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2 Values and their Representationinteger 32 bits, untagged. Unboxed (i.e., not region allocated).real 64 bits, untagged. Boxed (i.e., allocated in region)string Unbounded size. Allocated in region.bool one 32-bit word. Unboxed.� list nil and :: cells unboxed (i.e., not region allocated). Auxiliary pairs inone region; elements in zero or more regions. Size of auxiliary pairs: two32-bit words.� tree A tree and its subtrees reside in one region. Elements in one region (ifnot unboxed).exn Exception values are boxed and are always stored in a global region.fn pat=> exp An anonymous function is represented by a boxed, untagged closure. Size(in 32-bit words): 1 plus the number of free variables of the function.(Free region variables also count as variables.)fun f : : : Mutually recursive region-polymorphic functions share the same closure,which is region-allocated, untagged, and whose size (in words) is thenumber of variables that occur free in the recursive declaration.Regions and their RepresentationFinite(�:n) Region whose size can be determined at compile time. During com-pilation, a �nite region size is given as a non-negative integer. Aftermultiplicity inference, this integer indicates the number of times a value(of the appropriate type) is written into the region. Later, after physicalsize inference, the integer indicates the physical region size in words. Atruntime, a �nite region is allocated on the runtime stack.In�nite(�:INF) All other regions. At runtime, an in�nite region consists of a stack al-located region descripter, which contains pointers to the beginning andthe end of a linked list of �xed size region pages.Storage Modes (only signi�cant for in�nite regions)atbot Reset region, then store value.sat Determine actual storage mode (attop/atbot) at runtime.attop Store at top of region, without destroying any values already in theregion.
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PrefaceThe ML Kit with Regions is a compiler for full Standard ML, includingModules and the SML Basis Library. It is intended for the development ofstand-alone applications that must be reliable, fast, and space e�cient.There has always been a tension between high-level features in program-ming languages and the programmer's legitimate need to understand pro-grams at the operational level. Very likely, if a resource conscious program-mer is forced to make a choice between the two, he will choose the latter.The ML Kit with Regions is the result of a research and developmente�ort which has been going on at the University of Copenhagen for the pastseven years. The goal of this project has been to develop implementationtechnology which combines the advantages of using a high-level programminglanguage, in this case Standard ML, with a model of computation that allowsprogrammers to reason about how much space and time their programs willuse.In most call-by-value languages, it is not terribly hard to give a model oftime usage that is good enough for elementary reasoning.For space, however, the situation is much less satisfactory. Part of thereason is that many programs must recycle memory while running. For allsuch programs, the mechanisms that reclaim memory inevitably become partof the reasoning. This is true irrespective of whether memory recycling isdone by a stack mechanism or by pointer tracing garbage collection.In the stack discipline, every point of allocation is matched by a point ofde-allocation and these points are obvious from the program. By contrast,garbage collection techniques usually separate allocation, which is done bythe programmer, from de-allocation, which is done by a garbage collector.The advantage of using reference tracing garbage collection techniques is thatthey apply to a wide range of high-level concepts now found in programminglanguages, for example recursive data types, higher-order functions, excep-9



10 CONTENTStions, references, and objects. The disadvantage is that it is becoming in-creasingly di�cult for the programmer to reason about lifetimes. Lifetimesmay depend on subtle details in the compiler and in the garbage collector.Thus, it is hard to model memory in a way that is useful to programmers.Also, compilers o�er little assistance for reasoning about lifetimes.In this report, we equip Standard ML with a di�erent memory manage-ment discipline, namely a region-based memory model. Like the stack disci-pline, the region discipline is, in essence, simple and platform-independent.Unlike the traditional stack discipline, however, the region discipline also ap-plies to recursive data types, references, and higher-order functions, for whichone has hitherto mostly used reference tracing garbage collection techniques.The reader we have in mind is a person with a Computer Science back-ground who is interested in developing reliable and e�cient applications writ-ten in Standard ML. Also, the report may be of interest to researchers ofprogramming languages, since the ML Kit with Regions is a fairly bold ex-ercise in program analysis. We should emphasise, however, that this reportis very much intended as a user's guide, not a scienti�c publication.This report consists of three parts:Part I: Overview, in which we give an overview of the ideas that underlieprogramming with regions in the Kit;Part II: Understanding Regions, in which we systematically go throughthe language constructs of the Standard ML Language, showing foreach one how it can be used when programming with regions;Part III: System Reference, in which we explain how to interact withthe system, how to use the region pro�ler and how to call C functionsfrom the ML Kit.The present report describes the ML Kit Version 3. This version of theML Kit extends the ML Kit Version 2 with support for the Standard MLModules language. The ML Kit Version 2 is a further development of the MLKit Version 1, which was developed at Edinburgh University and CopenhagenUniversity. The ML Kit (after Version 1) is also called the ML Kit withRegions. We hope you will enjoy using the ML Kit with Regions as much aswe have enjoyed developing it. If your experience with the Kit gives rise tocomments and suggestions, speci�cally with relation to the goals and visionsexpressed here, please feel free to write. Further information is available atour web site:
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Chapter 1Region-Based MemoryManagementRegion-Based Memory Management is a technique for managing memory forprograms that have dynamic data structures, such as lists, trees, pointers,and function closures.1.1 Prevailing Approaches to Dynamic Mem-ory ManagementMany programming languages rely on a memory model consisting of a stackand a heap. Typically, the stack holds temporary values, activation records,arrays, and in general, values whose lifetime is closely connected to procedureactivations and whose size can be determined at the latest when creation ofthe value begins. The heap is what holds all the other values. In particular,the heap holds values whose size can grow dynamically, such as lists andtrees. The heap also holds values whose lifetime does not follow procedureactivations closely (for example lists and, in functional languages, functionclosures and suspensions).The beauty of the stack discipline (apart from the fact that it is oftenvery e�cient in practice) is that it couples allocation points and de-allocationpoints in a manner that is intelligible to the programmer. C programmersappreciate that whatever memory is allocated for local variables in a proce-dure ceases to exist (and take up memory) when the procedure returns. Cprogrammers also know that counting from one to some large number, N , is15



16 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTnot best done by making N recursive C procedure calls, because that woulduse stack space proportional to N .By contrast, programmers have much less help when it comes to managingthe heap. Two approaches prevail. The �rst approach is that the programmermanages memory herself, using explicit allocation and de-allocation instruc-tions (e.g., malloc and free in C). For non-trivial programs this can be avery signi�cant burden, because it is, in general, very hard to make sure thatnone of the values that reside in the memory that one wishes to de-allocateare not needed for the rest of the computation. This puts the programmer ina very di�cult position. If one is too eager to reclaim memory in the heap,the program might crash under some peculiar circumstances, which might behard to �nd during debugging. If one is too conservative reclaiming mem-ory, the program might leak space, that is, it might use more memory thanexpected, perhaps eventually, exhaust the memory of the machine.The other prevailing approach is to use automatic garbage collection inthe heap. Some implementers of some languages even dispense with thestack entirely, relying only on a heap with garbage collection. Garbage col-lection techniques separate allocation, which is done by the programmer,from de-allocation, which is done by the garbage collector. At �rst, thismight seem like the perfect solution: no longer does the programmer haveto worry about whether memory that is being reclaimed really is dead, forthe garbage collector only reclaims memory that cannot be reached by therest of the computation. However, reality is less perfect. Garbage collectorsare typically based on the idea that if data is reachable via pointers (startingfrom the stack and other root data) then those data must be kept. Conse-quently, programs have to be written with care to avoid hanging on to toomany pointers. Space conscious programmers (and language implementers)can work their way around these problems, for example by assigning nil topointers that are no longer used. However, such tricks often rely on assump-tions about the code that cannot be checked by the compiler and that arelikely to be invalidated as the program evolves.1.2 Checked De-Allocation of MemoryRegions o�er an alternative to these two approaches. The runtime model isvery simple, at least in principle. The store consists of a stack of regions,see Figure 1.1. Regions hold values, for example tuples, records, function



1.2. CHECKED DE-ALLOCATION OF MEMORY 17

r0 r1 r2 r3 : : :Figure 1.1: The store is a stack of regions; every region is depicted by a boxin the picture.closures, references, and values of recursive types (such as lists and trees). Allvalues, except those that �t within one machine word (for example integers),are stored in regions.The size of a region is not necessarily known when the region is allocated.Thus a region can grow gradually (and many regions can grow at the sametime) so one might think of the region stack as a stack of heaps. However,the region stack really is a stack in the sense that (a) if region r1 is allocatedbefore region r2 then r2 is de-allocated before r1 and (b) when a region isde-allocated, all the memory occupied by that region is reclaimed in oneconstant time operation.Values that reside in one region are often, but not always, of the sametype. A region can contain pointers to values that reside in the same regionor in other regions. Both forward pointers (i.e., pointers from a region intoa region closer to the stack top) and backwards pointers (i.e., pointers to anolder region) occur.Conceivably, one can combine the region scheme with pointer tracinggarbage collection techniques.1 In the present version of the ML Kit, however,the region stack is the only form of memory management provided. How canthat be so? Is the region model really general enough to �t a wide variety of1Indeed we might well provide a release of the ML Kit which has both regions andreference-tracing garbage collection.



18 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTcomputations?First notice that the pure stack discipline (a stack, but no heap) is aspecial case of the region stack. Here the size of a region is known at thelatest when the region is allocated. Another special case is when one has justone region in the region stack and that region grows dynamically. This casecan be thought of as a heap with no garbage collection, which again wouldnot be su�cient.But when one has many regions, one obtains the possibility of distinguish-ing between values according to what region they reside in. The ML Kit hasoperations for allocating, de-allocating, and extending regions. But it alsohas an explicit operation for resetting an existing region, that is, reclaimingall the memory occupied by the region without eliminating the region fromthe region stack. This primitive, simple as it is, enables one to cope withmost of those situations where lifetimes simply are not nested. Figure 1.2shows a possible progression of the region stack.In the ML Kit the vast majority of region management is done automat-ically by the compiler and the runtime system. Indeed, with one exception,source programs are written in Standard ML, with no added syntax or spe-cial directives. The exception has to do with resetting of regions. The Kitprovides two built-in functions (resetRegions and forceResetting), whichinstruct the program to reset regions. Here resetRegions is a safe formof resetting where the compiler only inserts region resetting instructions ifit can prove that they are safe; it prints thorough explanations of why itthinks resetting might be unsafe otherwise. The function forceResettingis for potentially unsafe resetting of regions, which is useful in cases wherethe programmer jolly well knows that resetting is safe even if the compilercannot prove it. The function forceResetting is the only way we allowusers to make decisions that can make the program crash; many programsdo not need forceResetting and hence cannot crash (unless we have bugsin our system).All other region directives, including directives for allocation and de-allocation of regions, are inferred automatically by the compiler. This hap-pens through a series of fairly complex program analyses and transformations(in the excess of twenty-�ve passes involving three typed intermediate lan-guages). These analyses are formally de�ned and the central one, calledregion inference, has been proved correct for a skeletal language. Althoughthe formal rules that govern region inference and the other program analysesare complex, we have on purpose restricted attention to program analyses
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r0 r1 r2 r3 r4(a)
r0 r1 r2 r3 r4 r5(b)
r0 r1 r2 r3(c)Figure 1.2: Further development of the region stack: (a) after allocation ofr4; (b) after growth of r1 and r4, resetting of r3 and allocation of r5; (c)after popping of r4 and r5 but extension of r1 and r3.



20 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTthat we feel capture natural programming intuitions. Moreover, the Kit im-plementation is such that, with one exception2, every region directive takesconstant time and constant space to execute. The fact that we avoid inter-rupting program execution for unbounded lengths of time gives a nice smoothexperience when programs are run and should make the scheme attractivefor real-time programming.To help programmers get used to the idea of programming with regions,the ML Kit can print region-annotated programs, that is, source programsit has annotated with region directives. Also, it provides a region pro�ler forexamining run-time behaviour. The region pro�ler gives a graphical repre-sentation of region sizes as a function of time. This tool makes it possible tosee what regions use the most space and even to relate memory consumptionback to individual allocation points in the (annotated) source program.To sum up, the key advantages obtained by using regions compared tomore traditional memory management schemes are1. safety of de-allocation is checked by the compiler;2. the compiler can in many cases spot potential space leaks;3. region management is under the control of the user, provided one un-derstands the principles of region inference;4. each of the region operations that are inserted use constant time andconstant space at runtime;5. it is possible to relate runtime space consumption to allocation pointsin the source program; we have found region pro�ling to be a powerfultool for eliminating space leaks.Regions are not a magic wand to solve all memory management problems.Rather, the region scheme encourages a particular discipline of programming.The purpose of this report is to lay out this discipline of programming.2The exception has to do with exceptions. When an exception is raised, a search downthe stack for a handler takes place; this search is not constant time and it involves poppingof regions on the way. However, the number of region operations is bounded by the numberof handlers that appear on the stack.



1.3. EXAMPLE: THE GAME OF LIFE 211.3 Example: the Game of LifeTo illustrate the general 
avour of region-based memory management, let usconsider the problem of implementing the game of Life. The game takes placeon a board that resembles a chess board, except that the size of the boardcan grow as the game evolves. Thus every position has eight neighbouringpositions (perhaps after extension of the board). At any point in time, everyposition is either alive or dead. A snapshot of the game consisting of the boardtogether with an indication of which positions are alive is called a generation.The rules of the game specify how to progress from one generation to thenext. Consider generation n from which we want to create generation n + 1(n � 0). Let (i; j) be a position on the board, relative to some �xed point(0; 0) in the plane. Assume (i; j) is alive in generation n. Then (i; j) staysalive in generation n + 1 if and only if it has two or three live neighboursin generation n. Assume (i; j) is dead at generation n. Then it is bornin generation n + 1 if and only if it has precisely three live neighbours atgeneration n. We assume that only �nitely many positions are alive initially.An example of two generations of Life is shown below:00 00 00 000 0 00 0000 000 0 00 0000 00 0 0 0 000 0000 0000000000000 0 0 0 000 000 0 0 0 000 00 0 0 00000 0 0 000 0 000 000



22 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTTo represent the game board, we need a data structure which can growdynamically (so a two-dimensional array of �xed size is not su�cient). Asimple solution is to represent a generation by a list of integer pairs, namelythe positions that are alive. Since we want to give all pairs belonging to onegeneration the same lifetime (in the computer memory, that is!) it is naturalto store all the integer pairs belonging to one generation in the same region.Indeed region inference forces this decision upon us, as it happens, since itrequires that all elements belonging to the same list lie in the same region.(Di�erent lists can lie in di�erent regions, however.)Thus, after having built the initial generation, we expect the region stackto look like this
ln: list of integerpairs representinggeneration n.r0The computation of the next generation involves a considerable amount oflist computation. Chris Reade has expressed the key part of the compu-tation as shown in Figure 1.3. Despite the extensive use of higher-orderfunctions here, there is a great deal of stack structure in this computation.For example, the survivors list can be allocated in a local region whichcan be de-allocated after the list has been appended (@) to the newbornlist. The computation of survivors, in turn, involves the creation of a clo-sure for (twoorthree o liveneighbours) and additional creation of clo-sures as part of the computation of the application of filter. Each timeliveneighbours is called (by filter) additional temporary values are cre-ated. All of this data should live shorter than survivors itself. The detailsof these lifetimes are determined automatically by the region inference algo-rithm, which ensures that when the above expression terminates it will simplyhave created a list containing the live positions of the new generation.But now we have a design choice. Should we put the new generation inthe same region as the previous region or should we arrange that it is putin a separate region? Piling all generations on top of each other in the sameregion would clearly be a waste of space: only the most recent generation is



1.3. EXAMPLE: THE GAME OF LIFE 23let val living = alive genfun isalive x = member eq_int_pair_curry living xfun liveneighbours x = length(filter isalive (neighbours x))fun twoorthree n = n=2 orelse n=3val survivors = filter (twoorthree o liveneighbours) livingval newnbrlist = collect(fn z => filter (fn x => not(isalive x))(neighbours z)) livingval newborn = occurs3 newnbrlistin mkgen (survivors @ newborn)endFigure 1.3: An excerpt of a (modi�ed version of) Chris Reade's Game of Lifeprogram.ever needed. Similarly, giving each generation a separate region on the regionstack is no good either, because it would make the stack grow ad in�nitum(although this could be alleviated somewhat by resetting all regions exceptthe topmost one). The solution is simple, however: use two regions, onefor the current generation and one for the new generation. When the newgeneration has been created, reset the region of the old region and copy thecontents of the new region into the old region. This e�ect is achieved byorganising the main loop of the program as follows:local(*1*) fun nthgen'(p as(0,g)) = p(*2*) | nthgen'(p as(i,g)) =(*3*) nthgen' (i-1, let val g' = nextgen g(*4*) in show g;(*5*) resetRegions g;(*6*) copy g'(*7*) end)in(*8*) fun iter n = #2(nthgen'(n,gun()))end



24 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTHere nthgen' is the main loop of the program. It takes a pair as argument;the �rst component of the pair indicates the number of iterations desired,while the second, g, is the current generation. The use of the as pattern inline 1 forces the argument and the result of nthgen' to be in the same regions.Such a function is called a region endomorphism. In line 3, we compute afresh generation, which lies in fresh regions, as it happens. Having printedthe generation (line 4) we then reset the regions containing g. The compilerchecks that this is safe. Then, in line 6 we copy g' and the target of this copymust be the regions of g, because nthgen' is a region endomorphism (seeFigure 1.4). All in all, we have achieved that at most two generations arelive at the same time (a fact that can be checked by inspecting the region-annotated code, if one feels passionately about it).3The above device, which we refer to as double copying, can be seen as amuch expanded version of what is often called \tail recursion optimisation".In the case of regions, not just the stack space, but also region space, isre-used. Indeed, double copying is similar to invoking a copying garbagecollector on speci�c regions that are known not to have live pointers intothem. But by doing the copying ourselves, we have full control over when ithappens, we know that the cost of copying will be proportional to the size ofthe generation under consideration and that all other memory managementis done automatically by the region mechanism. Because each of the regionmanagement directives that the compiler inserts in the code are constanttime and space operations, we have now avoided unpredictable interruptionsdue to memory management. This avoidance of unpredictable interruptionsmight not be terribly important for the purpose of the game of Life, but ifwe were writing control software for the ABS brakes of a car, having controlover all costs, including memory management, would be crucial!Region pro�les for two hundred generations of life starting from the con-�guration shown earlier appear in Figures 1.5 and 1.6. The highest amountof memory used for regions during the computation is 26,060 bytes. Fig-ure 1.6, which has data collected from 200 snapshots of the computation,clearly shows that most of the 26,060 bytes are reclaimed between every twogenerations of the game. It turns out that the game essentially stabilises witha small number of live positions on the board after roughly 150 generations.3The source �le for the life program is kitdemo/life.sml. Running programs is de-scribed in Section 2.8. When run with n=10000 on the HP PA-RISC, the memory con-sumption (resident memory, measured using top) quickly reaches 180Kb and stays therefor the remaining generations.



1.3. EXAMPLE: THE GAME OF LIFE 25
ln: list of integerpairs representinggeneration n.r0 (a)
ln r0

ln+1: list of inte-ger pairs representinggeneration n+ 1.r1(b)
copy of ln+1r0 (c)Figure 1.4: Using double-copying in the game of Life: (a) generation numbern resides in region r0; (b) generation (n+1) has been built in r1; (c) regionr0 has been reset, the new generation copied into r0 and r1 has been de-allocated.
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Figure 1.5: A region pro�le of two hundred generations of the \Game ofLife", showing region sizes as a function of time (80 snapshots).
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Figure 1.6: Region pro�le of two hundred generations of the \Game of Life",showing region sizes as a function of time (200 snapshots).This stabilisation is clearly re
ected in the region pro�le.Figure 1.5 is from the same computation, but it only includes data from80 snapshots. This �gure makes it easier to see that the largest regions arer94613 and r94231. To �nd out what these regions contain, however, oneneeds to know about the methods described in Part II.1.3.1 Try it!This section tells you how to repeat the pro�ling experiment shown above.Compile the SML program kitdemo/life.sml as follows. First, make apersonal copy of the kit/kitdemo directory, place yourself in it, and startthe kit:4kit4We assume that you have added the kit/bin directory to your PATH shell variable.



28 CHAPTER 1. REGION-BASED MEMORY MANAGEMENTSelect Profiling from the Kit menu (type 5, then carriage return). Toggleregion profiling (type 0, then carriage return). Go up one level (typeu, then carriage return). Select Compile an sml file. Type "life.sml"(including the quotes, then return). After the Kit has compiled life.sml,type quit. The executable life program is kitdemo/run.Next, you run run, as follows:run -microsec 10000This will make a pro�ling snapshot every 10,000 microseconds (i.e., every tenmilliseconds). If you are satis�ed with less �ne-grained information, choosea larger number; it will speed up execution. If you just typerunthere will be one snapshot per second.Finally, you create a PostScript �le and view it as follows:5rp2ps -region -name life -sampleMax 80ghostview -seascape region.psThe option -sampleMax n instructs rp2ps to show at most n snapshots(evenly distributed over the duration of the computation).1.4 Including a Pro�le in a LATEX DocumentFigure 1.5 was produced by �rst executing the commandrp2ps -region -name life -sampleMax 80 -eps 137 mmThe option -eps 137 mm has the e�ect that region.ps becomes an encapsu-lated PostScript �le. The resulting region.ps was renamed life80.ps andincluded in this document as follows:\begin{figure}\begin{center}\includegraphics{life80.ps}\end{center}\caption{A region profile of two hundred5The program rp2ps can be found in the kit/bin directory.



1.4. INCLUDING A PROFILE IN A LATEX DOCUMENT 29generations of the ``Game of Life'', showingregion sizes as a function of time (80 snapshots).}\label{lifeprof80.fig}\end{figure}



30 CHAPTER 1. REGION-BASED MEMORY MANAGEMENT



Chapter 2Making Regions ConcreteIn this chapter, we give a brief overview of how the abstract memory modelpresented in the last chapter is mapped down to conventional memory. In do-ing so, we shall introduce notation and concepts that will be used extensivelyin what follows.2.1 Finite and In�nite RegionsNot every region has the property that its size is known at compile-time,or even when the region is �rst allocated at runtime. As we have seen, onetypical use of a region is to hold a list, and in general there is no way ofknowing how long a given list is going to be.For e�ciency reasons, however, the Kit distinguishes between two kindsof regions: those regions whose size it can determine at compile-time andthose it cannot. These regions are referred to as �nite and in�nite regions,respectively.1 Finite regions are always allocated on the runtime stack. Anin�nite region is represented as a linked list of �xed-size pages. The runtimesystem maintains a free list of such pages. An in�nite region is represented bya region descriptor, which is a record kept on the runtime stack. The regiondescriptor contains two pointers: one to the �rst and one to the last regionpage in the linked list that represents the region. Allocating an in�nite regioninvolves getting a page from the free list and pushing a region descriptor ontothe runtime stack. Popping a region is done by appending the region pages of1\�nite" and \unbounded" would have been better terms, but it is too late to changethat. 31



32 CHAPTER 2. MAKING REGIONS CONCRETEthe region and the free list (this is done in constant time) and then poppingthe region descriptor o� the runtime stack.At runtime, every region is represented by a 32-bit entity, called a regionname. If the region is �nite, the region name is a pointer into the stack,namely to the beginning of the region. If the region is in�nite, the regionname is a pointer to the region descriptor of the region.The multiplicity of a region is a statically determined upper bound on thenumber of times a value is put into the region. The Kit operates with threemultiplicities: 0, 1 and 1, ordered by 0 < 1 < 1. Multiplicities annotatebinding occurrences of region variables. An expression of the formletregion � : m in e endwhere m is a multiplicity, gives rise to an allocation of a region, which is�nite if m <1, and in�nite otherwise.2.2 Runtime Types of RegionsEvery region has a runtime type. The following runtime types exist: real,string, and top. Not surprisingly, regions of runtime type real and stringcontain values of ML type real and string, respectively. Regions withruntime type top can contain all other forms of allocated values, that is,constructed values, tuples, records, and function closures.It is often, but not always, the case that all values that reside in the sameregion have the same type (considered as representations of ML values).2.3 Allocation and De-Allocation of RegionsThe analysis that decides when regions should be allocated and de-allocatedis called region inference. Region inference inserts several forms of memorymanagement directives as directives into the program. The target languageof region inference is called RegionExp.In RegionExp, region allocation and de-allocation are explicit, they are al-ways paired, and they follow the syntactical structure of the source program.If e is an expression in RegionExp, then so isletregion � in e end



2.4. THE KIT ABSTRACT MACHINE 33Here � is a region variable. At runtime, �rst a region is allocated and boundto �. Then e is evaluated, presumably using the region bound to � for storingvalues. Upon reaching end, the program pops the region.Region inference also decides, for each value-producing expression, intowhich region (identi�ed by a region variable) the value will be put.We emphasise that region variables and letregion expressions are notpresent in source programs. The source language is unadulterated StandardML, so programs that run on the Kit should be easy to port to any otherStandard ML implementation.2.4 The Kit Abstract MachineThe Kit contains a virtual machine, called the Kit Abstract Machine (KAM,for short), which details the above ideas. The KAM is a register machine withone linear address space, which is partitioned into a stack and a heap. Theheap holds region pages, all of the same size. The KAM has simple RISC-likeinstructions, for example for moving word-size data between two registers orbetween a register and a memory location. More complex operations, suchas function application, are expressed by sequences of KAM instructions.For the purpose of this report, we assume that the KAM has in�nitelymany registers. In reality, there is a �xed number of 32-bit registers and reg-ister allocation assigns machine registers to KAM registers, using the runtimestack for spilling. However, register allocation will not be described in thisreport. Also, we do not discuss the interaction between hardware cachestrategies and the code generated by the Kit. While both can be importantin practice, we do not want to go to that level of detail. Our primary con-cern is with establishing a model that the user can safely use as a worst-casemodel of what happens at runtime.2.5 Boxed and Unboxed Representation ofValuesAs is common with implementations of programming languages, we distin-guish between boxed and unboxed representation of values in the KAM. Anunboxed value is one that is stored in a register or a machine word. A boxed



34 CHAPTER 2. MAKING REGIONS CONCRETEvalue is one that is represented by a word-size pointer to the value itself,which is stored in one or more regions.The Kit uses unboxed representation for integers, booleans, words, theunit value, and characters. The Kit uses boxed representation for pairs,records (with at least one element), reals, exception values, function closures,and constructed values (i.e., data types, except lists and booleans).A boxed value may reside in a �nite or an in�nite region. Unboxed valuesare not stored in regions, except when they are part of a boxed value. Forexample, the integer 3 by itself is stored as the (binary representation) ofthe value 3 in a KAM register. However, the pair (3,4) is represented asa pointer to two consequtive words in a region, the �rst of which containsthe binary representation of 3 and the second of which contains the binaryrepresentation of 4.2.6 Intermediate LanguagesThe Kit compiles Standard ML programs via a sequence of typed intermedi-ate languages into KAM instructions, which in turn are compiled into ANSIC or into HP PA-RISC assembly language. The intermediate languages thatwe shall refer to in the following are (in the order in which they are used inthe compilation process):Lambda A lambda-calculus like intermediate language. The main di�erencebetween the Standard ML Core Language and Lambda is that the latteronly has trivial patterns.RegionExp Same as Lambda, but with explicit region annotations (such asthe letregion bindings mentioned in Section 2.3). Region variableshave their runtime type (Section 2.2) as an attribute, although, forbrevity, the pretty printer omits runtime types when printing expres-sions, unless instructed otherwise.MulExp Same as RegionExp, but now every binding region variable occur-rence is also annotated with a multiplicity (Section 2.1) in additionto a runtime type. Again, the default is that the runtime type is notprinted. The terms of MulExp are polymorphic in the information thatannotate the nodes of the terms. That way, MulExp can be used as acommon intermediate language for a number of the internal analyses



2.7. RUNTIME SYSTEM 35of the compiler, which add more and more information on the syntaxtree. The analysis that computes multiplicities is called the multiplicityanalysis.The Kit contains a Lambda optimiser, which will happily rewrite Lambdaterms when it is clear that this rewrite results in faster programs (as long asthe rewrite cannot lead to increased space usage).Region inference takes Lambda to be the source language. Region infer-ence happens after the Lambda optimiser has had a go at the Lambda term.Therefore, it was not really true when we said that region inference simplyannotates source programs; we ignored the translation from SML to Lambdaand the Lambda optimiser. Thus, one has to get used to (mostly minor)di�erences between the source language and the intermediate languages ofthe compiler if one wants to read programs in their intermediate forms.When we want to show the result of the analyses, we usually show aMulExp expression.2.7 Runtime SystemThe runtime system is written in C. It is small (less than 50Kb of code whencompiled). It contains operations for allocating and de-allocating regions,extending regions, obtaining more space from the operating system, recordingregion pro�ling information, and performing low-level operations for use bythe SML Basis Library.It is possible to call C functions from ML Kit code. The Kit takes careof the memory allocation, by allocating regions for the result of the callbefore the call and de-allocating the regions at some point after the call.The C functions can build ML data structures such as lists through abstractoperations provided by the Kit runtime system. See Chapter 18 for furtherdetails.2.8 Running the KitThe Kit is a batch compiler. Thus, executing a program consists of �rst com-piling the program and then running the generated target program. Becausethe Kit stores �les in the directories where your source �les are located, youshould make a personal copy of these directories. Therefore, before you try



36 CHAPTER 2. MAKING REGIONS CONCRETEany of the examples below, make a personal copy of the kitdemo directory,which is part of the distribution, and run the kit on your own copy.The Kit provides two mechanisms for compiling programs. The �rstmechanism allows you to compile a single SML source �le whereas the secondmechanism allows you to compile and maintain projects, which are collectionsof SML source �les. To compile a single SML source �le or a project, youneed an executable version of the Kit; let us assume it is available on yoursystem as a UNIX program called kit.2 Compiling a project is very similar tocompiling a single SML source �le, however, we shall postpone the in-depthdiscussion of how to compile projects to Chapter 15.2.8.1 Compiling an SML Source FileAs a concrete example, we show how some of the region-annotated programsin Chapter 3 came about.To compile the SML source �le projection.sml of Example 3.2, placeyourself in your own copy of the kitdemo directory and start the Kit withthe shell command kit.After the Kit has uttered various greetings, you will �nd yourself in a rudi-mentary menu-driven dialogue, see Figure 2.1. First, you are going to askthe Kit to print one of the intermediate forms that arise under compilation(this is how the annotated programs shown in Section 3.2 were obtained).Choose Printing of intermediate forms (i.e., type 1 followed by carriagereturn), and then print drop regions expression to toggle on the print-ing of the MulExp program. Go up one level in the menu tree by typing ufollowed by return, and you are back in the main menu.Now, choose Compile an sml file; then type "projection.sml" (in-cluding the quotes) followed by return. The Kit outputs (among other things)the MulExp program shown in Section 3.2.Go up one on the menu tree. Printing of the region-annotated types cannow be enabled by selecting Layout from the main menu, and then printtypes. Thereafter, go back to the top-most menu and choose Compile itagain to compile the source �le projection.sml again. This time, the Kitoutputs the MulExp program shown in Section 3.3.Next, you can try the example in Section 3.4; select Compile an smlfile from the top-most menu and enter "elimpair.sml".2The readme �le in the distribution tells you how to install the Kit.



