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Values and their Representation

integer 32 bits, untagged. Unboxed (i.e., not region allocated). One bit is used
for tagging when GC is enabled.

real 64 bits, untagged. Boxed (i.e., allocated in region)
string Unbounded size. Allocated in region.
bool one 32-bit word. Unboxed.
α list nil and :: cells unboxed (i.e., not region allocated). Auxiliary pairs in

one region; elements in zero or more regions. Size of auxiliary pairs: two
32-bit words (three when GC is enabled).

exn Exception values are boxed and are always stored in a global region.
fn pat
=> exp

An anonymous function is represented by a boxed, untagged closure.
Its size is one 32-bit word plus one word for each free variable of the
function. Free region variables also count as variables. One extra word
is used when GC is enabled.

fun f . . . Mutually recursive region-polymorphic functions share the same closure,
which is region-allocated, untagged, and whose size (in words) is the
number of variables that occur free in the recursive declaration. One
extra word is used when GC is enabled.

Regions and their Representation

Finite
(ρ:n)

Region whose size can be determined at compile time. During com-
pilation, a finite region size is given as a non-negative integer. After
multiplicity inference, this integer indicates the number of times a value
(of the appropriate type) is written into the region. Later, after physical
size inference, the integer indicates the physical region size in words. At
runtime, a finite region is allocated on the runtime stack.

Infinite
(ρ:INF)

All other regions. At runtime, an infinite region consists of a stack al-
located region descriptor, which contains pointers to the beginning and
the end of a linked list of fixed size region pages.

Storage Modes (only significant for infinite regions)

atbot Reset region, then store value.
sat Determine actual storage mode (attop/atbot) at runtime.
attop Store at top of region, without destroying any values already in the

region.
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Preface

The MLKit with Regions is a compiler for full Standard ML, including Mod-
ules and the SML Basis Library. It is intended for the development of stand-
alone applications that must be reliable, fast, and space efficient.

There has always been a tension between high-level features in program-
ming languages and the programmer’s legitimate need to understand pro-
grams at the operational level. Very likely, if a resource conscious program-
mer is forced to make a choice between the two, he will choose the latter.

The MLKit with Regions is the result of a research and development ef-
fort, which was initiated at the University of Copenhagen in 1992. The goal
of the project has been to develop implementation technology that combines
the advantages of using a high-level programming language, in this case Stan-
dard ML, with a model of computation that allows programmers to reason
about how much space and time their programs use.

In most call-by-value languages, it is not terribly hard to give a model of
time usage that is good enough for elementary reasoning.

For space, however, the situation is much less satisfactory. Part of the
reason is that many programs must recycle memory while running. For all
such programs, the mechanisms that reclaim memory inevitably become part
of the reasoning. This is true irrespective of whether memory recycling is
done by a stack mechanism or by pointer tracing garbage collection.

In the stack discipline, every point of allocation is matched by a point of
deallocation and these points are obvious from the program. By contrast,
garbage collection techniques usually separate allocation, which is done by
the programmer, from deallocation, which is done by a garbage collector. The
advantage of using reference tracing garbage collection techniques is that they
apply to a wide range of high-level concepts now found in programming lan-
guages, for example recursive data types, higher-order functions, exceptions,
references, and objects. The disadvantage is that it is becoming increasingly

9
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difficult for the programmer to reason about lifetimes. Lifetimes may depend
on subtle details in the compiler and in the garbage collector. Thus, it is hard
to model memory in a way that is useful to programmers. Also, compilers
offer little assistance for reasoning about lifetimes.

In this report, we equip Standard ML with a different memory manage-
ment discipline, namely a region-based memory model. Like the stack disci-
pline, the region discipline is, in essence, simple and platform-independent.
Unlike the traditional stack discipline, however, the region discipline also ap-
plies to recursive data types, references, and higher-order functions, for which
one has hitherto mostly used reference tracing garbage collection techniques.

The reader we have in mind is a person with a Computer Science back-
ground who is interested in developing reliable and efficient applications writ-
ten in Standard ML. Also, the report may be of interest to researchers of
programming languages, since the MLKit with Regions is a fairly bold exer-
cise in program analysis. We should emphasize, however, that this report is
very much intended as a user’s guide, not a scientific publication.

This report consists of three parts:

Part I, Overview: This part gives an overview of the ideas that underlie
programming with regions in the MLKit.

Part II, Understanding Regions: The second part of the report system-
atically presents the language constructs of the Standard ML Language,
showing for each construct how it can be used when programming with
regions.

Part III, System Reference: In this part, we explain how to interact with
the system, how to use the region profiler and how to call C functions
from the MLKit.

The present report describes the MLKit Version 4.3.0. This version of
the MLKit extends the MLKit Version 4 with the following features:

1. Support for compiling ML Basis Files. ML Basis Files allows for ex-
pressing source dependencies, exactly (as a directed acyclic graph). ML
Basis Files thus provides a mechanism for programming “in the very
large”.

2. File-based separate compilation, based on ML Basis Files.
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3. An updated Standard ML Basis Library conforming to the specification
published in [GR04].

4. Untagged representation of heap-allocated pairs, triples, and Standard
ML references, even when garbage collection is enabled.

MLKit Version 4 extends MLKit Version 3 with the following features:

1. Support for pointer tracing garbage collection. Pointer tracing garbage
collection works well together with the region memory model. While
most de-allocations can be efficiently performed by region de-allocation,
there are some uses of memory for which life time prediction is difficult.
In these cases pointer tracing garbage collection does a good job in
collaboration with region memory management [Hal99, HET02].

2. An x86 native backend. The backend support has switched from HP
PA-RISC to Linux on x86 architectures.

3. A bytecode backend. To improve portability of programs, the MLKit
now has a bytecode backend, which generates code that can be exe-
cuted on a stack machine with region primitives. The stack machine
closely resembles the stack machine used in the O’Caml and Moscow
ML compilers.

The MLKit Version 3 extends the MLKit Version 2 with support for the
Standard ML Modules language. The MLKit Version 2 is a further develop-
ment of the MLKit Version 1, which was developed at Edinburgh University
and University of Copenhagen [BRTT93]. The MLKit (after Version 1) is
also called the MLKit with Regions. We hope you will enjoy using the MLKit
with Regions as much as we have enjoyed developing it. If your experience
with the MLKit gives rise to comments and suggestions, specifically with
relation to the goals and visions expressed here, please feel free to write.
Further information is available at the MLKit web site:

http://www.itu.dk/research/mlkit/

September, 2001

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,
Tommy Højfeld Olesen, and Peter Sestoft

Revised 2002, 2004, 2005 by Martin Elsman



12 CONTENTS

Contributions

Many people have contributed to the development of the MLKit, including
Peter Bertelsen, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy
Højfeld Olesen, Nick Rothwell, Mads Tofte, David N. Turner, Peter Sestoft,
and Carsten Varming.

People who have contributed with bug reports and patches includes, but
are not limited to (in alphabetical order) Johnny Andersen, Koshy A Joseph,
Ken Friis Larsen, Henning Niss, Daniel Wang, and Stephen Weeks.

License

The MLKit compiler and tools are released under the GNU General Public
License:

This program is free software; you can redistribute
it and/or modify it under the terms of the GNU Gen-
eral Public License as published by the Free Soft-
ware Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will
be useful, but WITHOUT ANY WARRANTY; without
even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General
Public License along with this program; if not, write
to the Free Software Foundation, Inc., 675 Mass Ave,
Cambridge, MA 02139, USA.

Parts of the MLKit (the runtime system and the Basis Library) is dis-
tributed under the MIT licence:

The MIT License

Permission is hereby granted, free of charge, to any
person obtaining a copy of this software and associ-
ated documentation files (the ”Software”), to deal in



CONTENTS 13

the Software without restriction, including without
limitation the rights to use, copy, modify, merge, pub-
lish, distribute, sublicense, and/or sell copies of the
Software, and to permit persons to whom the Soft-
ware is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice
shall be included in all copies or substantial portions
of the Software.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTIC-
ULAR PURPOSE AND NONINFRINGEMENT. IN NO
EVENT SHALL THE AUTHORS OR COPYRIGHT HOLD-
ERS BE LIABLE FOR ANY CLAIM, DAMAGES OR
OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE
OR THE USE OR OTHER DEALINGS IN THE SOFT-
WARE.

For details, see the file copyright in the source distribution.
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Chapter 1

Region-Based Memory
Management

Region-Based Memory Management is a technique for managing memory for
programs that use dynamic data structures, such as lists, trees, pointers, and
function closures.

1.1 Dynamic Memory Management

Many programming languages rely on a memory model consisting of a stack
and a heap. Typically, the stack holds temporary values, activation records,
arrays, and in general, values whose lifetime is closely connected to procedure
activations and whose size can be determined at the latest when creation of
the value begins. The heap is what holds all the other values. In particular,
the heap holds values whose size can grow dynamically, such as lists and
trees. The heap also holds values whose lifetime does not follow procedure
activations closely (for example lists and, in functional languages, function
closures and suspensions).

The beauty of the stack discipline (apart from the fact that it is often
very efficient in practice) is that it couples allocation points and de-allocation
points in a manner that is intelligible to the programmer. C programmers
appreciate that whatever memory is allocated for local variables in a proce-
dure ceases to exist (and take up memory) when the procedure returns. C
programmers also know that counting from one to some large number, N , is
not best done by making N recursive C procedure calls, because that would

17
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use stack space proportional to N .
By contrast, programmers have much less help when it comes to managing

the heap. Two approaches prevail. The first approach is that the programmer
manages memory herself, using explicit allocation and de-allocation instruc-
tions (e.g., malloc and free in C). For non-trivial programs this can be a
very significant burden, because it is, in general, very hard to make sure that
none of the values that reside in the memory that one wishes to de-allocate
are not needed for the rest of the computation. This puts the programmer
in a difficult position. If one is too eager to reclaim memory in the heap,
the program might crash under some peculiar circumstances, which might be
hard to find during debugging. If one is too conservative reclaiming mem-
ory, the program might leak space, that is, it might use more memory than
expected, perhaps eventually, exhaust the memory of the machine.

The other prevailing approach is to use automatic garbage collection in
the heap. Some implementors of some languages even dispense with the
stack entirely, relying only on a heap with garbage collection. Garbage col-
lection techniques separate allocation, which is done by the programmer,
from de-allocation, which is done by the garbage collector. At first, this
might seem like the perfect solution: no longer does the programmer have
to worry about whether memory that is being reclaimed really is dead, for
the garbage collector only reclaims memory that cannot be reached by the
rest of the computation. However, reality is less perfect. Garbage collectors
are typically based on the idea that if data is reachable via pointers (starting
from the stack and other root data) then those data must be kept. Conse-
quently, programs have to be written with care to avoid hanging on to too
many pointers. Space conscious programmers (and language implementors)
can work their way around these problems, for example by assigning nil to
pointers that are no longer used. However, such tricks often rely on assump-
tions about the code that cannot be checked by the compiler and that are
likely to be invalidated as the program evolves.

1.2 Checked De-Allocation of Memory

Regions offer an alternative to the two approaches to memory management
discussed in the previous section. The runtime model is very simple, at least
in principle. The store consists of a stack of regions, see Figure 1.1. Regions
hold values, for example tuples, records, function closures, references, and
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r0 r1 r2 r3

. . .

Figure 1.1: The store is a stack of regions; every region is depicted by a box
in the picture.

values of recursive types (such as lists and trees). All values, except those
that fit within one machine word (for example integers), are stored in regions.

The size of a region is not necessarily known when the region is allocated.
Thus a region can grow gradually (and many regions can grow at the same
time) so one might think of the region stack as a stack of heaps. However,
the region stack really is a stack in the sense that (a) if region r1 is allocated
before region r2 then r2 is de-allocated before r1 and (b) when a region is
de-allocated, all the memory occupied by that region is reclaimed in one
constant time operation.

Values that reside in one region are often, but not always, of the same
type. A region can contain pointers to values that reside in the same region
or in other regions. Both forward pointers (i.e., pointers from a region into
a region closer to the stack top) and backwards pointers (i.e., pointers to an
older region) occur.

As mentioned in the preface, the present version of the MLKit supports
reference-tracing garbage collection in combination with region memory man-
agement [Hal99]. While most de-allocations can be efficiently performed by
region de-allocation, there are some uses of memory for which it is difficult to
predict when memory can be de-allocated. In these cases reference-tracing
garbage collection does a good job in combination with region de-allocation.

In many cases however, one can do just fine without reference-tracing
garbage collection. Without reference-tracing garbage collection the region
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stack is the only form of memory management provided. Is the region model
really general enough to fit a wide variety of computations?

First notice that the pure stack discipline (a stack, but no heap) is a
special case of the region stack. Here the size of a region is known at the
latest when the region is allocated. Another special case is when one has just
one region in the region stack and that region grows dynamically. This case
can be thought of as a heap with no garbage collection, which again would
not be sufficient.

But when one has many regions, one obtains the possibility of distinguish-
ing between values according to what region they reside in. The MLKit has
operations for allocating, de-allocating, and extending regions. But it also
has an explicit operation for resetting an existing region, that is, reclaiming
all the memory occupied by the region without eliminating the region from
the region stack. This primitive, simple as it is, enables one to cope with
most of those situations where lifetimes simply are not nested. Figure 1.2
shows a possible progression of the region stack.

In the MLKit the vast majority of region management is done automat-
ically by the compiler and the runtime system. Indeed, with one exception,
source programs are written in Standard ML, with no added syntax or special
directives. The exception has to do with resetting of regions. The MLKit
provides two built-in functions (resetRegions and forceResetting), which
instruct the program to reset regions. Here resetRegions is a safe form
of resetting where the compiler only inserts region resetting instructions if
it can prove that they are safe; it prints thorough explanations of why it
thinks resetting might be unsafe otherwise. The function forceResetting

is for potentially unsafe resetting of regions, which is useful in cases where
the programmer jolly well knows that resetting is safe even if the compiler
cannot prove it. The function forceResetting is the only way we allow
users to make decisions that can make the program crash; many programs
do not need forceResetting and hence cannot crash (unless we have bugs
in our system).

All other region directives, including directives for allocation and de-
allocation of regions, are inferred automatically by the compiler. This hap-
pens through a series of fairly complex program analyses and transformations
(in the excess of twenty-five passes involving three typed intermediate lan-
guages). These analyses are formally defined and the central one, called
region inference, has been proved correct for a skeletal language. Although
the formal rules that govern region inference and the other program analyses
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r0 r1 r2 r3 r4

(a)

r0 r1 r2 r3 r4 r5

(b)

r0 r1 r2 r3

(c)

Figure 1.2: Further development of the region stack: (a) after allocation of
r4; (b) after growth of r1 and r4, resetting of r3 and allocation of r5; (c)
after popping of r4 and r5 but extension of r1 and r3.
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are complex, we have on purpose restricted attention to program analyses
that we feel capture natural programming intuitions. Moreover, the MLKit
implementation is such that, with one exception1, every region directive takes
constant time and constant space to execute. The fact that we avoid inter-
rupting program execution for unbounded lengths of time gives a nice smooth
experience when programs are run and should make the scheme attractive
for real-time programming.

To help programmers get used to the idea of programming with regions,
the MLKit can print region-annotated programs, that is, source programs it
has annotated with region directives. Also, it provides a region profiler for
examining run-time behavior. The region profiler gives a graphical represen-
tation of region sizes as a function of time. This tool makes it possible to
see what regions use the most space and even to relate memory consumption
back to individual allocation points in the (annotated) source program.

To sum up, the key advantages obtained by using regions compared to
more traditional memory management schemes are

1. safety of de-allocation is checked by the compiler

2. the compiler can in many cases spot potential space leaks

3. region management is under the control of the user, provided one un-
derstands the principles of region inference

4. each of the region operations that are inserted use constant time and
constant space at runtime

5. it is possible to relate runtime space consumption to allocation points
in the source program; we have found region profiling to be a powerful
tool for eliminating space leaks

Regions are not a magic wand to solve all memory management problems.
Rather, the region scheme encourages a particular discipline of programming.
The purpose of this report is to lay out this discipline of programming.

1The exception has to do with exceptions. When an exception is raised, a search down
the stack for a handler takes place; this search is not constant time and it involves popping
of regions on the way. However, the number of region operations is bounded by the number
of handlers that appear on the stack.
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1.3 Example: the Game of Life

To illustrate the general flavor of region-based memory management, let us
consider the problem of implementing the game of Life. The game takes place
on a board that resembles a chess board, except that the size of the board
can grow as the game evolves. Thus every position has eight neighboring
positions (perhaps after extension of the board). At any point in time, every
position is either alive or dead. A snapshot of the game consisting of the board
together with an indication of which positions are alive is called a generation.
The rules of the game specify how to progress from one generation to the
next. Consider generation n from which we want to create generation n + 1
(n ≥ 0). Let (i, j) be a position on the board, relative to some fixed point
(0, 0) in the plane. Assume (i, j) is alive in generation n. Then (i, j) stays
alive in generation n + 1 if and only if it has two or three live neighbors
in generation n. Assume (i, j) is dead at generation n. Then it is born
in generation n + 1 if and only if it has precisely three live neighbors at
generation n. We assume that only finitely many positions are alive initially.
An example of two generations of Life is shown below:

0

0 0

0 00 0

00 0 00 0000 0

00 0 00 0000 0

0 0 0 0 00

0 0000 00

0000

0

0000

00 0 0 0 0

00 000 0 0 0 0

00 00 0 0 0

0000 0 0 00

0 0 00

0 0

00
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To represent the game board, we need a data structure that can grow
dynamically (so a two-dimensional array of fixed size is not sufficient). A
simple solution is to represent a generation by a list of integer pairs, namely
the positions that are alive. Since we want to give all pairs belonging to one
generation the same lifetime (in the computer memory, that is!) it is natural
to store all the integer pairs belonging to one generation in the same region.
Indeed region inference forces this decision upon us, as it happens, since it
requires that all elements belonging to the same list lie in the same region.
(Different lists can lie in different regions, however.)

