caching of computations.

WEB_CONN (Page 132): Connection-dependent functionality.

WEB_COOKIE (Page 135): Support for setting and retrieving cookie information.

WEB_DB (Page 137): Database connectivity.

WEB_DB_HANDLE (Page 142): Handle-based database connectivity for transactions
and multiple simultaneous connections.

WEB_DYNLIB (Page 146): Support for dynamic linking.

WEB_INFO (Page 147): Support for retrieving various kinds of connection and
server information.

WEB_LOG (Page 149): Support for writing to the Apache log file.

WEB_LOW_MAIL (Page 150): Low-level mail API.

WEB_MAIL (Page 152): High-level mail API.

WEB_MIME (Page 153): Support for determining the MIME type of a file.

123

124 APPENDIX B. THE WEB STRUCTURE

WEB_SERIALIZE (Page 154): Type constructor specifications for type-indexed se-
rialization; used for caching, configurations, etc.

WEB_SET (Page 156): Support for key-value associations.

B.1. THE WEB SIGNATURE 125

B.1 The WEB Signature

signature WEB = sig
include WEB_LOG
exception MissingConnection
exception Forbidden

type quot = Quot.quot

val return : quot -> unit
val write : quot -> unit
val returnRedirect : string -> unit
val encodeUrl : string -> string
val decodeUrl : string -> string
val returnFileMime : string -> string -> unit
val returnFile : string -> unit
val fetchUrl : string -> string option
val fetchUrlTime : int -> string -> string option
val buildUrl : string -> (string * string) list -> string

val schedule : string -> string option -> Date.date ->
Time.time -> unit

val deSchedule : string -> unit
val scheduleScript : string -> string option -> int -> unit
val scheduleDaily : string -> string option ->

{hour:int, minute:int} -> unit
val scheduleWeekly : string -> string option ->

{day:Date.weekday, hour:int, minute:int} ->
unit

val exit : unit -> ’a

structure Set : WEB_SET
structure Conn : WEB_CONN where type set = Set.set
structure Cookie : WEB_COOKIE
structure Info : WEB_INFO
structure Mail : WEB_MAIL
structure Cache : WEB_CACHE
structure Mime : WEB_MIME
structure LowMail : WEB_LOW_MAIL

126 APPENDIX B. THE WEB STRUCTURE

structure DbOraBackend : WEB_DB_BACKEND where
type ’a Type = ’a Info.Type.Type

structure DbMySqlBackend : WEB_DB_BACKEND where
type ’a Type = ’a Info.Type.Type

structure DbPostgreSQLBackend : WEB_DB_BACKEND where
type ’a Type = ’a Info.Type.Type

structure WebDynlib : WEB_DYNLIB

structure XMLrpc : XMLRPC
end

(*
[MissingConnection] exception raised by functions that cannot be
called when no connection is present (e.g., at initialization time).

[Forbidden] exception raised by some functions on illegal input.

[quot] type of quotations.

[return s] sends HTML string s with status code 200 to
client, including HTTP headers. May raise MissingConnection.

[write s] sends string s to client, excluding HTTP headers.
May raise MissingConnection.

[returnRedirect loc] sends redirection HTTP response to
client (status code 302), with information that the client
should request location loc. May raise MissingConnection.

[encodeUrl s] returns an encoded version of the argument s as
URL query data. All characters except the alphanumerics are
encoded as specified in RFC1738, Uniform Resource Locators.
This function can be used to append arguments to a URL as
query data following a ‘?’.

[decodeUrl s] decodes data s that was encoded as URL query
data. The decoded data is returned.

[returnFileMime mimetype file] returns the entire contents of the

B.1. THE WEB SIGNATURE 127

given file to the client. In addition to setting the HTTP status
response line to 200 and the Content-Type header from the given
parameter, the function also uses the stat system call to generate
the appropriate Last-Modified and Content-Length headers. May raise
MissingConnection or Fail(msg) if file cannot be accessed.

[returnFile file] as returnFileMime, but gets the
Content-Type (mimetype) argument from calling the function
Web.Mime.getMime with the given file as parameter.

[fetchUrl u] fetches a remote URL u; connects the Web server
to another HTTP Web server and requests the specified URL.
The URL must be fully qualified. Currently, the function
cannot handle redirects or requests for any protocol except
HTTP. Returns NONE if no page is found.

[fetchUrlTime u] as fetchUrl but with a specified timeout in
seconds.

[buildUrl u l] constructs a link to the URL u with the form
variable pairs l appended to u?, delimited by &, and with the
form values URL encoded.

[schedule s serv d t] schedule a script s to be executed on server
serv on date d at time t. If serv is NONE localhost is used as
server.

[deSchedule s] Unschedule the script s from execution.

[scheduleScript s serv d] after a call to this function, the script
determined by the file s on server serv is scheduled to execute every d
seconds. Usually, calls to the scheduleScript function appears in the
initialization script ../web_sys/init.sml to setup scheduled
execution. If serv is NONE localhost is used as server.

[scheduleDaily s serv {hour,minute}] after a call to this
function, the script determined by the file s on server serv is
scheduled to execute every day at the specified time (hour and
minute). The hour can be an integer from 0 to 23, and the minute an
integer from 0 to 59. If serv is NONE localhost is used as server.

128 APPENDIX B. THE WEB STRUCTURE

[scheduleWeekly s serv {day,hour,minute}] after a call to this
function, the script determined by the file s on server serv is
scheduled to execute every week at the specified time (day, hour, and
minute). The day can be an integer from 0 to 6, where 0 represents
Sunday. The hour can be an integer from 0 to 23, and the minute an
integer from 0 to 59. If serv is NONE localhost is used as server.

[exit()] terminates the script by raising the exception
Interrupt, which is silently caught by the SMLserver module. Other
uncaught exceptions are logged in the log file.