2.8. RUNNING THE KIT 370 Project....................... >>>1 Printing of intermediate forms >>>2 Layout........................ >>>3 Control....................... >>>4 File.......................... >>>5 Profiling..................... >>>6 Debug Kit..................... >>>7 Compile an sml file........... >>>8 Compile it again.............. ("dummy") >>>Toggle line (t <number>), Activate line (a <number>), Up (u),or Quit(quit):> Figure 2.1: The top-most Kit menu2.8.2 Running a Target ProgramIf no errors were found during compilation, the Kit produces a target programin the form of an executable �le, called run. The Kit places run in the workingdirectory.Running the target program is done from the UNIX shell by typingrunThe �le will probably be around 350Kb large, even for the trivial examplesconsidered in this chapter. This is because it contains the Kit runtime systemand compiled code for the parts of the SML Basis Library that are neededfor linking.Running the programs presented in this chapter is not particularly ex-citing, because none of them produce output! However, as an exercise, tryexecuting the helloworld.sml program, which, like all other example �lesin this document, is located in the kitdemo directory.
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Part IIThe Language Constructs ofSML
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Chapter 3Records and TuplesIn this chapter we describe construction of records and selection of recordcomponents. We also use records to introduce region-annotated types ande�ects, which are crucial for understanding when regions are allocated andde-allocated.3.1 SyntaxAs part of the SML to Lambda translation, all SML records and SML tu-ples are compiled into Lambda tuples. The components of Lambda tuplesare numbered from left to right, starting from 0. Selection is a primitiveoperation, both in Lambda and in the other intermediate languages. Thisprimitive is printed using SML notation #i. Components are numbered from0: the ith components of a tuple of type �1 � : : : � �n is accessed by #i, for0 � i � n� 1.The tuple constructor in Lambda is written as in SML:(e1, : : : ,en)However, the corresponding expression in RegionExp and MulExp takes theform (e1, : : : ,en) at �where � is a region variable indicating where the tuple should be put. In thecase n = 0, the at � is not printed, because the empty tuple is not allocated;it is just a constant that �ts in a KAM register.Records are evaluated left to right.41



42 CHAPTER 3. RECORDS AND TUPLES3.2 Example: Basic Record OperationsConsider the source programval xy = ((),())val x = #1 xy;Here is the resulting MulExp program:1let val xy = ((), ()) at r1; val x = #0 xyin {|xy: (_,r1), x: _|}endThere are several things to notice from this example.1. The MulExp program contains a free region variable, r1. Notice thatthe construction of the pair xy has been annotated by \at r1", indi-cating where the pair should be put;2. The expression {|xy: (_,r1), x: _|} is an example of a frame ex-pression. A frame enumerates the components that are exported froma compilation unit. A frame is similar to a record, except that itscomponents are variables, each annotated with a type scheme anda region variable. (In records, the components can only have types,not general type schemes.) In the example, the type of the frame is{|xy: (unit*unit, r1), x: unit|}. The type shows that, after theprogram unit has been evaluated, xy will reside in r1. In the the aboveexample, printing of types was suppressed. Thus types were abbrevi-ated to .3.3 Region-Annotated TypesML type inference infers a type for every expression in the program. Re-gion inference extends this idea by inferring for each expression a (region-annotated) type with place. We use � to range over types with places� ::= (�; �)1Program kitdemo/projection.sml. Running programs is described in Section 2.8.



3.4. EFFECTS AND LETREGION 43where � is a region-annotated type, which again can contain other region-annotated types with places. The region-annotated type with place of anexpression is the ML type of the expression decorated with extra regioninformation; every type constructor that represents boxed values (e.g., pairsand strings) is paired with a region variable, indicating where the value is tobe put at runtime. Type constructors that represents unboxed values (e.g.,integers and booleans) are paired with the region variable �w, which denotesa non-existing global region. As an abbreviation, we shall often omit theregion variable �w from region-annotated types and from region-annotatedtypes with places; and so shall the Kit.Here are some examples of region-annotated types with places:unit The type of 0-tuples. Integers, booleans, and 0-tuples are representedunboxed at runtime (rather than being stored in regions), see Sec-tion 2.5.(string; �) The type of strings in region �.(int � (string; �1); �2) The type of pairs in �2 whose �rst component is aninteger and whose second component is a string in region �1.One can get the Kit to print the region-annotated types with places that itinfers for binding occurrences of variables. The above example then becomeslet val xy:(unit*unit,r1) = ((), ()) at r1;val x:unit = #0 xyin {|x: unit, xy: (unit*unit,r1)|}end3.4 E�ects and letregionWe now describe the general principle that the Kit uses to decide when it issafe to put letregion around an expression.Here is an example of an SML program that �rst creates a pair and thenselects a component of the pair, after which the pair is garbage:22Program kitdemo/elimpair.sml.



44 CHAPTER 3. RECORDS AND TUPLESlet val n =letregion r7:1in let val pair =(case trueof true => (3 + 4, 4 + 5) at r7| false => (4, 5) at r7) (*case*)in #0 pairendendin {|n: _|}endFigure 3.1: Region inference decides that the pair is to be allocated in alocal, �nite region; the region will be de-allocated as soon as the pair becomesgarbage.val n = letval pair = if true then (3+4, 4+5)else (4, 5)in #1 pairend;The Kit compiles the declaration into the MulExp program shown in Fig-ure 3.1. The compiler compiles the program as it is, without reducing theconditional to its then branch. During evaluation, a region (denoted byr7) is introduced before the pair is allocated; it remains on the region stacktill the projection of the pair has been computed, after which the region isde-allocated.The \:1" on the binding occurrences of r7 is a multiplicity indicating thatthere is only one store operation into the region. (The multiplicity analysishas discovered that there is at most one store from the then branch and atmost one store from the else branch and that at most one of the brancheswill be chosen.) Thus, the pair will be allocated in a little region on theruntime stack.But how does the Kit know that it is safe to de-allocate r7 where the



3.5. RUNTIME REPRESENTATION 45letregion ends?The answer lies in the fact that the Kit infers for every expression notjust a region-annotated type with place, but also a so-called e�ect. An e�ectis a �nite set of atomic e�ects. Two forms of atomic e�ect are put(�) andget(�), where � as usual ranges over region variables. The atomic e�ectput(�) indicates that a value is being stored in region � and get(�) indicatesthat a value is being read from region �. In our example, the region inferencealgorithm considers the sub-expression e0 =let val pair =(case trueof true => (3 + 4, 4 + 5) at r7| false => (4, 5) at r7) (*case*)in #0 pairendand �nds that it has region-annotated type int and e�ect fput(r7); get(r7)g.Whenever a region variable occurs free in the e�ect of an expression butoccurs free neither in the region-annotated type with place of the expressionnor in the type of any program variable that occurs free in the expressionthen that region variable denotes a region that is used only locally withinthe expression. That this is true is of course far from trivial, but it hasbeen proved for a skeletal version of RegionExp. Consequently, when thiscondition is met, the region inference algorithm wraps a letregion bindingof the region variable around that expression.In our example, there are no free variables in e0; moreover, r7 occurs inthe e�ect of e0 but not in the region-annotated type with place of e0. Thus,the region inference algorithm inserts a letregion binding of r7 around e0.3.5 Runtime RepresentationA record with 0 components (the value of type unit) is represented unboxed.A record with n components (n � 1) is represented boxed, as a pointer toprecisely n words in a region. Notice that records are not tagged. Avoidingtags is possible, because (1) there is no pointer tracing garbage collection; and(2) polymorphic equality is compiled into monomorphic equality functionsthat do not have to examine the type of objects at runtime.



46 CHAPTER 3. RECORDS AND TUPLESLambda, RegionExp, and MulExp allow one to express unboxed tuples,also in the case of function calls and returns, but the Kit does not (yet) havea boxing analysis that exploits it, nor does the code generator generate codefor unboxed tuples, multiple function arguments, or multiple function returnvalues.A tuple is not allocated until its components have been evaluated.



Chapter 4Basic ValuesIn this chapter we describe how basic values such as integers, reals, strings,and booleans are represented in the Kit. The Kit complies to the De�nition ofStandard ML (Revised) and to large parts of the Standard ML Basis Library;1that is, as a programmer, you can refer to components of the Standard MLBasis Library through the initial basis, in which all programs are compiled.Throughout this chapter, we introduce some of the top-level bindings thatare provided by the initial basis.4.1 IntegersValues of type int are represented as 32-bit signed integers. The followingoperations on integers are pre-de�ned at top level:infix 4 = <> < > <= >=infix 6 + -infix 7 div mod *val ~ : int -> intval abs: int -> intMany other useful operations on integers are available in the Int structure.2At runtime, integers are represented without any form of boxing or tag-ging, so all 32 bits are available.1See the Kit web site for a link to the Standard ML Basis Library.2To see what operations are available in the Int structure, consult the �lekit/basislib/INTEGER.sml. 47



48 CHAPTER 4. BASIC VALUES4.2 RealsThe initial basis provides the following top-level operations on reals:infix 4 < > <= >=infix 6 + -infix 7 * /val ~ : real -> realval abs: real -> realval real: int -> realval trunc : real -> intval floor : real -> intval ceil : real -> intval round : real -> intValues of type real are implemented as 64-bit 
oating point numbers. Theyare always boxed, that is, represented as a pointer to two consecutive 32-bitwords. These two words reside in a region and start on a double-alignedaddress. For this reason, regions with runtime type real (see Section 2.2)are never uni�ed with regions of any other runtime type.A real constant c in the source program is translated into an expressionof the form c at �, where � is a region variable, indicating the region intowhich the real will be stored.The structures Real and Math provide other useful operations on reals.4.3 Characters and StringsThe initial basis provides the following top-level operations on characters andstrings:infix 4 =infix 6 ^val ord: char -> intval chr: int -> charval str: char -> stringval size: string -> intval explode: string -> char listval implode: char list -> string



4.4. BOOLEANS 49val ^ : string * string -> stringval concat: string list -> stringval substring: string * int * int -> stringCharacters are represented as 32-bit words, although only 8 bits are used tostore the character. Just like integers, characters are unboxed and untagged.A string is represented by a 32-bit pointer into an in�nite region. Thestring is stored in consecutive bytes in the region, except if the size of thestring exceeds the length of one region page, in which case the string is splitinto smaller strings that are linked together. The internal string represen-tation is completely transparent to the programmer, who does not have toworry about the actual size of region pages. Characters of a string takes uponly 8 bits of memory each.Calls of ord, chr, str, and size take constant time and space. Calls ofexplode, implode, concat, substring, and ^ take time and space propor-tional to the sum of the size of their input and their output.The string and character operations can raise exceptions, as detailed inthe Standard ML Basis Library documentation.The structures Char and String provide other useful operations on char-acters and strings.4.4 BooleansThe boolean values true and false are represented as 32-bit words, althoughonly one bit is used to denote the value. Booleans are unboxed. The initialbasis provides the following top-level operations on booleans:infix 4 =val not: bool -> boolThe structure Bool provides other useful operations on booleans.
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Chapter 5ListsSection 5.1 gives a summary of the list concept in Standard ML, introducesthe notion of the auxilary pairs of a list and presents the syntax of construc-tors and destructors in the intermediate languages. Section 5.3 introducesregion-annotated list types and show how they correspond to the layout oflists in memory. Section 5.4 gives a small example.5.1 SyntaxIn Standard ML, all lists are constructed from the two constructors :: (read:cons) and nil. As a shorthand, one can write [exp1, � � �,expn] forexp1:: � � � ::expn::nilwhich in turn is short forop ::(exp1, � � �, op ::(expn,nil)� � �)where exp ranges over expressions. The type schemes of nil and cons arenil 7! 8�:� list :: 7! 8�:� � � list ! � listNotice that :: is always applied to a pair. The construction of the pairand the application of :: should, in principle, not be confused: the pair andthe constructed value are in principle separate values inasmuch as they havedi�erent type. For example, the declaration51



52 CHAPTER 5. LISTSval p = (2, nil)val mylist = (op ::) pval n = #1 pis legal in Standard ML. We refer to the pairs to which :: is applied asauxiliary pairs (of the list data type).Decomposition of list values in Standard ML is done by pattern matching.A pattern can extract the pair to which :: is applied. Pattern matching onpairs can then give access to the components of the pair.val abc = ["a", "b", "c"]val op :: p = abc (* binds p to the pair ("a", ["b","c"]) *)val (x::y::_) = abc (* binds x to "a" and y to "b" *)In the last declaration, the pattern (x::y:: ) is short for the pattern(op ::(x, op ::(y, )))which combines decomposition of constructed values with decomposition ofpairs.The intermediate languages Lambda, RegionExp, and MulExp have SML-like constructs for applying constructors, but they decompose constructedvalues by applying a deconstructor primitive, not by pattern matching.Lambda, RegionExp, or MulExpnil create nil value:: (e) create :: (cons) valuedecon :: (e) cons decompositionIn Lambda, which has essentially the same type system as SML, decon ::,the decomposition function for ::, has type 8�:� list ! � � � list. Inaddition, Lambda, RegionExp, and MulExp have a simple case construct:(case e of :: => e1 | => e2)where e must have list type.5.2 Physical RepresentationThe empty list is represented by an odd, unboxed integer. A non-empty listis represented as a pointer to a pair of two words in a region, the �rst of which



5.3. REGION-ANNOTATED LIST TYPES 53
"a""b""c" ( ; nil)( ; ::)( ; ::)@@@@@@I� ������	 ���1 �2Figure 5.1: Layout of the list ["a","b","c"] : ((string; �1); [�2])list inmemory. The auxiliary pairs of the list reside in �2. Each auxiliary pairtakes up two words; the constructors :: (cons) and nil are representedunboxed.contains the head of the list and the second of which contains the represen-tation of the tail of the list. In other words, the physical representation doesnot distinguish a :: cell from the auxiliary pair to which :: is applied. Sincenil is represented by an odd number and since word addresses are alwayseven, nil can be distinguished from the representation of a non-empty list.As a consequence, there is no cost involved in applying :: to an auxiliarypair or in applying the decomposition operator decon :: to a non-empty list.5.3 Region-Annotated List TypesIn Standard ML, all elements of a given list must have the same type. Weextend this constraint to region inference by saying that all element valuesin the same list must reside in the same region(s) and that all auxiliary pairsof the same list must reside in the same region.Thus, region inference does not distinguish between a list and its tail.Indeed, a typical use of an in�nite region is to hold all the auxiliary pairs ofa list. For an example, Figure 5.1 shows how the list ["a","b","c"] is laidout in memory.In general, the region-annotated type of a list takes the form(�; [�])listwhere � is the region-annotated type with place of the members of the listand where � is the region where the auxiliary pairs of the list are stored. For



54 CHAPTER 5. LISTSexample, the region-annotated type((string; �1); [�2])listclassi�es lists that have their auxiliary pairs in a region �2 and strings in aregion �1.Note that the list type constructor is not paired with a region variable.The reason is that the physical representation of lists treats the constructorsas unboxed in the sense described in Section 5.2.Very importantly, not all lists need to live in the same regions. Formally,nil and :: have the following region-annotated type schemes:nil 7! 8��1�2:((�; �1); [�2])list:: 7! 8��1�2�:((�; �1) � ((�; �1); [�2])list; �2) �:;��!((�; �1); [�2])listDespite its verbosity, the type scheme for :: deserves careful study. It ispolymorphic not just in types (signi�ed by the bound type variable �) butalso in regions (signi�ed by the bound region variables �1 and �2). The � is aso-called e�ect variable. The �:; appearing on the function arrow is called anarrow e�ect. Occurring in a function type, an arrow e�ect describes the e�ectof applying the function. In this case, the e�ect is empty, as only unboxedvalues are manipulated by ::. The e�ect variable � is used for expressingdependencies between e�ects (examples follow in Chapter 13). Due to thefact that the variables are universally quanti�ed, every occurrence of a listcan, potentially, be in its own regions. But notice that the type of :: forcesthe element, which is consed onto the list, to be in the same regions as thealready existing elements of the list. Similarly, the type forces the auxiliarypairs to be in one region (�2).5.4 Example: Basic List OperationsThe Kit compiles the program1let val l = [1, 2, 3];val (x::_) = lin x end;into the RegionExp program shown in Figure 5.2.1Program kitdemo/onetwothree.sml.



5.4. EXAMPLE: BASIC LIST OPERATIONS 55
let val it =letregion r7:INFin let val l =let val v40150 =(1,let val v40151 =(2,let val v40152 =(3, nil) at r7in :: v40152end) at r7in :: v40151end) at r7in :: v40150endin (case lof :: => #0 decon_:: l| _ => raise Bind) (*case*)endend (*r7:INF*)in {|it: _|}endFigure 5.2: Example showing construction and deconstruction of a small list.Layout of the list l is analogous to Figure 5.1. The in�nite region r7 holdsthe auxiliary pairs of the list.
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Chapter 6First-Order FunctionsIn this chapter, we shall treat functions that are declared with fun and thatare �rst-order (i.e., that neither take functions as arguments nor producefunctions as results). Higher-order functions are treated in Chapter 13. Re-gion polymorphism works uniformly over all types; we use lists as an exampleof the general scheme.6.1 Region-Polymorphic FunctionsIt would be a serious limitation if all lists produced by a function were storedin the same region, for then all those lists would have to be kept alive tillthe last time one of them were used. The solution that the Kit o�ers to thisproblem is region-polymorphic functions, that is, functions that are passedregions at runtime.When one declares a function that, when called, produces a fresh list,then the region inference algorithm will automatically insert extra formalregion parameters in the function declaration. At every place one refers tothe function, for example because one calls the function, the region inferencealgorithm inserts a list of actual region parameters that tell the functionwhere to put its result. This is all done automatically; the user does nothave to introduce region parameters or pass them as arguments. Even so,it is useful to understand the general principle, so that one can good use ofregion polymorphism.The syntax of a (single) function declaration in MulExp is:fun f at �0 [�1, � � �, �k] x = e57



58 CHAPTER 6. FIRST-ORDER FUNCTIONSHere �0 denotes the region in which the closure for f is stored, �1; : : : ; �k arethe formal region parameters, x is the value parameter (a single variable),and e is the body of the function. A call to f takes the formf [�01, � � �, �0k] at �00 e0where [�01, � � �, �0k] is a record of actual region parameters, �00 is the regionwhere this record is stored, and e0 is an expression denoting the argument tothe call. Notice that region parameters are enclosed in brackets ([ ]); thisshould not cause confusion with ML lists, because RegionExp and MulExpdo not use brackets for lists..In the special case k0 = 0 the record for actual region parameters is emptyand is therefore not allocated. We therefore omit printing the \at �0" in thatcase.Di�erent calls of f can use di�erent actual regions; this feature is essentialfor obtaining good separation of lifetimes.For an example, consider the following program:fun fromto(a, b) = if a>b then []else a :: fromto(a+1, b)val l = #1(fromto(1,10), fromto(100,110));The corresponding MulExp program is shown in Figure 6.1. Notice that r7is a formal region parameter of fromto. In the last call of fromto, a recordholding a region descriptor for r19 is passed to fromto; the region record isstored in r20. Notice that the regions that hold the two lists generated bythis program are distinct. The list that escapes to top level is stored in theglobal region r1, whereas the list that does not escape is stored in the localregion r19.6.2 Region-Annotated Type SchemesA (region-annotated) type scheme takes the form� ::= 8�1 � � ��n�1 � � � �k�1 � � � �m:�where �1; : : : ; �n are type variables, �1; : : : ; �k are region variables, �1; : : : ; �mare e�ect variables, and � is a region-annotated type.The types of nil and :: in Section 5.3 are examples of region-annotatedtype schemes.



6.2. REGION-ANNOTATED TYPE SCHEMES 59let fun fromto at r1 [r7:INF] (v40148)=let val b = #1 v40148; val a = #0 v40148in (case a > bof true => nil| _ =>let val v40153 =(a, letregion r12:1, r14:1in fromto[r7] at r12(a + 1, b) at r14end (*r12:1, r14:1*)) at r7in :: v40153end) (*case*)end ;val l =let val v40175 =letregion r16:1, r18:1in fromto[r1] at r16 (1, 10) at r18end (*r16:1, r18:1*);val _not_used =letregion r19:INFin let val v40176 =letregion r20:1, r22:1in fromto[r19] at r20(100, 110) at r22end (*r20:1, r22:1*)in ()endend (*r19:INF*)in v40175endin {|l: _, fromto: (_,r1)|}endFigure 6.1: The region-annotated version of fromto shows that fromto isregion-polymorphic. (Program: kitdemo/fromto.sml, printed by selectingprint drop regions expression from the Printing of intermediateforms menu and then selecting Compile an sml file from the main menu.)