Thus, after having built the initial generation, we expect the region stack
to look like this

ln: list of integer
pairs representing
generation n.

r0

The computation of the next generation involves a considerable amount of
list computation. Chris Reade has expressed the key part of the compu-
tation as shown in Figure 1.3. Despite the extensive use of higher-order
functions here, there is a great deal of stack structure in this computation.
For example, the survivors list can be allocated in a local region which
can be de-allocated after the list has been appended (@) to the newborn

list. The computation of survivors, in turn, involves the creation of a clo-
sure for (twoorthree o liveneighbours) and additional creation of clo-
sures as part of the computation of the application of filter. Each time
liveneighbours is called (by filter) additional temporary values are cre-
ated. All of this data should live shorter than survivors itself. The details
of these lifetimes are determined automatically by the region inference algo-
rithm, which ensures that when the above expression terminates it will simply
have created a list containing the live positions of the new generation.

But now we have a design choice. Should we put the new generation in
the same region as the previous region or should we arrange that it is put
in a separate region? Piling all generations on top of each other in the same
region would clearly be a waste of space: only the most recent generation
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let val living = alive gen

fun isalive x = member eq_int_pair_curry living x

fun liveneighbours x = length(filter isalive (neighbours x))

fun twoorthree n = n=2 orelse n=3

val survivors = filter (twoorthree o liveneighbours) living

val newnbrlist =

collect (fn z => filter (fn x => not(isalive x))

(neighbours z)

) living

val newborn = occurs3 newnbrlist

in

mkgen (survivors @ newborn)

end

Figure 1.3: An excerpt of (a modified version of) Chris Reade’s Game of Life
program.

is ever needed. Similarly, giving each generation a separate region on the
region stack is no good either, because it would make the stack grow infinitely
(although this could be alleviated somewhat by resetting all regions except
the topmost one). The solution is simple, however: use two regions, one
for the current generation and one for the new generation. When the new
generation has been created, reset the region of the old region and copy the
contents of the new region into the old region. This effect is achieved by
organizing the main loop of the program as follows:

local

(*1*) fun nthgen’(p as(0,g)) = p

(*2*) | nthgen’(p as(i,g)) =

(*3*) nthgen’ (i-1, let val g’ = nextgen g

(*4*) in show g;

(*5*) resetRegions g;

(*6*) copy g’

(*7*) end)

in

(*8*) fun iter n = #2(nthgen’(n,gun()))

end
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Here nthgen’ is the main loop of the program. It takes a pair as argument;
the first component of the pair indicates the number of iterations desired,
while the second, g, is the current generation. The use of the as pattern in
line 1 forces the argument and the result of nthgen’ to be in the same regions.
Such a function is called a region endomorphism. In line 3, we compute a
fresh generation, which lies in fresh regions, as it happens. Having printed
the generation (line 4) we then reset the regions containing g. The compiler
checks that this is safe. Then, in line 6 we copy g’ and the target of this copy
must be the regions of g, because nthgen’ is a region endomorphism (see
Figure 1.4). All in all, we have achieved that at most two generations are
live at the same time (a fact that can be checked by inspecting the region-
annotated code, if one feels passionately about it).2

The above device, which we refer to as double copying, can be seen as a
much expanded version of what is often called “tail recursion optimisation”.
In the case of regions, not just the stack space, but also region space, is
re-used. Indeed, double copying is similar to invoking a copying garbage
collector on specific regions that are known not to have live pointers into
them. But by doing the copying ourselves, we have full control over when it
happens, we know that the cost of copying will be proportional to the size of
the generation under consideration and that all other memory management
is done automatically by the region mechanism. Because each of the region
management directives that the compiler inserts in the code are constant
time and space operations, we have now avoided unpredictable interruptions
due to memory management. This avoidance of unpredictable interruptions
might not be terribly important for the purpose of the game of Life, but if
we were writing control software for the ABS brakes of a car, having control
over all costs, including memory management, would be crucial!

Region profiles for two hundred generations of life starting from the con-
figuration shown earlier appear in Figures 1.5 and 1.6. The highest amount
of memory used for regions during the computation is 23,884 bytes. Fig-
ure 1.6, which has data collected from 200 snapshots of the computation,
clearly shows that most of the 23,884 bytes are reclaimed between every two
generations of the game. It turns out that the game essentially stabilizes with
a small number of live positions on the board after roughly 150 generations.

2The source file for the life program is kitdemo/life.sml. Running programs is de-
scribed in Section 2.8. When run with n=10000 under Linux on an x86 box, the memory
consumption (resident memory, measured using top) quickly reaches 500Kb??? (was:
180Kb under HP-PA-RISC) and stays there for the remaining generations.
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ln: list of integer
pairs representing
generation n.

r0

(a)

ln

r0

ln+1: list of inte-
ger pairs representing
generation n + 1.

r1

(b)

copy of ln+1

r0

(c)

Figure 1.4: Using double-copying in the game of Life: (a) generation number
n resides in region r0; (b) generation (n + 1) has been built in r1; (c) region
r0 has been reset, the new generation copied into r0 and r1 has been de-
allocated.
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Figure 1.5: A region profile of two hundred generations of the “Game of
Life”, showing region sizes as a function of time (80 snapshots).
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Figure 1.6: Region profile of two hundred generations of the “Game of Life”,
showing region sizes as a function of time (200 snapshots).

This stabilisation is clearly reflected in the region profile.
Figure 1.5 is from the same computation, but it only includes data from

80 snapshots. This figure makes it easier to see that the largest region is
r212422. To find out what this region contain, however, one needs to know
about the methods described in Part II.

1.4 Try it!

This section tells you how to repeat the profiling experiment shown above.
Compile the SML program kitdemo/life.sml as follows. First, make a

personal copy of the kit/kitdemo directory, place yourself in it, and execute
the command:3

3We assume that the MLKit compiler command mlkit is somehow available through
your PATH environment variable.
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$ mlkit -no_gc -prof life.sml

The option -prof enables region profiling. After the MLKit has compiled the
program life.sml, the executable life program is available as kitdemo/run.

Next, you may execute run, as follows:

$ ./run -microsec 1000

This command will make a profiling snapshot every 1000 microseconds (i.e.,
every one millisecond). If you are satisfied with less fine-grained information,
choose a larger number; it will speed up execution. If you just type

./run

there will be one snapshot per second.
Finally, you create a PostScript file and view it as follows:4

$ rp2ps -region -name life -sampleMax 80

$ gv -seascape region.ps

The option -sampleMax N instructs rp2ps to show at most N snapshots
(evenly distributed over the duration of the computation).

1.5 Including a Profile in a LATEX Document

Figure 1.5 was produced by first executing the command

$ rp2ps -region -name life -sampleMax 80 -eps 137 mm

The option -eps 137 mm has the effect that region.ps becomes an encapsu-
lated PostScript file. The resulting region.ps was renamed life80.ps and
included in this document as follows:

\begin{figure}

\begin{center}

\includegraphics{life80.ps}

\end{center}

\caption{A region profile of two hundred

generations of the ‘‘Game of Life’’, showing region

sizes as a function of time (80 snapshots).}

\label{lifeprof80.fig}

\end{figure}

4The program rp2ps can be found in the kit/bin directory.



Chapter 2

Making Regions Concrete

In this chapter, we give a brief overview of how the abstract memory model
presented in the last chapter is mapped down to conventional memory. In do-
ing so, we shall introduce notation and concepts that will be used extensively
in what follows.

2.1 Finite and Infinite Regions

Not every region has the property that its size is known at compile-time,
or even when the region is first allocated at runtime. As we have seen, one
typical use of a region is to hold a list, and in general there is no way of
knowing how long a given list is going to be.

For efficiency reasons, however, the MLKit distinguishes between two
kinds of regions: those regions whose size it can determine at compile-time
and those it cannot. These regions are referred to as finite and infinite
regions, respectively.1 Finite regions are always allocated on the runtime
stack. An infinite region is represented as a linked list of fixed-size pages.
The runtime system maintains a free list of such pages. An infinite region
is represented by a region descriptor, which is a record kept on the runtime
stack. The region descriptor contains two pointers: one to the first and one to
the last region page in the linked list that represents the region. Allocating an
infinite region involves getting a page from the free list and pushing a region
descriptor onto the runtime stack. Popping a region is done by appending

1“finite” and “unbounded” would have been better terms, but it is too late to change
that.
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the region pages of the region and the free list (this is done in constant time)
and then popping the region descriptor off the runtime stack.

At runtime, every region is represented by a 32-bit entity, called a region
name. If the region is finite, the region name is a pointer into the stack,
namely to the beginning of the region. If the region is infinite, the region
name is a pointer to the region descriptor of the region.

The multiplicity of a region is a statically determined upper bound on
the number of times a value is put into the region. The MLKit operates
with three multiplicities: 0, 1 and ∞, ordered by 0 < 1 < ∞. Multiplicities
annotate binding occurrences of region variables. An expression of the form

letregion ρ : m in e end

where m is a multiplicity, gives rise to an allocation of a region, which is
finite if m < ∞, and infinite otherwise.

2.2 Runtime Types of Regions

Every region has a runtime type. The following runtime types exist: real,
string, top, word, and bot. Not surprisingly, regions of runtime type real

and string contain values of ML type real and string, respectively. Re-
gions with runtime type top can contain all other forms of allocated values,
that is, constructed values, tuples, records, and function closures. Regions
of runtime type word are dropped after region inference; they are associated
with unboxed values and are unnecessary because unboxed values are not
allocated in regions. Regions of runtime type bot are always associated with
ML type variables.

It is often, but not always, the case that all values that reside in the same
region have the same type (considered as representations of ML values).

2.3 Allocation and De-Allocation of Regions

The analysis that decides when regions should be allocated and de-allocated
is called region inference. Region inference inserts several forms of memory
management directives as directives into the program. The target language
of region inference is called RegionExp.
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In RegionExp, region allocation and de-allocation are explicit, they are al-
ways paired, and they follow the syntactical structure of the source program.
If e is an expression in RegionExp, then so is

letregion ρ in e end

Here ρ is a region variable. At runtime, first a region is allocated and bound
to ρ. Then e is evaluated, presumably using the region bound to ρ for storing
values. Upon reaching end, the program pops the region.

Region inference also decides, for each value-producing expression, into
which region (identified by a region variable) the value will be put.

We emphasize that region variables and letregion expressions are not
present in source programs. The source language is unadulterated Standard
ML, so programs that run on the MLKit should be easy to port to any other
Standard ML implementation.

2.4 Two Backends

The MLKit provides two different backends, one that generates native code
for the x86 architecture (running Linux), the native backend and one that
generates bytecode to be executed by a region based abstract machine, the
bytecode backend.

Each of the two backends details the ideas described in the previous sec-
tions. While the native backend targets a register machine with a linear
address space, the bytecode backend targets a stack machine with a linear
address space. In both cases, the linear address space is partitioned into a
stack and a heap, which holds region pages, all of the same size.

One important property of the two backends is that they are perfectly
interchangeable, except that programs compiled with the native backend runs
faster than program compiled with the bytecode backend. In particular, when
reasoning about memory you do not need to think about which backend your
programs use.

For the x86 native backend, programs compile into a sequence of instruc-
tions, for example for moving word-size data between two registers or between
a register and a memory location. More complex operations, such as function
application, are expressed by sequences of more detailed instructions. The
native backend implements Iterated Register Allocation [GA96] for assigning
machine registers to temporary variables, using the runtime stack for spilling.
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Although register allocation as well as other issues, such as the interaction
between hardware cache strategies and code selection, are important for gen-
erating efficient code on modern architectures, we do not want to go to that
level of detail here. Our primary concern is with establishing a model that
the user can safely use as a worst-case model of what happens at runtime.

2.5 Boxed and Unboxed Values

As is common with implementations of programming languages, we distin-
guish between boxed and unboxed representation of values. An unboxed value
is one that is stored in a register or a machine word. A boxed value is one
that is represented by a word-size pointer to the value itself, which is stored
in one or more regions.

The MLKit uses unboxed representation for integers, booleans, words,
the unit value, and characters. The MLKit uses boxed representation for
pairs, records (with at least one element), reals, exception values, function
closures, and constructed values (i.e., data types, except lists and booleans).

A boxed value may reside in a finite or an infinite region. Unboxed values
are not stored in regions, except when they are part of a boxed value. For
example, the integer 3 by itself is stored as the (binary representation) of
the value 3 in a register or in a machine word. However, the pair (3,4)

is represented as a pointer to two consecutive words in a region, the first
of which contains the binary representation of 3 and the second of which
contains the binary representation of 4.

2.6 Intermediate Languages

The MLKit compiles Standard ML programs via a sequence of typed in-
termediate languages into either bytecode instructions, using the bytecode
backend, or x86 machine code, using the native backend.

The intermediate languages that we shall refer to in the following are (in
the order in which they are used in the compilation process):

Lambda: A lambda-calculus like intermediate language. The main differ-
ence between the Standard ML Core Language and Lambda is that
Lambda only has trivial patterns and allows functions to take multiple
arguments.
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RegionExp: Same as Lambda, but with explicit region annotations (such as
the letregion bindings mentioned in Section 2.3). Region variables
have their runtime type (Section 2.2) as an attribute, although, for
brevity, the pretty printer omits runtime types when printing expres-
sions, unless instructed otherwise.

MulExp: Same as RegionExp, but now every binding region variable occur-
rence is also annotated with a multiplicity (Section 2.1) in addition
to a runtime type. Again, the default is that the runtime type is not
printed. The terms of MulExp are polymorphic in the information that
annotate the nodes of the terms. That way, MulExp can be used as a
common intermediate language for a number of the internal analyses
of the compiler, which add more and more information on the syntax
tree. The analysis that computes multiplicities is called the multiplicity
analysis.

The MLKit contains a Lambda optimiser, which will happily rewrite
Lambda terms when it is clear that this rewrite results in faster programs
(as long as the rewrite cannot lead to increased space usage).

Region inference takes Lambda to be the source language. Region in-
ference happens after the Lambda optimiser has had a go at the Lambda
term. Therefore, it was not really true when we said that region inference
simply annotates source programs; we ignored the translation from SML to
Lambda and the Lambda optimiser. Thus, one has to get used to (mostly mi-
nor) differences between the source language and the intermediate languages
of the compiler if one wants to read programs in their intermediate forms.
Moreover, Modules Language constructs are eliminated during compilation
from the intermediate languages (see Chapter 15 for details of compiling with
Modules in the MLKit).

When we want to show the result of the analyses, we usually show a
MulExp expression.

2.7 The Runtime System

The runtime system is written in C. It is small (less than 30Kb of code when
compiled). It contains operations for allocating and de-allocating regions,
extending regions, obtaining more space from the operating system, recording
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region profiling information, and performing low-level operations for use by
the Standard ML Basis Library.

It is possible to call C functions from MLKit code if you use the native
backend. The MLKit takes care of the memory allocation, by allocating
regions for the result of the call before the call and de-allocating the regions
at some point after the call. The C functions can build ML data structures
such as lists through abstract operations provided by the MLKit runtime
system. See Chapter 19 for further details.

2.8 Compiling Programs with the MLKit

The MLKit is a batch compiler. Thus, executing a program consists of
first compiling the program and then running the generated target program.
Because the MLKit stores files in the directories where your source files are
located, you should make a personal copy of these directories. Before you try
any of the examples below, make a personal copy of the kitdemo directory,
which is part of the distribution, and run the MLKit on your own copy.

2.9 Compiling with the MLKit Compiler

The mechanism the MLKit provides for compiling programs is to give the
program source(s) as argument to the MLKit command mlkit. Together
with the sources, a series of options may be passed to the mlkit command.
Let us assume that the UNIX command mlkit is available on your system.2

Compiling an MLB-file (which may list several SML source files) is similar
to compiling a single SML source file. However, we shall postpone the in-
depth discussion of how to compile MLB-files to Chapter 15.

As an example, to compile the file projection.sml located in the kitdemo
directory, first goto this directory and execute the following command:

$ mlkit -no_gc projection.sml

Execution of this command will result in an executable file run, placed in
the kitdemo directory.

2The README file in the distribution tells you how to install the MLKit.
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To see some internal representations of the projection.sml program, as
produced during compilation, try pass the command-line options --print types

and --print drop regions expression to the mlkit command, as follows:

$ rm -rf MLB

$ mlkit -no_gc \

-print_types \

-print_drop_regions_expression \

projection.sml

Removing the MLB directory is necessary to avoid the MLKit to recognise that
it can reuse the previous result of compiling the projection.sml program.
A shorter version of the compilation command is

$ mlkit -no_gc -Ptypes -Pdre projection.sml

To get more information about which options you can pass to the MLKit at
the command-line, try executing mlkit -help. The output of executing this
command is shown in Appendix A (for a version of the MLKit that uses the
native X86 backend).