*)

B.2. THE WEB_CACHE SIGNATURE 129

B.2 The WEB_CACHE Signature

signature WEB_CACHE = sig
(* Cache kinds *)
datatype kind =

WhileUsed of Time.time option * int option
| TimeOut of Time.time option * int option

(* Cache Type *)
type (’a,’b) cache
include WEB_SERIALIZE
type name = string

(* Get or create a cache *)
val get : ’a Type * ’b Type * name * kind -> (’a,’b) cache

(* Entries in a cache *)
val lookup : (’a,’b) cache -> ’a -> ’b option
val insert : (’a,’b) cache * ’a * ’b * Time.time option -> bool
val flush : (’a,’b) cache -> unit

(* Memoization *)
val memoize : (’a,’b) cache -> (’a -> ’b) -> ’a -> ’b
val memoizeTime : (’a,’b) cache ->

(’a -> (’b * Time.time option))
-> ’a -> ’b

val memoizePartial : (’a,’b) cache ->
(’a -> ’b option) -> ’a -> ’b option

val memoizePartialTime : (’a,’b) cache ->
(’a -> (’b * Time.time option) option) ->
’a -> ’b option

(* Cache info *)
val pp_type : ’a Type -> string
val pp_cache : (’a,’b) cache -> string

end

(*
[kind] abstract type for cache kind. A cache kind describes
the strategy used by the cache to insert and emit cache
entries. The following strategies are supported:

130 APPENDIX B. THE WEB STRUCTURE

* WhileUsed (t,sz) : elements are emitted from the cache after
approximately t time after the last use. The cache has a
maximum size of sz bytes. Elements are emitted as needed in
order to store new elements. The size sz should not be too
small, a minimum size of 1 Kb seems to work fine for small
caches; larger cache sizes are also supported.

* TimeOut (t,sz) : elements are emitted from the cache after
approximately t time after they are inserted.

[(’a,’b) cache] abstract type of cache. A cache is a
mapping from keys of type ’a to elements of type ’b. Only
values of type ’a Type and ’b Type can be used as keys and
elements, respectively.

[’a Type] abstract type of either a key or element that
can be used in a cache.

[name] abstract type of the name of a cache.

[get (cn,ck,aType,bType)] returns a cache which is named
cn. The cache will be a mapping from keys of type aType
into elements of type bType. The cache strategy is
described by ck.

* If no cache exists with name cn, then a new cache is
created.

* If a cache c exists with name cn, then there are two
possibilities:

1) If c is a mapping from aType to bType, then c is
returned.

2) If c is not a mapping from aType to bType, then a
new cache c’ is created and returned.

It is possible to create two caches with the same name,
but only if they describe mappings of different type.

B.2. THE WEB_CACHE SIGNATURE 131

[lookup c k] returns the value associated with the key k
in cache c; returns NONE if k is not in the cache.

[insert (c,k,v)] associates a key k with a value v in the cache c;
overwrites existing entry in cache if k is present, in which case the
function returns false. If no previous entry for the key is present
in the cache, the function returns true.

[flush c] deletes all entries in cache c.

[memoize c f] implements memoization on the function f. The function
f must be a mapping of keys and elements that can be stored in a
cache, that is, f is of type ’a Type -> ’b Type.

[memoizePartial c f] memoizes function values y where f returned SOME
y.

[pp_type aType] pretty prints the type aType.

[pp_cache c] pretty prints the cache.
*)

132 APPENDIX B. THE WEB STRUCTURE

B.3 The WEB_CONN Signature

signature WEB_CONN = sig
type set
val returnHtml : int * string -> unit
val returnXhtml : int * string -> unit
val return : string -> unit
val returnFile : int * string * string -> unit
val write : string -> unit
val returnRedirect : string -> unit
val returnRedirectWithCode : int * string -> unit
val setMimeType : string -> unit
val getQuery : unit -> set option
val getRequestData : unit -> string
val formvar : string -> string option
val formvarAll : string -> string list
val storeMultiformData : string * string -> unit
val headers : unit -> set
val host : unit -> string
val location : unit -> string
val peer : unit -> string
val scheme : unit -> string
val port : unit -> int
val redirect : string -> unit
val server : unit -> string
val url : unit -> string list
val method : unit -> string
val contentLength : unit -> int
val hasConnection : unit -> bool
val add_headers : (string * string) -> unit

end

(*
[set] abstract type identical to Web.Set.set.

[returnHtml (sc,s)] sends HTML string s with status code sc and
mime-type text/html to client, including HTTP headers and
Cache-Control header set to no-cache. May raise MissingConnection.

[returnXHtml (sc,s)] sends XHTML string s with status code sc and

B.3. THE WEB_CONN SIGNATURE 133

mime-type application/xhtml+xml to client, including HTTP headers and
Cache-Control header set to must-revalidate. May raise
MissingConnection.

[return s] sends HTML string s with status code 200 to client,
including HTTP headers. May raise MissingConnection.

[returnFile (sc,mt,f)] sends file f with status code sc to client,
including HTTP headers. The mime type is mt. Raises MissingConnection
if the execution is not associated with a connection. Raises
Fail(msg) if the file cannot be opened for reading.

[write s] sends string s to client, excluding HTTP headers. May raise
MissingConnection.

[returnRedirect loc] sends redirection HTTP response to client
(status code 302), with information that the client should request
location loc. May raise MissingConnection.

[getQuery()] constructs and returns a set representing the query data
associated with the connection. It reads the POST content or the
query string. The POST content takes precedence over the query
string.

[formvar k] returns the first query data associated with the key k;
the function returns NONE if no query data is present for the
argument key k.

[formvarAll k] returns all values associated with key k in the query
data; the function returns the empty list if no query data is present
for the argument key k.

[storeMultiformData (fv,filename)] stores the uploaded file
represented by formvariable fv in file filename. Raises Fail if some
error happens (e.g., filename can’t be opened, fv does not exists or
fv is not an uploaded file.