60 CHAPTER 6. FIRST-ORDER FUNCTIONSThere is a close connection between, on the one hand, the formal andactual region parameters found in RegionExp (and MulExp) programs, and,on the other hand, the region-annotated type schemes that the region infer-ence algorithm assigns to recursively declared functions. The formal regionparameters of a function stem from the bound region variables of the region-annotated type scheme of that function. The actual region parameters whichannotate a call of the function are the region variables to which the boundregion variables are instantiated at that particular application.For example, the region-annotated type scheme of fromto from Figure 6.1is 8�7�8�:(int � int; �8) �:fget(�8);put(�7)g������������!(int; [�7])listAt the last call of fromto in Figure 6.1, the type scheme is instantiated tothe region-annotated type(int � int; �22) �0:fget(�22);put(�19)g�������������!(int; [�19])listThe instantiation of bound variables of the type scheme that yields thisregion-annotated type isf�7 7! �19; �8 7! �22; � 7! �0gIn general, the actual region parameters that annotate a call of a region-polymorphic function are obtained from the range of the substitution bywhich the type scheme of the function is instantiated at that application.To avoid passing regions that are never used, the Kit introduces onlyformal region variables for those bound region variables in the type schemefor which there appears at least one put e�ect in the type of the function.Reading a value is done simply by following a pointer to the value, irrespectiveof what region the value resides in, whereas storing a value in a region usesthe name (see Section 2.1) of the region. This omitting of region parametersexplains why �8 does not become a formal region parameter of fromto andwhy �22 is not passed to fromto at the call site. This optimisation, which iscalled dropping of regions, is the key reason why the Kit takes the trouble todistinguish between put and get e�ects.Region-polymorphic functions also have to be allocated somewhere. There-fore, the region information associated with a region-polymorphic functionis a (region-annotated) type scheme with place, that is, a pair (�; �). Indeed,every binding of a variable to a boxed value (whether the binding is done



6.3. ENDOMORPHISMS AND EXOMORPHISMS 61by fun, let, or fn) associates a region-annotated type scheme with place tothe binding occurrence. (In the case of let, the type scheme will have noquanti�ed region and e�ect variables, however, and in the case of fn, the typescheme will have no quanti�ed variables at all.) In the following, when werefer to \the region-annotated type (scheme) with place" of some variable,we mean the region-annotated type (scheme) with place that is associatedwith the binding occurrence of the variable. The region type scheme shouldbe clearly distinguished from instances of the type scheme, which decoratenon-binding occurrences of the variable.The region-annotated type scheme with place of a variable bound to anunboxed value is always on the form (�; �w), where � is the region-annotatedtype scheme associated with the variable and where �w denotes a non-existentglobal region (see Section 3.3). In the following, we shall often abbreviate theregion-annotated type scheme with place of a variable bound to an unboxedvalue by its region-annotated type scheme.6.3 Endomorphisms and ExomorphismsThe fromto function from Section 6.2 has the property that it can put itsresult in regions that are separate from the regions where its argument lies.This is not surprising, if one looks at the declaration of the function; it createsa brand new list that does not share with the argument (a,b), except forthe integers a and b, which may end up in the list. The freshness of thegenerated list is also evident from the region type scheme of the function;di�erent region variables are used for the argument and the result.Not all region-polymorphic functions create brand new values. Very of-ten, a region-polymorphic function simply adds values to regions that aredetermined by the argument to the function. A good example is the listappend function from the initial basis:infixr 5 @fun [] @ ys = ys| (x::xs) @ ys = x :: (xs @ ys)Append successively conses the elements of the �rst list onto the second list.Thus, ys and xs @ ys must be in the same regions. However, the auxiliarypairs of xs and ys need not be in the same regions, although the elementsof xs and ys clearly must be in the same regions, because they end up in



62 CHAPTER 6. FIRST-ORDER FUNCTIONSthe same list. These properties of append are summarised in the inferredregion-annotated type scheme:8��1�2�02�4�:(((�; �1); [�2])list � ((�; �1); [�02])list; �4)�:fget(�4);get(�2);put(�02)g����������������!((�; �1); [�02])listWhen one writes a function it is a good idea to consider whether one wantsthe function to create values in fresh regions or whether one wants it to addvalues to existing regions. Adding to existing regions can of course makethese regions too large and long-lived, because the entire region will be alivefor as long as one of the values in the region may be needed in the future.Here are two more examples to highlight the di�erence between functionsthat can put values in fresh regions and functions that add values to existingregions: fun cp1 [] = []| cp1 (x::xs) = x :: cp1 xsfun cp2 (l as []) = l| cp2 (x::xs) = x :: cp2 xsHere cp1 can copy the auxiliary pairs of a list into a fresh region, whereascp2 always copies the auxiliary pairs of a list into the same region:cp1 7! 8��1�2�02�:((�; �1); [�2])list �:fget(�2);put(�02)g������������!((�; �1); [�02])listcp2 7! 8��1�2�:((�; �1); [�2])list �:fget(�2);put(�2)g������������!((�; �1); [�2])listAs we saw in Section 1.3, there are cases where it is useful to copy a listfrom one region into another region, so as to make it possible to de-allocatethe old region. This copying can be used as a kind of programmer-controlledgarbage collection in cases where garbage has accumulated in the originalregion.Because it is often useful to distinguish between functions that can puttheir result into fresh regions and functions that simply add to regions de-termined by their value argument, we shall refer informally to the formerfunctions as region exomorphisms and the latter as region endomorphisms.Notice that this is not a clear-cut distinction, however. Often, functions haveboth an endomorphic and an exomorphic side to them. Also notice that evena region exomorphic function can be forced to act as an endomorphism bythe calling context. As an example, consider the expressionif true then cp1 l else l



6.4. POLYMORPHIC RECURSION 63Because the two branches of the conditional are required to have the sameregion-annotated type with place, l and cp1 l are forced to be in the sameregions.6.4 Polymorphic RecursionA recursive region-polymorphic functionfun f at �0 [�1, � � �, �k] x = emay call itself inside its own body (e) with regions that are di�erent from itsown formal region parameter ([�1, � � �, �k]). This feature is called polymor-phic recursion in regions, named after polymorphic recursion, the analogousconcept for types. Polymorphic recursion in regions is vital for achievinggood memory management in connection with recursion. Unfortunately, it isalso makes the region inference problem considerably more challenging, butthat is a di�erent story [TB98].We now show a typical use of polymorphic recursion in regions, namelymerge sorting of lists. The basic idea of merge sort is simple: �rst split theinput list into two lists l and r of roughly equal length. Then sort l and rrecursively and merge the results into a single sorted list. When programmingwith regions, we need to plan which of these lists we want to reside in thesame regions. We do not want to waste space. In particular, if n is the lengthof the list, it would be quite irresponsible to use O(nlogn) space, say. Letus aim at arranging that the sorting function is a region exomorphism thatdoes not produce any values in its result regions except the sorted list. Tosort n elements, we shall need n list cells (to hold the input list) plus roughly2� (n=2) list cells to hold l and r, the two lists that arise from splitting theinput list. To sort l recursively, we need space for the two lists obtained bysplitting l and so on. The space consumption grows to a maximum of 3n listcells (including the n cells to hold the input), before any merging is done.By the time all of l is sorted, that is, just before r is sorted recursively, wehave the following lists: the input (n cells), l (n=2 cells), l sorted (n=2 cells),r (n=2 cells). Continuing this way, at the rightmost merge of two lists oflength at most one, approximately 4n list cells are live. Then a series of �nalmerges occur. Code that uses these ideas is listed in Figure 6.2. 1 The1Project kitdemo/msort.pm, �le kitdemo/msort.sml. To compile the project, enterthe Project sub-menu (from within the kitdemo directory) and choose Set project



64 CHAPTER 6. FIRST-ORDER FUNCTIONSfun cp [] =[]| cp (x::xs)= x :: cp xs(* exomorphic merge *)fun merge(xs, []):int list = cp xs| merge([], ys) = cp ys| merge(l1 as x::xs, l2 as y::ys) =if x<y then x :: merge(xs, l2)else y :: merge(l1, ys)(* splitting a list *)fun split(x::y::zs, l, r) = split(zs, x::l, y::r)| split([x], l, r) = (x::l, r)| split([], l, r) = (l, r)(* exomorphic merge sort *)fun msort [] = []| msort [x] = [x]| msort xs = let val (l, r) = split(xs, [], [])in merge(msort l, msort r)end;Figure 6.2: Merge sorting of lists.exomorphic merge function is a bit ine�cient in that it copies one argumentwhen the other is empty, but the exomorphism ensures that msort l andmsort r are not forced into the same regions. The polymorphic recursionin regions makes it possible for xs, l, r, msort l, and msort r all to be indistinct regions. For example, in the call msort l, the polymorphic recursionmakes it possible for l to be in a region di�erent from xs and it also makesit possible for the result of the call to be in a region di�erent from the resultof msort xs.file name. Then type "msort.pm" (including the quotes) followed by return. Finally,choose Compile and link project. The Kit places an executable �le run in the kitdemodirectory. For an in-depth description of how to compile and run projects, see Chapter 15.



6.4. POLYMORPHIC RECURSION 65Based on the above analysis we conclude that the space required bymsort xs is approximately 4nc1+c2log2n plus the extra stack space requiredfor the �nal merges, where n is the length of xs, c1 is the size of a list cell(2 words in this case) and c2 is the space on the runtime stack used by onerecursive call of msort (probably less than 10 words).Because merge is not tail-recursive, a merge requires space both for itstwo input lists, for its output list, for �nite regions on the stack and fortemporaries stored on the stack. More precisely, each recursive call of mergeallocates two words for the argument to the recursive call in a region on thestack; it also allocates a region closure of size one word, holding the actualregion parameter. When one of the lists becomes empty, merge calls cp,which allocates less for each iterative call than merge does. Each returnfrom merge allocates a list cell (two words) but deallocates the two regions(of sizes two and one words, respectively) on the stack, so the maximumspace usage is reached when the last element of the result of the merge isconstructed (which happens when the recursion is deepest). Here the spaceused is (we show n = 50; 000 list elements as an example)data size (words) n = 50; 000input list 2n 400,000 bytesl n 200,000 bytesl sorted n 200,000 bytesr n 200,000 bytesr sorted n 200,000 bytes�nite regions on stack 3n 600,000 bytestotal in regions 9n 1,800,000 bytesIt turns out that each iterative call of merge pushes three registers on thestack, so that stack size (not including space for �nite regions) will be ap-proximately 3�4�n bytes, which for n = 50; 000 is 600,000 bytes. The totalspace consumption for sorting 50,000 integeres should therefore be roughly2,400,000 bytes.To check the above analysis, we sorted 50,000 integers with the regionpro�ler enabled. As one sees in Figures 6.3 and 6.4, the space usage foundby region pro�le correspond well to the results of our analysis.In Chapter 12, we shall see how one can use resetting of regions to reducethe space usage drastically, to roughly 2nc1.
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Figure 6.3: Region pro�ling of msort sorting 50,000 integers. The high-levelmark of 1,800,288 bytes is exact (i.e., not sampled).
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Chapter 7Value DeclarationsAlthough region inference is based on types and e�ects, it is also to someextent syntax dependent: two programs can easily be equivalent in theirinput-output behaviour and yet result in very di�erent memory behaviour.In this chapter, we discuss how to write declarations so as to obtain goodresults with region inference. The region inference rules that underlie theML Kit with Regions are related to the scope rules of ML, so we start by a(very informal) summary of the scope rules of ML declarations.7.1 SyntaxA Standard ML value declaration binds a value to a value variable. Forexample, the result of evaluating the value declarationval x = 3+4is the environment fx 7! 7g. More generally, evaluation of a value bindingval id = exp proceeds as follows. Assume the result of evaluating exp isa value, v. Then the result of evaluating val id = exp is the environmentfid 7! vg.The value declaration is just one form of Core Language declaration (theothers being type and exception declarations). We use dec to range overdeclarations. Declarations can be combined in several ways. For example,dec1;dec2is a sequential declaration. The identi�ers declared by this declaration are theidenti�ers that are declared by dec1 or dec2; moreover, identi�ers declared69



70 CHAPTER 7. VALUE DECLARATIONSin dec1 may be referenced in dec2. The semicolon is associative. Thus, in asequence dec1; : : : ;decn of declarations, identi�ers declared in deci may bereferenced in deci+1; : : : ; decn (1 � i � n).The Core Language has two forms of local declarations. The expressionlet dec in exp enddeclares identi�ers whose scope does not extend beyond exp. Similarly, thedeclaration local dec1 in dec2 end�rst declares identi�ers (in dec1) whose scope does not extend beyond dec2and then uses these declarations to perform the declarations in dec2. Anidenti�er is declared by the entire local construct if and only if it is declaredby dec2.7.2 On the Relationship between Scope andLifetimeScope is a syntactic concept: a declaration of an identi�er contains a bindingoccurrence of the identi�er; the scope of the declaration is the part of theensuing program text whose free occurrences of that identi�er are boundby that binding occurrence. By contrast, lifetime, as we use the word, isa dynamic concept. A value is \live" if and only if the remainder of thecomputation uses it (or part of it). The traditional stack discipline couplesthese two concepts very closely. For example, in the pure stack discipline,the evaluation of let dec in exp endin an environment E proceeds as follows. First evaluate dec, yielding anenvironment, E1. Then evaluate exp in the environment E extended withE1, yielding value v. Then v is the result of evaluating the let expression inE. In implementation terms: �rst push an environment E1 onto the stack,use it to evaluate the expression in the scope of the declaration, and thenpop the stack. That this idea works in block-structured languages hingeson a number of carefully made language design decisions. In functional andobject-oriented languages, memory cannot be managed that simply. Theproblem is that while environments can be managed in a stack-like manner,



7.2. ON THE RELATIONSHIP BETWEEN SCOPE AND LIFETIME 71the values in the range of the environment cannot (unless one uses regions,that is). For example consider the ML expression:localval private = [2,3,5,7,11,13]in fun smallPrime(n:int): bool =List.member n privateendAlthough the scope of the declaration is only the declaration of smallPrime,private is accessed (at runtime) whenever smallPrime is called. Thus, thelifetime of the list of small primes is at least as long as the lifetime of thesmallPrime function itself.The region discipline still has a coupling between scope and lifetimes, but,because we want to be able to handle recursive data types and higher-orderfunctions, the coupling is less tight. The ground rule of region inference isthat as long as a value variable is in scope, the value bound to it at runtimewill remain allocated. More precisely:Ground Rule: The region rules forbid transforming an expressionexp into letregion � in exp end if exp is in the scope of anidenti�er that has � free in its region-annoated type scheme withplace.For an example, considerletval list = [1,2,3]val n = length listval r = sin(real n)in cos(r)endAt runtime, the list bound to list is not used (i.e., it is not live) after itslength has been computed; similarly, the value of n is not live after it hasbeen converted to a 
oating point number, and so on. In short, at runtime,we have a sequence of short, non-overlapping lifetimes.



72 CHAPTER 7. VALUE DECLARATIONSWith region inference, however, the list bound to list will stay allocatedthroughout the evaluation of the remainder of the let expression.1For a more interesting example of the consequences of the Ground Rule,consider the following declarations, taken from a program that computesprime numbers using the Sieve of Eratosthenes:fun cp [] = []| cp (x::xs) = x :: cp xsfun sift (n, []) = []| sift (n, (x::xs)) = if x mod n = 0 then sift(n,xs)else x::sift(n,xs)fun sieve(a as ([], p)) = a| sieve(x::xs, p) = let val rest = sift(x,xs)in sieve(cp rest,x::p)endHere sift(n, l) produces a list of the numbers from l that are not divisibleby n; sieve(xs, p) repeatedly calls sift, adding primes to the front ofp, until the list of numbers remaining in the sieve becomes empty. Theprogrammer has employed the copying technique suggested in Section 1.3 toavoid that the lists that are bound to rest during the repeated �ltering allare put in the same region. The programmer's intention is that the cp restshould overwrite x::xs by a copy of rest, so that space consumption wouldbe bounded by a constant times the size of the input. But it does not workas intended; because rest is in scope at the recursive application of sieve,the list that is bound to rest will stay allocated for the duration of that call,which is in fact the remainder of the entire computation!In many cases, the solution is simply to shorten the scope of the decla-ration. In the above example, a good solution is to move the application ofsieve outside the let:1One can force de-allocation of the list by inserting val = resetRegions(list) afterthe declaration of n; but, as we shall see, there are less draconian ways of achieving thesame result.



7.3. SHORTENING LIFETIME 73fun sieve(a as ([], p)) = a| sieve(x::xs, p) =sieve let val rest = sift(x,xs)in (cp rest,x::p)endThat the copying really overwrites the input list relies, in part, on regionresetting (Chapter 12). But it also relies on region polymorphism and onthe Ground Rule. Rewriting the applicationn of sieve ensures that thelist bound to rest will not live to see the recursive call of sieve. Unlessforced by context to do otherwise, sift will create a list using fresh regions.Because cp is also exomorphic, there will be no sharing between rest andthe other lists. The region variable that denotes the region that holds the theauxiliary pairs of rest appears in the e�ect of the (revised) let expression.However, this region variable does not occur free in the region-annotatedtype scheme with place of any value variable in scope at that point, not evenin the region-annotated type scheme with place of sieve, which only hasthe region that contains sieve itself free in its region-annotated type schemewith place. Consequently, region inference wraps the let expression by aletregion binding of the region variable in question:fun sieve(a as ([], p)) = a| sieve(x::xs, p) =sieve letregion r10in let val rest = sift[r10](x,xs)in (cp rest,x::p)endend7.3 Shortening LifetimeInformally, region inference forces the lifetime of an identi�er to be at least itsscope. Improving memory performance therefore sometimes requires makingscopes of identi�ers smaller. Useful program transformations include:1. Inwards let 
oating: transformlet val id1 = exp1 val id2 = exp2 in exp end



74 CHAPTER 7. VALUE DECLARATIONSintolet val id2 = let val id1 = exp1 in exp2 end in exp endprovided id1 does not occur free in exp.2. Application extrusion: transformlet dec in f(exp) endinto f let dec in exp endprovided f is an identi�er that is not declared by dec.Application extrusion is a particularly useful in connection with tail recur-sion; the reader will see it employed several times in what follows.



Chapter 8Static Detection of Space Leaks\Space leak" is the informal term used when a program uses much morememory than one would expect, typically because of memory not being re-cycled as early as it should (or not at all).If a region-polymorphic function with region-annotated type scheme �has a put e�ect on a region variable that is not amongst the bound regionvariables of �, then one quite possibly has a space leak; every application ofthe function may write values into a region that is the same for all calls ofthe function. For example, consider the source program1fun g() =let val x = [5,7]fun f(y) = (if y>3 then x@x else x;5)in f 1; f 4end;Here f has type int ! int; yet, when the expression y>3 evaluates to true,an append operation is performed that produces a list in the same region asx. The �rst call of f will not cause the append operation to be called, butthe second one will. One can say that f has a space leak in that it can writevalues into a more global region, namely a region that is allocated at thebeginning of the body of g. The sequence of calls to f accumulates copiesof x@x in that region, although none of these lists are accessible anywhere.1Program kitdemo/escape.sml. 75



76 CHAPTER 8. STATIC DETECTION OF SPACE LEAKSIn this particular case, the values are not even part of the result type of f,so the writing is a side-e�ect at the implementation level, even though thereare no references in the program.The region-annotated type scheme inferred for f is8�:int �:fput(r5)g�������! intwhere the region-annotated type of x is(int; [r5])listHere we see that r5 is free in the region-annotated type scheme and appearswith a put e�ect.8.1 Warnings About Space LeaksThe Kit issues a warning each time it meets a function that is declared usingfun and has a free put e�ect occurring somewhere in its type scheme. Inpractice, this warning mechanism is a valuable device for predicting spaceleaks. The region-annotated version of our example function g is listed inFigure 8.1. During compilation of g, the Kit issues the following warning:2*** Warnings ***f has a type scheme with escaping put effects on region(s):r8, which is also free in the type (schemes) of : xWe are told that the program might space leak in region r8. Looking at thefunction f, we see that this region is an actual region parameter to @. Itfollows that the problem is the call to @.8.2 Fixing Space LeaksOften one can �x a space leak by delaying the creation of the value thatcauses the space leak. In the above example, we can move the constructionof the list into f:32To provoke the warning, one has to disable inlining in the Lambda optimiser; this isdone by setting the Maximum inline size, found in the Control/Optimiser sub-menu,to 0.3Program kitdemo/escape1.sml.



8.2. FIXING SPACE LEAKS 77fun g at r1 [] (v40146)=letregion r8:INFin let val x =let val v40160 =(5, let val v40161 = (7, nil) at r8in :: v40161end) at r8in :: v40160endin letregion r11:1in let fun f at r11 [] (y)=let val _not_used =let val v40153 =(case y > 3of true =>letregion r14:1, r16:1in @[r8] at r14 (x, x) at r16end (*r14:1, r16:1*)| _ => x) (*case*)in ()endin 5end ;val _not_used =let val v40159 = letregion r17:1in f[] 1end (*r17:1*)in ()endin letregion r19:1 in f[] 4 end (*r19:1*)endend (*r11:1*)endend (*r8:INF*)Figure 8.1: The region-annotated version of g.



78 CHAPTER 8. STATIC DETECTION OF SPACE LEAKSfun g() =let fun mk_x() = [5,7]fun f(y) = let val x = mk_x()in if y>3 then x@x else x; 5endin f 1; f 4end;Of course, this means that the list will be reconstructed upon each applicationof f. Another solution is to move the creation of the list as close to the callsas possible and then pass the list as an extra argument:4fun g() =let fun f(x,y) = (if y>3 then x@x else x; 5)in let val x = [5,7]in f(x, 1); f(x, 4)endend;Both solutions stop warnings from being printed, but the second solution isbetter than the �rst: f still has a put e�ect on the regions containing x, butthe di�erence is that these are now represented by bound region variables inthe type scheme of f. This quanti�cation has two advantages: (a) allocationof space for the list is delayed till the list is actually used; and (b), the listcan be de-allocated after the calls have been made (whereas in the originalversion, x occurs free in the declaration of f and will be kept alive as long asf can be called).At other times, there is no clean way of avoiding escaping put e�ects.One example is found in the TextIO structure of the Basis Library:exception CannotOpenfun raiseIo fcn nam exn =raise IO.Io {function = fcn^"", name = nam^"", cause = exn}4Program kitdemo/escape2.sml.



8.2. FIXING SPACE LEAKS 79fun openIn (f: string) : instream ={ic=prim("openInStream","openInStream",(f,CannotOpen)),name=f} handle exn => raiseIo "openIn" f exnfun openOut(f: string): outstream ={oc=prim("openOutStream","openOutStream",(f,CannotOpen)),name=f} handle exn => raiseIo "openOut" f exnAs explained in Chapter 11, when a unary exception constructor is appliedto a value, both the argument value and the resulting constructed value areforced into a particular global region. Thus, the applicationIO.Io {function = fcn^"", name = nam^"", cause = exn}has a potential space leak in it; every time we apply the exception con-structor, the resulting exception value will be put into a global region. Thisparticular space leak is perhaps not something that would keep one awake atnight, because most programs do not make a large number of failed attemptsto open �les, but it is useful to be warned about this potential problem.Notice, however, that the string arguments to raiseIo are copied inside thebody of raiseIo, so that they are not forced to be placed in the global stringregion.
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Chapter 9ReferencesSection 9.1 gives a brief summary of references in Standard ML; it may beskipped by readers who know SML. Thereafter, we discuss runtime represen-tation of references and region-annotated reference types.9.1 References in Standard MLA reference is a memory address (pointer). Standard ML has three built-inoperations on referencesref 8�:� ! � ref create reference! 8�:� ref ! � dereferencing:= 8�:� ref � �! unit assignmentIf the type of a reference r is � ref then one can store values of type � (only)at address r. A reference is a value and can therefore be bound to a valueidenti�er by a val declaration. While the value stored at a reference maychange, the binding between variable and reference does not change. Weshow an example, because this point can be confusing to programmers whoare familiar with updatable variables in languages like C and Pascal:val it = let val x: int ref = ref 3val y: bool ref = ref trueval z: int ref = if !y then x else ref 5in z:= 6; 81



82 CHAPTER 9. REFERENCES
: : : vr : r35r34 r36: : :Figure 9.1: Creating a reference allocates one word in a region on the regionstack. Here, the region is drawn as a �nite region, but it could equally wellbe in�nite. !xendBecause !y evaluates to true, z becomes bound to the same reference (r) asx. So, the subsequent assignment to z changes the contents of the store ataddress r to contain 6. Because x and z are aliases, the result of the letexpression is the contents of the store at address r (i.e., 6).9.2 Runtime Representation of ReferencesThe Kit translates an SML expression of the form ref exp into an expressionof the form (assuming exp translates into e)ref at � ewhich is evaluated as follows. First e is evaluated. Assume that this evalu-ation yields a value v. Here v may be a boxed or an unboxed value. Next,a 32-bit word is allocated in the region denoted by �; let r be the address ofthis word. Then v is stored at address r and r is the result of the evaluation.The situation is depicted in Figure 9.1. The value v can be unboxed asshown in Figure 9.2. Or it may be boxed, in which case v is an address.Notice that a reference really is a pointer in the implementation. Inparticular, a reference is not tagged, so it may be stored in a KAM register.The contents of the reference is also always one word, either an unboxedvalue (e.g., an integer or a boolean) or a pointer (if the contents is boxed).So the contents of a reference is not tagged either.Dereferencing a reference r is done by reading the contents of the memorylocation r. Notice that dereferencing does not require knowledge of whatregion the word with address r resides in.



9.3. REGION-ANNOTATED REFERENCE TYPES 83
: : : 3r : r35r34 r36: : :Figure 9.2: Creating a reference allocates one word in a region on the regionstack. Here, the region is drawn as a �nite region, but it could equally wellbe in�nite.Assigning a value v to a reference r simply stores v in the memory ataddress r. When v is an unboxed value, the assignment can be regardedas copying v into the memory cell r; othewise v is a pointer, which theassignment stores in the memory cell r. Either way, assignment is a constant-time operation.9.3 Region-Annotated Reference TypesThe general form of a region-annotated reference type is:(� ref; �)Informally, a reference r has this type if it is the address of a word in theregion denoted by � and, moreover, � is the region-annotated type with placeof the contents of that word. For example, assume � is bound to some regionname, say r35; then the evaluation of the declaration val x = ref at � 3 re-sults in the environment fx 7! rg, where r is the address of a word withcontents 3 residing in region r35, see Figure 9.2. The type of x is ((int,�w)ref, �), which, as usual, we shorten to (int ref, �).References are treated like all other values by region inference. Theregion-annotated type schemes given to the three built-in operations are:ref 8��1�2�:(�; �1) �:fput(�2)g�������!((�; �1)ref; �2)! 8��1�2�:((�; �1)ref; �2) �:fget(�2)g�������!(�; �1):= 8��1�2�3�:(((�; �1)ref; �2) � (�; �1); �3) �:fget(�3);put(�2)g������������! unitAlthough the type scheme for := has in it a put e�ect on the region holdingthe reference, assignment does not actually allocate any values in this region.



84 CHAPTER 9. REFERENCESInstead, it manipulates an already existing value in the region. Assigning avalue v to a reference r does not make a copy of v (unless v is unboxed).The advantage of the chosen scheme for handling references is that refer-ence creation, dereferencing, and assignment all are constant-time operations.The disadvantage is that if two values may be assigned to the same reference,then they are forced to be in the same regions (cf. the region-annotated typeschemes given above).If we compile the example from Section 9.1, we get the program shownin Figure 9.3.1 The region denoted by r7 contains the memory word whoseaddress is bound to x and z, and whose contents is �rst 3, then 6. Theregion denoted by r8 contains a single boolean. Also notice that the wordcontaining 5 is designated r7, because the then and else branches mustbe given the same region-annotated type with place. Finally, notice thatall references will be reclaimed automatically at the end of the letregionconstructs that bind r7 and r8.9.4 Local ReferencesReferences that are created locally within a function and that do not escapethe function naturally reside in regions that are local to the function body.For example, the declaration:2fun id(x) = let val r = ref x in ! r end;is compiled intolet fun id at r1 [] (x)=letregion r9:1in let val r = ref at r9 xin letregion r10:1 in ![] r end (*r10:1*)endend (*r9:1*)in {|id: (_,r1)|}endHere r9 will be implemented as one word on the runtime stack. The evalua-tion of ref at r9 x moves the contents of the standard argument register1Program kitdemo/refs3.sml.2Program kitdemo/refs1.sml.



9.4. LOCAL REFERENCES 85
let val it =letregion r7:INFin let val x = ref at r7 3in letregion r8:1in let val y =let val v40143 = truein ref at r8 v40143 end ;val z =(case letregion r9:1in ![] yend (*r9:1*)of true => x| _ => ref at r7 5) (*case*) ;val v40137 =letregion r11:1, r13:1in :=[r7] at r11 (z, 6) at r13end (*r11:1, r13:1*)in letregion r14:1 in ![] x end (*r14:1*)endend (*r8:1*)endend (*r7:INF*)in {|it: _|}end Figure 9.3: Region-annotated reference creation.



86 CHAPTER 9. REFERENCES(standardArg) to that word on the stack. At the end of the letregion r9in � � � end, the word is popped o� the stack.Now, let us turn to an example of a memory cell whose lifetime extendsthe scope of its declaration, because it is accessible via a function (in Algolterminology, the reference is an own variable of the function.)3localval r = ref ([]:string list)infun memo_id x = (r:= x:: !r; x)endval y = memo_id "abc"val z = memo_id "efg";Provided that inlining by the optimiser is restricted to inline only thosefunctions that are applied once,4 this example compiles intolet val r = let val v40271 = nil in ref at r1 v40271 end ;fun memo_id at r1 [] (x)=let val v40267 =letregion r8:1, r10:1in :=[r1] at r8(r,let val v40268 = (x, letregion r12:1in ![] rend (*r12:1*)) at r1in :: v40268end) at r10end (*r8:1, r10:1*)in xend ;val y = letregion r14:1in memo_id[] "abc"at r4end (*r14:1*);3Program kitdemo/refs2.sml.4To restrict the optimiser accordingly, set the menu entry Control/Compiler/maximuminline size to 0.