2.10 Running Compiled Programs

If no errors were found during compilation, the MLKit produces a target
program in the form of an executable file, called run. The MLKit places run
in the working directory.

Running the target program is done from the UNIX shell by typing

$ ./run

For small programs, the file will probably be around 50Kb large, even for the
trivial examples considered in this chapter. This is because it contains the
MLKit runtime system and compiled code for the parts of the SML Basis
Library that are needed for linking.

Running the programs presented in this chapter is not particularly ex-
citing, because none of them produce output! However, as an exercise, try
compile and execute the helloworld.sml program, which, like all other ex-
ample files in this document, is located in the kitdemo directory.
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Part II

The Language Constructs of
SML
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Chapter 3

Records and Tuples

In this chapter we describe construction of records and selection of record
components. We also use records to introduce region-annotated types and
effects, which are crucial for understanding when regions are allocated and
de-allocated.

3.1 Syntax

As part of the SML to Lambda translation, all SML records and SML tu-
ples are compiled into Lambda tuples. The components of Lambda tuples
are numbered from left to right, starting from 0. Selection is a primitive
operation, both in Lambda and in the other intermediate languages. This
primitive is printed using SML notation #i. Components are numbered from
0: the ith components of a tuple of type τ1 ∗ . . . ∗ τn is accessed by #i, for
0 ≤ i ≤ n − 1.

The tuple constructor in Lambda is written as in SML:

(e1, . . . ,en)

However, the corresponding expression in RegionExp and MulExp takes the
form

(e1, . . . ,en) at ρ

where ρ is a region variable indicating where the tuple should be put. In the
case n = 0, the at ρ is not printed, because the empty tuple is not allocated;
it is just a constant that fits in a register at runtime.

Records are evaluated left to right.
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3.2 Example: Basic Record Operations

Consider the source program

val xy = ((),())

val x = #1 xy;

Here is the resulting MulExp program:1

let val xy = ((), ()) at r1; val x = #0 xy

in {|xy: (_,r1), x: _|}

end

There are several things to notice from this example.

1. The MulExp program contains a free region variable, r1. Notice that
the construction of the pair xy has been annotated by “at r1”, indi-
cating where the pair should be put;

2. The expression {|xy: (_,r1), x: _|} is an example of a frame ex-
pression. A frame enumerates the components that are exported from
a compilation unit. A frame is similar to a record, except that its
components are variables, each annotated with a type scheme and
a region variable. (In records, the components can only have types,
not general type schemes.) In the example, the type of the frame is
{|xy: (unit*unit, r1), x: unit|}. The type shows that, after the
program unit has been evaluated, xy will reside in r1. In the the above
example, printing of types was suppressed. Thus types were abbrevi-
ated to .

3.3 Region-Annotated Types

ML type inference infers a type for every expression in the program. Re-
gion inference extends this idea by inferring for each expression a (region-
annotated) type with place. We use µ to range over types with places

µ ::= (τ, ρ)

1Program kitdemo/projection.sml. Running programs is described in Section 2.8.
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where τ is a region-annotated type, which again can contain other region-
annotated types with places. The region-annotated type with place of an
expression is the ML type of the expression decorated with extra region
information; every type constructor that represents boxed values (e.g., pairs
and strings) is paired with a region variable, indicating where the value is to
be put at runtime. Type constructors that represents unboxed values (e.g.,
integers and booleans) are paired with the region variable ρw, which denotes
a non-existing global region. As an abbreviation, we shall often omit the
region variable ρw from region-annotated types and from region-annotated
types with places; and so shall the MLKit.

Here are some examples of region-annotated types with places:

unit The type of 0-tuples. Integers, booleans, and 0-tuples are represented
unboxed at runtime (rather than being stored in regions), see Sec-
tion 2.5.

(string, ρ) The type of strings in region ρ.

(int ∗ (string, ρ1), ρ2) The type of pairs in ρ2 whose first component is an

integer and whose second component is a string in region ρ1.

One can get the MLKit to print the region-annotated types with places
that it infers for binding occurrences of variables. The above example then
becomes

let val xy:(unit*unit,r1) = ((), ()) at r1;

val x:unit = #0 xy

in {|x: unit, xy: (unit*unit,r1)|}

end

3.4 Effects and letregion

We now describe the general principle that the MLKit uses to decide when
it is safe to put letregion around an expression.

Here is an example of an SML program that first creates a pair and then
selects a component of the pair, after which the pair is garbage:2

2Program kitdemo/elimpair.sml.
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let val n =

letregion r7:1

in let val pair =

(case true

of true => (3 + 4, 4 + 5) at r7

| false => (4, 5) at r7

) (*case*)

in #0 pair

end

end

in {|n: _|}

end

Figure 3.1: Region inference decides that the pair is to be allocated in a
local, finite region; the region will be de-allocated as soon as the pair becomes
garbage.

val n = let

val pair = if true then (3+4, 4+5)

else (4, 5)

in

#1 pair

end;

The MLKit compiles the declaration into the MulExp program shown in
Figure 3.1. The compiler compiles the program as it is, without reducing
the conditional to its then branch. During evaluation, a region (denoted by
r7) is introduced before the pair is allocated; it remains on the region stack
till the projection of the pair has been computed, after which the region is
de-allocated.

The “:1” on the binding occurrences of r7 is a multiplicity indicating that
there is only one store operation into the region. (The multiplicity analysis
has discovered that there is at most one store from the then branch and at
most one store from the else branch and that at most one of the branches
will be chosen.) Thus, the pair will be allocated in a little region on the
runtime stack.

But how does the MLKit know that it is safe to de-allocate r7 where the



3.5. RUNTIME REPRESENTATION 45

letregion ends?
The answer lies in the fact that the MLKit infers for every expression

not just a region-annotated type with place, but also a so-called effect. An
effect is a finite set of atomic effects. Two forms of atomic effect are put(ρ)
and get(ρ), where ρ as usual ranges over region variables. The atomic effect
put(ρ) indicates that a value is being stored in region ρ and get(ρ) indicates
that a value is being read from region ρ. In our example, the region inference
algorithm considers the sub-expression e0 =

let val pair =

(case true

of true => (3 + 4, 4 + 5) at r7

| false => (4, 5) at r7

) (*case*)

in #0 pair

end

and finds that it has region-annotated type int and effect {put(r7),get(r7)}.
Whenever a region variable occurs free in the effect of an expression but

occurs free neither in the region-annotated type with place of the expression
nor in the type of any program variable that occurs free in the expression
then that region variable denotes a region that is used only locally within
the expression. That this is true is of course far from trivial, but it has
been proved for a skeletal version of RegionExp. Consequently, when this
condition is met, the region inference algorithm wraps a letregion binding
of the region variable around that expression.

In our example, there are no free variables in e0; moreover, r7 occurs in
the effect of e0 but not in the region-annotated type with place of e0. Thus,
the region inference algorithm inserts a letregion binding of r7 around e0.

3.5 Runtime Representation

A record with 0 components (the value of type unit) is represented unboxed.
A record with n components (n ≥ 1) is represented boxed, as a pointer to
precisely n words in a region.3 Notice that records are not tagged. Avoiding

3When garbage collection (GC) is enabled, n + 1 words are used to hold a record with
n components.
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tags is possible when the reference tracing garbage collector is disabled, be-
cause polymorphic equality is compiled into monomorphic equality functions
that do not have to examine the type of objects at runtime [Els98].

Lambda, RegionExp, and MulExp allow one to express unboxed tuples,
also in the case of function calls and returns. For functions that take a tuple
as parameter, the MLKit passes the argument tuple unboxed if it can see
that the boxed representation of the tuple is not needed by the function.
The MLKit does not at present unbox records returned from functions. See
Section 6.1 on page 57 for details about unboxed function arguments.

A tuple is not allocated until its components have been evaluated.



Chapter 4

Basic Values

In this chapter we describe how basic values such as integers, reals, strings,
and booleans are represented in the MLKit. The MLKit complies to the
Definition of Standard ML (Revised) and to large parts of the Standard ML
Basis Library;1 that is, as a programmer, you can refer to components of the
Standard ML Basis Library through the initial basis, in which all programs
are compiled. Throughout this chapter, we introduce some of the top-level
bindings that are provided by the initial basis.

4.1 Integers and Words

Values of type int are represented as unboxed 32-bit signed integers. When
reference tracing garbage collection is enabled in the MLKit, one bit is used
for tagging, thus in this case values of type int are really 31-bit signed inte-
gers; Chapter 16 describes how to compile programs with garbage collection
enabled. The structure Int provides many useful operations on integers of
type int.2 The MLKit also defines the structures Int31 and Int32 for op-
erations on 31-bit and 32-bit integers, respectively. When garbage collection
is enabled, values of type Int32.int are represented boxed, whereas values
of type Int31.int also in this case are represented unboxed. When garbage
collection is enabled, the structure Int is identical to the structure Int31.
When garbage collection is disabled, the structure Int is identical to the

1See the MLKit web site for a link to the Standard ML Basis Library.
2To see what operations are available in the Int structure, consult the file

basis/INTEGER.sml.
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structure Int32.
The following operations on integers are pre-defined at top level:

infix 4 = <> < > <= >=

infix 6 + -

infix 7 div mod *

val ~ : int -> int

val abs: int -> int

Operations on 8-bit, 31-bit, and 32-bit unsigned words are available in
the structures Word8, Word31, and Word32. Similarly as for integers, when
garbage collection is enabled, the structure Word is identical to the structure
Word31 and the values of type Word32.word are represented boxed. Contrary,
when garbage collection is disabled, the structure Word is identical to the
structure Word32 and values of type Word32.word are represented unboxed.

4.2 Reals

The initial basis provides the following top-level operations on reals:

infix 4 < > <= >=

infix 6 + -

infix 7 * /

val ~ : real -> real

val abs: real -> real

val real: int -> real

val trunc : real -> int

val floor : real -> int

val ceil : real -> int

val round : real -> int

Values of type real are implemented as 64-bit floating point numbers. They
are always boxed, that is, represented as a pointer to two consecutive 32-bit
words. These two words reside in a region and start on a double-aligned
address (necessary on some architectures). For this reason, regions with
runtime type real (see Section 2.2) are never unified with regions of any
other runtime type.
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A real constant c in the source program is translated into an expression
of the form c at ρ, where ρ is a region variable, indicating the region into
which the real will be stored.

The structures Real and Math provide other useful operations on reals.3

4.3 Characters and Strings

The initial basis provides the following top-level operations on characters and
strings:

infix 4 =

infix 6 ^

val ord: char -> int

val chr: int -> char

val str: char -> string

val size: string -> int

val explode: string -> char list

val implode: char list -> string

val ^ : string * string -> string

val concat: string list -> string

val substring: string * int * int -> string

Characters are represented as 32-bit words, although only 8 bits are used
to store the character. Characters are always unboxed, also when garbage
collection is enabled.

A string is represented by a 32-bit pointer into an infinite region. The
string is stored in consecutive bytes in the region, except if the size of the
string exceeds the length of one region page, in which case the string is split
into smaller strings that are linked together. The internal string represen-
tation is completely transparent to the programmer, who does not have to
worry about the actual size of region pages. Characters of a string takes up
only 8 bits of memory each.

Calls of ord, chr, str, and size take constant time and space. Calls of
explode, implode, concat, substring, and ^ take time and space propor-
tional to the sum of the size of their input and their output.

The string and character operations can raise exceptions, as detailed in
the Standard ML Basis Library documentation.

3Consult the files basis/REAL.sml and basis/MATH.sml.
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The structures Char, String, and StringCvt provide other useful oper-
ations on characters and strings.4

4.4 Booleans

The boolean values true and false are represented as 32-bit words, although
only one bit is used to denote the value. Booleans are unboxed. The initial
basis provides the following top-level operations on booleans:

infix 4 =

val not: bool -> bool

The structure Bool provides other useful operations on booleans.5

4Consult basis/CHAR.sml, basis/STRING.sml, and basis/STRING CVT.sml.
5Consult the file basis/BOOL.sml.



Chapter 5

Lists

Section 5.1 gives a summary of the list concept in Standard ML, introduces
the notion of the auxiliary pairs of a list and presents the syntax of con-
structors and de-constructors in the intermediate languages. Section 5.3
introduces region-annotated list types and show how they correspond to the
layout of lists in memory. Section 5.4 gives a small example.

5.1 Syntax

In Standard ML, all lists are constructed from the two constructors :: (read:
cons) and nil. As a shorthand, one can write [exp1, · · · ,expn] for

exp1:: · · · ::expn::nil

which in turn is short for

op ::(exp1, · · ·, op ::(expn,nil)· · ·)

where exp ranges over expressions. The type schemes of nil and cons are

nil 7→ ∀α.α list :: 7→ ∀α.α ∗ α list → α list

Notice that :: is always applied to a pair. The construction of the pair
and the application of :: should, in principle, not be confused: the pair and
the constructed value are in principle separate values inasmuch as they have
different type. For example, the declaration
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val p = (2, nil)

val mylist = (op ::) p

val n = #1 p

is legal in Standard ML. We refer to the pairs to which :: is applied as
auxiliary pairs (of the list data type).

Decomposition of list values in Standard ML is done by pattern matching.
A pattern can extract the pair to which :: is applied. Pattern matching on
pairs can then give access to the components of the pair.

val abc = ["a", "b", "c"]

val op :: p = abc (* binds p to the pair ("a", ["b","c"]) *)

val (x::y::_) = abc (* binds x to "a" and y to "b" *)

In the last declaration, the pattern (x::y:: ) is short for the pattern

(op ::(x, op ::(y, )))

which combines decomposition of constructed values with decomposition of
pairs.

The intermediate languages Lambda, RegionExp, and MulExp have SML-
like constructs for applying constructors, but they decompose constructed
values by applying a de-constructor primitive, not by pattern matching.

Lambda, RegionExp, or MulExp
nil create nil value
:: (e) create :: (cons) value

decon :: (e) cons decomposition

In Lambda, which has essentially the same type system as SML, decon ::,
the decomposition function for ::, has type ∀α.α list → α ∗ α list. In
addition, Lambda, RegionExp, and MulExp have a simple case construct:

(case e of :: => e1 | => e2)

where e must have list type.

5.2 Physical Representation

The empty list is represented by an odd, unboxed integer. A non-empty list
is represented as a pointer to a pair of two words in a region, the first of which
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Figure 5.1: Layout of the list ["a","b","c"] : ((string, ρ1), [ρ2])list in
memory. The auxiliary pairs of the list reside in ρ2. Each auxiliary pair
takes up two words; the constructors :: (cons) and nil are represented
unboxed.

contains the head of the list and the second of which contains the represen-
tation of the tail of the list. In other words, the physical representation does
not distinguish a :: cell from the auxiliary pair to which :: is applied. Since
nil is represented by an odd number and since word addresses are always
even, nil can be distinguished from the representation of a non-empty list.

As a consequence, there is no cost involved in applying :: to an auxiliary
pair or in applying the decomposition operator decon :: to a non-empty list.

5.3 Region-Annotated List Types

In Standard ML, all elements of a given list must have the same type. We
extend this constraint to region inference by saying that all element values
in the same list must reside in the same region(s) and that all auxiliary pairs
of the same list must reside in the same region.

Thus, region inference does not distinguish between a list and its tail.
Indeed, a typical use of an infinite region is to hold all the auxiliary pairs of
a list. For an example, Figure 5.1 shows how the list ["a","b","c"] is laid
out in memory.

In general, the region-annotated type of a list takes the form

(µ, [ρ])list

where µ is the region-annotated type with place of the members of the list
and where ρ is the region where the auxiliary pairs of the list are stored. For
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example, the region-annotated type

((string, ρ1), [ρ2])list

classifies lists that have their auxiliary pairs in a region ρ2 and strings in a
region ρ1.

Note that the list type constructor is not paired with a region variable.
The reason is that the physical representation of lists treats the constructors
as unboxed in the sense described in Section 5.2.

Very importantly, not all lists need to live in the same regions. Formally,
nil and :: have the following region-annotated type schemes:

nil 7→ ∀αρ1ρ2.((α, ρ1), [ρ2])list

:: 7→ ∀αρ1ρ2ε.((α, ρ1) ∗ ((α, ρ1), [ρ2])list, ρ2) ε.∅−−→((α, ρ1), [ρ2])list

Despite its verbosity, the type scheme for :: deserves careful study. It is
polymorphic not just in types (signified by the bound type variable α) but
also in regions (signified by the bound region variables ρ1 and ρ2). The ε is a
so-called effect variable. The ε.∅ appearing on the function arrow is called an
arrow effect. Occurring in a function type, an arrow effect describes the effect
of applying the function. In this case, the effect is empty, as only unboxed
values are manipulated by ::. The effect variable ε is used for expressing
dependencies between effects (examples follow in Chapter 13). Due to the
fact that the variables are universally quantified, every occurrence of a list
can, potentially, be in its own regions. But notice that the type of :: forces
the element, which is consed onto the list, to be in the same regions as the
already existing elements of the list. Similarly, the type forces the auxiliary
pairs to be in one region (ρ2).