[headers()] returns, as a set, the HTTP headers associated with the
connection.

134 APPENDIX B. THE WEB STRUCTURE

[host()] returns the server hostname associated with the connection.

[location()] returns the HTTP location associated with the
connection. For example: http://www.avalon.com:81. A server may be
associated with more than one location at a given time, although
there is always only on location associated with a connection..

[peer()] returns the name of the peer associated with the
connection. The peer address is determined by the communications
driver in use by the connection. Typically, it is a dotted IP
address, for example, 199.221.53.205, but this is not guaranteed.

[peerPort()] returns the port from which the peer is connected.

[port()] returns the server port number associated with the
connection.

[redirect f] performs an internal redirect, to the file f; i.e.,
makes it appear that the user requested a different URL and then run
that request. This form of redirect does not require the running of
an additional thread.

[server()] returns the name of the server associated with the
connection.

[url()] return the url (relative to server-root) associated with the
request.

[hasConnection()] returns true if a connection is available. Returns
false otherwise. For the execution of init scripts and scheduled
scripts, no connection is available. This function may be used to
protect execution of code that requires a connection (e.g., execution
of library code).

[add_headers (key,value)] adds key:value to the http header

[fullRequest()] returns the entire request as a string. Raises
exception MissingConnection if no connection is present.
*)

B.4. THE WEB_COOKIE SIGNATURE 135

B.4 The WEB_COOKIE Signature

signature WEB_COOKIE = sig
exception CookieError of string
type cookiedata = {name : string,

value : string,
expiry : Date.date option,
domain : string option,
path : string option,
secure : bool}

val allCookies : unit -> (string * string) list
val getCookie : string -> (string * string) option
val getCookieValue : string -> string option
val setCookie : cookiedata -> unit
val setCookies : cookiedata list -> unit
val deleteCookie : {name: string, path: string option}

-> unit
end

(*
[CookieError s] exception raised on error with message s.

[cookiedata] type of cookie.

[allCookies()] returns a list [(n1,v1), (n2,v2), ...,
(nm,vm)] of all the name=value pairs of defined cookies.

[getCookie cn] returns SOME(value) where value is the
’cn=value’ string for the cookie cn, if any; otherwise
returns NONE.

[getCookieValue cn] returns SOME(v) where v is the value
associated with the cookie cn, if any; otherwise returns
NONE.

[setCookie {name,value,expiry,domain,path,secure}] returns
a string which (when transmitted to a browser as part of
the HTTP response header) sets a cookie with the given name,
value, expiry date, domain, path, and security level.

136 APPENDIX B. THE WEB STRUCTURE

[setCookies ckds] returns a string which (when transmitted
to a browser as part of the HTTP response header) sets the
specified cookies.

[deleteCookie {name,path}] returns a string that (when
transmitted to a browser as part of the HTTP response
header) deletes the specified cookie by setting its expiry
to some time in the past.
*)

B.5. THE WEB_DB SIGNATURE 137

B.5 The WEB_DB Signature

signature WEB_DB = sig
structure Handle : WEB_DB_HANDLE

type ’a Type
val config : ’a Type * string * ’a -> unit

(* Data manipulation language *)
val dml : quot -> unit
val exec : quot -> unit
val maybeDml : quot -> unit
val panicDml : (quot -> ’a) -> quot -> unit

(* Stored Procedure *)
val execSp : quot list -> unit

(* Queries *)
val fold : ((string->string)*’a->’a) -> ’a -> quot -> ’a
val foldCol : (string list -> (string->string option)*’a->’a)

-> ’a -> quot -> ’a
val app : ((string->string)->’a) -> quot -> unit
val appCol : (string list -> (string->string option)->’a)

-> quot -> unit
val list : ((string->string)->’a) -> quot -> ’a list
val listCol : (string list -> (string->string option)->’a)

-> quot -> ’a list

val oneField : quot -> string
val zeroOrOneField: quot -> string option
val oneRow : quot -> string list
val oneRow’ : ((string->string)->’a) -> quot -> ’a
val zeroOrOneRow : quot -> string list option
val zeroOrOneRow’ : ((string->string)->’a) -> quot -> ’a option
val existsOneRow : quot -> bool

(* Sequences *)
val seqNextvalExp : string -> string
val seqNextval : string -> int
val seqCurrvalExp : string -> string

138 APPENDIX B. THE WEB STRUCTURE

val seqCurrval : string -> int

(* Miscellaneous *)
val sysdateExp : string
val qq : string -> string
val qqq : string -> string
val toDate : string -> Date.date option
val timestampType : string
val toTimestampExp: string -> string
val toTimestamp : string -> Date.date option
val fromDate : Date.date -> string
val toDateExp : string -> string
val valueList : string list -> string
val setList : (string*string) list -> string
val toBool : string -> bool option
val fromBool : bool -> string
val toReal : string -> real option
val fromReal : real -> string

end

(*
[dml sql] executes the data manipulation language command sql using a
database handle obtained from the next pool. Raises Fail msg if sql
is unsuccessful; msg is the error message returned from the database.

[maybeDml sql] executes sql and returns the value unit. Does not
raise Fail - errors are suppressed.

[panicDml f sql] executes sql and returns the value unit. On error
the function f is applied to an error string. The function always
returns unit.

[fold f b sql] executes SQL statement sql and folds over the result
set. b is the base and f is the fold function; the first argument to
f is a function that maps column names to values. Raises Fail msg on
error.

[foldSet f b sql] similar to fold except that f takes the result set
as argument. Raises Fail msg on fail.

B.5. THE WEB_DB SIGNATURE 139

[app f sql] executes SQL statement sql and applies f on each row in
the result set. Raises Fail on error.

[list f sql] executes SQL statement sql and applies f on each row in
the result set. The result elements are returned as a list. Raises
Fail on error.