9.5. HINTS ON PROGRAMMING WITH REFERENCES 87val z = letregion r16:1in memo_id[] "efg"at r4end (*r16:1*)in {|z: (_,r4), y: (_,r4),memo_id: (_,r1), r: (_,r1)|}endand the Kit warns us that there is a possible space leak (Chapter 8):*** Warnings ***memo_id has a type scheme with escaping put effectson region(s):r1, which is also free in the type schemes with places of :less_int minus_int := ! r Div Mod Match Bind9.5 Hints on Programming with ReferencesThere is no need to shy away from using references when programming withregions. However, one needs to be aware of the restriction that values thatmay be assigned to the same references are forced to live in the same region,and that this region with all its values will be alive for as long as the referenceis live. If the contents type is unboxed (e.g., int), there is no problem, forin that case, no region for the contents is allocated. But one should avoidcreating long-lived references that are assigned many di�erent large values.
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Chapter 10Recursive Data TypesThis chapter describes how the Kit treats recursive data types. We havealready seen how one recursive datatype, namely lists, is handled. Thischapter deals with the general case.10.1 Spreading Data TypesThe Kit performs an analysis called \spreading of data types". Spreadingof datatypes analyses datatype declarations. This analysis of a datatypedeclaration uses information about the type constructors that appear in thetypes of the constructors of the data type(s) introduced by the declaration,but it does not use information about the use of the data type.Spreading determines (a) a so-called arity of every type name that thedata type declaration introduces and (b) a region-annotated type scheme forevery value constructor introduced by the data type declaration.In the De�nition of Standard ML every type name has an attribute,called its arity [MTHM97]. The arity of a type name is the number of typearguments it requires. For example, int has arity 0 while the type nameintroduced by the following declaration of binary trees has arity 1:datatype 'a tree = Lf | Br of 'a * 'a tree * 'a tree;The Kit extends the notion of arity (in it's internal languages) to accountfor regions and e�ects. For lists, for example, we need a region for holdingthe pairs to which :: is applied. For the data typedatatype 'a foo = A | B of ('a * 'a) * ('a * 'a)89



90 CHAPTER 10. RECURSIVE DATA TYPESthe type of B introduces the possibility of three region variables (one foreach star). Region variables that are induced by the types of constructorsand that do not hold the constructed values themselves are called auxiliaryregion variables. For example, the list data type:datatype 'a list = nil | op :: of 'a * 'a listhas one auxiliary region variable, namely the region variable that describeswhere the pairs of type 'a * 'a list (i.e., the auxiliary pairs), reside.Besides auxiliary regions, one sometimes needs auxiliary e�ects. For anexample, consider:datatype V = N of int | F of V -> VHere one needs an arrow e�ect for the function type V -> V. We refer tosuch an arrow e�ect as an auxiliary arrow e�ect of the data type in question.We de�ne the (internal) arity of a type name t to be a triple (n; k;m) ofnon-negative integers, where n is the usual Standard ML arity of the typename, k is the region arity of t, and m is the e�ect arity of t. The regionand e�ect arities indicate the number of auxiliary regions and arrow e�ectsof the data type, respectively.For e�ciency purposes, we have found it prudent to restrict the maximalnumber of auxiliary regions a data type can have to 3 (one for each kind ofruntime type of regions) and to restrict the maximal number of auxiliary ef-fects to 1. Otherwise, the number of auxiliary regions can grow exponentiallyin the size of the program:datatype t0 = Cdatatype t1 = C1 of t0 * t0datatype t2 = C2 of t1 * t1...Here the number of auxiliary region variables would double for each new datatype declaration.Furthermore, all type names introduced by a datatype declaration aregiven the same arity (a datatype declaration can declare several types si-multaneously).Because of the limit on the number of auxiliary region variables, spreadingof data type declarations sometimes uni�es two auxiliary region variables that



10.2. EXAMPLE: BALANCED TREES 91would otherwise be distinct; but it only uni�es auxiliary region variables thathave the same runtime type.The practical consequence of these restrictions is that applying a con-structor to a value v sometimes forces identi�cation of regions of v that holdotherwise unrelated parts of v.The automatic memory management that we have discussed for lists ex-tends to other recursive data types without problems. For example, binarytrees are put into regions and are subsequently de-allocated (in a constanttime operation) when the region is popped. The next section is an exampleto illustrate the point.For simplicity, constructed values except lists (Chapter 5) are alwaysboxed.10.2 Example: Balanced TreesConsider the program in Figure 10.1.1 We would hope that the balancedtree produced by balpre is removed after it has been collapsed into a list bypreord. And indeed it is. Here is the proof:val it =letregion r75:1, r77:INFin print[]letregion r78:1, r80:INFin implode[r77] at r78letregion r81:1, r83:1, r84:INF, r85:INFin preord[r80] at r81(letregion r86:1, r88:INFin balpre[r84,r85] at r86letregion r89:1, r91:1in explode[r88] at r89"Greetings from the Kit\n"at r91end (*r89:1, r91:1*)end (*r86:1, r88:INF*),nil) at r83end (*r81:1, r83:1, r84:INF, r85:INF*)1Project: kitdemo/trees.pm, �le kitdemo/trees.sml.
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datatype 'a tree = Lf | Br of 'a * 'a tree * 'a tree(* preorder traversal of tree *)fun preord (Lf, xs) = xs| preord (Br(x,t1,t2),xs) =x::preord(t1,preord(t2,xs))(* building a balanced binary treefrom a list: *)fun balpre [] = Lf| balpre(x::xs) =let val k = length xs div 2in Br(x, balpre(take(xs, k)),balpre(drop(xs, k)))end(* preord o balpre is the identity: *)val it = print(implode(preord(balpre(explode"Greetings from the Kit\n"),[])));Figure 10.1: Example showing recycling of memory used for an intermediatedata structure.



10.2. EXAMPLE: BALANCED TREES 93end (*r78:1, r80:INF*)end (*r75:1, r77:INF*)This is the kind of certainty about lifetimes we are aiming at. Imagine, forexample, that the trees under consideration were terms representing di�erentintermediate forms in a compiler. Then one would like to know that (possiblylarge) syntax trees are not kept in memory longer than needed.
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Chapter 11Exceptions
11.1 Exception Constructors and ExceptionNamesStandard ML exception constructors are introduced by exception declara-tions. The two most basic forms areexception exconand exception excon of tyfor introducing nullary and unary exception constructors, respectively.Exception declarations need not occur at top level. For example, a func-tion body may contain exception declarations. Each evaluation of an excep-tion declaration creates a fresh exception name and binds it to the exceptionconstructor. This is sometimes referred to as the generative nature of Stan-dard ML exceptions.In the ML Kit, an exception name is implemented as a pointer to a pairconsisting of an integer and a string pointer; the string pointer points to thename of the exception, which is a global constant in the target program. Thestring is used for printing the name of the exception if it ever propagates totop level. The memory cost of creating the pair is, as always with pairs, twowords.

95



96 CHAPTER 11. EXCEPTIONS11.2 Exception ValuesStandard ML has a type exn of exception values. An exception value iseither a nullary exception value or a constructed exception value. A nullaryexception value is a pointer to a word that points to an exception name.A constructed exception value is a pair (en; v) of an exception name enand a value v; we refer to v as the argument of en. This representation ofexception values allows for the exception name of an exception value to befetched in the same way irrespective of whether the exception value is nullaryor constructed.Referring to a nullary exception constructor allocates no memory. Bycontrast, applying a unary exception constructor to an argument constructsa constructed exception value. The memory cost of such an application istwo words for holding the pair (en; v).The distinction between nullary and unary exception constructors is im-portant in the Kit because our region inference analysis takes a simple-minded approach to exceptions:All exception names and nullary exception values are put into acertain global region and thus never reclaimed automatically. Aconstructed exception value is put in a region that is live at leastas long as the exception constructor is in scope.We therefore make the following recommendations:1. Put exception declarations at top level, if possible. That way, thememory required by exception names will be bounded by the programsize.2. Avoid applying unary exception constructors frequently; there is noharm in raising and handling constructed exception values frequently;it is the creation of many di�erent constructed exception values thatcan lead to space leaks. Nullary constructors may be raised withoutincurring memory costs.11.3 Raising ExceptionsAn expression of the form raise exp



11.4. HANDLING EXCEPTIONS 97is evaluated as follows. First exp, an expression of type exn, is evaluatedto an exception value. Then the runtime stack is scanned from top towardsbottom in search of a handler that can handle the exception. The KAM has aregister that points to the top-most exception handler; the exception handlersare linked together as a linked list interspersed with the other contents ofthe runtime stack. If a matching handler is found, the runtime stack ispopped down to the handler. This popping includes popping of regions thatlie between that stack top and the handler. Put di�erently, consider anexpression of the form letregion � in e end; if e evaluates to an exceptionpacket, then the region bound to � is de-allocated and the packet is also theresult of evaluating the letregion expression.We have not attempted to design an analysis that would estimate howfar down the stack a given exception value might propagate. Of course, itwould not be a very good idea to allocate a constructed exception value ina region that is popped before the exception is handled! This is why we putall exception names in global regions.11.4 Handling ExceptionsThe ML expression form exp1 handle matchis compiled into a MulExp expression of the formletregion � inlet f = fn at � match in e1 handle f endendwhere f is a fresh variable. So �rst a handler (expressed as a function) isevaluated and stored in some region �. This region will always have multi-plicity one and therefore be a �nite region which is put on the stack. Thene1, the result of compiling exp1, is evaluated. If e1 terminates with a value,the letregion construct will take care of de-allocating the handler. If e1terminates with an exception, however, f is applied.Thus the combined cost of raising an exception and searching for theappropriate handler takes time proportional to the depth of the runtimestack in the worst case.



98 CHAPTER 11. EXCEPTIONSHandling of exceptions is the only operation that takes time that can-not be determined statically, provided one admits arithmetic operations asconstant-time operations.11.5 Example: Prudent Use of ExceptionsHere is an example of prudent use of exceptions in the ML Kit:exception Hd (* recommendation 1 *)fun hd [] = raise Hd| hd (x::_) = xexception Tlfun tl [] = raise Tl| tl (_ ::xs) = xsexception Error of stringlocalval error_f = Error "f" (* recommendation 2 *)infun f(l) =hd(tl(tl l)) handle _ => raise error_fendval r = f[1,2,3,4];The application Error "f" has been lifted out from the body of f. Nomatter how many times f is applied, it will not create additional exceptionvalues.11Program kitdemo/exceptions.sml.



Chapter 12Resetting RegionsThe idea of region resetting was introduced in Section 1.2.This chapter gives an informal explanation of the rules that govern re-setting. Knowing these rules is useful, irrespective of whether one leavesresetting of regions to the Kit, or prefers to control resetting explicitly in theprogram.Resetting only makes sense for in�nite regions. Resetting a region isa constant-time operation. Since the same region variable can be boundsometimes to a �nite region and sometimes to an in�nite region a runtime,resetting a region can involve a test at runtime.The Kit contains an analysis, called the storage mode analysis, which hastwo purposes:1. inserting automatic resetting of in�nite regions, when possible;2. checking applications of resetRegions (and forceResetting) so as toreport on the safety of the resetting requested by the programmer.As a matter of design, one might wonder whether it would not be su�cientto rely on the user to indicate where resetting should be done. However,checking whether resetting is safe at a particular point chosen by the useris of course no easier than checking whether resetting is safe at an arbitrarypoint in the program, so one might as well let the compiler insert regionresetting whenever it can prove that it is safe.In this chapter, we describe the principles that underlie the storage modeanalysis. Even if one is willing to insert resetRegions and forceResettinginstructions in the program, one still needs to understand these principles,99



100 CHAPTER 12. RESETTING REGIONSso as to be able to act upon the messages that are generated by the systemin response to explicit resetRegions and forceResetting instructions.12.1 Storage ModesAs we have seen in previous chapters, region inference decorates every allo-cation point with an annotation of the form at �, indicating into what regionthe value should be stored.Now the basic idea is that storing a value into a region can be done inone of two ways, at runtime. One either stores the value at the top of theregion, thereby increasing the size of the region; or one stores the value intothe bottom of the region, by �rst resetting the region (so that it contains novalues) and then storing the value into the region.The storage mode analysis transforms an allocation point at � into attop �when it estimates that � contains live values at the allocation point, whereasit transforms it into atbot � if it can prove that the region will contain nolive values at that allocation point. The tokens attop and atbot are calledstorage modes.Region polymorphism introduces several interesting problems. Let f bea region-polymorphic function with formal region parameter � and consideran allocation point at � in the body of f . Whether it is safe for f to storethe value at bottom in the region depends not only on the body of f but alsoon the context in which f is called.For example, consider the compilation unitfun f [] = []| f (x::xs) = x+1 :: f xsval ll = [1,2,3]val l2 = if true then f l1 else l1val x::_ = l1;When f creates the empty list, it can potentially reset the auxiliary regionintended for the auxiliary pairs of the list. In the above program, however,the conditional forces f l1 and l2 to be in the same region as l1. Becausel1 is live after the application of f, this application must not use atbot asstorage mode. Indeed, even if we removed the last line of the program, the



12.1. STORAGE MODES 101application could still not use atbot, for l1 is exported from the compilationunit and thus potentially used by subsequent compilation units.By contrast, consider1fun f [] = []| f (x::xs) = x+1 :: f xsval n = length(let val l1 = [1,2,3]in if true then f l1 else l1end)When f creates the empty list, it is welcome to reset the region that holdsl1, for by that time, l1 is no longer needed! (f traverses l1, but when itreaches the end of the list, l1 is no longer used.) Indeed, the Kit will replacethe list [1,2,3] by [2,3,4]. The ability to replace data in regions is crucialin many situations (as we illustrated with the game of Life in Section 1.3).Because the Kit allows for separate compilation, it cannot know all thecall sites of a region-polymorphic function, when it is declared. Therefore,when considering an allocation point at � inside the body of some region-polymorphic function f that has � as a formal region parameter, one cannotknow at compile time whether to use attop or atbot as storage mode. In-stead, the storage mode analysis operates with a third kind of storage modenamed sat, read: \somewhere at". Consider an application of f for which� is instantiated to some region variable �0, say. At runtime, �0 is boundto some region name (Section 2.1) r0. Then r0 is combined with a de�nitestorage mode (i.e., attop or atbot), to yield r, say, which is then bound to�. When r0 was originally created (by a letregion expression), r0 was alsomade to contain an indication of whether it is an in�nite region or a �niteregion.2 At runtime, an allocation point sat � in the body of f will test r tosee whether the region is in�nite and whether the value should be stored atthe top or at the bottom.31Program kitdemo/sma1.sml.2On machines that have at least four bytes per word, the two least signi�cant bitsof a pointer to a word will always be 00. These two bits hold extra information in theregion name. One bit, called the \atbot bit", holds the current storage mode of the region.Another bit, called the \in�nity bit", indicates whether the region is �nite or in�nite.3When � has multiplicity in�nity, r0 must be the name of an in�nite region, so theruntime check on whether r has its in�nity bit set is omitted.



102 CHAPTER 12. RESETTING REGIONSThe relevant parts of the result of compiling the last example are shownin Figure 12.1. To see the storage modes, switch on the 
agprint drop regions expression with storage modesin the menu Printing of intermediate forms.12.2 Storage Mode AnalysisFor the purpose of the storage mode analysis, actual region parameters toregion-polymorphic functions are considered allocation points. Passing a re-gion as an actual argument to a region-polymorphic function involves neitherresetting the region nor storing any value in it, but a storage mode has to bedetermined at that point nonetheless, because it has to be passed into thefunction together with the region. The storage mode expresses whether, atthe call site, there may be any live values in the region after the call. Forexample, in Figure 12.1, the call to f at (*1*) passes r18 with storage modeatbot because the only value that exists before the call of f and is neededafter the call of f is length, which is declared in a di�erent compilation unitand therefore obviously does not reside in r18.Within every lambda abstraction, the Kit performs a backwards 
owanalysis that determines, for every allocation point, a set of locally live vari-ables, that is, a set of variables used by the remainder of the computation inthe function up to the syntactic end of the function. (This includes variablesthat appear in function application expressions.) Prior to the computationof locally live variables, a program transformation, called K-normalisation,has made sure that every intermediate result that arises during computa-tion becomes bound to a variable. (This happens by introducing extra letbindings, when necessary.)4The Kit also computes a set of locally live variables for those allocationpoints that do not occur inside functions.We now give an informal explanation of the rules that assign storagemodes to allocation points. Let an allocation pointat � (12.1)4K-normalisation is transparent to users: although the storage mode analysis and allsubsequent phases up to code generation operate on K-normal forms, programs are alwayssimpli�ed to eliminate the extra let bindings before they are presented to the user.



12.2. STORAGE MODE ANALYSIS 103fun f attop r1 [r7:INF] (var553)=(case var553of nil => nil| _ => let val xs = #1 decon_:: var553;val x = #0 decon_:: var553;val v41096 =(x + 1,letregion r14:1in f[sat r7] atbot r14 xsend (*r14:1*)) attop r7in :: v41096end) (*case*) ;val n =letregion r16:1, r18:INFin length[]let val l1 =let val v41103 =(1,let val v41104 =(2,let val v41105 =(3, nil) attop r18in :: v41105end) attop r18in :: v41104end) attop r18in :: v41103endin (case trueof true => letregion r22:1(*1*) in f[atbot r18] atbot r22 l1end (*r22:1*)| _ => l1) (*case*)endend (*r16:1, r18:INF*)Figure 12.1: Storage modes inferred by the storage mode analysis.



104 CHAPTER 12. RESETTING REGIONSbe given.CASE A: � is a global region. Then attop is used. There is a de�ciency wehave to admit here. The Kit only puts letregion around expressions, notaround declarations. Thus, if one writeslocalfun f [] = []| f (x::xs) = x+1 :: f xsval l1 = [1,2,3]inval n = length(if true then f l1 else l1)endat top level, then l1 is put into a global region, although this is really unnec-essary. As a consequence, f would be called with storage mode attop andthus l1 would not be overwritten.CASE B: The region variable � is not a global region and the allocationpoint (12.1) occurs inside a lambda abstraction, that is, inside an expressionof the form fn pat => e. Here we regard every expression of the formlet fun f(x) = e in e0 endas an abbreviation forlet val rec f = fn(x) => e in e0 endThen it makes sense to talk about the smallest enclosing lambda abstraction(of the allocation point).Now there are the following cases:B1 � is bound outside the smallest enclosing lambda abstraction (and thislambda abstraction is not the right-hand side of a declaration of aregion-polymorphic function that has � as formal parameter): use attop(see Figure 12.2);B2 � is bound by a letregion expression inside the smallest enclosing func-tion: use atbot if no locally live variable at the allocation point has �free in its region-annotated type scheme with place (Section 6.2), anduse attop otherwise (see Figure 12.3);



12.2. STORAGE MODE ANALYSIS 105letregion �in : : : (fn pat => : : : at � : : :)endfun f at �1 [�] =(fn x => (fn y => : : : at � : : :)at �2)at �1Figure 12.2: Two typical situations where at � is turned into attop � byrule B1. (fn pat => : : :letregion �in : : : at � : : : l : : :end : : :)Figure 12.3: The situation considered in B2. If no locally live variable l has� occurring in its region-annotated type scheme with place, replace at � byatbot �, otherwise by attop �.B3 (�rst attempt) � is a formal parameter of a region-polymorphic func-tion whose right-hand side is the smallest enclosing lambda abstraction:use sat, if no locally live variable at the allocation point has � free inits region-annotated type scheme with place, and use attop otherwise(see Figure 12.4).The motivation for (B1) is that if � is declared non-locally, then we do notattempt to �nd out whether � contains live data (this would require a moresophisticated analysis.) The intuition behind (B2) is as follows. Regioninference makes sure that the region-annotated type of a variable alwayscontains free in it region variables for all the regions that the value bound tothe variable needs when used. The lifetime of the region bound to � is givenby the letregion expression, which is in the same function as the allocation



106 CHAPTER 12. RESETTING REGIONSfun f at �0 [�, : : :] =(fn pat => : : : at � : : : l : : :)Figure 12.4: The situation considered in B3. If no locally live variable l hasin its region-annotated type scheme with place a region variable that may bealiased with �, replace at � by sat �, otherwise by attop �.point. Thus, if no locally live variable at the allocation point has � free inits region-annotated type scheme with place, then � really does not containany live value at that allocation point.The intuition behind (B3) is the same as behind (B2), but in this casethere is a complication: � is only a formal parameter so it may be instantiatedto di�erent regions; in particular it may be instantiated to a region variablethat does occur free in the region-annotated type scheme with place of alocally live variable at the allocation point. If that happens, rule (B3), asstated, is not sound!We refer to the phenomenon that two di�erent region variables in the pro-gram may denote the same region at runtime as region aliasing. To determinewhether to use sat or attop in case (B3), the Kit builds a region 
ow graphfor the entire compilation unit. (This construction happens in a phase priorto the storage mode analysis proper.) The nodes of the region 
ow graphare region variables and arrow e�ects that appear in the region-annotatedcompilation unit. Whenever �1 is a formal region parameter of some func-tion declared in the unit and �2 is a corresponding actual region parameterin the same unit, a directed edge from �1 to �2 is created. Similarly for ar-row e�ects: if �1:'1 is a bound arrow e�ect of a region-polymorphic functiondeclared in the compilation unit and �2:'2 is a corresponding actual arrowe�ect then an edge from �1 to �2 is inserted into the graph. Also, edges from�2 to every region and e�ect variable occurring in '2 are inserted. Finally, forevery region-polymorphic function f declared in the program and for everyformal region parameter � of f , if f is exported from the compilation unit,then an edge from � to the global region of the same runtime type as � isinserted into the graph. (This is necessary, so as to cater for applications of fin subsequent compilation units.) Let G be the graph thus constructed. Forevery node � in the graph, we write h�i to denote the set of region variables



12.3. EXAMPLE: COMPUTING THE LENGTH OF A LIST 107that can be reached from �, including � itself. The rule that replaces (B3)is:B3 � is a formal parameter of a region-polymorphic function whose right-hand side is the smallest enclosing lambda abstraction: use sat, if, forevery variable l that is locally live at the allocation point and for everyregion variable �0 that occurs free in the region-annotated type schemewith place of l, it is the case that h�i \ h�0i = ;; use attop otherwise.CASE C: � is bound by a letregion expression and the allocation point(12.1) does not occur inside any function abstraction. As in (B2), use atbotif no locally live variable at the allocation point has � free in its region-annotated type scheme with place, and use attop otherwise.12.3 Example: Computing the Length of aListWe shall now illustrate the storage mode rules of Section 12.2 with some smallexamples, which also allow us to discuss bene�ts and drawbacks associatedwith region resetting.Consider the functions declared in Figure 12.5;5 they implement �ve dif-ferent ways of �nding the length of a list! The �rst, nlength, is the moststraightforward one. It is not tail recursive. Textbooks in functional pro-gramming often recommend that functions are written iteratively (i.e., us-ing tail calls) whenever possible. This we have done with tlength. Next,klength is a version that contains a local region endomorphism loop to per-form the iteration; llength is similar to klength, except that the regionendomorphism is declared outside llength, using local. A region pro�leresulting from running the program is shown in Figure 12.6. The diagramshows how much space is used in regions (both �nite and in�nite regions)and on the stack. The rDesc band shows how much space is used on thestack for holding region descriptors. The stack band shows how much spaceis used on the stack, including neither �nite regions nor region descriptors;the stack band mainly consists of registers and return addresses that havebeen pushed onto the stack.5Program kitdemo/length.sml.



108 CHAPTER 12. RESETTING REGIONSfun upto n =let fun loop(p as (0,acc)) = p| loop(n, acc) = loop(n-1, n::acc)in #2(loop(n,[]))endfun nlength [] = 0| nlength (_::xs) = 1 + nlength xsfun tlength'([], acc) = acc| tlength'(_::xs, acc) = tlength'(xs,acc+1)fun tlength(l) = tlength'(l,0)fun klength l =let fun loop(p as ([], acc)) = p| loop(_::xs, acc) = loop(xs,acc+1)in #2(loop(l,0))endlocalfun llength'(p as ([], acc)) = p| llength'(_::xs, acc) = llength'(xs,acc+1)infun llength(l) = #2(llength'(l, 0))endfun global(p as ([], acc)) = p| global(_::xs, acc) = global(xs, acc+1)fun glength(l) = #2(global(l, 0))val run = nlength(upto 10000) + tlength(upto 10000) +klength(upto 10000) + llength(upto 10000) +glength(upto 10000);Figure 12.5: Five di�erent ways of computing the length of lists.
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Figure 12.6: Region pro�ling of �ve di�erent ways of computing the lengthof a list, namely, from left to right: nlength, tlength, klength, llength,and glength.



110 CHAPTER 12. RESETTING REGIONSIn Figure 12.6, we clearly see the �ve phases. In each phase, �rst a listis built|seen as an almost linear growth in a region; then follows a shortercomputation of the length of the list. The space behaviour of the �ve waysof computing the length vary considerably. We shall have more to say aboutthe time behaviour in what follows.As one would expect, nlength leads to a peak in stack size; it does notuse regions. The peak in stack size is caused by the stacking of a returnaddress.Next, we see that tlength is not an improvement over nlength! Noticethat tlength' is region-polymorphic and that the polymorphic recursion inregions allows the pair (xs, acc+1) to be stored in a region di�erent fromthe argument pair to tlength'. Thus, what appears to be a tail call is infact not a tail call, for it is automatically enclosed in a letregion construct,which introduces a fresh region for each argument pair (xs, acc+1). Thisregion is �nite, so it is allocated on the stack. That is why we see a sharpincrease in stack size for tlength'.The next function, klength, deserves careful study, because it is a proto-type of a particular schema that can be used again and again when program-ming with regions. Iteration is done by a region endomorphism, loop, whichis declared as a local function to the main function. The use of the samevariable p on both the left-hand side and the right-hand side of the declara-tion of loop forces loop to be a region endomorphism. Because the resultof loop(xs,acc+1) is also the result of loop, the result of loop(xs,acc+1)therefore has to be in the same region as p; but because loop is an endo-morphism, (xs, acc+1) is forced to be in the same region as p. Thus, whatappears to be a tail call (loop(xs,acc+1)) really will be a tail call; in par-ticular, there will be no fresh region for the argument and no growth of thestack.Better still, we have carefully arranged that memory consumption willbe constant throughout the computation of the length of the list. First, theargument to the initial call of loop is a pair (l, 0) constructed at that point.Because loop is a region endomorphism, the result of loop(l, 0) will bein the same region as (l, 0). Moreover, because we then immediately takethe second projection of that pair, that region is clearly local to the body ofklength. Call the region �. Because there can be an unbounded number ofstores into this region, � is classi�ed as in�nite by multiplicity inference.The storage mode passed along with � in the initial call loop(l,0) isatbot, by rule (B2) of Section 12.2. Inside loop, the storage mode given to



12.3. EXAMPLE: COMPUTING THE LENGTH OF A LIST 111the allocation of (xs, acc+1) is sat, by rule (B3) of Section 12.2: the onlylocally live variable at the point where the allocation takes place is loop,which we must not destroy before calling! The region that loop lies in isclearly di�erent from �.Therefore, every iteration of loop resets the in�nite region � so that itwill contain at most one pair. This is seen very clearly in the third hump ofFigure 12.6.Next consider llength. The di�erence from klength is that llength' isnow declared outside llength. Although the use of local makes it clear thatllength' is not exported from the compilation unit, llength' must in factreside in a global region, because llength, which is exported, calls llength'.Nonetheless, the storage mode analysis still achieves constant memory usage.As before, we have arranged that iteration is done by a region endomorphismthat is initially applied to a freshly constructed pair. This pair can residein a region that is local to the body of llength (once again, the projection#2(llength'(l, 0)) makes sure that the pair does not escape the body ofllength). The crucial bit is now what storage mode llength' uses when itstores (xs, acc+1). The only locally live variable at that point is llength'itself and, as we noted earlier, length' lives in a global region, which isclearly di�erent from the region inside llength that contains all the pairs.Thus, storage mode sat will be used, as desired.Finally, consider glength, which is similar to llength, but with thecrucial di�erence that global is exported from the compilation unit. Becauseglobal may be called from a di�erent compilation unit, then, for all weknow, global may be applied to a pair that resides in the same (global)region as global itself. Using sat when storing (xs, acc+1) would thenbe a big mistake: it would destroy the very function that we are trying tocall! Therefore, the storage mode analysis assigns attop to that storageoperation.6 Consequently, we get a memory leak, as shown in the �nal humpof Figure 12.6.To sum up, here is how one writes a loop without using space proportionalto the number of iterations:1. The iteration should be done by an auxiliary, uncurried function thatis declared as local to the function that uses it; we refer (informally) to6To be precise, attop comes about by using rule (B3) of Section 12.2. This exampleillustrates why we put edges from formal region parameters to global regions for exportedfunctions when constructing the region 
ow graph.