5.4 Example: Basic List Operations

The MLKit compiles the program1

let val l = [1, 2, 3];

val (x::_) = l

in x end;

into the RegionExp program shown in Figure 5.2.

1Program kitdemo/onetwothree.sml.
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let val it =

letregion r10:INF

in let val l =

::

(1,

:: (2, :: (3, nil) at r10) at r10

) at r10

in (case l

of :: => #0 decon_:: l | _ => raise Bind

) (*case*)

end

end (*r10:INF*)

in {|it: _|}

end

Figure 5.2: Example showing construction and de-construction of a small
list. Layout of the list l is analogous to Figure 5.1. The infinite region r10

holds the auxiliary pairs of the list.
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Chapter 6

First-Order Functions

In this chapter, we shall treat functions that are declared with fun and that
are first-order (i.e., that neither take functions as arguments nor produce
functions as results). Higher-order functions are treated in Chapter 13. Re-
gion polymorphism works uniformly over all types; we use lists as an example
of the general scheme.

6.1 Region-Polymorphic Functions

It would be a serious limitation if all lists produced by a series of calls to a
function were stored in the same region, for then all those lists would have
to be kept alive till the last time one of them were used. The solution that
the MLKit offers to this problem is region-polymorphic functions, that is,
functions that are passed regions at runtime.

When one declares a function that, when called, produces a fresh list,
then the region inference algorithm will automatically insert extra formal
region parameters in the function declaration. At every place one refers to
the function, for example because one calls the function, the region inference
algorithm inserts actual region parameters that tell the function where to
put its result. This is all done automatically; the user does not have to
introduce region parameters or pass them as arguments. Even so, it is useful
to understand the general principle, so that one can make good use of region
polymorphism.

The syntax of a (single) function declaration in MulExp is:

fun f at ρ0 [ρ1, · · ·, ρk] (x1, · · · , xn) = e
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Here ρ0 denotes the region in which the closure for f is stored, ρ1, . . . , ρk are
the formal region parameters, x1, · · · , xn are value parameters, and e is the
body of the function. A call to f takes the form

f [ρ′
1, · · ·, ρ′

k] <e′1, · · · , e
′
n>

where [ρ′
1, · · ·, ρ′

k] are actual region parameters and e′1, · · · , e
′
n are expres-

sions denoting the arguments to the call. Notice that region parameters are
enclosed in brackets ([ ]); this should not cause confusion with ML lists,
because RegionExp and MulExp do not use brackets for lists. In the special
case k = 0, no region parameters are passed to the function, and we shall
often omit the brackets in this case.

Also notice that, unlike for Standard ML, functions are allowed to be
passed multiple value arguments; see below. In the case n = 1, we often
omit the surrounding brackets < · · · >.

In the special case k = 0, no region parameters are passed to the function,
and we shall often omit the brackets in this case.

Different calls of f can use different actual regions; this feature is essential
for obtaining good separation of lifetimes. For an example, consider the
following program:

fun fromto(a, b) = if a>b then []

else a :: fromto(a+1, b)

val l = #1(fromto(1,10), fromto(100,110));

The corresponding MulExp program is shown in Figure 6.1.
There are several things to notice about the region annotated program.

First, notice that the function fromto represents its argument (a,b) un-
boxed; the MLKit figures out that the function does not use the boxed rep-
resentation of the argument and transforms all calls to the function to pass
the argument unboxed (on the runtime stack and in registers if possible).

Second, notice that r7 is a formal region parameter of fromto and that r7
is passed along in the recursive call fromto[r7] <a + 1, b>. Here the no-
tation <a + 1, b> denotes the passing of the unboxed record to the function
fromto.

Finally, notice that the regions that hold the two lists generated by this
program are distinct. The list that escapes to top level is stored in the global
region r1, whereas the list that does not escape is stored in the local region
r14.
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let fun fromto at r1 [r7:INF] (a, b)=

(case a > b

of true => nil

| _ => :: (a, fromto[r7] <a + 1, b>) at r7

) (*case*) ;

val l =

let val v39457 = fromto[r1] <1, 10>;

val _ =

letregion r14:INF

in fromto[r14] <100, 110>

end (*r14:INF*)

in v39457

end

in {|l: _, fromto: (_,r1)|}

end

Figure 6.1: The region-annotated version of fromto shows that fromto is
region-polymorphic. (Program: kitdemo/fromto.sml, printed by passing
the option -print drop regions expression to the MLKit compiler.)

6.2 Region-Annotated Type Schemes

A (region-annotated) type scheme takes the form

σ ::= ∀α1 · · ·αnρ1 · · · ρkε1 · · · εm.τ

where α1, . . . , αn are type variables, ρ1, . . . , ρk are region variables, ε1, . . . , εm

are effect variables, and τ is a region-annotated type.
The types of nil and :: in Section 5.3 are examples of region-annotated

type schemes.
There is a close connection between, on the one hand, the formal and

actual region parameters found in RegionExp (and MulExp) programs, and,
on the other hand, the region-annotated type schemes that the region infer-
ence algorithm assigns to recursively declared functions. The formal region
parameters of a function stem from the bound region variables of the region-
annotated type scheme of that function. The actual region parameters which
annotate a call of the function are the region variables to which the bound
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region variables are instantiated at that particular application.
For example, the region-annotated type scheme of fromto from Figure 6.1

is
∀ρ7ε.[int, int]

ε.{put(ρ7)}−−−−−−−→(int, [ρ7])list

where we use the syntax [τ1, . . . , τn], n ≥ 1 to denote an unboxed tuple of
types τ1, . . . , τn. This syntax is not to be confused with the auxiliary region
variables of type constructors (e.g., the list [ρ7] in the region-annotated type
scheme of fromto.)

At the last call of fromto in Figure 6.1, the type scheme is instantiated
to the region-annotated type

[int, int] ε′.{put(ρ14)}−−−−−−−−→(int, [ρ14])list

The instantiation of bound variables of the type scheme that yields this
region-annotated type is

{ρ7 7→ ρ14, ε 7→ ε′}

In general, the actual region parameters that annotate a call of a region-
polymorphic function are obtained from the range of the substitution by
which the type scheme of the function is instantiated at that application.

Region-polymorphic functions also have to be allocated somewhere. There-
fore, the region information associated with a region-polymorphic function
is a (region-annotated) type scheme with place, that is, a pair (σ, ρ). Indeed,
every binding of a variable to a boxed value (whether the binding is done
by fun, let, or fn) associates a region-annotated type scheme with place to
the binding occurrence. (In the case of let, the type scheme will have no
quantified region and effect variables, however, and in the case of fn, the type
scheme will have no quantified variables at all.) In the following, when we
refer to “the region-annotated type (scheme) with place” of some variable,
we mean the region-annotated type (scheme) with place that is associated
with the binding occurrence of the variable. The region type scheme should
be clearly distinguished from instances of the type scheme, which decorate
non-binding occurrences of the variable.

The region-annotated type scheme with place of a variable bound to an
unboxed value is always on the form (σ, ρw), where σ is the region-annotated
type scheme associated with the variable and where ρw denotes a non-existent
global region (see Section 3.3). In the following, we shall often abbreviate the
region-annotated type scheme with place of a variable bound to an unboxed
value by its region-annotated type scheme.
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6.3 Endomorphisms and Exomorphisms

The fromto function from Section 6.2 has the property that it can put its
result in regions that are separate from the regions where its argument lies.
This is not surprising, if one looks at the declaration of the function; it creates
a brand new list that does not share with the argument (a,b), except for
the integers a and b, which may end up in the list. The freshness of the
generated list is evident from the region type scheme of the function; the
region variable in the result type does not appear in the argument type.

Not all region-polymorphic functions create brand new values. Very of-
ten, a region-polymorphic function simply adds values to regions that are
determined by the argument to the function. A good example is the list
append function from the initial basis:1

infixr 5 @

fun [] @ ys = ys

| (x::xs) @ ys = x :: (xs @ ys)

val l = [1] @ [2,3]

Append successively conses the elements of the first list onto the second list.
Thus, ys and xs @ ys must be in the same regions. However, the auxiliary
pairs of xs and ys need not be in the same regions, although the elements of
xs and ys clearly must be in the same regions, because they end up in the
same list. These properties of the append function @ are summarized in its
inferred region-annotated type scheme:

∀αρ7ρ8ρ9ε.[((α, ρ9), [ρ8])list, ((α, ρ9), [ρ7])list]
ε.{get(ρ8),put(ρ7)}−−−−−−−−−−−−→((α, ρ9), [ρ7])list

When one writes a function it is a good idea to consider whether one wants
the function to create values in fresh regions or whether one wants it to add
values to existing regions. Adding to existing regions can of course make
these regions too large and long-lived, because the entire region will be alive
for as long as one of the values in the region may be needed in the future.

The MulExp version of the append function is listed in Figure 6.2. At
the application of @, the region annotated type scheme for @ is instantiated
to the region annotated type

[((int, ρw), [ρ19])list, ((int, ρw), [ρ1])list]
ε′.{get(ρ19),put(ρ1)}−−−−−−−−−−−−−→((int, ρw), [ρ1])list

1File kitdemo/append.sml.
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let fun @ at r1 [r7:INF] (var255-0, var255-1)=

(case var255-0

of nil => var255-1

| _ =>

let val ys = var255-1;

val xs = #1 decon_:: var255-0;

val x = #0 decon_:: var255-0

in :: (x, @[r7] <xs, ys>) at r7

end

) (*case*) ;

val l =

letregion r19:1

in @[r1]

<:: (1, nil) at r19,

:: (2, :: (3, nil) at r1) at r1

>

end (*r19:1*)

in {|l: _, @: (_,r1)|}

end

Figure 6.2: The region-annotated version of append.

which, by omitting of word regions, is identical to

[(int, [ρ19])list, (int, [ρ1])list]
ε′.{get(ρ19),put(ρ1)}−−−−−−−−−−−−−→(int, [ρ1])list

To avoid passing regions that are never used, the MLKit introduces only
formal region variables for those bound region variables in the type scheme
for which there appears at least one put effect in the type of the function.
Reading a value is done simply by following a pointer to the value, irrespective
of what region the value resides in, whereas storing a value in a region uses
the name (see Section 2.1) of the region. This omitting of region parameters
explains why ρ8 does not become a formal region parameter of @ and why ρ19

is not passed to @ at the call site. This optimisation, which is called dropping
of regions, is the key reason why the MLKit takes the trouble to distinguish
between put and get effects.

Here are two more examples to highlight the difference between functions
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that can put values in fresh regions and functions that add values to existing
regions:

fun cp1 [] = []

| cp1 (x::xs) = x :: cp1 xs

fun cp2 (l as []) = l

| cp2 (x::xs) = x :: cp2 xs

Here cp1 can copy the auxiliary pairs of a list into a fresh region, whereas
cp2 always copies the auxiliary pairs of a list into the same region:

cp1 7→ ∀αρ1ρ2ρ
′
2ε.((α, ρ1), [ρ2])list

ε.{get(ρ2),put(ρ′

2
)}−−−−−−−−−−−−→((α, ρ1), [ρ

′
2])list

cp2 7→ ∀αρ1ρ2ε.((α, ρ1), [ρ2])list
ε.{get(ρ2),put(ρ2)}−−−−−−−−−−−−→((α, ρ1), [ρ2])list

As we saw in Section 1.3, there are cases where it is useful to copy a list
from one region into another region, so as to make it possible to de-allocate
the old region. This copying can be used as a kind of programmer-controlled
garbage collection in cases where garbage has accumulated in the original
region.

Because it is often useful to distinguish between functions that can put
their result into fresh regions and functions that simply add to regions de-
termined by their value argument, we shall refer informally to the former
functions as region exomorphisms and the latter as region endomorphisms.
Notice that this is not a clear-cut distinction, however. Often, functions have
both an endomorphic and an exomorphic side to them. Also notice that even
a region exomorphic function can be forced to act as an endomorphism by
the calling context. As an example, consider the expression

if true then cp1 l else l

Because the two branches of the conditional are required to have the same
region-annotated type with place, l and cp1 l are forced to be in the same
regions.

6.4 Polymorphic Recursion

A recursive region-polymorphic function

fun f at ρ0 [ρ1, · · ·, ρk] (x1, · · · , xn) = e
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may call itself inside its own body (e) with regions that are different from its
own formal region parameter ([ρ1, · · ·, ρk]). This feature is called polymor-
phic recursion in regions, named after polymorphic recursion, the analogous
concept for types. Polymorphic recursion in regions is vital for achieving
good memory management in connection with recursion. Unfortunately, it is
also makes the region inference problem considerably more challenging, but
that is a different story [TB98].

We now show a typical use of polymorphic recursion in regions, namely
merge sorting of lists. The basic idea of merge sort is simple: first split the
input list into two lists l and r of roughly equal length. Then sort l and r
recursively and merge the results into a single sorted list. When programming
with regions, we need to plan which of these lists we want to reside in the
same regions. We do not want to waste space. In particular, if n is the length
of the list, it would be quite irresponsible to use O(nlog n) space, say. Let
us aim at arranging that the sorting function is a region exomorphism that
does not produce any values in its result regions except the sorted list. To
sort n elements, we shall need n list cells (to hold the input list) plus roughly
2 × (n/2) list cells to hold l and r, the two lists that arise from splitting the
input list. To sort l recursively, we need space for the two lists obtained by
splitting l and so on. The space consumption grows to a maximum of 3n list
cells (including the n cells to hold the input), before any merging is done.
By the time all of l is sorted, that is, just before r is sorted recursively, we
have the following lists: the input (n cells), l (n/2 cells), l sorted (n/2 cells),
r (n/2 cells). Continuing this way, at the rightmost merge of two lists of
length at most one, approximately 4n list cells are live. Then a series of final
merges occur. Code that uses these ideas is listed in Figure 6.3.2

The exomorphic merge function is a bit inefficient in that it copies one ar-
gument when the other is empty, but the exomorphism ensures that msort l

and msort r are not forced into the same regions. The polymorphic recur-
sion in regions makes it possible for xs, l, r, msort l, and msort r all to
be in distinct regions. For example, in the call msort l, the polymorphic
recursion makes it possible for l to be in a region different from xs and it
also makes it possible for the result of the call to be in a region different from
the result of msort xs.

2MLB-file kitdemo/msort.mlb, file kitdemo/msort.sml. To compile the project, goto
the kitdemo directory and execute "mlkit msort.mlb" from the shell. The MLKit places
an executable file run in the kitdemo directory. For an in-depth description of how to
compile and run MLB-files and SML-files, see Chapter 15.
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fun cp [] =[]

| cp (x::xs)= x :: cp xs

(* exomorphic merge *)

fun merge(xs, []):int list = cp xs

| merge([], ys) = cp ys

| merge(l1 as x::xs, l2 as y::ys) =

if x<y then x :: merge(xs, l2)

else y :: merge(l1, ys)

(* splitting a list *)

fun split(x::y::zs, l, r) = split(zs, x::l, y::r)

| split([x], l, r) = (x::l, r)

| split([], l, r) = (l, r)

(* exomorphic merge sort *)

fun msort [] = []

| msort [x] = [x]

| msort xs = let val (l, r) = split(xs, [], [])

in merge(msort l, msort r)

end;

Figure 6.3: Merge sorting of lists.

Based on the above analysis we conclude that the space required by
msort xs is approximately 4nc1 +c2log2n plus the extra stack space required
for the final merges, where n is the length of xs, c1 is the size of a list cell
(2 words in this case) and c2 is the space on the runtime stack used by one
recursive call of msort (probably less than 10 words).

Because merge is not tail-recursive, a merge requires space both for its
two input lists, for its output list, for finite regions on the stack and for
temporaries stored on the stack. When one of the lists becomes empty,
merge calls cp, which allocates less for each iterative call than merge does.
Each return from merge allocates a list cell (two words), so the maximum
space usage is reached when the last element of the result of the merge is
constructed (which happens when the recursion is deepest). Here the space
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used is (we show n = 50, 000 list elements as an example)

data size (words) n = 50, 000
input list 2n 400,000 bytes
l n 200,000 bytes
l sorted n 200,000 bytes
r n 200,000 bytes
r sorted n 200,000 bytes
finite regions on stack 2n 400,000 bytes
total in regions 9n 1,600,000 bytes

To check the above analysis, we sorted 50,000 integers with the region
profiler enabled. As one sees in Figures 6.4 and 6.5, the space usage found
by region profiling correspond well to the results of our analysis.

In Chapter 12, we shall see how one can use resetting of regions to reduce
the space usage drastically, to roughly 2nc1.
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Figure 6.4: Region profiling of msort sorting 50,000 integers. The high-
level mark denotes the sum of the maximum amount of memory allocated in
regions and the maximum amount of memory allocated on the stack. Because
the amount of memory used in regions and the amount of memory used on
the stack may not top on the same time, the high-level mark may be higher
than the maximum total amount of memory used.
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Merge Sort - Stack profiling Wed May 23 13:53:11 2001
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Figure 6.5: Stack profiling of msort sorting 50,000 integers.