[oneField sql] executes SQL statement sql, which must return exactly
one row with one column, which the function returns as a
string. Raises Fail on error.

[zeroOrOneField sql] executes SQL statement sql, which must return
either zero or one row. If one row is returned then there must be
exactly one column in the row. Raises Fail on error.

[oneRow sql] executes SQL statement sql, which must return exactly
one row. Returns all columns as a list of strings. Raises Fail on
error.

[oneRow’ f sql] executes SQL statement sql, which must return exactly
one row. Returns f applied on the row. Raises Fail on error.

[zeroOrOneRow sql] executes SQL statement sql, which must return
either zero or one row. Returns all columns as a list of
strings. Raises Fail on error.

[zeroOrOneRow’ f sql] executes SQL statement sql, which must return
either zero or one row. Returns f applied on the row if a row
exists. Raises Fail on error.

[existsOneRow sql] executes SQL statement sql and returns true if the
query results in one or more rows; otherwise returns false. Raises
Fail on error.

[seqNextvalExp seq_name] returns a string to fit in an SQL statement
generating a new number from sequence seq_name.

[seqNextval seq_name] executes SQL statement to generate a new number
from sequence seq_name. Raise Fail on error.

140 APPENDIX B. THE WEB STRUCTURE

[seqCurrvalExp seq_name] returns a string to fit in an SQL statement
returning the current number from the sequence seq_name.

[seqCurrval seqName] executes SQL statement to get the current number
from sequence seq_name. Raises Fail on error.

[sysdateExp] returns a string representing the current date to be
used in an SQL statement (to have your application support different
database vendors).

[qq v] returns a string with each quote (’) replaced by double quotes
(’’) (e.g., qq("don’t go") = "don’’t go").

[qqq v] similar to qq except that the result is encapsulated by
quotes (e.g., qqq("don’t go") = "’don’’t go’").

[toDate d] returns the Date.date representation of d, where d is the
date representation used in the particular database. Returns NONE if
d cannot be converted into a Date.date. Only year, month and day are
considered.

[toBool b] returns the Bool.bool representation of a boolean, where b
is the bool representation used in the particular database. Returns
NONE if b cannot be converted into a Bool.bool.

[timestampType] returns the database type (as a string) representing
a timestamp (to have your application support different database
vendors).

[toTimestampExp d] returns a string to put in a select statement,
which will return a timestamp representation of column d. Example:
‘select ^(Db.toTimestampExp "d") from t‘ where d is a column of type
date (in oracle) or datatime (in PostgreSQL and MySQL).

[toTimestamp t] returns the Date.date representation of t, where d is
the timestap representation from the database. Returns NONE if t
cannot be converted into a Date.date. Year, month, day, hour, minutes
and seconds are considered.

[fromDate d] returns a string to be used in an SQL statement to

B.5. THE WEB_DB SIGNATURE 141

insert the date d in the database.

[fromBool b] returns a Bool.bool used in an SQL statement to insert a
bool b in the database

[valueList vs] returns a string formatted to be part of an insert
statement:

‘insert into t (f1,f2,f3)
values (^(Db.valueList [f1,f2,f3]))‘

is turned into

‘insert into t (f1,f2,f3)
values (’f1_’,’f2_’,’f3_’)‘

where fi_ are the properly quoted values.

[setList nvs] returns a string formatted to be part of an update
statement. Say nvs = [(n1,v1),(n2,v2)], then

‘update t set ^(Db.setList nvs)‘

is turned into

‘update t set n1=’v1_’,n2=’v2_’‘

where vi_ are the properly quoted values.
*)

142 APPENDIX B. THE WEB STRUCTURE

B.6 The WEB_DB_HANDLE Signature

signature WEB_DB_HANDLE = sig
(* Database handles *)
type db

val getHandle : unit -> db
val putHandle : db -> unit
val wrapDb : (db -> ’a) -> ’a

(* Data manipulation language *)
val dmlDb : db -> quot -> unit
val execDb : db -> quot -> unit
val panicDmlDb : db -> (quot->’a) -> quot -> unit

(* Transactions *)
val dmlTransDb : db -> (db -> ’a) -> ’a
val dmlTrans : (db -> ’a) -> ’a
val panicDmlTransDb : db -> (quot->’a) -> (db->’a) -> ’a
val panicDmlTrans : (quot->’a) -> (db->’a) -> ’a

(* Stored Procedure *)
val execSpDb : db -> quot list -> unit

(* Queries *)
val foldDb : db -> ((string->string)*’a->’a) -> ’a -> quot -> ’a
val foldDbCol : db -> (string list -> (string -> string option) * ’a

-> ’a)
-> ’a -> quot -> ’a

val appDb : db -> ((string->string)->’a) -> quot -> unit
val appDbCol : db -> (string list -> (string->string option)->’a)

-> quot -> unit
val listDb : db -> ((string->string)->’a) -> quot -> ’a list
val listDbCol : db -> (string list -> (string->string option)->’a)

-> quot -> ’a list
val zeroOrOneRowDb : db -> quot -> string list option
val oneFieldDb : db -> quot -> string
val zeroOrOneFieldDb: db -> quot -> string option
val oneRowDb : db -> quot -> string list
val oneRowDb’ : db -> ((string->string)->’a) -> quot -> ’a

B.6. THE WEB_DB_HANDLE SIGNATURE 143

val zeroOrOneRowDb’ : db -> ((string->string)->’a) -> quot
-> ’a option

val existsOneRowDb : db -> quot -> bool

(* Sequences *)
val seqNextvalDb : db -> string -> int
val seqCurrvalDb : db -> string -> int

end

(*
[db] type of database handle. Whenever the Web server talks to the
database, it is by means of a database handle. Database handles are
kept in the Web server using a prioritized set of pools. Each Web
script obtains and releases database handles from the set of pools in
a stack-like manner (each script may own at most one database handle
from each pool). This arrangement is to avoid the possibility of
deadlocks in case multiple Web scripts run simultaneously.