112 CHAPTER 12. RESETTING REGIONSprogram upto nlength tlength klength llength glengthsec. 0.38 0.61 0.74 0.69 0.73 0.67Figure 12.7: User time in seconds for building a list of 1 million elementsand computing its length, using �ve di�erent length functions. upto buildsthe list, but does not compute a length. Times are average over three runs.this auxiliary function as the iterator.2. The iterator should be a region endomorphism and should be tail re-cursive;3. Iteration should start from a suitably fresh initial argument; the resultof the iteration should be kept clearly separate from the region wherethe iterator function lies.Mutual recursion poses no additional complications. All functions in a blockof mutually recursive functions are put in the same region.Finally, the reader may be concerned that the two recommended solu-tions, klength and llength, seem to be much slower than the other versions.This is mostly an artifact of the pro�ling software, however.7 To get a bet-ter picture of the actual cost of the di�erent versions, we compiled the �veprograms separately (using lists of length 1 million instead of 10,000) usingthe HP backend and then ran the programs on an HP-9000s700. The resultsare shown in Figure 12.7. Because upto alone takes 0.38 seconds to buildthe list, the di�erences in times are clear: the versions of the length functionthat take pairs as arguments are slower than the version that stores valueson the stack (i.e., nlength); this di�erence would presumably be reducedsigni�cantly if the Kit allowed functions to take argument values in morethan one register.12.4 resetRegions and forceResettingIt is often the case that there are only a few places in the program whereresetting is really essential, for example in some main loop. Therefore, the7When pro�ling is turned on, every resetting of a region involves resetting of values inthe �rst region page of the region.



12.4. RESETREGIONS AND FORCERESETTING 113Does resetting really take place at runtime?resetRegions forceResettingm = atbot yes yesm = sat only if run-time storagemode is atbot yes�m = attop no� yes�(�): A compile-time warning is printed in this case.Figure 12.8: The storage modes that will be used when resetting a regiondepending onm, the storage mode inferred by the storage mode analysis, anddepending on whether the resetting is safe (resetRegions) or potentiallyunsafe (forceResetting).Kit provides two operations that the programmer can use to encourage (orforce) the Kit to perform resetting at particular places in the program. Thetwo operations are resetRegions vidand forceResetting vidIn both cases, the argument has to be a value identi�er. To port programsthat contain resetRegions and forceResetting to other ML systems, sim-ply declarefun resetRegions _ = ()fun forceResetting _ = ()before compiling the program developed using the Kit.Let � be a region variable that occurs free in the region-annotated typescheme with place of vid. Let m be the storage mode determined for � at aprogram point according to the rules of the previous section. Whether reset-ting of vid at that program point actually takes place at runtime, dependson m and on whether resetting is forced, see Figure 12.8.



114 CHAPTER 12. RESETTING REGIONS12.5 Example: Improved MergesortWe can now improve on the mergesort algorithm (Section 6.4) by takingstorage modes into account. Splitting a list can be done by an iterativeregion endomorphism that is made local to the sorting function. Also, whenthe input list has been split, it is no longer needed, so the region it residesin can be reset. Similarly, when the two smaller lists have been sorted (intonew regions) the regions of the smaller lists can be reset. These three simpleobservations lead to the variant of msort listed in Figure 12.9.8Unfortunately, the storage mode analysis complains:*** Warnings ***resetRegions(xs):You have suggested resetting the regions that appear freein the type scheme with place of 'xs', i.e., in(int, [r58]) list(1) 'r58': there is a conflict with the locallylive variablel :(int, [r65]) listfrom which the following region variables can be reachedin the region flow graph:{r65}Amongst these, 'r65' can also be reached from 'r58'.Thus I have given 'r58' storage mode "attop".There is one complaint concerning the �rst resetRegions, but none con-cerning the two remaining ones. By inspecting the region-annotated termone sees that r58 is a formal parameter of msort. Due to the recursive callmsort l, the region graph contains an edge from r58 to r65. Thus the anal-ysis decides on attop, using rule (B3). This choice shows a weakness in theanalysis, for using sat would really be sound. (The problem is that, unlikepolymorphic recursion, the region 
ow graph does not distinguish betweendi�erent calls of the same function.) Seeing that this is the problem, wedecide to put forceResetting to work, see Figure 12.10.9 The region pro�leof the improved merge sort appears in Figure 12.11. As expected, we have8Project: kitdemo/msortreset1.pm, �le kitdemo/msortreset1.sml.9Project: kitdemo/msortreset2.pm, �le kitdemo/msortreset2.sml.



12.5. EXAMPLE: IMPROVED MERGESORT 115localfun cp [] =[]| cp (x::xs)= x :: cp xs(* exormorphic merge *)fun merge(xs, []):int list = cp xs| merge([], ys) = cp ys| merge(l1 as x::xs, l2 as y::ys) =if x<y then x :: merge(xs, l2)else y :: merge(l1, ys)(* splitting a list *)fun split(x::y::zs, l, r) = split(zs, x::l, y::r)| split(x::xs, l, r) = (xs, x::l, r)| split(p as ([], l, r)) = pinfix footnotefun x footnote y = x(* exomorphic merge sort *)fun msort [] = []| msort [x] = [x]| msort xs = let val (_, l, r) = split(xs, [], [])in resetRegions xs;merge(msort l footnote resetRegions l,msort r footnote resetRegions r)endinval runmsort = msort(upto(50000))val result = print "Really done\n"endFigure 12.9: Variant of msort that uses resetRegions to improve memoryusage. The Kit fails to infer that the region holding the argument list xs canbe reset after xs is split.



116 CHAPTER 12. RESETTING REGIONSlocalfun cp [] =[]| cp (x::xs)= x :: cp xs(* exormorphic merge *)fun merge(xs, []):int list = cp xs| merge([], ys) = cp ys| merge(l1 as x::xs, l2 as y::ys) =if x<y then x :: merge(xs, l2)else y :: merge(l1, ys)(* splitting a list *)fun split(x::y::zs, l, r) = split(zs, x::l, y::r)| split(x::xs, l, r) = (xs, x::l, r)| split(p as ([], l, r)) = pinfix footnotefun x footnote y = x(* exomorphic merge sort *)fun msort [] = []| msort [x] = [x]| msort xs = let val (_, l, r) = split(xs, [], [])in forceResetting xs;merge(msort l footnote resetRegions l,msort r footnote resetRegions r)endinval runmsort = msort(upto(50000))val result = print "Really done\n"end Figure 12.10: Using forceResetting to reset regions.



12.6. EXAMPLE: SCANNING TEXT FILES 117now brought space consumption down from four times to two times the sizeof the input. Figure 12.11 may be compared to Figure 6.3 on page 66.12.6 Example: Scanning Text FilesIn this section we present a program that can scan a sequence of StandardML source �les so as to compute what percentage of the source �les is madeup by comments. Recall that an ML comment begins with the two characters(*, ends with *), and that comments may be nested but must be balanced(within each �le, we require).The obvious solution to this problem is to implement an automaton withcounters to keep track of the level of nesting of parentheses, number of char-acters read, and number of characters within comments. This provides aninteresting test for region inference: although designed with the lambda cal-culus in mind, does the scheme cope with good old-fashioned state compu-tations?Let us be ambitious and write a program that only ever holds on to onecharacter at a time when it scans a �le. In other words, the aim is to useconstant space (i.e., space consumption should be independent of the lengthof the input �le).To this end, let us arrange to use a region with in�nite multiplicity tohold the current input character and then reset that region before we proceedto the next character. The iteration is done by tail recursion, using regionendomorphisms to ensure constant space usage.The bulk of the program appears below.10 The scanning of a single �leis done by scan, which contains three mutually recursive region endomor-phisms (count, after lparen, and after star) written in accordance withthe guidelines in Section 12.3. The built-in TextIO.inputN function under-stands storage modes; if called with storage mode atbot, it will reset theregion where the string should be put before reading the string from the in-put. Consequently, at every call of next, the \input bu�er region" will bereset.The other important loop in the program is driver, a function thatrepeatedly reads a �le name from a given input stream, opens the �le withthat name, and calls scan to process the �le. Once again, we want to keep10Project: kitdemo/scan.pm, �le: kitdemo/scan.sml.
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Figure 12.11: Region pro�ling of the improved mergesort. Thelower triangle contains unsorted elements, while the upper trianglecontains sorted elements. The program was compiled with pro�l-ing enabled and then run with the command run -microsec 100000.The PostScript picture region.ps was generated with the commandrp2ps -region -sampleMax 1000 -eps 137 mm and then previewed usingthe command ghostview region.ps .



12.6. EXAMPLE: SCANNING TEXT FILES 119at most one �le name in memory at a time, so we would like the regioncontaining the �le name to be reset upon each iteration. As it turns out,readWord will always try to store the string it creates at the bottom of theregion in question.In general however, when splitting a program unit into two, one may haveto insert explicit resetRegions into the second unit, when operations fromthe �rst unit are called. This extra resetting may be necessary because formalregion parameters of exported functions are connected to global regions inthe region 
ow graph (cf., rule B3).



120 CHAPTER 12. RESETTING REGIONSlocalexception NotBalancedfun scan(is: TextIO.instream) : int*int =letfun next() = TextIO.inputN(is, 1)fun up(level,inside) = if level>0 then inside+1else inside(* n: characters read in 'is'inside: characters belonging to commentslevel : current number of unmatched (*s : next input character or empty *)*)fun count(p as (n,inside,level,s:string))=case s of"" => (* end of stream: *) p| "(" => after_lparen(n+1,inside,level,next())| "*" => after_star(n+1,up(level,inside),level,next())| ch => count(n+1,up(level,inside), level,next())and after_lparen(p as (n,inside,level,s))=case s of"" => p| "*" => count(n+1,inside+2, level+1,next())| "(" => after_lparen(n+1, up(level,inside), level,next())| ch => count(n+1,up(level,up(level,inside)),level,next())and after_star(p as (n,inside,level,s)) =case s of"" => p| ")" => if level>0 thencount(n+1,inside+1,level-1,next())else raise NotBalanced| "*" => after_star(n+1,up(level,inside), level,next())| "(" => after_lparen(n+1,inside,level,next())| ch => count(n+1,up(level,inside),level,next())val (n, inside,level,_) = count(0,0,0,next())in



12.6. EXAMPLE: SCANNING TEXT FILES 121if level=0 then (n,inside) else raise NotBalancedendfun report_file(filename, n, inside) =writeln(concat[filename, ": size = ", Int.toString n," comments: ", Int.toString inside, " (",(Int.toString(percent(inside, n))handle _ => "-"), "%)"])(* scan_file(filename) scans through the file named filenamereturning either SOME(size_in_bytes, size_of_comments)or, in case of an error, NONE. In either case a line ofinformation is printed. *)fun scan_file (filename: string) : (int*int)option=let val is = TextIO.openIn filenamein let val (n,inside) = scan isin TextIO.closeIn is;report_file(filename, n, inside);SOME(n,inside)end handle NotBalanced =>(writeln(filename ^ ": not balanced");TextIO.closeIn is;NONE)end handle IO.Io {name,...} =>(writeln(name^" failed."); NONE)fun report_totals(n,inside) =writeln(concat["\nTotal sizes: ", Int.toString n," comments: ", Int.toString inside," (", (Int.toString(percent(inside,n))handle _ => "-"), "%)"])(* main(is) reads a sequence of filenames from is,one file name pr line (leading spaces are skipped;no spaces allowed in file names). Each file isscanned using scan_file after which a summaryreport is printed *)



122 CHAPTER 12. RESETTING REGIONSfun main(is: TextIO.instream):unit =letfun driver(p as(NONE,n,inside)) =(report_totals(n, inside); p)| driver(p as (SOME filename,n:int,inside:int)) =driver(case scan_file filenameof SOME(n',inside') =>(readWord(is), n+n',inside+inside')| NONE =>(readWord(is),n,inside))indriver(readWord(is),0,0);()endinval result = main(TextIO.stdIn)endThe program was compiled both with and without pro�ling turned on.The output from running the program on 10 of the source �les for the Kit isshown here:Parsing/INFIX_STACK.sml: size = 487 comments: 321 (65%)Parsing/InfixStack.sml: size = 7544 comments: 3025 (40%)Parsing/Infixing.sml: size = 32262 comments: 5295 (16%)Parsing/LEX_BASICS.sml: size = 2102 comments: 1257 (59%)Parsing/LEX_UTILS.sml: size = 1305 comments: 291 (22%)Parsing/LexBasics.sml: size = 12677 comments: 2967 (23%)Parsing/LexUtils.sml: size = 7643 comments: 717 (9%)Parsing/MyBase.sml: size = 33933 comments: 11140 (32%)Parsing/PARSE.sml: size = 1078 comments: 572 (53%)Parsing/Parse.sml: size = 7040 comments: 870 (12%)Total sizes: 106071 comments: 26455 (24%)A region pro�le for that run is shown in Figure 12.12. The almost-constantspace usage is evident. The occasional disturbances are due to the non-



12.6. EXAMPLE: SCANNING TEXT FILES 123iterative functions that read a �le name from input by �rst reading one lineand then extracting the name.
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Figure 12.12: Region pro�le of the scanner. The unit of mea-sure on the y-axis is bytes, not kilobytes. The occasional in-crease is due to the functions that read a �le name from an in-stream. The program was compiled with pro�ling enabled, then runwith the command run -microsec 100000 < ../../kitdemo/scanfiles.A PostScript �le region.ps can be generated with the commandrp2ps -region -sampleMax 1000 -eps 137 mm.



Chapter 13Higher-Order Functions
13.1 Lambda Abstractions (fn)A lambda abstraction in Standard ML is an expression of the formfn pat => expwhere pat is a pattern and exp an expression. Lambda abstractions denotefunctions. We refer to the exp as the body of the function; variable occurrencesin pat are binding occurrences; informally, the variables that occur in pat aresaid to be lambda-bound with scope exp.Lambda abstractions are represented by closures, both in the languagede�nition and in the Kit. In the Kit, a closure for a lambda abstractionconsists of a code pointer plus one word for each free variable of the lambdaabstraction. Closures are not tagged.At this stage, it will hardly come as a surprise to the reader that closuresare stored in regions. Sometimes they reside in �nite regions on the stack,other times they live in in�nite regions, just like all other boxed values.Every occurrence of fn in the program is considered an allocation point;the region-annotated version of the lambda abstraction isfn at � pat => expStandard ML allows functions to be declared using val rather than fun, forexample,val h = g o f 125



126 CHAPTER 13. HIGHER-ORDER FUNCTIONSdeclares the value identi�er h to be the composition of g and f. Whereas func-tions declared with fun automatically become region-polymorphic, functionsdeclared with val do not in general become region-polymorphic.1 However,in the special case where the right-hand side of the value declaration is alambda abstraction, the Kit automatically converts the declaration into afun declaration, thereby making the function region-polymorphic after all.ML allows declarations of the formfun f atpat1 atpat2 � � � atpatn = expas a shorthand forfun f atpat1 => fn atpat2 => � � � fn atpatn => expwhere atpat ranges over atomic patterns. Functions declared using this ab-breviation are said to be Curried.13.2 Region-Annotated Function TypesThe general form of a region-annotated function type is(�1 �:'��!�2; �)where �1 is the type with place of the argument, �2 is the type with placeof the result, and � is the region containing the closure for the function.As mentioned in Section 5.3, the unusual looking object �:' is called anarrow e�ect. Its �rst component is an e�ect variable, whose purpose willbe explained shortly. The second component is called the latent e�ect, anddescribes the e�ect of evaluating the body of the function.The following example illustrates why latent e�ects are crucial for know-ing the lifetimes of closures.2 Considerval n = let val f = let val xs = [1,2]in fn ys => length xs + length ysendin f [7]end1The reason for this is that the expression on the right-hand side of the value declarationmight have an e�ect (e.g, print something) before returning the function. It would not becorrect to suspend this e�ect by introducing formal region parameters.2Program kitdemo/lambda.sml.



13.2. REGION-ANNOTATED FUNCTION TYPES 127let val n =letregion r7:1, r9:1, r10:INFin let val f =let val xs =let val v40299 =(1,let val v40300 = (2, nil) at r10in :: v40300end) at r10in :: v40299endin fn at r7 ys =>letregion r17:1 in length[] xs end (*r17:1*) +letregion r20:1 in length[] ys end (*r20:1*)endin f let val v40294 = (7, nil) at r9 in :: v40294 endendend (*r7:1, r9:1, r10:INF*)in {|n: _|}endFigure 13.1: Region-annotated program illustrating that the lifetime of aclosure is at least as long as the lifetime of the values that evaluation of thefunction body will require.Notice that xs has to be kept alive for as long as the function (fn ys => � � �)may be called, for this function will access xs, when called. The region-annotated version of the example appears in Figure 13.1.3 We see that xsis put in r10, that the function closure for (fn ys => � � �) is put in r7and indeed, r7 and r10 have the same lifetime. To understand how theregion inference system �gured that out, let us consider the e�ect and theregion-annotated types of particular sub-expressions. Looking at the lambdaabstraction, it must have a functional type of the form (� �:'��! � 0; r7) where3To see the output programs discussed in this section, enable the 
ag print dropregions expression.



128 CHAPTER 13. HIGHER-ORDER FUNCTIONS' is the e�ect fget(r1); get(r10); get(r9)gNotice that r10 occurs free in the type of the lambda abstraction. But, aspointed out in Section 3.4, the criterion for putting a letregion bindingof � around an expression e is that � occurs free neither in the type withplace of e nor in the type scheme with place of any variable in the domainof the type environment. The smallest sub-expression of the program forwhich r10 does not occur free in the type with place of the expression is theright-hand side of the val binding of n, for that expression simply has typewith place int. And at that point, the only region variables that occur freein the type environment are global region variables. Hence the placement ofthe letregion binding of r10.13.3 Arrow E�ectsIn a �rst-order language, e�ect variables might not be particularly impor-tant. But in a higher-order language like ML, e�ect variables are useful fortracking dependencies between functions. The following example illustratesthe point:4fun apply f x = f xval y = apply (fn n => n + 1.0) 5.0val z = apply (fn m => m) 6Here is the region-annotated type scheme of apply:8�4�2�7�8�9�10�11�12�13:((�2; �10) �11:;���!(�4; �9); �8) �12:fput(�7)g��������!((�2; �10) �13:fget(�8);�11g����������!(�4; �9); �7)The latent e�ect associated with �12 shows that when apply is applied to afunction, it may create (in fact: will create) a function closure in �7. Thelatent e�ect associated with �11 is empty, because the declaration of applydoes not tell us anything about what e�ect its formal parameter f musthave. Crucially, however, �11 is included as an atomic e�ect in the latente�ect associated with �13; whenever the body of apply f is evaluated, thebody of f may be (in fact: will be) evaluated.4Program kitdemo/apply.sml.



13.3. ARROW EFFECTS 129The polymorphism in e�ects makes it possible to distinguish betweenthe latent e�ects of di�erent actual arguments to apply. For example, thefunctions (fn n => n + 1.0) and (fn m => m) have di�erent latent e�ects.Let us take the function (fn n => n + 1.0) as an example. It has region-annotated type with place((real; �18) �14:fget(�18);put(�5)g�������������!(real; �5); �17) (13.1)Here, the e�ect variable �14 and the region variables �18 and �5 were chosenarbitrarily. (Actually, the region variable �5 denotes the global region forreals.) The region inference algorithm discovers that (13.1) can be derivedfrom the argument type ((�2; �10) �11:;���!(�4; �9); �8)of the type scheme for apply by the instantiating substitutionS = (f�2 7! real; �4 7! realg; f�10 7! �18; �9 7! �5; �8 7! �17g;f�11 7! �14:fget(�18);put(�5)g)Formally, a substitution is a triple (St; Sr; Se), where St is a �nite map fromtype variables to region-annotated types, Sr is a �nite map from region vari-ables to region variables, and Se is a �nite map from e�ect variables to arrowe�ects. Let us explain why substitutions map e�ect variables to arrow ef-fects. One alternative, one might consider, is to let substitutions map e�ectvariables to e�ect variables. But then substitutions would not be able toaccount for the idea that e�ects can grow, when instantiated. In the applyexample, for instance, the empty e�ect associated with �11 has to grow tofget(�18);put(�5)g at the concrete application of apply. Otherwise, as it iseasy to demonstrate, the region inference system would become unsound.Another alternative would be to let substitutions map e�ect variablesto e�ects. But nor that would work well together with the idea of usingsubstitutions to express growth of e�ects. For example, applying the mapf� 7! fget(�0);put(�2)gg to the e�ect fget(�9); �g, say, would presumablyyield the e�ect fget(�9); get(�0);put(�2)g in which the fact that the orig-inal e�ect had to be at least as large as whatever � stands for, is lost. In-stead, we de�ne substitution so that applying the e�ect substitution f� 7!�:fget(�2);put(�)gg to fget(�9); �g yields fget(�9); �; get(�2);put(�)g.We can now give a complete de�nition of atomic e�ects. An atomic e�ectis either an e�ect variable or a term of the form get(�) or put(�), where � asusual ranges over region variables. An e�ect is a �nite set of atomic e�ects.



130 CHAPTER 13. HIGHER-ORDER FUNCTIONSOne can get the Kit to print region-annotated type schemes with places ofall binding occurrences of value variables. Also, one can choose to have arrowe�ects included in the printout by enabling the 
ags print types and printeffects in the Layout menu. Although enabling these 
ags gives very ver-bose output, it is instructive to look at such a term at least once, to seehow arrow e�ects are instantiated. We show the full output for the applyexample in Figure 13.2.In reading the output, it is useful to know that the Kit represents e�ectsand arrow e�ects as graphs, the nodes of which are region variables, e�ectvariables, put, get, or U (for \union"; U by itself means the empty set).Region variables are leaf nodes. A put or get node has emanating fromit precisely one edge; it leads to the region variable in question. An e�ectvariable node (written e followed by a sequence number) is always the handleof an arrow e�ect; there are edges from the e�ect variable to the atomic e�ectsof that arrow e�ect, either directly, or via union nodes or other e�ect variablenodes. For instance, e13(U(U,get(r8),e11)) in the �gure denotes an e�ectvariable with an edge to a union node that has edges to an empty unionnode, a get node, and an e�ect variable node.When a term containing arrow e�ects is printed, shared nodes that havealready been printed are marked with a @; their children are not printedagain. In the �gure, the binding occurrence of apply has been printed withits region-annotated type scheme. Each non-binding occurrence of applyhas been printed with four square-bracketed lists. The �rst list is the actualregion arguments; the following three are instantiation lists that show therange of the substitution by which the bound variables of the type schemewas instantiated, in the same order as the bound variables occurred. Forexample, in the second use of apply, r8 was instantiated to r26.13.4 Region Polymorphism and Higher-OrderFunctionsUnlike identi�ers bound by fun, lambda-bound function identi�ers are neverregion-polymorphic. So in an expression of the form(fn f => � � � f � � � f � � �)all the uses of f use the same regions. Indeed, because f occurs free in thetype environment while region inference analyses the body of the lambda



13.4. REGION POLYMORPHISM ANDHIGHER-ORDER FUNCTIONS131fun apply:all'a4,'a2,r7,r8,r9,r10,e11,e12,e13.(('a2,r10)-e11->('a4,r9),r8)-e12(put(r7))->(('a2,r10)-e13(U(U,get(r8),e11))->('a4,r9),r7)at r1[r7:1][r8:0, r9:0, r10:0](f)=fn e13 at r7 x:('a2,r10) => f x;val y:(real,r5) =letregion r16:1, r17:1, r18:1in letregion r19:1in apply[r16] [real,real] [r16,r17,r5,r18][e14(get(r1),get(r18),put(r5)),e20(put(r16)),e15(e14(get(r1),get(r18),put(r5)),get(r17))]at r19(fn e14 at r17 n:(real,r18) =>letregion r22:1 in (n + 1.0at r22) at r5 end)end (*r19:1*)5.0at r18end (*r16:1, r17:1, r18:1*);val z:int =letregion r25:1, r26:1in letregion r27:1in apply[r25] [int,int] [r25,r26,r2,r2][e23,e28(put(r25)),e24(e23,get(r26))]at r27(fn e23 at r26 m:int => m)end (*r27:1*)6end (*r25:1, r26:1*)Figure 13.2: The instantiation of arrow e�ects keeps di�erent applicationsof the same function (here apply) apart. The output was obtained by com-piling the program kitdemo/apply.sml with Control/Optimiser/maximuminline size menu entry set to 0 and with the 
ags print types andprint effects enabled.



132 CHAPTER 13. HIGHER-ORDER FUNCTIONSabstraction, none of the regions that appear in the type of f will be de-allocated inside the body of the lambda abstraction. Also, such a regionmust be bound outside the lambda abstraction, so any attempt to resetsuch a region inside the body of the abstraction will cause the storage modeanalysis to complain (by Rule (B1) of Section 12.2).Therefore, when a function f is passed as argument to another functiong, as in the expression g(f), �rst regions are allocated for the use of f , theng is called, and �nally, the regions are de-allocated (provided they are notglobal regions). Whether the letregion construct thus introduced enclosesthe call site immediately, as inletregion �1; : : : ; �n in g(f) endor further out, as inletregion �1; : : : ; �n in : : : g(f) : : : enddepends on the type and e�ect of the expression g(f) in the usual way:regions can be de-allocated when they occur free neither in the type withplace of the expression nor in the type environment.13.5 Examples: map and foldlConsider the program5fun map f [] = []| map f (x::xs) = f(x) :: map f xsval x = map (fn x => x+1) [7,11]This formulation of map is not the most e�cient one in the Kit, because itwill create one closure for each element in the list, due to currying.6 Howeverit serves to illustrate the point made in the previous section about allocatingregions in connection with higher-order functions. The region-annotated ver-sion is listed in Figure 13.3. We see that the region that appears free in the5Program kitdemo/map.sml.6When map and the application of map appear in the same compilation unit, the Kit willautomatically specialise map to a recursive function that does not have this defect. Thisspecialisation is the result of a general optimisation of curried functions that are invariantin their �rst argument. The output we present in this section was obtained by setting themenu entry Control/Optimiser/maximum specialise size to 0.



13.5. EXAMPLES: MAP AND FOLDL 133fun map at r1 [r7:1, r8:0] (var256)=fn at r7 var257 =>(case var257of nil => nil| _ =>let val xs = #1 decon_:: var257;val x = #0 decon_:: var257;val v20315 =(var256 x,letregion r20:1in letregion r21:1in map[r20,r8] at r21 var256end (*r21:1*)xsend (*r20:1*)) at r8in :: v20315end) (*case*) ;val x =letregion r25:1, r26:INF, r27:1in letregion r28:1in map[r25,r1] at r28 (fn at r27 x => x + 1)end (*r28:1*)let val v20320 =(7,let val v20321 = (11, nil) at r26in :: v20321end) at r26in :: v20320endend (*r25:1, r26:INF, r27:1*)Figure 13.3: Although this version of map creates a closure for each listelement, the region-polymorphic recursion (of map) ensures that that closureis put in a region local to map. Thus, these closures do not pile up in r27,the region of the initial argument.