Chapter 7

Value Declarations

Although region inference is based on types and effects, it is also to some
extent syntax dependent. That is, two programs that are equivalent in their
input-output behavior can easily have very different memory behavior. In
this chapter, we discuss how to write declarations so as to obtain good results
with region inference. The region inference rules that underlie the MLKit
with Regions are related to the scope rules of ML, so we start by a (very
informal) summary of the scope rules of ML declarations.

7.1 Syntax

A Standard ML value declaration binds a value to a value variable. For
example, the result of evaluating the value declaration

val x = 3 + 4

is the environment {x 7→ 7}. More generally, evaluation of a value binding
val id = exp proceeds as follows. Assume the result of evaluating exp is
a value, v. Then the result of evaluating val id = exp is the environment
{id 7→ v}.

The value declaration is just one form of Core Language declaration (the
others being type and exception declarations). We use dec to range over
declarations. Declarations can be combined in several ways. For example,

dec1;dec2

is a sequential declaration. The identifiers declared by this declaration are the
identifiers that are declared by dec1 or dec2; moreover, identifiers declared
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in dec1 may be referenced in dec2. The semicolon is associative. Thus, in a
sequence dec1; . . . ;decn of declarations, identifiers declared in dec i may be
referenced in deci+1, . . . , decn (1 ≤ i ≤ n).

The Core Language has two forms of local declarations. The expression

let dec in exp end

declares identifiers whose scope does not extend beyond exp. Similarly, the
declaration

local dec1 in dec2 end

first declares identifiers (in dec1) whose scope does not extend beyond dec2

and then uses these declarations to perform the declarations in dec2. An
identifier is declared by the entire local construct if and only if it is declared
by dec2.

7.2 Scope Versus Lifetime

Scope is a syntactic concept: a declaration of an identifier contains a binding
occurrence of the identifier; the scope of the declaration is the part of the
ensuing program text whose free occurrences of that identifier are bound
by that binding occurrence. By contrast, lifetime, as we use the word, is
a dynamic concept. A value is “live” if and only if the remainder of the
computation uses it (or part of it). The traditional stack discipline couples
these two concepts very closely. For example, in the pure stack discipline,
the evaluation of

let dec in exp end

in an environment E proceeds as follows. First evaluate dec to yield an
environment, E1. Then evaluate exp, in the environment E extended with
E1, to yield value v. Then v is the result of evaluating the let expression in
E. In implementation terms: first push an environment E1 onto the stack,
use it to evaluate the expression in the scope of the declaration, and then
pop the stack. That this idea works in block-structured languages hinges
on a number of carefully made language design decisions. In functional and
object-oriented languages, memory cannot be managed that simply. The
problem is that while environments can be managed in a stack-like manner,
the values in the range of the environment cannot (unless one uses regions,
that is). For example consider the ML expression:
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local

val private = [2,3,5,7,11,13]

in

fun smallPrime(n:int): bool =

List.member n private

end

Although the scope of the declaration is only the declaration of smallPrime,
private is accessed (at runtime) whenever smallPrime is called. Thus, the
lifetime of the list of small primes is at least as long as the lifetime of the
smallPrime function itself.

The region discipline still has a coupling between scope and lifetimes, but,
because we want to be able to handle recursive data types and higher-order
functions, the coupling is less tight. The ground rule of region inference is
that as long as a value variable is in scope, the value bound to it at runtime
will remain allocated. More precisely:

Ground Rule: The region rules forbid transforming an expression
exp into letregion ρ in exp end if exp is in the scope of an
identifier that has ρ free in its region-annotated type scheme with
place.

For an example, consider

let

val list = [1,2,3]

val n = length list

val r = sin(real n)

in

cos(r)

end

At runtime, the list bound to list is not used (i.e., it is not live) after its
length has been computed; similarly, the value of n is not live after it has
been converted to a floating point number, and so on. In short, at runtime,
we have a sequence of short, non-overlapping lifetimes.

With region inference, however, the list bound to list will stay allocated
throughout the evaluation of the remainder of the let expression.1

1One can force de-allocation of the list by inserting val = resetRegions(list) after
the declaration of n; but, as we shall see, there are less draconian ways of achieving the
same result.
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For a more interesting example of the consequences of the Ground Rule,
consider the following declarations, taken from a program that computes
prime numbers using the Sieve of Eratosthenes:

fun cp [] = []

| cp (x::xs) = x :: cp xs

fun sift (n, []) = []

| sift (n, (x::xs)) = if x mod n = 0 then sift(n,xs)

else x::sift(n,xs)

fun sieve(a as ([], p)) = a

| sieve(x::xs, p) = let val rest = sift(x,xs)

in sieve(cp rest,x::p)

end

Here sift(n, l) produces a list of the numbers from l that are not divisible
by n; sieve(xs, p) repeatedly calls sift, adding primes to the front of
p, until the list of numbers remaining in the sieve becomes empty. The
programmer has employed the copying technique suggested in Section 1.3 to
avoid that the lists that are bound to rest during the repeated filtering all
are put in the same region. The programmer’s intention is that the cp rest

should overwrite x::xs by a copy of rest, so that space consumption would
be bounded by a constant times the size of the input. But it does not work
as intended; because rest is in scope at the recursive application of sieve,
the list that is bound to rest will stay allocated for the duration of that call,
which is in fact the remainder of the entire computation!

In many cases, the solution is simply to shorten the scope of the decla-
ration. In the above example, a good solution is to move the application of
sieve outside the let:

fun sieve(a as ([], p)) = a

| sieve(x::xs, p) =

sieve let val rest = sift(x,xs)

in (cp rest,x::p)

end

That the copying really overwrites the input list relies, in part, on region
resetting (Chapter 12). But it also relies on region polymorphism and on
the Ground Rule. Rewriting the application of sieve ensures that the list
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bound to rest will not live to see the recursive call of sieve. Unless forced by
context to do otherwise, sift will create a list using fresh regions. Because
cp is also exomorphic, there will be no sharing between rest and the other
lists. The region variable that denotes the region that holds the auxiliary
pairs of rest appears in the effect of the (revised) let expression. However,
this region variable does not occur free in the region-annotated type scheme
with place of any value variable in scope at that point, not even in the region-
annotated type scheme with place of sieve, which only has the region that
contains sieve itself free in its region-annotated type scheme with place.
Consequently, region inference wraps the let expression by a letregion

binding of the region variable in question:

fun sieve(a as ([], p)) = a

| sieve(x::xs, p) =

sieve letregion r10

in let val rest = sift[r10](x,xs)

in (cp rest,x::p)

end

end

7.3 Shortening Lifetime

Informally, region inference forces the lifetime of an identifier to be at least its
scope. Improving memory performance therefore sometimes requires making
scopes of identifiers smaller. Useful program transformations include:

Inwards let floating

Transform

let val id 1 = exp1 val id 2 = exp2 in exp end

into

let val id 2 = let val id 1 = exp1 in exp2 end in exp end

provided id 1 does not occur free in exp.
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Application extrusion:

Transform
let dec in f(exp) end

into
f let dec in exp end

provided f is an identifier that is not declared by dec.

Application extrusion is particularly useful in connection with tail recur-
sion; the reader will see it employed several times in what follows.
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Static Detection of Space Leaks

“Space leak” is the informal term used when a program uses much more
memory than one would expect, typically because of memory not being re-
cycled as early as it should (or not at all).

If a region-polymorphic function with region-annotated type scheme σ
has a put effect on a region variable that is not amongst the bound region
variables of σ, then one quite possibly has a space leak; every application of
the function may write values into a region that is the same for all calls of
the function. For example, consider the source program1

fun g() =

let val x = [5,7]

fun f(y) = (if y>3 then x@x else x;

5)

in

f 1; f 4

end;

Here f has type int → int; yet, when the expression y>3 evaluates to true,
an append operation is performed that produces a list in the same region as
x. The first call of f will not cause the append operation to be called, but
the second one will. One can say that f has a space leak in that it can write
values into a more global region, namely a region that is allocated at the
beginning of the body of g. The sequence of calls to f accumulates copies
of x@x in that region, although none of these lists are accessible anywhere.

1Program kitdemo/escape.sml.
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In this particular case, the values are not even part of the result type of f,
so the writing is a side-effect at the implementation level, even though there
are no references in the program.

The region-annotated type scheme inferred for f is

∀ε.int ε.{put(r5)}−−−−−−−→ int

where the region-annotated type of x is

(int, [r5])list

Here we see that r5 is free in the region-annotated type scheme and appears
with a put effect.

8.1 Warnings About Space Leaks

The MLKit can be instrumented to issue a warning each time it meets a
function that is declared using fun and has a free put effect occurring some-
where in its type scheme. The way to tell the MLKit to issue the warnings
is by passing the option -warn on escaping puts to the MLKit compiler.
In practice, this warning mechanism is a valuable device for predicting space
leaks. The region-annotated version of our example function g is listed in
Figure 8.1. During compilation of g, the MLKit issues the following warning:2

*** Warnings ***

f has a type scheme with escaping put effects on region(s):

r10, which is also free in the type schemes with places of : x

We are told that the program might space leak in region r10. Looking at
the function f, we see that this region is an actual region parameter to @. It
follows that the problem is the call to @.

2To provoke the warning, one has to disable in-lining in the Lambda optimiser; this
is done by passing the option -maximum inline size 0 to the MLKit compiler together
with the option -warn on escaping puts.
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let fun g at r1 [] (v39428)=

letregion r10:INF

in let val x = :: (5, :: (7, nil) at r10) at r10

in letregion r11:1

in let fun f at r11 [] (y)=

let val _ =

(case y > 3

of true => @[r10] <x, x>

| _ => x

) (*case*)

in 5

end ;

val _ = f[] 1

in f[] 4

end

end (*r11:1*)

end

end (*r10:INF*)

in {|g: (_,r1)|}

end

Figure 8.1: The region-annotated version of g.
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8.2 Fixing Space Leaks

Often one can fix a space leak by delaying the creation of the value that
causes the space leak. In the above example, we can move the construction
of the list into f:3

fun g() =

let fun mk_x() = [5,7]

fun f(y) = let val x = mk_x()

in if y>3 then x@x else x; 5

end

in

f 1; f 4

end;

Of course, this means that the list will be reconstructed upon each application
of f. Another solution is to move the creation of the list as close to the calls
as possible and then pass the list as an extra argument:4

fun g() =

let

fun f(x,y) = (if y>3 then x@x else x; 5)

in

let val x = [5,7]

in f(x, 1); f(x, 4)

end

end;

Both solutions stop warnings from being printed, but the second solution is
better than the first: f still has a put effect on the regions containing x, but
the difference is that these are now represented by bound region variables
in the type scheme of f. This quantification has the advantages that (1)
allocation of space for the list is delayed till the list is actually used and (2),
the list can be de-allocated after the calls have been made (whereas in the
original version, x occurs free in the declaration of f and will be kept alive
as long as f can be called.)

At other times, there is no clean way of avoiding escaping put effects.
One example is found in the TextIO structure of the Basis Library:

3Program kitdemo/escape1.sml.
4Program kitdemo/escape2.sml.
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exception CannotOpen

fun raiseIo fcn nam exn =

raise IO.Io {function = fcn^"", name = nam^"", cause = exn}

fun openIn (f: string) : instream =

{ic=prim("openInStream", (f,CannotOpen)),

name=f} handle exn => raiseIo "openIn" f exn

fun openOut(f: string): outstream =

{oc=prim("openOutStream", (f,CannotOpen)),

name=f} handle exn => raiseIo "openOut" f exn

As explained in Chapter 11, when a unary exception constructor is applied
to a value, both the argument value and the resulting constructed value are
forced into a particular global region. Thus, the application

IO.Io {function = fcn^"", name = nam^"", cause = exn}

has a potential space leak in it; every time we apply the exception con-
structor, the resulting exception value will be put into a global region. This
particular space leak is perhaps not something that would keep one awake at
night, because most programs do not make a large number of failed attempts
to open files, but it is useful to be warned about this potential problem.
Notice, however, that the string arguments to raiseIo are copied inside the
body of raiseIo, so that they are not forced to be placed in the global string
region.
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Chapter 9

References

Section 9.1 gives a brief summary of references in Standard ML; it may be
skipped by readers who know SML. Thereafter, we discuss runtime represen-
tation of references and region-annotated reference types.

9.1 References in Standard ML

A reference is a memory address (pointer). Standard ML has three built-in
operations on references

ref ∀α.α → α ref create reference
! ∀α.α ref → α de-referencing
:= ∀α.α ref ∗ α → unit assignment

If the type of a reference r is τ ref then one can store values of type τ (only)
at address r. A reference is a value and can therefore be bound to a value
identifier by a val declaration. While the value stored at a reference may
change, the binding between variable and reference does not change. We
show an example, because this point can be confusing to programmers who
are familiar with updatable variables in languages like C and Pascal:

val it = let val x: int ref = ref 3

val y: bool ref = ref true

val z: int ref = if !y then x else ref 5

in z:= 6; !x

end
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. . .
vr :

r35r34 r36

. . .

Figure 9.1: Creating a reference allocates one word in a region on the region
stack. Here, the region is drawn as a finite region, but it could equally well
be infinite.

Because !y evaluates to true, z becomes bound to the same reference (r) as
x. So, the subsequent assignment to z changes the contents of the store at
address r to contain 6. Because x and z are aliases, the result of the let

expression is the contents of the store at address r (i.e., 6).

9.2 Runtime Representation of References

The MLKit translates an SML expression of the form ref exp into an ex-
pression of the form (assuming exp translates into e)

ref at ρ e

which is evaluated as follows. First e is evaluated. Assume that this evalu-
ation yields a value v. Here v may be a boxed or an unboxed value. Next,
a 32-bit word is allocated in the region denoted by ρ; let r be the address of
this word. Then v is stored at address r and r is the result of the evaluation.

The situation is depicted in Figure 9.1. The value v can be unboxed as
shown in Figure 9.2. Or it may be boxed, in which case v is an address.

Notice that a reference really is a pointer in the implementation. In
particular, a reference is not tagged, so the register allocator may choose to
store a particular reference in a register. The contents of the reference is also
always one word, either an unboxed value (e.g., an integer or a boolean) or a
pointer (if the contents is boxed). So the contents of a reference is not tagged
either.

De-referencing a reference r is done by reading the contents of the memory
location r. Notice that de-referencing does not require knowledge of what
region the word with address r resides in.
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. . .
3r :

r35r34 r36

. . .

Figure 9.2: Creating a reference allocates one word in a region on the region
stack. Here, the region is drawn as a finite region, but it could equally well
be infinite.

Assigning a value v to a reference r simply stores v in the memory at
address r. When v is an unboxed value, the assignment can be regarded
as copying v into the memory cell r; otherwise v is a pointer, which the
assignment stores in the memory cell r. Either way, assignment is a constant-
time operation.

9.3 Region-Annotated Reference Types

The general form of a region-annotated reference type is:

(µ ref, ρ)

Informally, a reference r has this type if it is the address of a word in the
region denoted by ρ and, moreover, µ is the region-annotated type with place
of the contents of that word. For example, assume ρ is bound to some region
name, say r35; then the evaluation of the declaration val x = ref at ρ 3 re-
sults in the environment {x 7→ r}, where r is the address of a word with
contents 3 residing in region r35, see Figure 9.2. The type of x is ((int,ρw)

ref, ρ), which, as usual, we shorten to (int ref, ρ).
References are treated like all other values by region inference. The

region-annotated type schemes given to the three built-in operations are:

ref ∀αρ1ρ2ε.(α, ρ1)
ε.{put(ρ2)}−−−−−−−→((α, ρ1)ref, ρ2)

! ∀αρ1ρ2ε.((α, ρ1)ref, ρ2)
ε.{get(ρ2)}−−−−−−−→(α, ρ1)

:= ∀αρ1ρ2ε.[((α, ρ1)ref, ρ2), (α, ρ1)]
ε.{get(ρ2)}−−−−−−−→ unit

The type scheme for := has in it a get effect on the region holding the refer-
ence. Although the operator does not actually read the value, the presence
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let val it =

letregion r7:INF

in let val x = ref at r7 3

in letregion r8:1

in let val y = ref at r8 true;

val z =

(case ![] y

of true => x

| _ => ref at r7 5

) (*case*) ;

val _ = :=[] <z, 6>

in ![] x

end

end (*r8:1*)

end

end (*r7:INF*)

in {|it: _|}

end

Figure 9.3: Region-annotated reference creation.

of the value is necessary for it to updated. Assigning a value v to a reference
r does not make a copy of v (unless v is unboxed). Instead, := updates the
reference r to point to v.

The advantage of the chosen scheme for handling references is that ref-
erence creation, de-referencing, and assignment all are constant-time opera-
tions. The disadvantage is that if two values may be assigned to the same
reference, then they are forced to be in the same regions (cf. the region-
annotated type schemes given above).

If we compile the example from Section 9.1, we get the program shown
in Figure 9.3.1 The region denoted by r7 contains the memory word whose
address is bound to x and z, and whose contents is first 3, then 6. The
region denoted by r8 contains a single boolean. Also notice that the word
containing 5 is designated r7, because the then and else branches must
be given the same region-annotated type with place. Finally, notice that

1Program kitdemo/refs3.sml.
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all references will be reclaimed automatically at the end of the letregion

constructs that bind r7 and r8.