[getHandle] returns a database handle from the next available
pool. Raises Fail if no more pools are available.

[putHandle db] returns the database handle db to its pool and makes
the pool available to a subsequent call to getHandle.

[initPools pools] initializes the set of pools. The pools must be
defined in the nsd.tcl configuration file. See the file lib/Db.sml
for a use of this function.

[dmlDb db dml] executes the data manipulation language command dml
using database handle db. Raises Fail msg if dml is unsuccessful; msg
is the error message returned from the database.

[panicDmlDb db f sql] executes the data manipulation language command
dml using database handle db. Calls the function f with with an error
message as argument if the dml command is unsuccessful. panicDmlDb
returns unit and raises an exception only if f does.

[dmlTransDb db f] executes function f using handle db, which may send
a series of SQL statements to the database. All SQL statements are
executed as one atomic transaction. If any statement fails or any

144 APPENDIX B. THE WEB STRUCTURE

exception is raised inside f, then the transaction is rolled back and
the exception is raised.

[dmlTrans f] similar to dmlTransDb, but with a database handle
obtained from the next available pool.

[panicDmlTransDb db f_panic f_db] same as dmlTransDb except that on
error function f_panic is executed. panicDmlTransDb returns the value
returned by f_panic unless f_panic raises an exception, in which case
panicDmlTransDb raises this exception.

[panicDmlTrans f_panic f_db] similar to panicDmlTransDb, but a
database handle is obtained from the next available pool.

[foldDb db f b sql] executes SQL statement sql and folds over the
result set. b is the base and f is the fold function; the first
argument to f is a function that maps column names to values. Raises
Fail msg on error.

[foldSetdb db f b sql] similar to foldDb except that f takes the
result set as argument. Raises Fail msg on fail.

[appDb db f sql] executes SQL statement sql and applies f on each row
in the result set. Raises Fail on error.

[listDb db f sql] executes SQL statement sql and applies f on each
row in the result set. The result elements are returned as a
list. Raises Fail on error.

[zeroOrOneRowDb db sql] executes SQL statement that must return
either zero or one row. Returns all columns as a list of
strings. Raises Fail on error.

[oneFieldDb db sql] executes SQL statement sql, which must return
exactly one row with one column, which the function returns as a
string. Raises Fail on error.

[zeroOrOneFieldDb db sql] executes SQL statement sql, which must
return either zero or one row. If one row is returned then there must
be exactly one column in the row. Raises Fail on error.

B.6. THE WEB_DB_HANDLE SIGNATURE 145

[oneRowDb db sql] executes SQL statement sql, which must return
exactly one row. Returns all columns as a list of strings. Raises
Fail on error.

[oneRowDb’ db f sql] executes SQL statement sql, which must return
exactly one row. Returns f applied on the row. Raises Fail on error.

[zeroOrOneRowDb’ db f sql] executes SQL statement sql, which must
return either zero or one row. Returns f applied on the row if it
exists. Raises Fail on error.

[existsOneRowDb db sql] executes SQL statement sql and returns true
if one or more rows are returned; otherwise returns false. Raises
Fail on error.

[seqNextvalDb db seq_name] executes SQL statement using database
handle db to generate a new number from sequence seq_name. Raise Fail
on error.

[seqCurrvalDb db seqName] executes SQL statement using database
handle db to get the current number from sequence seq_name. Raises
Fail on error.

[wrapDb f] obtains a handle db with getHandle. applies f to db and
before returning the result, the handle db is returned with
putHandle.
*)

146 APPENDIX B. THE WEB STRUCTURE

B.7 The WEB_DYNLIB Signature

signature WEB_DYNLIB = sig
datatype flag = NOW | LAZY
type ForeignLib
val dlopen : string option * flag * bool -> ForeignLib
val dlsym : string * string * ForeignLib -> unit
val isLinked : string -> bool

end

B.8. THE WEB_INFO SIGNATURE 147

B.8 The WEB_INFO Signature

signature WEB_INFO = sig
structure Type : WEB_SERIALIZE
val hostname : unit -> string
val pid : unit -> int
val uptime : unit -> int
val configGetValue : (’a Type.Type * string) -> ’a option
val configSetValue : (’a Type.Type * string * ’a) -> unit
val configSetSpecialValue : (((’a Type.Type * string * ’a) ->

unit)
* ’a Type.Type * string * ’a) ->
unit

val pageRoot : unit -> string
val getAuxConfigData : unit -> string option
val getUser : unit -> string option
val getAuthType : unit -> string option

end

(*
[hostname()] returns the host name of the machine.

[pid()] returns the process id of the server process.

[uptime()] returns the number of seconds the server process
has been running.

[configGetValue(T,key)] fetches value of type T associated with key
if it exists.

[configSetValue(T,key,v)] associates with key the value v of type T.

[pageRoot()] returns the directory for which the server
serves pages.

[getAuxConfigData()] returns some string if SmlAuxData is defined
in you webserver configuration file and NONE otherwise.

[getUser()] returns SOME username if an authentication check has
succeeded. Returns NONE otherwise.

148 APPENDIX B. THE WEB STRUCTURE

[getAuthType()] returns SOME authtype if an authentication check of
type authtype has succeeded. Returns NONE otherwise.
*)

B.9. THE WEB_LOG SIGNATURE 149

B.9 The WEB_LOG Signature

signature WEB_LOG = sig
type LogSeverity
val Emergency : LogSeverity
and Alert : LogSeverity
and Critical : LogSeverity
and Error : LogSeverity
and Warning : LogSeverity
and Notice : LogSeverity
and Info : LogSeverity
and Debug : LogSeverity
val log : LogSeverity * string -> unit
val advLog : LogSeverity * ’a * (’a -> string) -> ’a

end

(*
[LogSeverity] Type of log severity level.