134 CHAPTER 13. HIGHER-ORDER FUNCTIONStype with place of the successor function (i.e., r27) is allocated prior to thecall of map and that it stays alive throughout the evaluation of the body ofmap. Notice, however, that the closures that are created when map is applieddo not pile up in r27, the region of the successor function. Instead, they areput in local regions bound to r20, one closure in each region. Also, if we hadgiven some more complicated argument to map, the body of that functioncould include letregion expressions. For each list element, regions wouldthen be allocated, used, and then de-allocated before proceeding to the nextlist element.So it might appear that higher-order functions are nothing to worry aboutwhen programming with regions. That is not so, however. The limitationthat lambda-bound functions are never region-polymorphic can lead to spaceleaks. Here is an example:fun foldl f acc [] = acc| foldl f acc (x::xs) = foldl f (f(x,acc)) xsval x = foldl (fn (x,acc) => 10*acc+x) 0 [7,2];Because f is lambda-bound, all the pairs created by the expression (x,acc)will pile up in the same region. The storage mode analysis will infer storagemode attop for the allocation of the pair, by rule (B1) of Section 12.2;because foldl is curried, there are several lambdas between the formal regionparameter of foldl that indicates where the pair should be put and theallocation point of the pair.It does not help to uncurry foldl and turn foldl into a region endomor-phism: fun foldl(p as (f,[],_)) = p| foldl(f,x::xs,acc) = foldl(f,xs,f(x,acc))val x = #3(foldl(fn(x,acc) => 10*acc+x,[7,2],0));The storage mode analysis will still give attop for the allocation of the pair(x,acc), for the region of the pair is free in the region-annotated type of f,which is locally live at that point.What if require that f be curried, to avoid the creation of the pair alto-gether?77Program kitdemo/fold2.sml.



13.5. EXAMPLES: MAP AND FOLDL 135fun foldl f b xs =let fun loop(p as ([], b))= p| loop(x::xs, b) = loop(xs,f x b)in #2(loop(xs,b))endThe region-annotated version of this program appears in Figure 14.3 onpage 146. This saves the allocation of a pair inside loop, although the savingis lost if the the evaluation of f x creates a closure.In short, folding a function over a list may leak two words of memory foreach list element.
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Chapter 14The Function CallStandard ML allows function applications of the formexp1exp2where exp1 is the operator and exp2 is the operand. The syntax for functionapplication is overloaded, in that it is used for three di�erent purposes inML:1. applications of built-in operations such as +, =, and :=;2. applications of unary value constructors (including ref) and unary ex-ception constructors;3. applications of user-de�ned functions, that is, functions introduced byfn or fun.This chapter is about the last kind of function applications; in the following,we use the term function application to stand for applications of user-de�nedfunctions only.Function applications are ubiquitous in Standard ML programs; in par-ticular, iteration is often achieved by function calls. Not surprisingly, carefulcompilation of function calls is essential for obtaining good performance.The Kit partitions function calls into four kinds, which are implementedin di�erent ways. At best, a function call is simply realised by a jumpin the target code. The resource conscious programmer will want to knowthe special cases; for example, when doing an iterative computation, it is137



138 CHAPTER 14. THE FUNCTION CALLimportant to know whether the space usage is going to be independent ofthe number of iterations.The Kit performs a backwards 
ow analysis, called call conversion, todetermine what function calls are tail calls and, more generally, what functioncalls fall into the four special cases. We say that expressions produced by thisanalysis are call-explicit. One can inspect call-explicit programs by enablingthe 
ag print call-explicit expressionin the menu Printing of intermediate forms, and thus check whetherspeci�c function calls in the code turn out the way one intended. Call-explicit expressions are produced after regions have been dropped (page 60)but before generation of KAM code.We shall �rst give a brief description of the parameter passing mechanismin general and then discuss the di�erent kinds of function calls provided,working our way from the most specialised (and most e�cient) cases towardsthe default cases.14.1 Parameter PassingThere is one (and so far only one) register that is used for passing argumentsto functions. It is called stardardArg. In addition, region-polymorphicfunctions use another �xed register, called standardArg11, which points tothe record of region parameters that the caller has allocated prior to the call.14.2 Tail CallsA call which is the last action of a function is referred to as a tail call. Afterregion inference, the Kit performs a tail call analysis (in one backwards scanthrough the program). It is signi�cant that the tail call analysis happensafter region inference; as we saw in Section 12.3, a function call that lookslike a tail call in the source program may end up as a non-tail call in theregion-annotated program, because the function has to return so as to freememory.1Admittedly, not terribly good nomenclature.



14.3. SIMPLE JUMP (JMP) 13914.3 Simple Jump (jmp)In this section, we consider conditions under which the Kit implements afunction call as a simple jump. A call of a region-polymorphic functiontakes the form f [�1, : : :, �n] at �0 expwhere �0 is the region that holds the region vector containing the actualregion parameters �1, : : :, �n. During K-normalisation, the Kit tries to bringthe creation of �0 close to the point of the call. Therefore, an important caseto consider is a call of the formletregion �0 in f [�1, : : :, �n] at �0 exp end (n � 0) (14.1)where f is the name of a region-polymorphic function.The Kit simpli�es this expression to a simple jumpjmp f expif the following conditions are met:1. the call is a tail call; and2. one has(a) n = 0; or(b) the call occurs inside the body of some region-polymorphic func-tion g andi. the actual region parameters �1, : : :, �n are a pre�x of theformal region parameters of g, that is, the list of formal regionparameters of g is [�1, : : :, �n, �n+1, : : :, �n+k], for some �n+1,. . . , �n+k; andii. the closest surrounding � of the call is the � that starts theright-hand side of g.The start address of f is known during compilation (because f is region-polymorphic). Thus, such a function call is as e�cient as an assembly lan-guage jump to a constant label.To understand the above requirements, notice that if the region �0 reallyhas to be created (be it on the stack or as an in�nite region) then the call f



140 CHAPTER 14. THE FUNCTION CALLcannot be treated as a tail call, for f has to return to de-allocate �0. Now(2a) is one way of ensuring that there is no need to allocate �0. A di�erentway is given by (2b). The idea is to reuse the region vector of the function gin which the call of f occurs (a common special case is that g is f). Condition(2(b)i) ensures that the actual region parameters of f coincide with (a pre�xof) the formal parameters of g. Finally, (2(b)ii) is necessary so as to ensurethat the region vector of g really is available when f is called.To understand (2(b)ii) in more detail, consider the examplefun g[r](x) =h[r1] (fn y => letregion r2 in f[r] at r2 y end)which one might think of as sugar forval rec g[r] = fn x =>h[r1] (fn y => letregion r2 in f[r] at r2 y end)Here the call to f will not be implemented by a jmp, for there is a fn betweenthe start of the body of g and the call of f. Indeed, we must not implementthe call of f by a jmp, for in the call f[r] at r2, a region vector containingr has to be constructed, because, at the point of the call, r is available onlyfrom the closure of (fn y => letregion r2 in f[r] at r2 y end).Notice that (14.1) requires that the letregion around the call binds onlyone region variable (the region used for the region record). The way to avoidthat the letregion binds more than one region variable is to turn the callingfunction into a region endomorphism, when possible.The following is an example of how one obtains simple jumps:2localfun f'(p as (0,b)) = p| f'(n,b) = f'(n-1,n*b)infun f(a,b) = #2(f'(a,b))end;The call-explicit version of f' appears in Figure 14.1. Another example of ajmp tail call will be shown in Section 14.8.2Program kitdemo/tail.sml.



14.4. NON-TAIL CALL OF REGION-POLYMORPHIC FUNCTION (FUNCALL)141fun f' attop r1 [r7:inf] (var512)=(case #0 var512of 0 => var512| _ =>let val b = #1 var512; val n = #0 var512in jmp f' (n - 1, n * b) sat r7end) (*case*) ;Figure 14.1: An example where a function call turns into a simple jump.14.4 Non-Tail Call of Region-Polymorphic Func-tion (funcall)Still referring to the form (14.1), let us consider the case where (1) or (2) isnot satis�ed. Then the Kit will allocate �0 before the call of f and de-allocateit afterwards.3 The region bound to �0 will always be �nite and be on thestack. Due to this allocation, the call cannot be a tail call. The mnemonicused for a non-tail call of a region-polymorphic function is funcall. Thus(14.1) is simpli�ed toletregion �0 in funcall f [�1, : : :, �n] at �0 exp end:Now, let us turn to calls of region-polymorphic functions that do not �tthe pattern (14.1). One special case isletregion �0; �1; : : : ; �k in f [] at �0 exp endwhere k > 0. Here �0 is not needed; the Kit therefore replaces the expressionby letregion �1; : : : ; �k in funcall f exp end(For reasons of presentation, we have assumed that the letregion-boundregion variables have been rearranged, if necessary, to bring �0 to the front.)3One could avoid this allocation in the case n = 1 or, more generally, if one allowedunboxed representation of region vectors, but for simplicity, we choose to forego thisopportunity for optimisation.



142 CHAPTER 14. THE FUNCTION CALLEvery remaining case of an application of a region-polymorphic functionf [�1, : : :, �n] at �0 expis replaced by (funcall f [�1, : : :, �n] at �0) expThis case completes all possible cases of applications of region-polymorphicfunctions. We now turn to function applications where the operator is notthe name of a region-polymorphic function.14.5 Tail Call of Unknown Function (fnjmp)Consider the case exp1 exp2where (a) the call is a tail call and (b) exp1 is not the name of a region-polymorphic function.Here exp1 will be evaluated to a closure, pointed to by a standard registercalled standardClos. Then exp2 will be evaluated and the result put in thestandard register standardArg. The �rst word in the closure always containsthe address of the code of the function. This address is fetched into a registerand a jump to the address is made. Because the call is a tail call, it inducesno allocation, neither on the stack nor in regions. It is thus as e�cient as anindirect jump in assembly language.The mnemonic used in call-explicit expressions for this special case isfnjmp exp1 exp214.6 Non-Tail Call of Unknown Function (fncall)Consider the case exp1 exp2where (a) the call is not a tail call and (b) exp1 is not the name of a region-polymorphic function.Applications of this form are implemented as follows. First exp1 is evalu-ated and the result, a pointer to a closure, is stored in standardClos. Thenexp2 is evaluated and stored in standardArg. Then live registers and a return



14.7. EXAMPLE: FUNCTION COMPOSITION 143address are pushed onto the stack and a jump is made to the code addressthat is stored in the �rst word of the closure pointed to by standardClos.Upon return, registers are restored from the stack.The mnemonic used in call-explicit expressions for this special case isfncall exp1 exp214.7 Example: Function CompositionThe Basis Library declares function composition as follows4fun (f o g) x = f(g x)The resulting call-explicit expression produced by the Kit isfun o attop r1 [r7:3] (v40378)=let val g = #1 v40378; val f = #0 v40378in fn attop r7 x => fnjmp f (fncall g x)endNotice that f o g �rst creates a closure in r7 and then returns. When called,the created function �rst performs a non-tail call of g and then a tail call tof.14.8 Example: foldl RevisitedConsider the following declaration of folding over lists:5fun foldl f b xs =case xs of[] => b| x::xs' => foldl f (f x b) xs'The recursive call of foldl is a call of a known function, but not a tailcall; foldl returns a closure, which is subsequently applied to the value of(f x b). This too returns a closure, which in turn is applied to xs'. Theresulting call-explicit expression is shown in Figure 14.2. Notice that upon4Program kitdemo/compose.sml.5Program kitdemo/fold1.sml.



144 CHAPTER 14. THE FUNCTION CALL
fun foldl attop r1 [r7:4, r8:4] (f)=fn attop r7 b =>fn attop r8 xs =>(case xsof nil => b| _ =>let val xs' = #1 decon_:: xs;val x = #0 decon_:: xsin letregion r22:4in fncallletregion r24:4in fncallletregion r25:2in funcall foldl[atbot r24, atbot r22] atbot r25fend (*r25:2*)(fncall fncall f x b)end (*r24:4*)xs'end (*r22:4*)end) (*case*)Figure 14.2: The straightforward implementation of foldl uses space linearin the length of the list. (Program kitdemo/fold1.sml.)



14.8. EXAMPLE: FOLDL REVISITED 145each iteration, fresh regions for holding two closures are being allocated forthe duration of the recursive call. Thus, space usage is linear in the lengthof the list (4 words for each list cell, to be precise).An alternative version of foldl assumes that f is curried:6fun foldl f b xs =let fun loop(p as ([], b))= p| loop(x::xs, b) = loop(xs,f x b))in #2(loop(xs,b))endIt is compiled into the call-explicit expression in Figure 14.3. Here the loopis implemented as a jump and there is no new allocation in each iteration,except, of course, for the allocation that f might make.7As an exercise, consider the following variant of foldl, which assumesthat f takes a pair as an argument:8fun foldl' f b xs =let fun loop(p as ([], b))= p| loop(x::xs, b) = loop(xs,f(x,b)))in #2(loop(xs,b))endInterestingly, this program contains a potential space leak. Can you detectit? If not, the Kit will tell you when you compile the program.
6Program kitdemo/fold2.sml.7All the allocations made by the calls to f (one call for each element of the list) areput in the same regions. If the list is very long or the values produced large, it may be agood idea to copy the �nal result to separate regions.8Program kitdemo/fold3.sml.



146 CHAPTER 14. THE FUNCTION CALL
fun foldl attop r1 [r7:3, r8:3] (f)=fn attop r7 b =>fn attop r8 xs =>letregion r19:2in let fun loop atbot r19 [r20:inf] (var514)=(case #0 var514of nil => var514| _ =>let val b = #1 var514;val xs = #1 decon_:: #0 var514;val x = #0 decon_:: #0 var514in jmp loop (xs,fncall fncall f x b) sat r20end) (*case*)in letregion r27:infin let val v40485 =letregion r28:1in funcall loop[atbot r27] atbot r28(xs, b) atbot r27end (*r28:1*)in #1 v40485endend (*r27:inf*)endend (*r19:2*)Figure 14.3: The result of compiling the e�cient version of foldl(kitdemo/fold2.sml) is an iterative function that avoids argument pairspiling up in one region.



Chapter 15Modules and ProjectsIn Section 2.8 we described how to compile and run single �le programs.In this chapter we describe how to program in the large with the Kit, us-ing Standard ML Modules and the possibility of organising source �les intoproject �les. The Kit fully supports Standard ML Modules and it has a so-phisticated system for avoiding unnecessary recompilation. In the followingsection, we describe the notion of projects. We then turn to show how toprogram with structures, signatures, and functors. To enable the program-mer to write e�cient programs using the Modules language, we shall alsoexplain how the Kit compiles Modules language constructs.15.1 ProjectsA project �le is a �le that lists the SML source �les that make up a project.A project �le can also import other project �les, so one can organise projectsin a hierarchical manner. The Kit enforces the restriction that projects maynot be cyclic.Project �les have �le extension .pm. The grammar for project �les (pm)is given in Figure 15.1. In a project �le, one can import source �les, otherproject �les, and object �les, using absolute or relative paths. Relative pathsare relative to the location of the project �le. Until now, we have seen afew examples of project �les with no imports (see Section 6.4 for such anexample). In Section 15.4, we present an example of a project that importsother projects. Object �les are .o �les stemming from compiling C code;in Section 18.7, we shall see an example of a project that imports object147



148 CHAPTER 15. MODULES AND PROJECTSimports ::= path:o h :path:o i imports external object| path:pm imports project| emptybody ::= path:sml body source| path:sig body source| local body in body end body local| emptypm ::= import imports in body end with import| body basicFigure 15.1: Grammar for project �les, i.e., �les with extension .pm. Optionalphrases are included in angle brackets h� � �i. For some �le extension .ext,path.ext denotes either an absolute path or a relative path (relative to thedirectory in which the project �le is located) to a �le on the underlying �lesystem.�les. Project �les may contain Standard ML style comments. The declaredidenti�ers of a project is the union of the identi�ers being declared by a source�le of the project, excluding source �les that are included using local. Asan example of the use of local to limit what identi�ers are declared by aproject, consult the project �le kit/basislib/basislib.pm.Every source �le must contain a Standard ML top-level declaration; thescope of the declaration is all the subsequent source �les mentioned in theproject �le and all other projects that import this project �le. Thus, a source�le may depend on source �les mentioned earlier in the project �le and onother imported projects. The meaning of an entire project is the meaningof the top-level declaration that would arise by �rst expanding all importedprojects and then concatenating all the source �les listed in the project �le(with appropriate renaming of declared identi�ers of source �les that areincluded using local), in the order they are listed, except that each projectis executed only the �rst time it is imported.The Kit has a system for managing compilation and recompilation ofprojects. The system guarantees that the result of �rst modifying one ormore source �les of a project and then using the separate compilation systemto rebuild the project is the same as if all source �les were recompiled. Thus,the separate compilation system is a way of avoiding recompiling parts of



15.1. PROJECTS 149a (possibly) long sequence of declarations, while ensuring that the result isalways the same as if one had compiled the entire program from scratch.As an example, consider the project �le (kitdemo/scan.pm) for the textscanning example of Section 12.6. It contains the following two lines:lib.smlscan.smlThe source �les for the project are lib.sml and and scan.sml, which areboth located in the directory where scan.pm is located. Whereas each of thesource �les lib.sml and scan.sml depends on the Basis Library, the source�le scan.sml also depends on lib.sml.The Project sub-menu provides the user with operations for setting aproject �le name and for reading and compiling the project �le. The Kitautomatically detects when a source �le has been modi�ed. (It uses �lemodi�cation dates of the operating system for this purpose.) After a projecthas been successfully compiled and linked, it can be executed by running thecommandrunin the working directory.The Kit compiles each source �le of a project one at a time, in the ordermentioned in the project �le. A source �le is compiled under a given setof assumptions, which provides, for instance, region-annotated type schemeswith places for free variables of the source �le. Also, compilation of a source�le gives rise to exported information about declared identi�ers. Exportedinformation may occur in assumptions for source �les mentioned later in theproject �le.A source �le is recompiled if either (1) the user has modi�ed the source �leor (2) the assumptions under which the source �le was previously compiledhave changed. To avoid unnecessary recompilation, assumptions for a source�le depend on only the free identi�ers. Moreover, if a source �le has beencompiled earlier, the Kit seeks to match the new exported information to theold exported information by renaming generated names to names generatedwhen the source �le was �rst compiled. Matching allows the compiler to usefresh names (stamps) for implementing generative data types, for instance,and still achieve that a source �le is not necessarily recompiled even thoughsource �les, on which it depends, are modi�ed.



150 CHAPTER 15. MODULES AND PROJECTSLet us assume that we modify the source �le lib.sml of the text scanningexample. Selecting Compile and link project from the Project sub-menucauses lib.sml to be recompiled. The Kit checks whether the assumptionsunder which the source �le scan.sml was compiled have changed, and if so,recompiles scan.sml. Modifying only comments or string constants insidelib.sml or extending its set of declared identi�ers does not trigger recompi-lation of scan.sml.Some of the information a source �le depends on is the ML type schemesof its free variables. It also depends on, for example, the region-annotatedtype schemes with places of its free variables. Thus it can happen thata source �le is recompiled even though the ML type assumptions for freevariables have not changed. For instance, the region-annotated type schemewith place for a free variable may have changed, even though the underlyingML type scheme has not.As an example, consider what happens if we modify the function readWordin the source �le lib.sml so that it puts its result in a global region. Thismodi�cation will trigger recompilation of the source �le scan.sml, becausethe assumptions under which it was previously compiled have changed. Be-sides changes in region-annotated type schemes with places, changes in mul-tiplicities and in physical sizes of formal region variables of functions mayalso trigger recompilation.15.2 StructuresThe support for Modules together with the possibility of dividing top-leveldeclarations into di�erent source �les provide a mechanism for programmingin the large. In the Kit, structures exist only at compile time. Thus one neednot worry where structures live at runtime.We illustrate the compile-time nature of structures with the followingexample. Consider the project set.pm,1 which mentions the source �lespoly set.sml and int set.sml. The source �le poly set.sml contains thefollowing top-level declaration:structure PolySet =structtype 'a set = 'a list1Project kitdemo/set.pm.



15.3. SIGNATURES 151val empty = []fun singleton x = [x]fun mem x l =let fun mem' [] = false| mem' (y::ys) = x=y orelse mem' ysin mem' lendfun union(s1,[]) = s1| union(s1,x::s2) = if mem(x,s1) then union(s1,s2)else x::union(s1,s2)endThe code generated by the Kit for the IntSet structure is exactly as ifthe declarations were written outside of a structure. As a consequence,when you refer to a component of a structure using quali�ed identi�ers (e.g.,IntSet.mem), no code is generated for fetching the component from the struc-ture. Moreover, when opening a structure, using the open declaration, nocode is generated for rebinding the identi�ers that become visible.15.3 SignaturesSignature declarations also exist at compile time only in the Kit. In par-ticular, a signature declaration does not result in code. The source �leint set.sml in the project set.pm, discussed earlier, contains the signaturedeclarationsignature INT_SET =sigtype 'a setval empty : int setval singleton : int -> int setval mem : int * int set -> boolval union : int set * int set -> int setendSignatures are used in two contexts; for specifying arguments to functorsand for providing restricted views of structures using transparent and opaquesignature constraints. We defer the discussion of the former use of signaturesto Section 15.4.



152 CHAPTER 15. MODULES AND PROJECTSTransparent signature constraints may both restrict components from astructure and make polymorphic components less polymorphic. Moreover,opaque signature constraints may also make type components of structuresabstract. Consider the structure declarationsstructure IntSet1 : INT_SET = PolySetstructure IntSet2 :> INT_SET = PolySetlocated in the source �le int set.sml. No code is generated for the struc-ture declarations. Instead, the compiler memorises that if you refer toIntSet1.mem, for instance, then it is actually PolySet.mem that is appliedwith type instance int.As for the second declaration, opaque signature constraints are elimi-nated at compile time (after elaboration) and transformed into transparentsignature constraints.15.4 FunctorsFunctors map structures to structures. The Kit specialises a functor ev-ery time it is applied. Thus, types that are abstract for the programmer(inside a functor body) become visible to the compiler. Region-annotatedtype schemes and other information about identi�ers in the actual functorargument are available when the Kit compiles the functor body.For practical reasons, it is important that not all functor applicationsare expanded at once, since this could cause intermediate representations ofprograms to become as large as (or even much larger than) the entire pro-gram. Further, non-restricted in-lining could lead to unnecessary recompila-tion upon modi�cation of source �les. Instead, the largest structure declara-tions not containing functor applications are compiled into separate chunks ofmachine object code. Assumptions for compiling these structure declarationsare memorised, so that the generated code can be reused upon modi�cationof source �les if the assumptions do not change.Consider the following project:2import utils/utils.pmin SET.sml Set.sml SetApp.smlend2Project kitdemo/Set.pm.



15.4. FUNCTORS 153The project imports the sub-project utils.pm,3 which provides a struc-ture ListUtils containing the function pr list with type scheme ('a ->string) -> 'a list -> string. The source �le Set.sml is listed in Fig-ure 15.2. It declares the functor Set, which takes as arguments the elementtype for the set, an ordering function on elements, and a function for provid-ing a string representation of elements.The source �le SetApp.sml is listed in Figure 15.3. It constructs a struc-ture IntSet by applying the functor Set to appropriate arguments includingan ordering operation on integers and an operation for giving the string rep-resentation of an integer. The IntSet structure is used for constructing aset {2,5}, which the program prints using the built-in print function.The body of the Set functor is instantiated to form the code for theIntSet structure. The result of instantiating the Set functor is �rst trans-lated into a Lambda program and then translated into a MulExp program.The MulExp call-explicit code for the mem function is shown in Figure 15.4.Notice that the code for the mem function refers to compiled code forthe lt function; the Kit does not currently propagate enough informationaccross module boundaries that the use of the lt function is reduced to abuilt-in comparison on integers. Instead, for simplicity, the Kit compiles theargument to the Set functor in the source �le SetApp.sml into separate code:let fun lt attop r1 [] (v40355)= #0 v40355 < #1 v40355;fun pr attop r1 [r10:inf] (a)= jmp toString ain {|pr: (_,r1), lt: (_,r1)|}endHere, the toString function stems from the Int structure of the Basis Li-brary and the primitive operation < provides a built-in comparison on inte-gers.
3Project kitdemo/utils/utils.pm.
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functor Set (eqtype elem (*total order*)val lt : elem * elem -> boolval pr : elem -> string): SET where type elem = elem =structtype elem = elemtype set = elem listval empty : set = []fun singleton e = [e]fun mem x l =let fun mem' [] = false| mem' (y::ys) = if lt(y,x) then mem' yselse not(lt(x,y))in mem' lendfun union(s1,s2) =let fun U (t as ([], [], acc)) = t| U ([], y::ys, acc) = U([], ys, y::acc)| U (x::xs, [], acc) = U(xs, [], x::acc)| U (s1 as x::xs, s2 as y::ys, acc) =U(if lt(x,y) then (xs, s2, x::acc)else if lt(y,x) then (s1, ys, y::acc)else (xs, ys, y::acc))in rev(#3(U(s1, s2, [])))endval pr = fn s => ListUtils.pr_list pr send Figure 15.2: The source �le kitdemo/Set.sml.