9.4 Local References

References that are created locally within a function and that do not escape
the function naturally reside in regions that are local to the function body.
For example, the declaration:2

fun id(x) = let val r = ref x in ! r end;

is compiled into

let fun id at r1 [] (x)=

letregion r9:1

in let val r = ref at r9 x in ![] r end

end (*r9:1*)

in {|id: (_,r1)|}

end

Here r9 will be implemented as one word on the runtime stack. The evalua-
tion of ref at r9 x moves the argument x to that word on the stack. At
the end of the letregion r9 in · · · end, the word is popped off the stack.

Now, let us turn to an example of a memory cell whose lifetime extends
the scope of its declaration, because it is accessible via a function (in Algol
terminology, the reference is an own variable of the function.)3

local

val r = ref ([]:string list)

in

fun memo_id x = (r:= x:: !r; x)

end

val y = memo_id "abc"

val z = memo_id "efg";

Provided that in-lining by the optimiser is restricted to in-line only those
functions that are applied once,4 this example compiles into

2Program kitdemo/refs1.sml.
3Program kitdemo/refs2.sml.
4To restrict the optimiser accordingly, provide the option -maximum inline size 0 to

the MLKit compiler.
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let val r = let val v39399 = nil in ref at r1 v39399 end ;

fun memo_id at r1 [] (x)=

let val _ = :=[] <r, :: (x, ![] r) at r1> in x end ;

val y = memo_id[] "abc"at r4;

val z = memo_id[] "efg"at r4

in {|z: (_,r4), y: (_,r4), memo_id: (_,r1), r: (_,r1)|}

end

and the MLKit warns us that there is a possible space leak:5

*** Warnings ***

memo_id has a type scheme with escaping put effects

on region(s):

r1, which is also free in the type schemes with places of :

less_int minus_int := ! r Div Mod Match Bind

9.5 Hints on Programming with References

There is no need to shy away from using references when programming with
regions. However, one needs to be aware of the restriction that values that
may be assigned to the same references are forced to live in the same region,
and that this region with all its values will be alive for as long as the reference
is live. If the contents type is unboxed (e.g., int), there is no problem, for
in that case, no region for the contents is allocated. But one should avoid
creating long-lived references that are assigned many different large values.

5Warnings are printed only if the option -warn on escaping puts is passed to the
MLKit compiler along with the option -maximum inline size 0. See Chapter 8.



Chapter 10

Recursive Data Types

This chapter describes how the MLKit treats recursive data types. We have
already seen how one recursive datatype, namely lists, is handled. This
chapter deals with the general case.

10.1 Spreading Data Types

The MLKit performs an analysis called “spreading of data types”. Spreading
of datatypes analyses datatype declarations. This analysis of a datatype

declaration uses information about the type constructors that appear in the
types of the constructors of the data type(s) introduced by the declaration,
but it does not use information about the use of the data type.

Spreading determines (a) a so-called arity of every type name that the
data type declaration introduces and (b) a region-annotated type scheme for
every value constructor introduced by the data type declaration.

In the Definition of Standard ML every type name has an attribute,
called its arity [MTHM97, page 15]. The arity of a type name is the number
of type arguments it requires. For example, int has arity 0 while the type
name introduced by the following declaration of binary trees has arity 1:

datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree;

The MLKit extends the notion of arity (in it’s internal languages) to
account for regions and effects. For lists, for example, we need a region for
holding the pairs to which :: is applied. For the data type

datatype ’a foo = A | B of (’a * ’a) * (’a * ’a)

87
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the type of B introduces the possibility of three region variables (one for
each star). Region variables that are induced by the types of constructors
and that do not hold the constructed values themselves are called auxiliary
region variables. For example, the list data type:

datatype ’a list = nil | op :: of ’a * ’a list

has one auxiliary region variable, namely the region variable that describes
where the pairs of type ’a * ’a list (i.e., the auxiliary pairs), reside.

Besides auxiliary regions, one sometimes needs auxiliary effects. For an
example, consider:

datatype V = N of int | F of V -> V

Here one needs an arrow effect for the function type V -> V. We refer to
such an arrow effect as an auxiliary arrow effect of the data type in question.

We define the (internal) arity of a type name t to be a triple (n, k,m) of
non-negative integers, where n is the usual Standard ML arity of the type
name, k is the region arity of t, and m is the effect arity of t. The region
and effect arities indicate the number of auxiliary regions and arrow effects
of the data type, respectively.

For efficiency purposes, we have found it prudent to restrict the maximal
number of auxiliary regions a data type can have to 3 (one for each kind of
runtime type of regions) and to restrict the maximal number of auxiliary ef-
fects to 1. Otherwise, the number of auxiliary regions can grow exponentially
in the size of the program:

datatype t0 = C

datatype t1 = C1 of t0 * t0

datatype t2 = C2 of t1 * t1

...

Here the number of auxiliary region variables would double for each new data
type declaration. Furthermore, all type names introduced by a datatype

declaration are given the same arity (a datatype declaration can declare
several types simultaneously).

Because of the limit on the number of auxiliary region variables, spreading
of data type declarations sometimes unifies two auxiliary region variables that
would otherwise be distinct; but it only unifies auxiliary region variables that
have the same runtime type. The practical consequence of these restrictions
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is that applying a constructor to a value v sometimes forces identification of
regions of v that hold otherwise unrelated parts of v.

The automatic memory management that we have discussed for lists ex-
tends to other recursive data types without problems. For example, binary
trees are put into regions and are subsequently de-allocated (in a constant
time operation) when the region is popped. The next section goes thorough
an example to illustrate the point.

For simplicity, constructed values except lists (Chapter 5) are always
boxed.

10.2 Example: Balanced Trees

Consider the program in Figure 10.1.1 We would hope that the balanced
tree produced by balpre is removed after it has been collapsed into a list by
preord. And indeed it is. Here is the proof:

val it =

letregion r57:INF

in print[]

letregion r59:INF

in implode[r57]

letregion r61:INF, r62:INF

in preord[r59]

<letregion r64:INF

in balpre[r61,r62]

letregion r66:1

in explode[r64]

"Greetings from the MLKit\n"at r66

end (*r66:1*)

end (*r64:INF*),

nil

>

end (*r61:INF, r62:INF*)

end (*r59:INF*)

end (*r57:INF*)

1MLB-file: kitdemo/trees.mlb, file kitdemo/trees.sml.
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datatype ’a tree = Lf | Br of ’a * ’a tree * ’a tree

(* preorder traversal of tree *)

fun preord (Lf, xs) = xs

| preord (Br(x,t1,t2),xs) =

x::preord(t1,preord(t2,xs))

(* building a balanced binary tree

from a list: *)

fun balpre [] = Lf

| balpre(x::xs) =

let val k = length xs div 2

in Br(x, balpre(take(xs, k)),

balpre(drop(xs, k)))

end

(* preord o balpre is the identity: *)

val it = print(implode(preord(balpre(explode

"Greetings from the MLKit\n"),[])));

Figure 10.1: Example showing recycling of memory used for an intermediate
data structure. The function balpre builds a balanced binary tree from a list
and preord then flattens the tree to a list (after which the tree is garbage).
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The exomorphic behavior of balpre causes the tree to be allocated in regions
r61 and r62, which are both de-allocated after the call to preord.

This is the kind of certainty about lifetimes we are aiming at. Imagine, for
example, that the trees under consideration were terms representing different
intermediate forms in a compiler. Then one would like to know that (possibly
large) syntax trees are not kept in memory longer than needed.
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Chapter 11

Exceptions

Standard ML exception constructors are introduced by exception declara-
tions. The two most basic forms are

exception excon

and
exception excon of ty

for introducing nullary and unary exception constructors, respectively.
Exception declarations need not occur at top level. For example, a func-

tion body may contain exception declarations.

11.1 Exception Names

Each evaluation of an exception declaration creates a fresh exception name
and binds it to the exception constructor. This is sometimes referred to as
the generative nature of Standard ML exceptions.

In the MLKit, an exception name is implemented as a pointer to a pair
consisting of an integer and a string pointer; the string pointer points to the
name of the exception, which is a global constant in the target program. The
string is used for printing the name of the exception if it ever propagates to
top level. The memory cost of creating the pair is, as always with pairs, two
words.
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11.2 Exception Values

Standard ML has a type exn of exception values. An exception value is
either a nullary exception value or a constructed exception value. A nullary
exception value is a pointer to a word that points to an exception name.
A constructed exception value is a pair (en, v) of an exception name en
and a value v; we refer to v as the argument of en. This representation of
exception values allows for the exception name of an exception value to be
fetched in the same way irrespective of whether the exception value is nullary
or constructed.

Referring to a nullary exception constructor allocates no memory. By
contrast, applying a unary exception constructor to an argument constructs
a constructed exception value. The memory cost of such an application is
two words for holding the pair (en, v).

The distinction between nullary and unary exception constructors is im-
portant in the MLKit because our region inference analysis takes a simple-
minded approach to exceptions:

All exception names and nullary exception values are put into a
certain global region and thus never reclaimed automatically. A
constructed exception value is put in a region that is live at least
as long as the exception constructor is in scope.

We therefore make the following recommendations:

1. Put exception declarations at top level, if possible. That way, the
memory required by exception names will be bounded by the program
size.

2. Avoid applying unary exception constructors frequently; there is no
harm in raising and handling constructed exception values frequently;
it is the creation of many different constructed exception values that
can lead to space leaks. Nullary constructors may be raised without
incurring memory costs.

11.3 Raising Exceptions

An expression of the form
raise exp
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is evaluated as follows. First exp, an expression of type exn, is evaluated to
an exception value. Then the runtime stack is scanned from top to bottom
in search of a handler that can handle the exception. A register points to
the top-most exception handler; the exception handlers are linked together
as a linked list interspersed with the other contents of the runtime stack. If a
matching handler is found, the runtime stack is popped down to the handler.
This popping includes popping of regions that lie between that stack top and
the handler. Put differently, consider an expression of the form letregion ρ
in e end; if e evaluates to an exception packet, then the region bound to ρ
is de-allocated and the packet is also the result of evaluating the letregion

expression.
We have not attempted to design an analysis that would estimate how

far down the stack a given exception value might propagate. Of course, it
would not be a very good idea to allocate a constructed exception value in
a region that is popped before the exception is handled! This is why we put
all exception names in global regions.

11.4 Handling Exceptions

The ML expression form

exp1 handle match

is compiled into a MulExp expression of the form

letregion ρ in

let f = fn at ρ match in e1 handle f end

end

where f is a fresh variable. So first a handler (expressed as a function) is
evaluated and stored in some region ρ. This region will always have multi-
plicity one and therefore be a finite region which is put on the stack. Then
e1, the result of compiling exp1, is evaluated. If e1 terminates with a value,
the letregion construct will take care of de-allocating the handler. If e1

terminates with an exception, however, f is applied.
Thus the combined cost of raising an exception and searching for the

appropriate handler takes time proportional to the depth of the runtime
stack in the worst case.
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Handling of exceptions is the only operation that takes time that can-
not be determined statically, provided one admits arithmetic operations as
constant-time operations.

11.5 Example: Prudent Use of Exceptions

Here is an example of prudent use of exceptions in the MLKit:

exception Hd (* recommendation 1 *)

fun hd [] = raise Hd

| hd (x::_) = x

exception Tl

fun tl [] = raise Tl

| tl (_ ::xs) = xs

exception Error of string

local

val error_f = Error "f" (* recommendation 2 *)

in

fun f(l) =

hd(tl(tl l)) handle _ => raise error_f

end

val r = f[1,2,3,4];

The application Error "f" has been lifted out from the body of f. No
matter how many times f is applied, it will not create additional exception
values.1

1Program kitdemo/exceptions.sml.
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Resetting Regions

The idea of region resetting was introduced in Section 1.2.
This chapter gives an informal explanation of the rules that govern reset-

ting. Knowing these rules is useful, irrespective of whether one makes the
MLKit decide on region resetting, or prefers to control resetting explicitly in
the program.

Resetting only makes sense for infinite regions. Resetting a region is a
constant-time operation. Because the same region variable can be bound
sometimes to a finite region and sometimes to an infinite region at runtime,
resetting a region can involve a test at runtime.

The MLKit contains an analysis, called the storage mode analysis, which
has two purposes:

1. inserting automatic resetting of infinite regions, when possible

2. checking applications of resetRegions (and forceResetting) so as to
report on the safety of the resetting requested by the programmer

As a matter of design, one might wonder whether it would not be sufficient
to rely on the user to indicate where resetting should be done. However,
checking whether resetting is safe at a particular point chosen by the user
is of course no easier than checking whether resetting is safe at an arbitrary
point in the program, so one might as well let the compiler insert region
resetting whenever it can prove that it is safe.

In this chapter, we describe the principles that underlie the storage mode
analysis. Even if one is willing to insert resetRegions and forceResetting

instructions in the program, one still needs to understand these principles,
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so as to be able to act upon the messages that are generated by the system
in response to explicit resetRegions and forceResetting instructions.

12.1 Storage Modes

As we have seen in previous chapters, region inference decorates every allo-
cation point with an annotation of the form at ρ, indicating into what region
the value should be stored.

Now the basic idea is that storing a value into a region can be done in
one of two ways, at runtime. One either stores the value at the top of the
region, thereby increasing the size of the region; or one stores the value into
the bottom of the region, by first resetting the region (so that it contains no
values) and then storing the value into the region.

The storage mode analysis transforms an allocation point at ρ into attop ρ
when it estimates that ρ contains live values at the allocation point, whereas
it transforms it into atbot ρ if it can prove that the region will contain no
live values at that allocation point. The tokens attop and atbot are called
storage modes.

Region polymorphism introduces several interesting problems. Let f be
a region-polymorphic function with formal region parameter ρ and consider
an allocation point at ρ in the body of f . Whether it is safe for f to store
the value at bottom in the region depends not only on the body of f but also
on the context in which f is called.

For example, consider the compilation unit

fun f [] = []

| f (x::xs) = x+1 :: f xs

val ll = [1,2,3]

val l2 = if true then f l1 else l1

val x::_ = l1;

When f creates the empty list, it can potentially reset the auxiliary region
intended for the auxiliary pairs of the list. In the above program, however,
the conditional forces f l1 and l2 to be in the same region as l1. Because
l1 is live after the application of f, this application must not use atbot as
storage mode. Indeed, even if we removed the last line of the program, the
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application could still not use atbot, for l1 is exported from the compilation
unit and thus potentially used by subsequent compilation units.

By contrast, consider1

fun f [] = []

| f (x::xs) = x+1 :: f xs

val n = length(let val l1 = [1,2,3]

in if true then f l1 else l1

end)

When f creates the empty list, it is welcome to reset the region that holds l1,
for by that time, l1 is no longer needed! (f traverses l1, but when it reaches
the end of the list, l1 is no longer used.) Indeed, the MLKit will replace the
list [1,2,3] by [2,3,4]. The ability to replace data in regions is crucial in
many situations (as we illustrated with the game of Life in Section 1.3).

Because the MLKit allows for separate compilation, it cannot know all the
call sites of a region-polymorphic function, when it is declared. Therefore,
when considering an allocation point at ρ inside the body of some region-
polymorphic function f that has ρ as a formal region parameter, one cannot
know at compile time whether to use attop or atbot as storage mode. In-
stead, the storage mode analysis operates with a third kind of storage mode
named sat, read: “somewhere at”. Consider an application of f for which
ρ is instantiated to some region variable ρ′, say. At runtime, ρ′ is bound
to some region name (Section 2.1) r′. Then r′ is combined with a definite
storage mode (i.e., attop or atbot), to yield r, say, which is then bound to
ρ. When r′ was originally created (by a letregion expression), r′ was also
made to contain an indication of whether it is an infinite region or a finite
region.2 At runtime, an allocation point sat ρ in the body of f will test r to
see whether the region is infinite and whether the value should be stored at
the top or at the bottom.3

1Program kitdemo/sma1.sml.
2On machines that have at least four bytes per word, the two least significant bits

of a pointer to a word will always be 00. These two bits hold extra information in the
region name. One bit, called the “atbot bit”, holds the current storage mode of the region.
Another bit, called the “infinity bit”, indicates whether the region is finite or infinite.

3When ρ has multiplicity infinity, r
′ must be the name of an infinite region, so the

runtime check on whether r has its infinity bit set is omitted.
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The relevant parts of the result of compiling the last example are shown
in Figure 12.1. To see the storage modes, pass the option

-print drop regions expression with storage modes

to the MLKit compiler.

12.2 Storage Mode Analysis

For the purpose of the storage mode analysis, actual region parameters to
region-polymorphic functions are considered allocation points. Passing a re-
gion as an actual argument to a region-polymorphic function involves neither
resetting the region nor storing any value in it, but a storage mode has to be
determined at that point nonetheless, because it has to be passed into the
function together with the region. The storage mode expresses whether, at
the call site, there may be any live values in the region after the call. For
example, in Figure 12.1, the call to f at (*1*) passes r16 with storage mode
atbot because the only value that exists before the call of f and is needed
after the call of f is length, which is declared in a different compilation unit
and therefore obviously does not reside in r16.