[Emergency] something extremely bad occurred.

[Alert]

[Critical]

[Error] something bad occurred.

[Warning] default logging level.

[Notice]

[Info]

[Debug] lowest logging level.

[log (ls,s)] write the string s to the log file with log
severity ls.

[advLog(ls,s,f)] log f(s) with log severity ls and return s.
*)

150 APPENDIX B. THE WEB STRUCTURE

B.10 The WEB_LOW_MAIL Signature

signature WEB_LOW_MAIL = sig
type MX_FQDN
type mailer
exception ConnectionErr of

(string * (string * string) list
* (string * string) list * (string * string) list)

val getFQDN_MX : string -> (int * int * MX_FQDN) list
val FQDN_MX_toString : MX_FQDN -> string
val FQDN_MX_fromString : string -> MX_FQDN
val FQDN_MX_compare : MX_FQDN * MX_FQDN -> order
val initConn : MX_FQDN -> mailer
val sendmail : string list * string * string * mailer ->

(string *string) list * (string * string) list
* (string * string) list

val closeConn : mailer -> unit
val getDefaultServer : unit -> MX_FQDN option

end

(*
[MX_FQDN] represents a Fully Qualified Domain Name for an MX record
(an smtp server).

[mailer] represents the mail connection (socket and protocol state).

[ConnectionErr] may be raised by initConn and sendmail if the mailer has
problems and needs to call closeConn.

[getFQDN_MX] take a domain names and returns a list of triplets where
the first element is the preference, the second element is the time
to live and the third element is the Fully Qualified Domain Name for
the mail server to use if such exists. The list will be prioritized
with the best server as the first element, second best server as the
second element, etc.

[initConn] initializes a connection with the server represented by
the FQDN and associates the exception with the connection. initConn
and sendmail may raise the exception.

B.10. THE WEB_LOW_MAIL SIGNATURE 151

[sendmail] send mails to the people through the connection given by
the mailer. sendmail returns the id on the mails that was accepted
by the mail server.

[closeConn] closes the connection given by mailer and returns three
lists. The first list contain ids on mails accepted by the mail
server, the second list contain ids on mails that was temporary
undeliverable and the third list contain ids on permanent
undeliverable mails.
*)

152 APPENDIX B. THE WEB STRUCTURE

B.11 The WEB_MAIL Signature

signature WEB_MAIL = sig
type email = {to: string list, cc: string list,

bcc: string list, from: string,
subject: string, body: string,
extra_headers: string list}

val sendmail : email -> unit
val send : {to: string, from: string,
subject: string, body: string} -> unit
datatype CharSet = UTF8 | ISO88591 | USASCII
val mail : (’a -> (email * ’a * CharSet) option) ->

((email * (string * string) list * ’b) -> ’b) ->
’a -> ’b -> (’a * ’b)

end

(*
[sendmail {to,cc,bcc,from,subject,body,extra_headers}] sends
an email to the addresses in to, cc, and bcc.

[send {to,from,subject,body}] abbreviated version of
sendmail.

[mail f g a b] Advanced mail interface that supports sending of
multiple emails using one SMTP connection.
*)

B.12. THE WEB_MIME SIGNATURE 153

B.12 The WEB_MIME Signature

signature WEB_MIME = sig
val getMime : string -> string
val addEncoding : string -> string

end
(*
[getMime s] returns the mime-type of the file s based on the file’s
extension and it’s content.

[addEncoding s] adds configured encoding to mime-type s.
*)

154 APPENDIX B. THE WEB STRUCTURE

B.13 The WEB_SERIALIZE Signature

signature WEB_SERIALIZE =
sig
type ’a Type = {name: string,
to_string: ’a -> string,
from_string: string -> ’a}
val Pair : ’a Type -> ’b Type -> (’a * ’b) Type
val Option : ’a Type -> (’a option) Type
val List : ’a Type -> (’a list) Type
val Triple : ’a Type -> ’b Type -> ’c Type

-> (’a * ’b * ’c) Type
val Unit : unit Type
val Int : int Type
val Real : real Type
val Bool : bool Type
val Char : char Type
val String : string Type
val Time : Time.time Type

end

(*
[Pair aType bType] returns the pair type representing the
pairs (a,b) where a is of type aType and b is of type
bType.

[Option aType] returns the type aType option, representing
a option where a is of type aType.

[List aType] returns the list type representing the list
of elements of type aType.

[Triple aType bType cType] similar to Pair except that the
triple is represented with as one Pair embedded in another
Pair: ((a,b),c) where a is of type aType, b is of type
bType and c is of type cType.

[Unit] predefined type representing units.

[Int] predefined type representing integers.

B.13. THE WEB_SERIALIZE SIGNATURE 155

[Real] predefined type representing reals.

[Bool] predefined type representing booleans.

[Char] predefined type representing characters.

[String] predefined type representing strings.

[Time] predefined type representing Time.time values.
*)

156 APPENDIX B. THE WEB STRUCTURE

B.14 The WEB_SET Signature

signature WEB_SET = sig
type set
val get : set * string -> string option
val iget : set * string -> string option
val getOpt : set * string * string -> string
val getAll : set * string -> string list
val igetAll: set * string -> string list
val size : set -> int
val list : set -> (string * string) list
val filter : (string*string->bool) -> set

-> (string*string) list
val foldl : ((string*string)*’a->’a) -> ’a -> set -> ’a
val foldr : ((string*string)*’a->’a) -> ’a -> set -> ’a

end

(*
[set] abstract type of sequences of key-value pairs, returned by some
calls to the web-server.

[get (s,k)] returns SOME(v) if v is the first value associated with
key k in set s; returns NONE if no value is associated with k in s.