15.4. FUNCTORS 155structure IntSet = Set(type elem = intval lt = op <fun pr a = Int.toString a)open IntSetval _ = print (pr (union(singleton 2, singleton 5)))Figure 15.3: The source �le kitdemo/SetApp.sml.fun mem attop r1 [r11:4] (x)=fn attop r11 l =>letregion r15:4in let fun mem' atbot r15 [] (var508)=(case var508of nil => false| _ =>let val ys = #1 decon_:: var508;val y = #0 decon_:: var508in (case letregion r20:0, r22:2in funcall lt[] (y, x) atbot r22end (*r20:0, r22:2*)of true => jmp mem' ys| _ =>jmp notletregion r27:0, r29:2in funcall lt[] (x, y) atbot r29end (*r27:0, r29:2*)) (*case*)end) (*case*)in funcall mem'[] lendend (*r15:4*);Figure 15.4: The MulExp call-explicit code for the mem function resultingfrom instantiating the Set functor.
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Chapter 16Using the Pro�lerWe have already seen several examples of the use of the pro�ler. We shallnow explain in more detail how to pro�le programs. For example, we shallsee how one can �nd out precisely what allocation points in the programcontribute to allocation in a particular region.The pro�ler consists of several tools that can be used to analyse thedynamic memory behaviour of a program. First of all, the pro�ler lets youcreate graphs of the dynamic memory usage of the program. Three di�erentkinds of graphs may be created:� A region pro�le is a graph that gives a global view of the memory usageby showing the total number of bytes allocated in regions and on thestack as a function of time. In the graph, regions that arise from thesame letregion � in e endexpression are collected into one coloured band, labelled �. The regionvariables that label bands are always global or letregion-bound, neverformal region parameters.� An object pro�le is a graph that, for a particular region, shows the ob-jects allocated in the region, with one coloured band for each allocationpoint in the region-annotated program1. Each allocation point is an-notated with a program point, which is a unique number that identi�es1Every occurrence of an at in the region-annotated program is an allocation point.159



160 CHAPTER 16. USING THE PROFILERthe allocation.2 To inspect region-annotated programs with programpoints, enable the 
ag print program points found in the Layoutsub-menu in addition to the 
ag print call-explicit expression,say, from the Printing of intermediate forms sub-menu.3If you have an object pro�le showing that program point pp42, say,contributes with allocation, you can search for pp42 in the region-annotated program and thus �nd the construct that caused the al-location.� A stack pro�le is a graph that shows the stack memory usage, as afunction of time.In addition to the possibility of generating programs with program points,it is also possible, during compilation, to generate a region 
ow graph, whichshows how regions may be passed around at runtime when region-polymorphicfunctions are applied. The region 
ow graph comes in handy when pro�linglarge programs and when one wants to �nd out why a formal region variableis instantiated to a certain letregion-bound region variable.The following example clari�es the use of a region 
ow graph. Supposethe region pro�le shows that r5 is responsible for most of the memory usage.Further, suppose an object pro�le of r5 shows that program point pp345 isresponsible for most of the allocation. Searching for pp345 in the region-annotated program, you may �nd that the allocation at pp345 is into someother region variable, r34, say. Here r34 will be a formal region parameterof a region-polymorphic function that at runtime has been instantiated tor5 by one or more calls of region-polymorphic functions. You can now usethe region 
ow graph to �nd the cascade of region polymorphic applicationsthat ends up instantiating r34 to r5.The pro�ling process is sketched in Figure 16.1.We will now show an example on how to pro�le a concrete program thatcontains a space leak and then show how the pro�ler can be used to improvethe program. We then explain in more detail how to specify the pro�lingstrategies and how the pro�les are generated.2Program points are unique. In particular, for a project with two program units, theprogram points in the region-annotated programs for the two units will be distinct.3Program points are annotated during physical size inference.
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Figure 16.1: Overview of the pro�le process. The process sometimes requiresthe programmer to re�ne the runtime pro�ling strategy, or even the compile-time pro�ling strategy. Dotted boxes represent output from the compiler,from executing the program, and from using the tool rp2ps, which generatesPostScript graphs from the exported data �le.
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scan_rev1 - Region profiling Mon Sep 21 21:36:59 1998
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Figure 16.2: Memory is accumulated in the top two bands. The global regionsr1 and r89717 hold the largets amount of memory. The graph was generatedby �rst compiling the kitdemo/scan rev1.pm project with pro�ling enabled.Then by executing echo life.sml | run -microsec 10000 and �nally bytyping rp2ps -region -name scan rev1.16.1 Example: Scanning Text Files AgainIn this section, we concentrate on the general principles of pro�ling. As anexample, we investigate a revised version of the kitdemo/scan.pm project(see Section 12.6). Instead of asking for a list of input �les to scan (asproject scan.pm does), the revised version of the scan project asks for onlyone input �le, which it then scans 50 times.4The �rst thing to do is to get an overview of the memory usage of theprogram. A region pro�le of the program gives you just that. See Figure 16.2.4Project kitdemo/scan rev1.pm.
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rp2ps - Object profiling on region 89717 Mon Sep 21 21:58:02 1998
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Figure 16.3: There seems to be a space leak at program point pp6155. Thegraph was generated by typing rp2ps -object 89717.The graph shows that region r1 holds the largest amount of memory, butalso that it does not increase over time. Region r89717, however, accumu-lates more memory for each time it scans the �le life.sml.To see what happens in region r89717, we make an object pro�le of thatregion, see Figure 16.3. The object pro�le shows that program point pp6155continually allocates memory that is �rst freed when the program stops. Wenow search for pp6155 in the log �les of the basis library, that is, we executethe UNIX commandfgrep pp6155 *.logfrom the directory kit/basislib, and �nd that pp6155 appears in the �leGeneral.sml.log, which contains the following fragment:fun implode attop r1 pp6154 [r45074:inf] (chars)=ccall(implodeCharsProfiling, sat r45074 pp6155, chars);



164 CHAPTER 16. USING THE PROFILERSo the space leak is caused by function implode being called with regionr89717 instantiated for the formal region variable r45074.We now search for r89717 in �le scan rev1.sml.log and �nd the fol-lowing fragment of the region 
ow graph:toString[r75249:inf] --r75249 attop--> LETREGION[r89717:inf]readWord[r89487:inf] --r89487 atbot--> [*r89717*]The fragment is read as follows. The formal region variable r75249 is instan-tiated to the letregion-bound region variable r89717 in a call to toString.Moreover, also the formal region variable r89487 (of function readWord) isinstantiated to r89717. (The asterisks (*) denote that the node has beendisplayed before.)Region 
ow graphs are local to each program in a project. A call to anon-local region-polymorphic function introduces an edge in the region 
owgraph, but the graph says nothing about in which module the called func-tion is located. Thus, it may be necessary to look in several log �les to�nd the path from a formal region variable to an actual region variable. Byinspecting the call-explicit programs found in basislib/Int.sml.log andkitdemo/lib.sml.log one �nds that both toString and readWord even-tually call implode. However, readWord is called only initially, thus, weconclude that the space leak is caused by function toString (from the Intstructure) being called with region r89717 instantiated for the formal re-gion variable r75249. Indeed, by inspecting the calls to toString in thecall-explicit program found in scan rev1.sml.log, we see that toString iscalled with actual region r89717.The concat function from the initial basis catenates a list of strings. Butall the strings in the argument list to concat are required to be in the sameregion. Thus, whenever a �le is reported (see Figure 16.4), strings createdby the Int.toString function are put in the region that also holds the �lename for the report (which is read using the function readWord); and thisregion is non-local to the do it function, which implements the main loop ofthe program.One way of solving the space leak is to make a copy of filename at thecall to report file in function scan file:fun scan_file (filename: string) : (int*int)option=let val is = TextIO.openIn filenamein let val (n,inside) = scan is
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fun report_file(filename, n, inside) =writeln(concat[filename, ": size = ", Int.toString n," comments: ", Int.toString inside, " (",(Int.toString(percent(inside, n))handle _ => "-"), "%)"])fun scan_file (filename: string) : (int*int)option=let val is = TextIO.openIn filenamein let val (n,inside) = scan isin TextIO.closeIn is;report_file(filename, n, inside);SOME(n,inside)end handle NotBalanced =>(writeln(filename ^ ": not balanced");TextIO.closeIn is;NONE)end handle IO.Io {name,...} =>(writeln(name^" failed."); NONE)fun main():unit =case readWord(TextIO.stdIn)of SOME filename =>let fun do_it 0 = ()| do_it n = (scan_file filename; do_it (n-1))in do_it 50end| NONE => ()Figure 16.4: Fragments of scan rev1.sml. All the strings in the argumentlist to concat are put in the same region.
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scan_rev2 - Region profiling Tue Sep 22 13:15:13 1998
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Figure 16.5: There is no space leak: no matter how many times we scanthe �le, the project will use the same number of words. The graph wasgenerated by executing echo life.sml | run -microsec 10000 and rp2ps-region.in TextIO.closeIn is;report_file(filename^"", n, inside);SOME(n,inside)end handle NotBalanced =>(writeln(filename ^ ": not balanced");TextIO.closeIn is;NONE)end handle IO.Io {name,...} =>(writeln(name^" failed."); NONE)Project kitdemo/scan rev2.pm implements the modi�cation. Figure 16.5shows a region pro�le of the scan rev2.pm project.



16.2. COMPILE-TIME PROFILING STRATEGY 16716.2 Compile-Time Pro�ling StrategyBefore compiling a program for the purpose of pro�ling, one must decide ona compile-time pro�ling strategy, see Figure 16.1. The compile-time pro�lingstrategy directs the embedding of pro�ling instructions in the generated codeand instructs the compiler whether to report a region 
ow graph.The compile-time pro�ling strategy is set up in the Profiling sub-menu:5Profiling0 region profiling............................. off >>>1 show region flow graph and generate .vcg file off2 paths between two nodes in region flow graph. [] >>>3 instruction count profiling.................. offRegion pro�ling is enabled by toggling the item region profiling. If youwant the Kit to report region-annotated programs with program points,you should enable either print physical size inference expression orprint call-explicit expression from the Printing of intermediateforms sub-menu together with the item print program points from theLayout sub-menu.To make the compiler report a region 
ow graph, enable show regionflow graph and generate .vcg file. The region 
ow graph is reportedboth in text layout and in a .vcg �le, which, when interpreted by the VCGtool, provides a graphical version of the graph.6As a running example, we use the life program.7 We enable the regionprofiling option and the show region flow graph and generate .vcgfile option from the Profiling sub-menu together with the options print5The instruction count profiling option is available only with the native backendand has nothing to do with region pro�ling; it simply counts the number of executedinstructions in the target program excluding runtime calls and instructions in the link �le.It should be used only when region pro�ling is disabled. If the number of instructionsexecuted gets too large, the Overflow exception is raised.6The VCG tool (Visualization of Compiler Graphs) can be obtained fromhttp://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html:We use version 1.30, which can be found in �le vcg.1.30.r3.17.tar.7Program kitdemo/life.sml.



168 CHAPTER 16. USING THE PROFILERcall-explicit expression and print program points from the sub-menusPrinting of intermediate forms and Layout, respectively.By enabling the option Log to file from the File sub-menu and bycompiling the program using the Compile an sml file entry in the main-menu, the Kit now generates several �les of which we have life.log (con-taining, among other things, the call-explicit region-annotated program withprogram points and the region 
ow graph in text layout), life.vcg (theregion 
ow graph to be displayed with the VCG tool) and the executable �lerun.16.3 The Log FileIn the �le life.log you �nd the call-explicit region-annotated program withprogram points and the region 
ow graph in text layout for the life.smlsource �le. The region 
ow graph is found by searching for REGION FLOWGRAPH FOR PROFILING. The graph contains the following fragment (modi�edslightly to �t here):cp_list[r89698:inf]--r89698 sat--> [*r89698*] ;--r89698 atbot--> LETREGION[r90769:inf];--r89698 sat--> nthgen'[r90246:inf]--r90246 sat--> [*r90246*] ;--r90246 atbot--> LETREGION[r90812:inf];The region 
ow graph is almost equivalent to the graph used by the storagemode analysis (see page 106). In the graph, region variables are nodes andthere is edge between two nodes � and �0 if � is a formal region parameterof a function that is applied to actual region parameter �0. It follows thatletregion-bound region variables are always leaf nodes.Nodes in the graph are written in square brackets, where for examplecp list[r89698:inf] means that r89698 is a formal region parameter offunction cp list. An asterisk inside a square bracket means that the nodehas been written earlier. Only the node identi�er (i.e., the region variable)will then be printed. The size of the region is printed after the region variable;we use inf for in�nite regions and size for �nite regions of size size words.Edges are written with the from node identi�er annotated on them. Theedge points to the to node. The fragment



16.4. REGION FLOW PATHS 169cp_list[r89698:inf]--r89698 sat--> [*r89698*] ;is read: there is an edge from node r89698 to node r89698 and node r89698has been written earlier. From the cycle in the graph, one can conclude thatcp list calls itself recursively; if you look in �le life.sml, you will �ndsomething likefun cp_list[] = []| cp_list((x,y)::rest) =let val l = cp_list restin (x,y):: lendThe region 
ow graph can get very complicated to read because we mayhave mutually recursive functions, which give many edges and cycles. Ifthe graphs get too complicated, you may �nd help in the strongly connectedcomponent (scc) version of the graph. The scc graph is found by searchingfor [sccNo in the log �le. Each scc is identi�ed by a unique scc number. Theregion variables contained in each scc is annotated on the scc node.Consider, for example, the following fragment of the scc version of theregion 
ow graph for the life program:[sccNo 184: r90473,] --sccNo 184--> [sccNo 183: r90717,];Here, we have a scc node (id 184) containing region variable r90473 and anedge to scc node (id 183) containing region variable r90717.16.4 Region Flow PathsIf you are interested in the possible paths from one region variable to another,the Kit can �nd them for you. Assume that you have an object pro�le forsome region variable � showing that a certain allocation point is responsiblefor the allocations and that the region variable written at the allocation pointis not �, but some other region variable �0. In this case, �0 must be a formalregion variable of some region-polymorphic function; it is now interesting to�nd out how �0 has been instantiated to �.You can specify the from and to nodes that you want the paths for inthe menu item paths between two nodes in region flow graph in theProfiling sub-menu:



170 CHAPTER 16. USING THE PROFILERProfiling0 region profiling............................. off >>>1 show region flow graph and generate .vcg file off2 paths between two nodes in region flow graph. [] >>>3 instruction count profiling.................. offToggle line (t <number>), Activate line (a <number>), Up (u),or Quit (quit):>2<type an int pair list of region variables,e.g. [(formal reg. var. at pp.,letregion bound reg. var.)]>or up (u): >At this point, you can type in a list of integer pairs, that is, you canspecify several pairs of nodes that you want the paths for.Compiling the source program again gives a new log �le where you cansearch for Starting layout of paths:8[Starting layout of paths...[Start path:[sccNo 63: r89698,]--->[sccNo 62: r90246,]--->[sccNo 61: r90812,]]...Finishing layout of paths]If you look at the region 
ow graph on page 168, you see that the only pathfrom region r89698 to region r90812 goes through function nthgen', thatis, nthgen' calls cp list. If you look in the �le life.sml you may noticethat nthgen' actually calls a function copy and not cp list. The functioncopy is declared asfun copy (GEN l) = GEN(cp_list l)8Because region variables may change when re-compiling a source �le, it may be nec-essary to start all over by starting the Kit again and compile the program again to makesure that the regions you have speci�ed will match the regions in a region 
ow graph of aprevious compilation.
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Figure 16.6: The VCG graph contains two nodes. The node \Region 
owgraph" represents the folded region 
ow graph and the node \SCC graph"represents the folded strongly connected componemt graph.If you look at the call-explicit region-annotated program in �le life.log,you may notice that the function copy has been in-lined by the optimiser.16.5 Using the VCG ToolThe VCG tool can be used to visualise region 
ow graphs exported in .vcg�les. We assume that the tool is installed and that it can be started bytyping xvcg at the command prompt. We use the �le life.vcg as a runningexample. Typing xvcg life.vcg at the command prompt gives the windowshown in Figure 16.6.The two graphs are exported folded, meaning that they are represented inthe window as one node each. To unfold a graph choose Unfold Subgraphfrom the pull-down menu inside the xvcg window. The pull-down menuis activated by pressing one of the mouse buttons. After activating UnfoldSubgraph, choose with the left mouse button the node representing the graphthat you want to unfold. Then press the right mouse button to unfold thechosen graph. Figure 16.7 shows a small fraction of the unfolded region 
owgraph.The graph is read in the same way as the text-based version in the log�le. It can be printed out, scaled, and so on from the pull-down menu. Thegraph is folded again by choosing Fold Subgraph and clicking on one of the
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Figure 16.7: A small fragment of the region 
ow graph.
Figure 16.8: After choosing the Expose/Hide edges facility you get thiswindow. The window shows that there are two classes of edges in the graph;one for the region 
ow graph and one for the path from node r89698 tonode r90812. If you have generated the path from Section 16.4, the optionPath2(r89698,r90812) is present.nodes. All nodes in the graph then turn black; clicking on the right mousebutton then folds the graph.Region 
ow paths are also exported together with the region 
ow graph.Each path is numbered and can be viewed by the Expose/Hide edges facilityin the VCG pull-down menu, see Figure 16.8.Each path is numbered because there can be several paths between thesame two nodes. Clicking on the Graph edge class will hide the edges inthe region 
ow graph so that edges in the generated path are the only edgesshown, see Figure 16.9.
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Figure 16.9: The �gure shows the path between node r89698 and r90812.16.6 Runtime Pro�ling StrategyWhen the source program has been compiled and linked, you have an exe-cutable �le, run. Typing run at the command prompt will execute the pro-gram with a prede�ned runtime pro�ling strategy, which is displayed whenthe program is run:---------------------Profiling-Enabled---------------------The profile timer (unix virtual timer) is turned on.A profile tick occurs every 1th second.Profiling data is exported to file profile.rp.-----------------------------------------------------------You can change the pro�ling strategy by passing command line argumentsdirectly to the executable. The second line says that a virtual timer is used.In general, what timers are available is very much system dependent. Underthe HP-UX operating system, there are three possible timers, each of whichcan be enabled using one of the following options:9-realtime Real time.-virtualtime The execution time for the process.-profiletime The execution time for the process together with the timeused in the operating system on behalf of the process.9A complete description can be found in the manual page for getitimer.



174 CHAPTER 16. USING THE PROFILERThe third line says that a pro�le tick occurs every 1 second. A pro�letick is when the program stops normal execution, and memory is traversedto collect pro�le data. The more often a pro�le tick occurs the more detailedyou pro�le (and the slower the program will run). The time slot (i.e., thetime between to succeeding pro�le ticks) to use is speci�ed by the -sec n and-microsec n options. A time slot of half a second is speci�ed by -microsec500000 and not by -sec 0.5.10The fourth line says that the collected pro�le data is exported to the �leprofile.rp. This �le can be changed by the -file name option.There are several other possible command line options; use the -h optionor the -help option for details.16.7 Regions StatisticsIf the executable �le run is executed with the option -showStat then regionstatistics is printed just before the program terminates. Region statisticsincludes information about the use of regions and does not depend on thespeci�cs of the runtime pro�ling strategy; in fact, region statistics includesonly exact, non-sampled values for the program. Assuming that run is the ex-ecutable �le generated by compiling the program life with pro�ling enabled,executing run -showStat yields|just before the program terminates|theregion statistics shown in Figure 16.10.The MALLOC part of Figure 16.10 shows how memory is allocated fromthe operating system.Each in�nite region form a linked list of one or more region pages whosesize is found in the REGION PAGES part. The valueMax number of allocated pages: 53multiplied bySize of one page: 800 bytesgivesMax space for region pages: 42400 bytes (0.0Mb)10The lowest possible time slot to use is system dependent. It is also system dependenthow long time passes before the time wraps. Wrapping will in practice not happen on aHP-UX system, but it will happen after about 40 minutes on a SUN OS4 system.



16.7. REGIONS STATISTICS 175MALLOCNumber of calls to malloc: 2Alloc. in each malloc call: 24240 bytesTotal allocation by malloc: 48480 bytes (0.0Mb)REGION PAGESSize of one page: 800 bytesMax number of allocated pages: 53Number of allocated pages now: 4Max space for region pages: 42400 bytes (0.0Mb)INFINITE REGIONSSize of infinite region descriptor: 16 bytesNumber of calls to allocateRegionInf: 95764Number of calls to deallocateRegionInf: 95761Number of calls to alloc: 858873Number of calls to resetRegion: 123378Number of calls to deallocateRegionsUntil: 0ALLOCATIONMax alloc. space in pages: 18056 bytes (0.0Mb)incl. prof. info: 36240 bytes (0.0Mb)Infinite regions utilisation (36240/42400): 85%STACKNumber of calls to allocateRegionFin: 3164508Number of calls to deallocateRegionFin: 3164508Max space for finite regions: 6608 bytes (0.0Mb)Max space for region descs: 256 bytes (0.0Mb)Max size of stack: 7412 bytes (0.0Mb)incl. prof. info: 11244 bytes (0.0Mb)in profile tick: 4524 bytes (0.0Mb)Figure 16.10: Region statistics for the life program.



176 CHAPTER 16. USING THE PROFILERIn the INFINITE REGIONS part, we see the number of calls to in�niteregion operations such as allocateRegionInf and alloc. The programallocates 95764 in�nite regions and deallocates 95761; the three global re-gions are not deallocated before the region statistics is printed and theprogram terminates. The program allocates 858873 objects in in�nite re-gions. It has been possible to reset an in�nite region 123378 times. ThedeallocateRegionsUntil operation is called whenever an exception is raised,thus, we see that no exceptions were raised by the program.Because objects allocated in in�nite regions are not split across di�erentregion pages (except strings), it is not always possible to �ll out a regionpage entirely. In the ALLOCATION part, the valueInfinite regions utilisation (36240/42400): 85%shows memory utilisation for in�nite regions at the moment where the pro-gram has allocated the largest amount of memory in in�nite regions.In the STACK part, we see that the program allocates and deallocates thesame number of �nite regions. We also see that the space used for �niteregions is 6608 bytes and that the total use of stack space is 7412 bytes(excluding space used to hold pro�ling information). The stack size valuesincl. prof. info: 11244 bytes (0.0Mb)in profile tick: 4524 bytes (0.0Mb)can be used to see if it is necessary to pro�le with a smaller time slot, whichwill often lower the di�erence between the two values.16.8 Processing the Pro�le Data FileThe pro�le data�le profile.rp can be processed by the graph generatorrp2ps (read: RegionPro�le2PostScript) found in the kit/bin directory.11The graph generator is controlled by command line options.A region pro�le is produced by typingrp2ps -region11The rp2ps program is based on a pro�ler by Colin Runciman, David Wakeling andNiklas R�ojemo.
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rp2ps - Region profiling Mon Sep 28 09:36:40 1998
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Figure 16.11: Region pro�le of the life program. The region that occupiesthe largest area is at the top. The graph was produced by �rst typing run-microsec 20000 at the command prompt and then typing rp2ps -region.at the command prompt. The program produces a PostScript �le in �leregion.ps by reading pro�le information from the pro�le data �le profile.rp,see Figure 16.1. A region pro�le for the life program is shown in Fig-ure 16.11. The region that occupies the largest area is at the top. If thereare more regions than can be shown in di�erent shades, then the smallestregions are collected in an OTHER band at the bottom.Each region is identi�ed with a number that matches a letregion-boundregion variable in the region-annotated program. In�nite regions end withinf and �nite regions end with fin. There are also a band named rDesc anda band named stack. The rDesc band shows the memory used on regiondescriptors of in�nite regions on the stack. The stack band shows stack usageexcluding �nite regions and region descriptors for in�nite regions.The vertical line marked \Maximum allocated bytes in regions" in Fig-
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rp2ps - Object profiling on region 90812 Mon Sep 28 09:52:53 1998
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Figure 16.12: The object pro�le shows all allocation points allocating intoregion r90812.ure 16.11 is called the maximum allocation line; it shows the maximum num-ber of bytes allocated in regions when the program was executed. Becausewe also show the stack use on the graph (as the rDesc and stack band), themaximum allocation line is o�set upwards by the stack use at the point whereregion allocation was at its highest. The space between the maximum allo-cation line and the top band shows the inaccuracy of the pro�ling strategy.To decrease the gap, it often helps to use a smaller time slot.The largest region shown in Figure 16.11 is r90812. An object pro�le ofregion r90812 is produced by typingrp2ps -object 90812at the command prompt. We obtain the object pro�le shown in Figure 16.12.We see that allocation point pp12223 is responsible for the largest amountof allocations in the program. The allocation point may be found in the
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rp2ps - Stack profiling Mon Sep 28 09:53:18 1998
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Figure 16.13: Memory usage on the stack excluding space for �nite regions.region-annotated program resulting from compiling the life program (re-member to enable printing of program points). In general, program pointsmay also stem from the Basis Library (search the .log �les in the directorykit/basislib).The stack pro�le shown in Figure 16.13 shows memory usage on the stack,excluding space used by �nite regions. A stack pro�le is generated by typingrp2ps -stackat the command prompt.16.9 More Advanced Graphs with rp2psThis section gives a quick overview of the more advanced options that canbe passed to rp2ps. First of all, it is possible to name the pro�les with



180 CHAPTER 16. USING THE PROFILERthe -name option. Comments are inserted on the x-axis with the -commentoption.The pro�le data �le may contain a large number of samples (the datacollected by a pro�le tick is called a sample). By default, rp2ps uses only64 samples. You can alter the setting with the -sampleMax option. Thefollowing two algorithms are used to sort out samples:-sortBySize The n (speci�ed by -sampleMax) largest samples are shown.-sortByTime The n samples shown are equally distributed over time (de-fault).The -sortBySize option is useful if your pro�les have a large gap betweenthe top band and the maximum allocation line. If there is a large gap whenusing option -sortBySize, then it may help to pro�le with a smaller timeslot. You can use the -stat option to see the number of samples in thepro�le data �le. It is printed as Number of ticks:.Figure 16.14 shows the pro�le for the following command line:rp2ps -region -sampleMax 50 -name life-comment 9 "A comment at time 9" -sortByTimeThe graph generator recognises several options that are not shown here.Help on these options is obtained by typing rp2ps -h or rp2ps -help atthe command prompt.
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Figure 16.14: It is possible to insert comments in pro�le graphs.
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Chapter 17Interacting with the KitStarting the Kit was described in Section 2.8. To leave the Kit, type quitfollowed by a return character.We have already described how to compile and run single source �les(Section 2.8) and projects (Chapter 15). In the following sections, we givean overview of the Kit sub-menus that control printing and layout of inter-mediate forms. In Section 17.3, we explain how to use a so-called script �leto set personal preferences for menu entries in the Kit.17.1 Printing of Intermediate FormsThe menu Printing of intermediate forms controls what intermediateforms are printed when a program is compiled. A summary of the majorphases that produce printable intermediate forms is shown in Figure 17.1.The phases are listed in the order they take place in the Kit.The optimiser, which rewrites a Lambda program, collects statistics aboutthe optimisation. This statistics can be printed by turning on the 
agstatistics after optimisation in the Control/Optimiser menu; theother 
ags found in this menu controls the optimiser.Storage mode analysis (see Chapter 12) results in a MulExp expression,which can be printed by turning on the 
ag print atbot expression. Af-ter that, regions with only get e�ects are removed from the MulExp ex-pression (see page 60). To see the resulting expression, turn on print dropregions expression or print drop regions expression with storagemodes. (The latter 
ag also prints storage modes.) Physical size inference183



184 CHAPTER 17. INTERACTING WITH THE KIT
Phase Result Flag(s) that Print ResultElaboration Lambda (�)Elim. of Poly. Eq. Lambda (�)Lambda Optimiser Lambda print optimisedlambda expression (�)Spreading RegionExp (�)Region Inference RegionExp (�)Multiplicity Inference MulExp (�)K-normalisation MulExpStorage Mode Analysis MulExp print atbot expression (�)Dropping of Regions MulExp print drop regionsexpression (�)print drop regionsexpression withstorage modesPhysical Size Inference MulExp print physical sizeinference expression (�)Call Conversion MulExp print call-explicitexpression (�)Code Generation KAM print KAM code beforeregister allocation (�)Register Allocation KAM print KAM code afterregister allocation (�)Figure 17.1: The table shows how the menu items in the Printing ofIntermediate Forms menu correspond to the phases in the Kit. Enablingdebug compiler from the Debug Kit menu causes all intermediate formsmarked (�) to be printed. Thus, one can select phases individually or askto have all printed. The phases that follow K-normalisation all work on K-normal forms, but, for readablity, terms are printed as though they had notbeen normalised (unless Print in K-normal Form from the Layout menu isenabled).