Within every lambda abstraction, the MLKit performs a backwards flow
analysis that determines, for every allocation point, a set of locally live vari-
ables, that is, a set of variables used by the remainder of the computation in
the function up to the syntactic end of the function. (This includes variables
that appear in function application expressions.) Prior to the computation
of locally live variables, a program transformation, called K-normalisation,
has made sure that every intermediate result that arises during computa-
tion becomes bound to a variable. (This happens by introducing extra let

bindings, when necessary.)4

The MLKit also computes a set of locally live variables for those allocation
points that do not occur inside functions.

We now give an informal explanation of the rules that assign storage
modes to allocation points. Let an allocation point

at ρ (12.1)

4K-normalisation is transparent to users: although the storage mode analysis and all
subsequent phases up to code generation operate on K-normal forms, programs are always
simplified to eliminate the extra let bindings before they are presented to the user.
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let fun f attop r1 [r7:INF] (var255)=

(case var255

of nil => nil

| _ =>

let val xs = #1 decon_:: var255;

val x = #0 decon_:: var255

in :: (x + 1, f[sat r7] xs) attop r7

end

) (*case*) ;

val n =

letregion r16:INF

in length[]

let val l1 =

::

(1,

:: (2, :: (3, nil) attop r16) attop r16

) attop r16

in (case true

(*1*) of true => f[atbot r16] l1 | _ => l1

) (*case*)

end

end (*r16:INF*)

in {|n: _, f: (_,r1)|}

end

Figure 12.1: Storage modes inferred by the storage mode analysis.
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be given.

CASE A: ρ is a global region. Then attop is used. There is a deficiency we
have to admit here. The MLKit only puts letregion around expressions,
not around declarations. Thus, if one writes

local

fun f [] = []

| f (x::xs) = x+1 :: f xs

val l1 = [1,2,3]

in

val n = length(if true then f l1 else l1)

end

at top level, then l1 is put into a global region, although this is really unnec-
essary. As a consequence, f would be called with storage mode attop and
thus l1 would not be overwritten.

CASE B: The region variable ρ is not a global region and the allocation
point (12.1) occurs inside a lambda abstraction, that is, inside an expression
of the form fn pat => e. Here we regard every expression of the form

let fun f(x) = e in e′ end

as an abbreviation for

let val rec f = fn(x) => e in e′ end

Then it makes sense to talk about the smallest enclosing lambda abstraction
(of the allocation point).

Now there are the following cases:

B1 ρ is bound outside the smallest enclosing lambda abstraction (and this
lambda abstraction is not the right-hand side of a declaration of a
region-polymorphic function that has ρ as formal parameter): use attop
(see Figure 12.2)

B2 ρ is bound by a letregion expression inside the smallest enclosing func-
tion: use atbot if no locally live variable at the allocation point has ρ
free in its region-annotated type scheme with place (Section 6.2), and
use attop otherwise (see Figure 12.3)
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B3 (first attempt) ρ is a formal parameter of a region-polymorphic func-
tion whose right-hand side is the smallest enclosing lambda abstraction:
use sat, if no locally live variable at the allocation point has ρ free in
its region-annotated type scheme with place, and use attop otherwise
(see Figure 12.4).

letregion ρ
in . . . (fn pat => . . . at ρ . . .)
end

fun f at ρ1 [ρ] =

(fn x => (fn y => . . . at ρ . . .)at ρ2)at ρ1

Figure 12.2: Two typical situations where at ρ is turned into attop ρ by
rule B1.

(fn pat => . . .
letregion ρ
in . . . at ρ . . . l . . .
end . . .

)

Figure 12.3: The situation considered in B2. If no locally live variable l has
ρ occurring in its region-annotated type scheme with place, replace at ρ by
atbot ρ, otherwise by attop ρ.

The motivation for (B1) is that if ρ is declared non-locally, then we do
not attempt to find out whether ρ contains live data (this would require a
more sophisticated analysis.)

The intuition behind (B2) is as follows. Region inference makes sure
that the region-annotated type of a variable always contains free in it region
variables for all the regions that the value bound to the variable needs when
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fun f at ρ0 [ρ, . . .] =

(fn pat => . . . at ρ . . . l . . .)

Figure 12.4: The situation considered in B3. If no locally live variable l has
in its region-annotated type scheme with place a region variable that may be
aliased with ρ, replace at ρ by sat ρ, otherwise by attop ρ.

used. The lifetime of the region bound to ρ is given by the letregion

expression, which is in the same function as the allocation point. Thus, if no
locally live variable at the allocation point has ρ free in its region-annotated
type scheme with place, then ρ really does not contain any live value at that
allocation point.

The intuition behind (B3) is the same as behind (B2), but in this case
there is a complication: ρ is only a formal parameter so it may be instantiated
to different regions; in particular it may be instantiated to a region variable
that does occur free in the region-annotated type scheme with place of a
locally live variable at the allocation point. If that happens, rule (B3), as
stated, is not sound!

We refer to the phenomenon that two different region variables in the
program may denote the same region at runtime as region aliasing. To de-
termine whether to use sat or attop in case (B3), the MLKit builds a region
flow graph for the entire compilation unit. (This construction happens in a
phase prior to the storage mode analysis proper.) The nodes of the region
flow graph are region variables and arrow effects that appear in the region-
annotated compilation unit. Whenever ρ1 is a formal region parameter of
some function declared in the unit and ρ2 is a corresponding actual region
parameter in the same unit, a directed edge from ρ1 to ρ2 is created. Simi-
larly for arrow effects: if ε1.ϕ1 is a bound arrow effect of a region-polymorphic
function declared in the compilation unit and ε2.ϕ2 is a corresponding actual
arrow effect then an edge from ε1 to ε2 is inserted into the graph. Also, edges
from ε2 to every region and effect variable occurring in ϕ2 are inserted. Fi-
nally, for every region-polymorphic function f declared in the program and
for every formal region parameter ρ of f , if f is exported from the compi-
lation unit, then an edge from ρ to the global region of the same runtime
type as ρ is inserted into the graph. (This is necessary, so as to cater for
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applications of f in subsequent compilation units.)
Let G be the graph thus constructed. For every node ρ in the graph, we

write 〈ρ〉 to denote the set of region variables that can be reached from ρ,
including ρ itself. The rule that replaces (B3) is:

B3 ρ is a formal parameter of a region-polymorphic function whose right-
hand side is the smallest enclosing lambda abstraction: use sat, if, for
every variable l that is locally live at the allocation point and for every
region variable ρ′ that occurs free in the region-annotated type scheme
with place of l, it is the case that 〈ρ〉 ∩ 〈ρ′〉 = ∅; use attop otherwise.

CASE C: ρ is bound by a letregion expression and the allocation point
(12.1) does not occur inside any function abstraction. As in (B2), use atbot

if no locally live variable at the allocation point has ρ free in its region-
annotated type scheme with place, and use attop otherwise.

12.3 Example: Computing the Length of Lists

We shall now illustrate the storage mode rules of Section 12.2 with some small
examples, which also allow us to discuss benefits and drawbacks associated
with region resetting.

Consider the functions declared in Figure 12.5;5 they implement five dif-
ferent ways of finding the length of a list! The first, nlength, is the most
straightforward one. It is not tail recursive. Textbooks in functional pro-
gramming often recommend that functions are written iteratively (i.e., us-
ing tail calls) whenever possible. This we have done with tlength. Next,
klength is a version that contains a local region endomorphism loop to per-
form the iteration; llength is similar to klength, except that the region
endomorphism is declared outside llength, using local. A region profile
resulting from running the program is shown in Figure 12.6. The diagram
shows how much space is used in regions (both finite and infinite regions)
and on the stack. The rDesc band shows how much space is used on the
stack for holding region descriptors. The stack band shows how much space
is used on the stack, including neither finite regions nor region descriptors;
the stack band mainly consists of registers and return addresses that have
been pushed onto the stack.

5Program kitdemo/length.sml.
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fun upto n =

let fun loop(n,acc) = if n=0 then acc

else loop(n-1, n::acc)

in loop(n,[])

end

fun nlength [] = 0

| nlength (_::xs) = 1 + nlength xs

fun tlength(l) =

let fun tlength’(nil, acc) = acc

| tlength’(_::xs, acc) = tlength’(xs,acc+1)

in tlength’(l,0)

end

fun klength l =

let fun loop(p as ([], acc)) = p

| loop(_::xs, acc) = loop(xs,acc+1)

in #2(loop(l,0))

end

local fun llength’(p as ([], acc)) = p

| llength’(_::xs, acc) = llength’(xs,acc+1)

in fun llength(l) = #2(llength’(l, 0))

end

fun global(p as ([], acc)) = p

| global(_::xs, acc) = global(xs, acc+1)

fun glength(l) = #2(global(l, 0))

val k = 500000

val run =

nlength(upto k) + tlength(upto k) + klength(upto k)

+ llength(upto k) + glength(upto k);

Figure 12.5: Five different ways of computing the length of lists.
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Figure 12.6: Region profiling of five different ways of computing the length
of a list, namely, from left to right: nlength, tlength, klength, llength,
and glength.
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In Figure 12.6, we clearly see the five phases. In each phase, first a list is
built—seen as an almost linear growth in a region; then follows a computation
of the length of the list. The space behavior of the five ways of computing
the length vary. We shall have more to say about the time behavior in what
follows.

As one would expect, nlength leads to a peak in stack size; it does not
use regions. The peak in stack size is caused by the stacking of a return
address.

Next, we see that tlength is an improvement over nlength, the main
reason being that the MLKit has figured out that the argument to tlength

can be passed unboxed; thus no regions are used to hold the argument pair.
However, if we chose to disable the unboxing of arguments that the MLKit
performs,6 the function would become region-polymorphic and the polymor-
phic recursion in regions would allow the pair (xs, acc+1) to be stored in
a region different from the argument pair to tlength’. In this case, what
appeared to be a tail call would in fact not be a tail call, for it would automat-
ically be enclosed in a letregion construct, introducing a fresh region for
each argument pair (xs, acc+1). This region would be finite, so it would be
allocated on the stack. Thus, with unboxing of function arguments disabled,
we would see a sharp increase in stack size for tlength’. Although unboxing
of function arguments saves us in this situation, we cannot always expect it
to do so; if we were to collect boxed data in an accumulating parameters
to the function and this data is not to be returned by the function, there
is a danger that the recursive call would not become a tail call due to the
introduction of a letregion construct being wrapped around the recursive
call.

The next function, klength, deserves careful study, because it is a proto-
type of a particular schema that can be used again and again when program-
ming with regions. Iteration is done by a region endomorphism, loop, which
is declared as a local function to the main function. The use of the same
variable p on both the left-hand side and the right-hand side of the declara-
tion of loop forces loop to be a region endomorphism. Because the result
of loop(xs,acc+1) is also the result of loop, the result of loop(xs,acc+1)
therefore has to be in the same region as p; but because loop is an endo-
morphism, (xs, acc+1) is forced to be in the same region as p. Thus, what

6Unboxing of function arguments can be disabled by passing the option
-no unbox function arguments to the MLKit compiler.
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appears to be a tail call (loop(xs,acc+1)) really will be a tail call; in par-
ticular, there will be no fresh region for the argument and no growth of the
stack.

Better still, we have carefully arranged that memory consumption will
be constant throughout the computation of the length of the list. First, the
argument to the initial call of loop is a pair (l, 0) constructed at that point.
Because loop is a region endomorphism, the result of loop(l, 0) will be
in the same region as (l, 0). Moreover, because we then immediately take
the second projection of that pair, that region is clearly local to the body of
klength. Call the region ρ. Because there can be an unbounded number of
stores into this region, ρ is classified as infinite by multiplicity inference.

The storage mode passed along with ρ in the initial call loop(l,0) is
atbot, by rule (B2) of Section 12.2. Inside loop, the storage mode given to
the allocation of (xs, acc+1) is sat, by rule (B3) of Section 12.2: the only
locally live variable at the point where the allocation takes place is loop,
which we must not destroy before calling! The region that loop lies in is
clearly different from ρ.

Therefore, every iteration of loop resets the infinite region ρ so that it
will contain at most one pair. This is seen very clearly in the third hump of
Figure 12.6.

Next consider llength. The difference from klength is that llength’ is
now declared outside llength. Although the use of local makes it clear that
llength’ is not exported from the compilation unit, llength’ must in fact
reside in a global region, because llength, which is exported, calls llength’.
Nonetheless, the storage mode analysis still achieves constant memory usage.
As before, we have arranged that iteration is done by a region endomorphism
that is initially applied to a freshly constructed pair. This pair can reside
in a region that is local to the body of llength (once again, the projection
#2(llength’(l, 0)) makes sure that the pair does not escape the body of
llength). The crucial bit is now what storage mode llength’ uses when it
stores (xs, acc+1). The only locally live variable at that point is llength’
itself and, as we noted earlier, length’ lives in a global region, which is
clearly different from the region inside llength that contains all the pairs.
Thus, storage mode sat will be used, as desired.

Finally, consider glength, which is similar to llength, but with the
crucial difference that global is exported from the compilation unit. Because
global may be called from a different compilation unit, then, for all we
know, global may be applied to a pair that resides in the same (global)
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region as global itself. Using sat when storing (xs, acc+1) would then
be a big mistake: it would destroy the very function that we are trying to
call! Therefore, the storage mode analysis assigns attop to that storage
operation.7 Consequently, we get a memory leak, as shown in the final hump
of Figure 12.6.

To sum up, here is how one writes a loop without using space proportional
to the number of iterations:

1. The iteration should be done by an auxiliary, uncurried function that
is declared as local to the function that uses it; we refer (informally) to
this auxiliary function as the iterator.

2. The iterator should be a region endomorphism and should be tail re-
cursive.

3. Iteration should start from a suitably fresh initial argument; the result
of the iteration should be kept clearly separate from the region where
the iterator function lies.

Mutual recursion poses no additional complications. All functions in a block
of mutually recursive functions are put in the same region.

Finally, the reader may be concerned that the two recommended solu-
tions, klength and llength, are much slower than the other versions. This
is partly an artifact of the profiling software.8 To get a better picture of the
actual cost of the different versions, we compiled the five programs separately
(using lists of length 10 million instead of 10,000) using the x86 backend and
then ran the programs on a Linux Box with 512Mb RAM and a 750Mhz
Pentium III processor.9 The results are shown in Figure 12.7. Because upto

alone takes 0.62 seconds to build the list, the differences in times are clear:
the versions of the length function that take pairs as arguments are slower
than the version that stores values on the stack (i.e., nlength), which again
is slower than tlength, which take its arguments unboxed, probably in reg-
isters.

7To be precise, attop comes about by using rule (B3) of Section 12.2. This example
illustrates why we put edges from formal region parameters to global regions for exported
functions when constructing the region flow graph.

8When profiling is turned on, every resetting of a region involves resetting of values in
the first region page of the region.

9If you try to run the experiments yourself, you will probably need to increase the
stacksize limit by issuing the command limit stacksize 200M in your tcsh shell.



12.4. RESETREGIONS AND FORCERESETTING 111

program upto nlength tlength klength llength glength

sec. 0.62 1.18 0.93 1.92 1.94 1.47

Figure 12.7: User time in seconds for building a list of 10 million elements
and computing its length, using five different length functions. upto builds
the list, but does not compute a length. Times are average over three runs.

12.4 resetRegions and forceResetting

It is often the case that there are only a few places in the program where
resetting is really essential, for example in some main loop. Therefore, the
MLKit provides two operations that the programmer can use to encourage
(or force) the MLKit to perform resetting at particular places in the program.
The two operations are

resetRegions vid

and
forceResetting vid

In both cases, the argument has to be a value identifier. To port programs
that contain resetRegions and forceResetting to other ML systems, sim-
ply declare

fun resetRegions _ = ()

fun forceResetting _ = ()

before compiling the program developed using the MLKit.
Let ρ be a region variable that occurs free in the region-annotated type

scheme with place of vid. Let m be the storage mode determined for ρ at a
program point according to the rules of the previous section. Whether reset-
ting of vid at that program point actually takes place at runtime, depends
on m and on whether resetting is forced, see Figure 12.8.

12.5 Example: Improved Mergesort

We can now improve on the mergesort algorithm (Section 6.4) by taking
storage modes into account. Splitting a list can be done by an iterative
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Does resetting really take place at runtime?
resetRegions forceResetting

m = atbot yes yes
m = sat only if runtime stor-

age mode is atbot
yes∗

m = attop no∗ yes∗

(∗): A compile-time warning is printed in this case.

Figure 12.8: The storage modes that will be used when resetting a region
depending on m, the storage mode inferred by the storage mode analysis, and
depending on whether the resetting is safe (resetRegions) or potentially
unsafe (forceResetting).

region endomorphism that is made local to the sorting function. Also, when
the input list has been split, it is no longer needed, so the region it resides
in can be reset. Similarly, when the two smaller lists have been sorted (into
new regions) the regions of the smaller lists can be reset. These three simple
observations lead to the variant of msort listed in Figure 12.9.10

Unfortunately, the storage mode analysis complains:

*** Warnings ***

resetRegions(xs):

You have suggested resetting the regions that appear free

in the type scheme with place of ’xs’, i.e., in

(int, [r49]) list

(1)

’r49’: there is a conflict with the locally

live variable

l :(int, [r56]) list

from which the following region variables can be reached

in the region flow graph:

{r56}

Amongst these, ’r56’ can also be reached from ’r49’.