[iget (s,k)] is the insensitive counterpart to get.

[getOpt (s,k,v)] returns the first value associated with key k in set
s; returns v if no value is associated with k in s.

[getAll (s,k)] returns all values associated with key k in set s;
returns the empty list if no values are associated with k in s.

[size s] returns the number of elements in a set.

[list s] returns the list representation of set s.

[filter f s] returns the list of key-value pairs in s for which
applying f on the pairs (from left to right) returns true.

[foldl f acc s] identical to (foldl o list).

B.14. THE WEB_SET SIGNATURE 157

[foldr f acc s] identical to (foldr o list).
*)

158 APPENDIX B. THE WEB STRUCTURE

B.15 The XMLRPC Signature

signature XMLRPC = sig
include XMLRPC_TYPE

exception TypeConversion
exception MethodInvocation of (int * string)
exception ServerConnection of string

val rpc : ’a T -> ’b T -> {url : string, method : string}
-> (’a -> ’b)

type method
val dispatch : method list -> unit
val method : string -> ’a T -> ’b T -> (’a -> ’b) -> method

end

(*
[TypeConversion] is raised whenever a recieved value dosen’t match
the expected type.

[MethodInvocation (code, str)] is raised when a fault message is
recieved from the server; code is the error code returned and str the
fault string returned.

[ServerConnection] is raised if problems occur during reading or
writing to the connection.

[rpc A B {url, method}] returns a function of type (A -> B) that when
called will connect to the XML-RPC server resident at the address
specified by url. The function will call the specified method on the
server.

The returned function raises:

- TypeConversion if the returned XML-RPC response cannot be
converted to a value of type B.

- MethodInvocation if a fault value is returned from the server

B.15. THE XMLRPC SIGNATURE 159

- ServerConnection if problems occur during reading or writing
to the connection.

[type method] type of method.

[method m A B f] returns a method of name m bound to the function f
of type A -> B.

[dispatch ms] executes the first method in the list ms for which the
name equals the extracted actual method name from the client
request. Raises exception ServerConnection in case of connection
errors.
*)

160 APPENDIX B. THE WEB STRUCTURE

B.16 The XMLRPC_TYPE Signature

signature XMLRPC_TYPE = sig
type ’a T
val int : int T
val bool : bool T
val real : real T
val string : string T
val date : Date.date T
val pair : ’a T * ’b T -> (’a * ’b) T
val list : ’a T -> ’a list T
val array : ’a T -> ’a Array.array T
val vector : ’a T -> ’a Vector.vector T

end

(*
[int] type <int> and <i4>

[bool] type <boolean>

[real] type <double>

[string] type <string>

[date] type <dateTIme.iso8601>

[pair] type <struct> where type ’a = member with name=1 and ’b =
member with name=2

[list] type <array>. Homogeneous lists where elements must be of
identical type.

[array] type <array>. Homogeneous arrays where elements must be of
identical type.

[vector] type <array>. Homogeneous vectors where elements must be of
identical type.
*)

Index

^^
in quotation, 27
symbolic identifier, 27

^‘, 27

<a> element, 116
aborting execution, 21
access control, 2
access restriction, 89
ACID test, 59
action attribute, 119
<address> element, 121
allCookies function, 92
alter table

SQL command, 61
alumni system, viii, 111
anchor, 116
anonymous function, 17
anyErrors function, 86
Apache

log file, 21
modules, 18
restart, 8
setup, 22
start up, 18

atomicity, 59
attribute

HTML tag, 115
Auth structure, 96
authentication, 48, 89
average rating, 73

 element, 117

base type
Bool, 48
Char, 48
Int, 48
Real, 48
String, 48

Best Wines Web site, 70
Bill Gates, 47
<blockquote> element, 116
<body> element, 115
bookmark, 115
bottle images, 81
bottleImgs function, 74

 element, 122

cache, 48, 99
cache type, 48
cache kind

TimeOut, 48
WhileUsed, 48

cache name, 48
CGI, 2
character, 118
checkbox, 119
clob datatype, 111
cols, 121
Common Gateway Interface, 2
compact attribute, 118
compilation, 18, 19
configGetValue function, 109
configSetValue function, 109
configuration file

project file name, 18

161

162 INDEX

consistency, 59
consistency constraint, 59, 60, 72
content-type, 16
cookie, 20, 90
Cookie structure, 90
CookieError exception, 91, 92
course registration system, vii, 111
create sequence

SQL command, 72
create table

SQL command, 60
createdb command, 8
createuser command, 7

data definition language, 60
data manipulation language, 60
database handle, 66
database user, 7
Db structure, 66
Db.fold function, 75
Db.qq function, 67
Db.qqq function, 68
DbBackend, 8
DbFunctor, 8
<dd> element, 117
deadlock, 66
definition list, 117
delete

SQL command, 63
deleteCookie function, 91
deSchedule function, 107
diagram

Entity-Relationship (E-R), 71
Web site, 65, 100

<dl> element, 117
document

location, 116
domain

cookie attribute, 92
drop table, 64

SQL command, 61
<dt> element, 117
durability, 59

E-R diagram, 71
easy part, 64
element, 115
email

sending, 86
employee.sql file, 64
encrypted communication, 2
end tag, 115
Entity-Relationship diagram, 71
errs type, 83
evaluation system, 111
Example

Best Wines Web site, 70
caching, 50
counting up and down, 33
dynamic recipe, 27
employee, 57
guess a number, 34
link database, 99
memoization, 53
multiplication table, 16
scheduling, 107
sending email, 85
temperature conversion, 23
time of day, 12

exception
Interrupt, 22
uncaught, 22

execution
aborting, 21

expiry
cookie attribute, 91

extensibility, 111

fetchUrl function, 39
fetchUrlTime function, 39
filtering, 2

INDEX 163

flush function, 50
form, 118
<form> element, 118
form variable, 117

hidden, 119
FormVar structure, 25, 84
formvar_fn type, 84
frag type, 26
function

anonymous, 17
functional programming, 3

get function, 49
getCookie function, 92
getIntErr function, 25
getNatErr function, 29
getStringOrFail function, 69
group by