17.2. LAYOUT OF INTERMEDIATE FORMS 185then determines the size in words of �nite region variables. For instance, a�nite region that will contain a pair will have physical size two words. To seethe expression after physical size inference, turn on print physical sizeinference expression. After that, call conversion converts the MulExpexpression to a call-explicit expression (see page 138). To see the result, en-able the 
ag print call-explicit expression. After that, KAM code isgenerated. The KAM code before register allocation can be inspected by en-abling the 
ag print KAM code before register allocation. The resultof register allocation can be viewed by enabling the 
ag print KAM codeafter register allocation.17.2 Layout of Intermediate FormsWhile the switches described in the previous section concern which interme-diate forms to print, the switches in the sub-menu Layout control how theseforms are printed.The 
ags print types, print effects, and print regions control theprinting of region-annotated types, e�ects, and region allocation points (e.g.,at �). All eight combinations of these three 
ags are possible, but if printeffects is turned on it is best also to turn the two others on so that onecan see where the e�ect variables and region variables that appear in arrowe�ects are bound.Enabling the 
ag print in K-Normal Form causes expressions to be out-put in K-Normal Form instead of the simpli�ed form in which they are nor-mally presented.17.3 Using Script Files for PreferencesThe Kit allows you to create a so-called script �le, which can hold preferencesfor most of the entries found in the Kit menu. A script �le can be providedeither when the Kit is started or dynamically from within the Kit menuwhen the Kit is running. To provide a script �le script at the time the Kitis started, typekit -script scriptfrom the shell. If no script �le is provided on the command line, the Kit willtry to read a script �le kit.script from the working directory. During a



186 CHAPTER 17. INTERACTING WITH THE KITsession with the Kit, a script �le can be read using the menu entry Read ascript file from the File menu.A script �le is comprised by a sequence of preferences, each of whichprovides a setting for a given entry. Here is a script �le that enables theboolean entry print drop regions expression (located in the Printingof intermediate forms sub-menu) and sets the integer entry maximum inlinesize (located in the Control/Optimiser sub-menu) to 0:1val print_drop_regions_expression : bool = trueval maximum_inline_size : int = 0 (* disable in-lining *)Notice that spaces in the menu entries are replaced with scores in the script�le and that script �les may include ML style comments. By selecting printall flags and variables from the Control sub-menu, the Kit prints atable of all entries that may be set from a script �le.Enabling print in K-Normal Form causes expressions to be output inK-Normal Form instead of the simpli�ed form in which they are normallypresented.

1Script �le kitdemo/ex.script.



Chapter 18Calling C FunctionsIn this chapter, we describe how the Kit programmer can call C functionsfrom within Standard ML programs. The Kit allows ML values to be passedto C functions, which again may return ML values. Not all ML values are rep-resented as if they were C values. For instance, C strings are null-terminatedarrays of characters, whereas ML strings in the Kit are represented as a linkedlist of bounded sized character arrays. To allow the programmer to conve-niently convert between C values and ML values, the Kit provides conversionfunctions and macros for commonly used data structures.When the Kit calls a C function, data structures returned by the functionare stored in regions that are allocated by the Kit. For dynamically sizedobjects of the resulting value, such as strings and lists, regions are allocatedby the Kit and passed to the C function as additional arguments; the Cfunction must then itself allocate space in these regions for the dynamicallysized data structures. Moreover, for those parts of the resulting value forwhich the size can be determined statically, pointers to already allocatedspace are passed to the C function as additional arguments.In both cases, the Kit uses region inference to infer the lifetime of regionsthat are passed to the C function. The region inference algorithm does notanalyse C functions. Instead, the Kit inspects the ML type provided by theprogrammer. The Kit assumes that functions with monomorphic types areregion exomorphisms; region endomorphic functions may be described usingML polymorphism, see Section 18.6.For every C function that is called from an ML program, the order of theadditional region arguments is uniquely determined by the ML result typeof the function. This type must be constructed from lists, records, booleans,187



188 CHAPTER 18. CALLING C FUNCTIONSreals, strings, integers, and type variables.When pro�ling is enabled, yet another additional argument, a programpoint, is passed to the C function. This argument provides allocation prim-itives with information about what points in the program contributes withallocation, see Section 18.4.Examples of existing libraries that can be accessed from within ML pro-grams include the X Window System and standard UNIX libraries providingfunctions such as time, cp, and fork. There are limitations to the scheme,however. First, because C and the Kit do not share value representations,transmitting large data structures between C and ML will often involve sig-ni�cant copying. Second, some C libraries require the user to set up call-backfunctions to be executed when speci�c events occur. It is not currently pos-sible with the Kit to have a C function call an ML function.18.1 Declaring Primitives and C FunctionsThe Kit conforms in large parts to the Standard ML Basis Library. Partof the functionality found in this library is programmed in C and linked tothe Kit runtime system. The declarations in system dependent parts of thelibrary use a special built-in identi�er called prim, which is declared to havetype scheme 8��:(string � string ��)! � in the initial basis. A primitivefunction is then declared by passing its name to prim. For example, thedeclarationfun (s : string) ^ (s' : string) : string =prim ("concatString", "concatStringProfiling", (s, s'))declares string catenation. The argument and result types are explicitlystated so as to give the primitive the correct type scheme. The �rst string"concatString" denotes a C function identi�er.1 For the example declara-tion, the Kit generates a call to the C function concatString with argumentss and s'. The C function must then of course be present at link-time; if not,the Kit will complain. The second argument to prim is a C function identi�erto use|instead of the �rst|when pro�ling is enabled, see Section 18.4. Aconvenient way to declare a C function is to use the following scheme:fun vid (x1 : �1; : : : ; xn : �n) : � = prim(c func; c funcProf; (x1; : : : ; xn))1Some strings (e.g., "=" and ":=") are recognised and implemented in assembler bythe compiler.



18.1. DECLARING PRIMITIVES AND C FUNCTIONS 189The result type � must be of the form� ::= � j int j bool j unitj �1 � : : : � �n j � list j real j stringIf the result type is one of �, int, bool, or unit then the result value canbe returned in a single register. Contrary, if the result type represents anallocated value, the C function must be told where to store the value. For anytype that is either real or a non-empty tuple type, and does not occur in alist type of the result type � , the Kit allocates space for the value and passesa pointer to the allocated space as an additional argument to the C function.For any type representing an allocated value that is either string or occursin a list type of the result type � , the Kit cannot statically determine theamount of space needed to store the value. Instead, regions are passed to theC function as additional arguments and the C function must then explicitlyallocate space in these regions as needed, using a C function provided by theruntime system. The order in which these additional arguments are passedto the C function is determined by a pre-order traversal of the result type � .For a list type, regions are given in the order:1. region for auxiliary pairs2. regions for elements (if necessary)We now give an example to show what extra arguments are passed toa C function, given the result type. In the example, we use the following(optional) naming convention: names of arguments holding addresses of pre-allocated space in regions start with vAddr, while names of arguments holdingaddresses of region descriptors (to be used for allocation in a region) startwith rAddr.Example 1 Given the result type (int � string) list � real, the follow-ing extra arguments are passed to the C function (in order): vAddrPair,rAddrLPairs, rAddrEPairs, rAddrEStrings and vAddrReal, see Figure 18.1.Here vAddrPair holds an address pointing to pre-allocated storage inwhich the tuple of the list and the (pointer to the) real should reside. Theargument rAddrLPairs holds the region address for the auxiliary pairs ofthe list. Similarly, the arguments rAddrEPairs and rAddrEStrings holdregion addresses for element pairs and strings, respectively. The argumentvAddrReal holds the address for pre-allocated storage for the real.



190 CHAPTER 18. CALLING C FUNCTIONS� reallist�int string
��� @@@
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i6 i1 vAddrPairi2 rAddrLPairsi3 rAddrEPairsi4 Integers are unboxedi5 rAddrEStringsi6 vAddrReal
Figure 18.1: The order of pointers to allocated space and in�nite regions isdetermined from a pre-order traversal of the result type (int�string) list�real.Additional arguments holding pointers to pre-allocated space and in�niteregions are passed to the C function prior to the ML arguments. Consideragain the ML declarationfun vid (x1 : �1; : : : ; xn : �n) : � = prim(c func; c funcProf; (x1; : : : ; xn))The C function c func must then be declared asint c func (int addr1; : : : ; int addrm; int x1; : : : ; int xn)where addr 1, : : :, addrm are pointers to pre-allocated space and in�nite re-gions as described above.18.2 Conversion Macros and FunctionsThe runtime system provides a small set of conversion macros and functionsfor use by C functions that need to convert between ML values and C values.Using these conversion macros and functions for converting between repre-sentations protects you against any future change in the representation ofML values. The conversion macros and functions are declared in the header�les:



18.2. CONVERSION MACROS AND FUNCTIONS 191src/Runtime/Tagging.hsrc/Runtime/String.hsrc/Runtime/List.h18.2.1 IntegersThere are two macros for converting between the ML representation of inte-gers and the C representation of integers:2#define convertIntToC(i)#define convertIntToML(i)To convert an ML integer i_ml to a C integer i_c, writei_c = convertIntToC(i_ml);To convert a C integer i_c to an ML integer i_ml, writei_ml = convertIntToML(i_c);The macros demonstrated here are used in the examples 2, 3, and 6 in Sec-tion 18.9.18.2.2 UnitsThe following constant in the conversion library denotes the ML representa-tion of ():#define mlUNIT18.2.3 RealsAn ML real is represented as a pointer into a region containing the real. Toconvert an ML real to a C real, we dereference the pointer. To convert aC real to an ML real, we update the memory to contain the C real. Thefollowing two macros are provided:#define convertRealToC(mlReal)#define convertRealToML(cReal, mlReal)2In this release of the Kit, these macros are the identity maps, but that may change.



192 CHAPTER 18. CALLING C FUNCTIONSConverting an ML real r_ml to a C real r_c can be done with the �rstmacro:r_c = convertRealToC(r_ml);Converting from a C real to an ML real (being part of the result value ofthe C function) is done in one or two steps depending on whether the real ispart of a list or not. If the real is not in a list the memory containing thereal has been allocated before the C call, see Section 18.1:convertRealToML(r_c, r_ml);If the ML real is part of a list element, then space must be allocated for thereal before converting it. If rAddr identi�es a region for the real, you write:allocReal(rAddr, r_ml);convertRealToML(r_c, r_ml);These macros are used in the examples 3, 6 and 8 in Section 18.9.18.2.4 BooleansFour constants provide the values of true and false in ML and in C. Theseconstants are de�ned by the following macros:3#define mlTRUE 3#define mlFALSE 1#define cTRUE 1#define cFALSE 0Two macros are provided for converting booleans:#define convertBoolToC(i)#define convertBoolToML(i)Converting booleans is similar to converting integers:b_c = convertBoolToC(b_ml);b_ml = convertBoolToML(b_c);3Booleans in the Kit are tagged for historical reasons.



18.2. CONVERSION MACROS AND FUNCTIONS 19318.2.5 RecordsRecords are boxed. One macro is provided for storing and retrieving ele-ments:#define elemRecordML(recAddr, offset)An element can be retrieved from a record rec_ml by writinge_ml = elemRecordML(rec_ml, offset);where the �rst element has offset 0. An element e_ml is stored in an MLrecord rec_ml by writingelemRecordML(rec_ml, offset) = e_ml;Two specialized versions of the elemRecordML macro are provided for pairs:#define first(x)#define second(x)If the record is to be part of a list element then it is necessary to allocatethe record before storing into it. This allocation is done with the macro#define allocRecordML(rAddr, size, vAddr)where rAddr denotes a region (i.e., a pointer to a region descriptor), sizeis the size of the record (i.e., the number of components), and vAddr is avariable in which allocRecordML returns a pointer to storage for the record.The record is then stored, component by component, by repeatedly callingelemRecordML with the pointer vAddr as argument.The above macros are used in examples 8, 9 and 7 in Section 18.9.18.2.6 StringsStrings are boxed and always allocated in in�nite regions. It is possible toprint an ML string by using the C functionvoid printString(StringDesc *str);Strings are converted from ML to C and vice versa using the two Cfunctions



194 CHAPTER 18. CALLING C FUNCTIONSvoid convertStringToC(StringDesc *mlStr, char *cStr,int cStrLen, int exn);StringDesc *convertStringToML(int rAddr, char *cStr);An ML string str_ml is converted to a C string str_c in already allocatedstorage of size size bytes by writingconvertStringToC(str_ml, str_c, size, exn);where exn is some ML exception value (see Section 18.3) to be raised if theML string has size greater than size.A C string is converted to an ML string in the region denoted by rAddrby writingstr_ml = convertStringToML(rAddr, str_c);The following function returns the size of an ML string:int sizeString(StringDesc *str);These macros are used in the examples 7 and 5 in Section 18.9.18.2.7 ListsLists are always allocated in in�nite regions. A list uses, as a minimum, oneregion for the auxiliary pairs of the list, see Figure 5.1 on page 53.We shall now show three examples of manipulating lists. The �rst exam-ple traverses a list. Consider the following C function template:void traverse_list(int ls) {int elemML;for ( ; isCONS(ls); ls=tl(ls)) {elemML = hd(ls);/*do something with the element*/}return;} The ML list is passed to the C function in parameter ls. The exampleuses a simple loop to traverse the list. The parameter ls points at the �rstconstructor in the list. Each time we have a CONS constructor we also have



18.2. CONVERSION MACROS AND FUNCTIONS 195an element, see Figure 5.1. The element can be retrieved with the hd macro.One retrieves the tail of the list by using the tl macro.The following four macros are provided in the src/Runtime/List.h header�le:#define isNIL(x)#define isCONS(x)#define hd(x)#define tl(x)The next example explains how to construct a list backwards. Considerthe following C function template:int mk_list_backwards(int pairRho) {int *resList, *pair;makeNIL(resList);while (/*more elements*/) {ml_elem = ...;allocRecordML(pairRho, 2, pair);first(pair) = (int) ml_elem;second(pair) = (int) resList;makeCONS(pair, resList);}return (int) resList;}First, we create the NIL constructor, which marks the end of the list. Then,each time we have an element, we allocate a pair. We store the element inthe �rst cell of the pair. A pointer to the list constructed so far is put inthe second cell of the pair. (In this release of the Kit, the makeCONS macrosimply assigns its second argument the value of its �rst argument.) In theexample, we have assumed that the elements are unboxed, thus, no regionsare necessary for the elements.The last example shows how a list can be constructed forwards. It is moreclumsy to construct the list forwards because we have to return a pointer tothe �rst element. Consider the following C function template.int mk_list_forwards(int pairRho) {int *pair, *cons, *temp_pair, res;



196 CHAPTER 18. CALLING C FUNCTIONS/* The first element is special because we have to *//* return a pointer to it. */ml_elem = ...allocRecordML(pairRho, 2, pair);first(pair) = (int) ml_elem;makeCONS(pair, cons);res = (int) cons;while (/*more elements*/) {ml_elem = ...allocRecordML(pairRho, 2, temp_pair);first(temp_pair) = (int) ml_elem;makeCONS(temp_pair, cons);second(pair) = (int) cons;pair = temp_pair;}makeNIL(cons);second(pair) = (int)cons;return res;} We create the CONS constructor and pair for the �rst element and returna pointer to the CONS constructor (the pair) as the result. We then constructthe rest of the list by constructing a CONS constructor and a pair for eachelement. It is necessary to use a temporary variable for the pair (temp_pair)because we have to update the pair for the previous element. The secondcomponent of the last pair contains the NIL constructor and thus denotes theend of the list.The two macros makeCONS and makeNIL are provided in the List.h header�le:#define makeNIL(rAddr, ptr)#define makeCONS(rAddr, pair, ptr)18.3 ExceptionsC functions are allowed to raise exceptions and it is possible for the ML codeto handle these exceptions. A C function cannot declare exceptions locally,



18.4. PROGRAM POINTS FOR PROFILING 197however. As an example, consider the ML declaration:exception Exnfun raiseif0 (arg : int) : unit =prim("raiseif0", "raiseif0", (arg, Exn))If we want the function raiseif0 to raise the exception value Exn if theargument (arg) is 0 then we use the function raise_exn provided by theruntime system, by including the header �le src/Runtime/Exception.h.The C function raiseif0 may be declared thus:void raiseif0(int i_ml, int exn) {int i_c;i_c = convertIntToC(i_ml);if (i_c = 0) raise_exn(exn);return;}There is no need to make the function return the value mlUNIT; in case thetype of the return value is unit then the Kit automatically inserts code forreturning the ML value () after the call to the C function.The implementation of the raise_exn function for the native backenddi�ers from that of the C backend; in the native backend, raise_exn neverreturns, whereas in the C backend, raise_exn sets a 
ag, which is checked(by code generated by the Kit) when the function returns. Thus, to obtainthe same behaviour with the two backends, one should avoid side e�ectingexpressions and statements between function returns and calls of raise_exn.Exceptions are used in examples 6 and 7 in Section 18.9.18.4 Program Points for Pro�lingTo support pro�ling, the programmer must provide special pro�ling versionsof those C functions that allocate space in regions (i.e., that take regions asadditional arguments). If pro�ling is enabled and at least one pointer to aregion is passed to the C function then also a program point that representsthe call to the C function is passed. The program point is used by the Cfunction when allocating space in regions, as explained in Section 18.4. Theprogram point is passed as the last argument:



198 CHAPTER 18. CALLING C FUNCTIONSint c funcProf (int addr1; : : : ; int addrm;int x1; : : : ; int xn; int pPoint)No special version of the C function is needed if it does not allocate intoin�nite regions; in this case, the same C function identi�er can be passed asthe �rst and second argument to prim.A program point passed to a C function is an integer; it identi�es theallocation point that represents the C call in the program, see Chapter 16.The runtime system provides special versions of various allocation macrosand functions presented earlier in this chapter:#define allocRealProf(realRho, realPtr, pPoint)#define allocRecordMLProf(rhoRec, ssize, recAddr, pPoint)StringDesc *convertStringToMLProfiling(int rhoString,char *cStr,int pPoint);Here is the pro�ling version of the C function mk_list_backwards:int mk_list_backwardsProf(int pairRho, int pPoint) {int *resList, *pair;makeNIL(resList);while (/*more elements*/) {ml_elem = ...;allocRecordMLProf(pairRho, 2, pair, pPoint);first(pair) = (int) ml_elem;second(pair) = (int) resList;makeCONS(pair, resList);}return (int) resList;}The example shows that it is not di�cult to make the pro�ling version of aC function; use the Prof versions of the macros and use the extra argumentpPoint, appropriately. The same program point is used for all allocations inthe C function, perceiving the C function as one entity.18.5 Storage ModesAs described in Chapter 12 on page 101, actual region parameters contain astorage mode at runtime, if the region is in�nite. A C function may check



18.6. ENDOMORPHISMS BY POLYMORPHISM 199the storage mode of an in�nite region to see whether it is possible to reset theregion before allocating space in it. The header �le src/Runtime/Region.hof the runtime system provides a macro is_inf_and_atbot, which can beused to test whether resetting is safe, assuming that the arguments to the Cfunction are dead.The C function resetRegion, which is also provided by the runtime sys-tem in the header �le src/Runtime/Region.h, can be used to reset a region.Consider again the mk_list_backwards example. If the atbot bit of theregion for the list is set, then this region can be reset prior to constructingthe list:int mk_list_backwards(int pairRho) {int *resList, *pair;if (is_inf_and_atbot(pairRho)) resetRegion(pairRho);makeNIL(resList);...}The C programmer should be careful not to reset regions that potentiallycontain live values. In particular, the C programmer must be conservativeand take into acount possible region aliasing between regions holding argu-ments and regions holding the result. Clearly, if a region that the C functionis supposed to return a result in contains part of the value argument(s) ofthe function, then the function should not �rst reset the region and then tryto access the argument(s).18.6 Endomorphisms by PolymorphismUntil now, we have seen examples only of C functions that are region ex-omorphic, that is, functions that, in general, write their result into regionsthat are di�erent from those in which the arguments reside.A region endomorphic function has the property that the result of callingthe function is stored in the same regions that hold the arguments to thefunction. Region endomorphic functions are useful when the result of thefunction shares with parts of the arguments. Consider the C functionint select_second(int pair) {return second(pair);}



200 CHAPTER 18. CALLING C FUNCTIONSwhich selects the second component of pair (cast to an integer); the identi�ersecond is de�ned in the header �le Tagging.h by the macro de�nition#define second(x) (*((int *)(x)+1))Now, for the Kit to make correct, that is safe, decisions about whento de-allocate regions, the endomorphic properties of a C function must beexpressed in the region-annotated type scheme for value identi�ers to whichthe C function is bound. The programmer can tell the Kit about regionendomorphic behaviour of a C function by using type variables. For example,here is an ML declaration that binds a value identi�er second to the Cfunction select_second:4fun second(pair : 'a * 'b) : 'b =prim("select_second", "select_second", pair)The Kit associates the following region-annotated type scheme to the valueidenti�er second:8�1�2�1�2�3�:((�1; �1) � (�2; �2); �3) �:fget(�3)g�������!(�2; �2)Notice that the region-annotated type scheme expresses the region endomor-phic behaviour of the C function.18.7 Compiling and LinkingTo use a set of C functions in the ML code, one must �rst compile the Cfunctions into an object �le. (Remember to include appropriate header �les.)As an example, the �le kitdemo/my_lib.c holds a set of example Cfunctions. This �le is compiled by typing (from the shell)gcc -c my_lib.cin the kitdemo directory. Now, to compile the �le to work with pro�ling,typegcc -DPROFILING -o my_lib_prof.o -c my_lib.c4Project kitdemo/select second.pm. The C �le select second.c must be compiled(using gcc) to form the object �le select second.o before the project can be compiled;if you forget, the Kit will complain.



18.8. AUTO CONVERSION 201import my_lib.o : my_lib_prof.oin my_lib.smltest_my_lib.smlendFigure 18.2: Linking with external object �les. The external object �lemy lib.o is linked in when forming the executable �le run. When pro�lingis enabled, the external object �le my lib prof.o is used instead.The project my_lib.pm, which is listed in Figure 18.2, expresses that,when pro�ling is disabled, the object �le my_lib.o is linked in to form theexecutable �le run. When pro�ling is enabled, the object �le my_lib_prof.ois linked in instead. (The : my_lib_prof.o part of the project is requiredonly when pro�ling is enabled.)It may be necessary to modify the string entry link with library inthe Kit menu Control so as to link in additional C libraries.18.8 Auto ConversionFor C functions that are simple, in a sense that we shall soon de�ne, the Kitcan generate code that automatically converts representations of argumentsfrom ML to C and representations of results from C back to ML.Auto conversion is enabled by prepending a @-character to the name ofthe C function, as in the following example:fun power_auto(base : int, n : int) : int =prim ("@power_auto", "@power_auto", (base, n))The power function may then be implemented in C as follows:int power_auto(int base, int n) {int p;for (p = 1; n > 0; --n) p = p * base;return p;}



202 CHAPTER 18. CALLING C FUNCTIONSNo explicit conversion is needed in the C code. Auto conversion is onlysupported when the arguments of the ML function are of type int or booland when the result has type unit, int, or bool. It works also when pro�lingis enabled.The example shown here is example 4 of Section 18.9; it is part of themy_lib.pm project.18.9 ExamplesSeveral example C functions are located in the �le kitdemo/my_lib.c. Theproject kitdemo/my_lib.pm, which is listed in Figure 18.2, makes use ofthese functions.The source �le my_lib.sml, which is part of the my_lib.pm project, con-tains the following ML declarations:fun power(base : int, n : int) : int =prim ("power", "power", (base, n))fun power_auto(base : int, n : int) : int =prim ("@power_auto", "@power_auto", (base, n))fun power_real (base : real, n : int) : real =prim ("power_real", "power_real", (base, n))fun print_string_list (string_list : string list) : unit =prim ("print_string_list", "print_string_list", string_list)exception Powerfun power_exn (base : real, n : int) : real =prim ("power_exn", "power_exn", (base, n, Power))exception DIRfun dir (directory : string) : string list =prim ("dir", "dirProf", (directory, DIR))fun real_list () : real list =prim ("real_list", "real_listProf", ())



18.9. EXAMPLES 203fun change_elem (p : int*string) : string*int =prim ("change_elem", "change_elem", p)The implementation of each of the C functions is summarized below (seethe �les my_lib.c and my_lib.sml in the kitdemo directory for detailedcomments.)Example 2 The power function shows how to convert integers with themacros convertIntToC and convertIntToML.Example 3 The power real function shows how to convert reals with themacros convertRealToC and convertRealToML.Example 4 The power auto function shows the use of auto conversion,which allows for easy linking to certain C functions.Example 5 The print string list example shows how to traverse a listof strings. The technique can easily be adobted to other data structures (e.g.,to lists of lists of strings).Example 6 The power exn function shows how an exception can be raisedfrom a C function. Notice that it is necessary to return from the C functionafter you have called the raise_exn function.Example 7 The dir function shows how a list can be constructed back-wards. We use the UNIX system calls opendir and readdir to read thecontents of the speci�ed directory.Notice also that we check the in�nite regions for resetting at the start ofthe C function. The checks should be placed at the start of the function,orelse not inserted at all.If you compare the C functions dir and dirProf you may notice how thefunction dir is modi�ed to work with pro�ling.Example 8 Function real list constructs a list of reals forwards. The re-als are allocated in an in�nite region. It may be more convenient to constructthe list backwards in the C function and then apply a list reverse functionon the result list in the ML program.



204 CHAPTER 18. CALLING C FUNCTIONSExample 9 Function change elem shows the use of the macro elemRecordML.The result type is string*int. The function swaps the two elements in thepair. The Kit passes an address to pre-allocated space for the result pair,and an in�nite region for the result string.At �rst thought it should be enough to just swap the two arguments, andnot copy the string into the string region, i.e. one could write the followingfunction:int change_elem(int newPair, int stringRho, int pair) {int firstElem_ml, secondElem_ml;firstElem_ml = elemRecordML(pair, 0);secondElem_ml = elemRecordML(pair, 1);elemRecordML(newPair, 0) = secondElem_ml;elemRecordML(newPair, 1) = firstElem_ml;return newPair;}This function may work sometimes but it is not safe! Region inference expectsthe result string to be allocated in stringRho, and may therefore de-allocatethe region containing the argument string, secondElem_ml, while the stringin the returned pair is still alive. A safe version of change_elem is found inmy_lib.c.



Chapter 19Changes from Version 2
19.1 Modules and Separate CompilationThe most important development since Version 2 is the ability to compileModules and the discipline of separate compilation. A distinguished featureof the way modules are compiled is that module constructs do not give rise toany code, so there is no runtime overhead in using modules. See Chapter 15.19.2 Standard Basis LibraryThe ML Kit now contains (a large portion of) the Standard Basis Library,based on the Moscow ML version of the Library. To see exactly whatparts of the Standard Basis Library are supported, consult the project �lebasislib.pm located in the directory kit/basislib.19.3 ScalabilityThe Kit now compiles fairly large programs, including Hafnium's AnnoDo-mini (58.000 lines of SML) and the ML Kit itself (around 80.000 lines).19.4 New Match CompilerThe pattern compiler has been rewritten, based on Sestoft's method [Ses96],which also is the basis of the Moscow ML match compiler.205



206 CHAPTER 19. CHANGES FROM VERSION 219.5 New StatObject ModuleThe Kit contains a module, StatObject, which implements the semantic ob-jects of the static semantics of the Core. Origianally, this was a very cleanand very ine�cient implementation of the De�ninion. In Version 2 of theKit, StatObject was replaced by an imperative and e�cient, but compli-cated module. In Version 3, StatObject uses a clean, e�cient and imperativeimplementation of StatObject. This is particularly useful for those that wantto reuse the front-end of the Kit for other purposes.19.6 More E�cient Representation of ListsList constructors are now represented unboxed, that is, the least signi�cantbits of a list value is used to distinguish between nil and a pointer to a pair(::) holding the head and the tail of the list. Thus, a list takes up only oneregion (for the auxiliary pairs) plus any regions for the elements of the list.Consult Chapter 5 for details.
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INDEX 215Global Regionsr1 Holds values of type top, i.e., records, exceptions and closures;r2 This region does not actually exist; it is used with unboxed values, suchas integers, booleans, and the 0-tuple.