SQL command, 73

<h1> element, 117
hard part, 64
<head> element, 115
header, 117
hidden form variable, 119
high-level language, 3
higher-order function, 111
hit rate, 47
<hr> element, 122
HTML, 115

comment, 121
element, 115
form, 118

HTTP, 2
request, 11
response, 12, 15
response headers, 12
status code, 12
status codes, 16

hyperlink, 116

<i> element, 117
 element, 121
imperative features, 3
index

database table, 60
init.sml, 8
initialization, 105
<input> element, 118, 119
insert

SQL command, 61
insert function, 50
installation, 5
integrity constraint, 72
interpreter

embedded, 2
Interrupt exception, 22
isolation, 59

language embedding, 25
 element, 118
library code, 9
limitations, 111
line break, 122
<listing> element, 116
little sleep, 58
log file, 21
login, 89, 90

form, 96
logout, 90
lookup function, 50
low-level language, 3

mailto function, 74
maintainability, 111
Margaux

Chateau de Lamouroux, 78
memoize function, 53
memoizePartial function, 99
method attribute, 119
Mime-type, see content-type
MissingConnection

164 INDEX

MissingConnectionexception, 105
ML Basis File, 18
ML Server Pages (MSP), 16
MLB directories, 19
mlb-file, 8, 18
modules, 111
Mosmlcgi library, 2
Msp structure, 17
mspcomp, 6, 16, 18
MySQL, 7, 66

newPassword function, 98
news, 111
not null, 60

ODBC, see unixODBC
 element, 118
one-to-many relation, 71
<option> element, 118, 121
Oracle, 7
order by

SQL command, 73
ordered list, 118

<p> element, 116
Page structure, 29
paragraph, 116
password

field, 119
path

cookie attribute, 92
pattern, 41
performance, 58
periodic execution, 111
Perl, 3
permission system, 90
person table, 95
personalization, 89
PHP, 3
pool, 66
port, 116

Postgresql
daemon process, 7
installation, 7

postgresql user, 7
power failure, 59
<pre> element, 116
primary key, 60
process

fork, 2
project

your own, 8
psql, 65
psql command, 8

Quot structure, 27
quot type, 27
Quot.flatten, 26
quotation, 94
quotations, 25

radio button, 119
RatingUtil structure, 74
RDBMS, 7, 57

connection, 66
README_SMLSERVER file, 5
referential integrity constraint, 72
RegExp.extract, 45
RegExp.match, 44
registration, 96
regular expression, 41, 86
reset input type, 120
resource type, 116
response headers, 12
reusability, 111
rows, 121
rule

horizontal, 122

schedule function, 106
scheduleDaily function, 107
scheduleScript function, 106

INDEX 165

scheduleWeekly function, 107
scheduling, 106
script, 18
secure

cookie attribute, 92
Secure Socket Layer, 2
select

SQL command, 62, 73
select box, 120
<select> element, 118, 120
sending email, 86
sendPassword function, 98
sequence, 72, 95
setCookie function, 91
shut down, 58
SML, 3
SMLserver

compiler, 18, 19
module, 18

smlserverc, 5, 6, 8, 18, 19
SOAP, 111
SQL, 59

alter table, 61
create sequence, 72
create table, 60
delete, 63
drop table, 61
group by, 73
insert, 61
order by, 73
select, 62, 73
update, 63

SSL, 2, 18, 89, 90, 92
Standard ML, 3
Standard ML Basis Library, 19
standard port, 116
start tag, 115
state

cookie, 90
maintaining, 20

static type system, 3
status code, 12
structured query language, see SQL
style

logical, 117
physical, 117

submit input type, 120
system crash, 59

tag
end, 115

TCL, 3
TCP

port, 116
text

field, 119
preformatted, 116
quoted, 116

<textarea> element, 118, 121
<title> element, 115
transaction, 59
trapping, 2, 108
<tt> element, 117
type attribute, 119
type constructor

List, 48
Option, 48
Pair, 48
Triple, 48

type system, 111

<u> element, 117
 element, 118
uncaught exception, 22
Uniform Resource Locator, 11
uniform resource locator, 116
unixODBC, 7
unordered list, 118
update

SQL command, 63
URL, 11, 116

166 INDEX

URL decode, 92
URL encode, 70, 91
user

contribution, 89
identification, 89
input, 23
tracking, 89
transactions, 89

varchar column data type, 60
verifyPerson function, 98

wealth clock, 47
Web server

API, 15, 123
restart, 8

WEB signature, 125
Web site

real-purpose, 111
Web site diagram, 64, 100
Web structure, 123
Web.Conn.formvar, 33, 86
Web.Conn.return, 15
Web.Conn.returnRedirectWithCode func-

tion, 94
Web.DbMySQL structure, 66
Web.DbOra structure, 66
Web.DbPg structure, 66
Web.DbPgBackend, 8
Web.encodeUrl, 41
Web.exit, 22
Web.Info structure, 22
Web.Mail.send, 86
Web.returnRedirect, 70, 80
WEB_CACHE signature, 129
WEB_CONN signature, 132
WEB_COOKIE signature, 135
WEB_DB signature, 137
WEB_DB_HANDLE signature, 142
WEB_DYNLIB signature, 146
WEB_INFO signature, 147

WEB_LOG signature, 149
WEB_LOW_MAIL signature, 150
WEB_MAIL signature, 152
WEB_MIME signature, 153
WEB_SERIALIZE signature, 154
WEB_SET signature, 156

XML, 111
XMLRPC signature, 158
XMLRPC_TYPE signature, 160
XSLT, 111