Thus I have given ’r49’ storage mode "attop".

10MLB-file: kitdemo/msortreset1.mlb, file kitdemo/msortreset1.sml.
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local

fun cp [] =[]

| cp (x::xs)= x :: cp xs

(* exormorphic merge *)

fun merge(xs, []):int list = cp xs

| merge([], ys) = cp ys

| merge(l1 as x::xs, l2 as y::ys) =

if x<y then x :: merge(xs, l2)

else y :: merge(l1, ys)

(* splitting a list *)

fun split(x::y::zs, l, r) = split(zs, x::l, y::r)

| split(x::xs, l, r) = (xs, x::l, r)

| split(p as ([], l, r)) = p

infix footnote

fun x footnote y = x

(* exomorphic merge sort *)

fun msort [] = []

| msort [x] = [x]

| msort xs = let val (_, l, r) = split(xs, [], [])

in resetRegions xs;

merge(msort l footnote resetRegions l,

msort r footnote resetRegions r)

end

in

val runmsort = msort(upto(50000))

val result = print "Really done\n"

end

Figure 12.9: Variant of msort that uses resetRegions to improve memory
usage. The MLKit fails to infer that the region holding the argument list xs
can be reset after xs is split.
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There is one complaint concerning the first resetRegions, but none con-
cerning the two remaining ones. By inspecting the region-annotated term
one sees that r49 is a formal parameter of msort. Due to the recursive call
msort l, the region graph contains an edge from r49 to r56. Thus the anal-
ysis decides on attop, using rule (B3). This choice shows a weakness in the
analysis, for using sat would really be sound. (The problem is that, unlike
polymorphic recursion, the region flow graph does not distinguish between
different calls of the same function.) Seeing that this is the problem, we de-
cide to put forceResetting to work, see Figure 12.10.11 The region profile
of the improved merge sort appears in Figure 12.11. As expected, we have
now brought space consumption down from four times to two times the size
of the input. Figure 12.11 may be compared to Figure 6.4 on page 67.

12.6 Example: Scanning Text Files

In this section we present a program that can scan a sequence of Standard
ML source files so as to compute what percentage of the source files is made
up by comments. Recall that an ML comment begins with the two characters
(*, ends with *), and that comments may be nested but must be balanced
(within each file, we require).

The obvious solution to this problem is to implement an automaton with
counters to keep track of the level of nesting of parentheses, number of char-
acters read, and number of characters within comments. This provides an
interesting test for region inference: although designed with the lambda cal-
culus in mind, does the scheme cope with good old-fashioned state compu-
tations?

Let us be ambitious and write a program that only ever holds on to one
character at a time when it scans a file. In other words, the aim is to use
constant space (i.e., space consumption should be independent of the length
of the input file).

To this end, let us arrange to use a region with infinite multiplicity to
hold the current input character and then reset that region before we proceed
to the next character. The iteration is done by tail recursion, using region
endomorphisms to ensure constant space usage.

The bulk of the program appears below.12 The scanning of a single file

11MLB-file: kitdemo/msortreset2.mlb, file kitdemo/msortreset2.sml.
12MLB-file: kitdemo/scan.mlb, file: kitdemo/scan.sml.
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local

fun cp [] =[]

| cp (x::xs)= x :: cp xs

(* exormorphic merge *)

fun merge(xs, []):int list = cp xs

| merge([], ys) = cp ys

| merge(l1 as x::xs, l2 as y::ys) =

if x<y then x :: merge(xs, l2)

else y :: merge(l1, ys)

(* splitting a list *)

fun split(x::y::zs, l, r) = split(zs, x::l, y::r)

| split(x::xs, l, r) = (xs, x::l, r)

| split(p as ([], l, r)) = p

infix footnote

fun x footnote y = x

(* exomorphic merge sort *)

fun msort [] = []

| msort [x] = [x]

| msort xs = let val (_, l, r) = split(xs, [], [])

in forceResetting xs;

merge(msort l footnote resetRegions l,

msort r footnote resetRegions r)

end

in

val runmsort = msort(upto(50000))

val result = print "Really done\n"

end

Figure 12.10: Using forceResetting to reset regions.
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Improved Merge Sort - Region profiling Fri May 25 07:59:05 2001
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Figure 12.11: Region profiling of the improved mergesort. The lower triangle
contains unsorted elements, while the upper triangle contains sorted ele-
ments. The program was compiled with profiling enabled and then run with
the command run -realtime -microsec 10000. The PostScript picture
region.ps was generated with the command rp2ps -region -eps 137 mm

and then previewed using the command ghostview region.ps .
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is done by scan, which contains three mutually recursive region endomor-
phisms (count, after lparen, and after star) written in accordance with
the guidelines in Section 12.3. The built-in TextIO.inputN function under-
stands storage modes; if called with storage mode atbot, it will reset the
region where the string should be put before reading the string from the in-
put. Consequently, at every call of next, the “input buffer region” will be
reset.

The other important loop in the program is driver, a function that
repeatedly reads a file name from a given input stream, opens the file with
that name, and calls scan to process the file. Once again, we want to keep
at most one file name in memory at a time, so we would like the region
containing the file name to be reset upon each iteration. As it turns out,
readWord will always try to store the string it creates at the bottom of the
region in question.

In general however, when splitting a program unit into two, one may have
to insert explicit resetRegions into the second unit, when operations from
the first unit are called. This extra resetting may be necessary because formal
region parameters of exported functions are connected to global regions in
the region flow graph (cf., rule B3).

local

exception NotBalanced

fun scan(is: TextIO.instream) : int*int =

let

fun next() = TextIO.inputN(is, 1)

fun up(level,inside) = if level>0 then inside+1

else inside

(* n: characters read in ’is’

inside: characters belonging to comments

level : current number of unmatched (*

s : next input character or empty *)*)

fun count(p as (n,inside,level,s:string))=

case s of

"" => (* end of stream: *) p

| "(" => after_lparen(n+1,inside,level,next())

| "*" => after_star(n+1,up(level,inside),level,next())
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| ch => count(n+1,up(level,inside), level,next())

and after_lparen(p as (n,inside,level,s))=

case s of

"" => p

| "*" => count(n+1,inside+2, level+1,next())

| "(" => after_lparen(n+1, up(level,inside),

level, next())

| ch => count(n+1,up(level,up(level,inside)),

level, next())

and after_star(p as (n,inside,level,s)) =

case s of

"" => p

| ")" => if level>0 then

count(n+1,inside+1,level-1,next())

else raise NotBalanced

| "*" => after_star(n+1,up(level,inside),

level,next())

| "(" => after_lparen(n+1,inside,level,next())

| ch => count(n+1,up(level,inside),level,next())

val (n, inside,level,_) = count(0,0,0,next())

in

if level=0 then (n,inside) else raise NotBalanced

end

fun report_file(filename, n, inside) =

writeln(concat[filename, ": size = ", Int.toString n,

" comments: ", Int.toString inside, " (",

(Int.toString(percent(inside, n))

handle _ => "-"), "%)"])

(* scan_file(filename) scans through the file named

filename returning either SOME(size_in_bytes,

size_of_comments) or, in case of an error, NONE.

In either case a line of information is printed. *)

fun scan_file (filename: string) : (int*int)option=

let val is = TextIO.openIn filename
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in let val (n,inside) = scan is

in TextIO.closeIn is;

report_file(filename, n, inside);

SOME(n,inside)

end handle NotBalanced =>

(writeln(filename ^ ": not balanced");

TextIO.closeIn is; NONE)

end handle IO.Io {name,...} =>

(writeln(name^" failed."); NONE)

fun report_totals(n,inside) =

writeln(concat["\nTotal sizes: ", Int.toString n,

" comments: ", Int.toString inside,

" (", (Int.toString(percent(inside,n))

handle _ => "-"), "%)"])

(* main(is) reads a sequence of filenames from is,

one file name pr line (leading spaces are skipped;

no spaces allowed in file names). Each file is

scanned using scan_file after which a summary

report is printed *)

fun main(is: TextIO.instream):unit =

let

fun driver(p as(NONE,n,inside)) =

(report_totals(n, inside); p)

| driver(p as (SOME filename,n:int,inside:int)) =

driver(case scan_file filename

of SOME(n’,inside’) =>

(readWord(is), n+n’,inside+inside’)

| NONE => (readWord(is),n,inside))

in

driver(readWord(is),0,0); ()

end

in

val result = main(TextIO.stdIn)

end
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The program was compiled both with and without profiling turned on.
The output from running the program on 10 of the source files for the MLKit
is shown here:

Parsing/INFIX_STACK.sml: size = 487 comments: 321 (65%)

Parsing/InfixStack.sml: size = 7544 comments: 3025 (40%)

Parsing/Infixing.sml: size = 32262 comments: 5295 (16%)

Parsing/LEX_BASICS.sml: size = 2102 comments: 1257 (59%)

Parsing/LEX_UTILS.sml: size = 1305 comments: 291 (22%)

Parsing/LexBasics.sml: size = 12677 comments: 2967 (23%)

Parsing/LexUtils.sml: size = 7643 comments: 717 (9%)

Parsing/MyBase.sml: size = 33933 comments: 11140 (32%)

Parsing/PARSE.sml: size = 1078 comments: 572 (53%)

Parsing/Parse.sml: size = 7040 comments: 870 (12%)

Total sizes: 106071 comments: 26455 (24%)

A region profile for that run is shown in Figure 12.12. The almost-constant
space usage is evident. The occasional disturbances are due to the non-
iterative functions that read a file name from input by first reading one line
and then extracting the name.
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Scanning Text Files - Region profiling Fri May 25 08:24:06 2001
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Figure 12.12: Region profile of the comment scanner. The unit of mea-
sure on the y-axis is bytes, not kilobytes. The occasional increases in
memory use is due to the functions that read a file name from an in-
put stream. The program was compiled with profiling enabled, then
run with the command run -microsec 100000 < ../kitdemo/scanfiles.
A PostScript file region.ps can be generated with the command
rp2ps -region -sampleMax 1000 -eps 137 mm.
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Chapter 13

Higher-Order Functions

13.1 Lambda Abstractions (fn)

A lambda abstraction in Standard ML is an expression of the form

fn pat => exp

where pat is a pattern and exp an expression. Lambda abstractions denote
functions. We refer to the exp as the body of the function; variable occur-
rences in pat are binding occurrences; informally, the variables that occur in
pat are said to be lambda-bound with scope exp.

Lambda abstractions are represented by closures, both in the language
definition and in the MLKit. In the MLKit, a closure for a lambda abstrac-
tion consists of a code pointer plus one word for each free variable of the
lambda abstraction. Closures are not tagged except when garbage collection
is enabled, in which case a closure contains one or more words to hold the
tag.

At this stage, it will hardly come as a surprise to the reader that closures
are stored in regions. Sometimes they reside in finite regions on the stack,
other times they live in infinite regions, just like all other boxed values.

Every occurrence of fn in the program is considered an allocation point;
the region-annotated version of the lambda abstraction is

fn at ρ pat => exp

Standard ML allows functions to be declared using val rather than fun, for
example,

123
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val h = g o f

declares the value identifier h to be the composition of g and f. Whereas func-
tions declared with fun automatically become region-polymorphic, functions
declared with val do not in general become region-polymorphic.1 However,
in the special case where the right-hand side of the value declaration is a
lambda abstraction, the MLKit automatically converts the declaration into
a fun declaration, thereby making the function region-polymorphic after all.

ML allows declarations of the form

fun f atpat1 atpat2 · · · atpatn = exp

as a shorthand for

fun f atpat1 = fn atpat2 => · · · fn atpatn => exp

where atpat ranges over atomic patterns. Functions declared using this ab-
breviation are said to be Curried.

13.2 Region-Annotated Function Types

The general form of a region-annotated function type is

([µ1, · · · , µn] ε.ϕ−−→µ′, ρ)

where µ1, · · ·µn are the type with places of the arguments, µ′ is the type
with place of the result, and ρ is the region containing the closure for the
function. When a function type has only one argument type, we shall often
write it on the form (µ ε.ϕ−−→µ′, ρ), and so shall the MLKit.

As mentioned in Section 5.3, the unusual looking object ε.ϕ is called an
arrow effect. Its first component is an effect variable, whose purpose will
be explained shortly. The second component is called the latent effect, and
describes the effect of evaluating the body of the function.

The following example illustrates why latent effects are crucial for know-
ing the lifetimes of closures.2 Consider

1The reason for this is that the expression on the right-hand side of the value declaration
might have an effect (e.g, print something) before returning the function. It would not be
correct to suspend this effect by introducing formal region parameters.

2Program kitdemo/lambda.sml.
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let val n =

letregion r8:1, r10:1, r11:INF

in let val f =

let val xs =

:: (1, :: (2, nil) attop r11) attop r11

in fn atbot r8 ys =>

length[] xs + length[] ys

end

in f :: (7, nil) attop r10

end

end (*r8:1, r10:1, r11:INF*)

in {|n: _|}

end

Figure 13.1: Region-annotated program illustrating that the lifetime of a
closure is at least as long as the lifetime of the values that evaluation of the
function body will require.

val n = let val f = let val xs = [1,2]

in fn ys => length xs + length ys

end

in f [7]

end

Notice that xs has to be kept alive for as long as the function (fn ys => · · ·)
may be called, for this function will access xs, when called. The region-
annotated version of the example appears in Figure 13.1.3 We see that xs

is put in r11, that the function closure for (fn ys => · · ·) is put in r8

and indeed, r8 and r11 have the same lifetime. To understand how the
region inference system figured that out, let us consider the effect and the
region-annotated types of particular sub-expressions. Looking at the lambda
abstraction, it must have a functional type of the form (τ ε.ϕ−−→ τ ′, r8) where
ϕ is the effect

{get(r1),get(r11),get(r10)}

3To see the output programs discussed in this section, enable the flag print drop

regions expression.
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Notice that r11 occurs free in the type of the lambda abstraction. But, as
pointed out in Section 3.4, the criterion for putting a letregion binding
of ρ around an expression e is that ρ occurs free neither in the type with
place of e nor in the type scheme with place of any variable in the domain
of the type environment. The smallest sub-expression of the program for
which r11 does not occur free in the type with place of the expression is the
right-hand side of the val binding of n, for that expression simply has type
with place int. And at that point, the only region variables that occur free
in the type environment are global region variables. Hence the placement of
the letregion binding of r11.

13.3 Arrow Effects

In a first-order language, effect variables might not be particularly impor-
tant. But in a higher-order language like ML, effect variables are useful for
tracking dependencies between functions. The following example illustrates
the point:4

fun apply f x = f x

val y = apply (fn n => n + 1.0) 5.0

val z = apply (fn m => m) 6

Here is the region-annotated type scheme of apply:

∀α0α2ρ7ρ8ρ9ρ10ε11ε12ε13.((α0, ρ10) ε11.∅−−−→(α2, ρ9), ρ8)
ε12.{put(ρ7)}−−−−−−−−→

((α0, ρ10)
ε13.{get(ρ8),ε11}−−−−−−−−−−→(α2, ρ9), ρ7)

The latent effect associated with ε12 shows that when apply is applied to a
function, it may create (in fact: will create) a function closure in ρ7. The
latent effect associated with ε11 is empty, because the declaration of apply
does not tell us anything about what effect its formal parameter f must
have. Crucially, however, ε11 is included as an atomic effect in the latent
effect associated with ε13; whenever the body of apply f is evaluated, the
body of f may be (in fact: will be) evaluated.

The polymorphism in effects makes it possible to distinguish between
the latent effects of different actual arguments to apply. For example, the
functions (fn n => n + 1.0) and (fn m => m) have different latent effects.

4Program kitdemo/apply.sml.
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Let us take the function (fn n => n + 1.0) as an example. It has region-
annotated type with place

((real, ρ18)
ε14.{get(ρ18),put(ρ5)}−−−−−−−−−−−−−→(real, ρ5), ρ17) (13.1)

Here, the effect variable ε14 and the region variables ρ18 and ρ5 were chosen
arbitrarily. (Actually, the region variable ρ5 denotes the global region for
reals.) The region inference algorithm discovers that (13.1) can be derived
from the argument type

((α0, ρ10) ε11.∅−−−→(α2, ρ9), ρ8)

of the type scheme for apply by the instantiating substitution

S = ({α0 7→ real, α2 7→ real}, {ρ10 7→ ρ18, ρ9 7→ ρ5, ρ8 7→ ρ17},
{ε11 7→ ε14.{get(ρ18),put(ρ5)})

Formally, a substitution is a triple (St, Sr, Se), where St is a finite map from
type variables to region-annotated types, Sr is a finite map from region vari-
ables to region variables, and Se is a finite map from effect variables to arrow
effects. Let us explain why substitutions map effect variables to arrow ef-
fects. One alternative, one might consider, is to let substitutions map effect
variables to effect variables. But then substitutions would not be able to
account for the idea that effects can grow, when instantiated. In the apply

example, for instance, the empty effect associated with ε11 has to grow to
{get(ρ18),put(ρ5)} at the concrete application of apply. Otherwise, as it is
easy to demonstrate, the region inference system would become unsound.

Another alternative would be to let substitutions map effect variables to
effects. But nor that would work well together with the idea of using sub-
stitutions to express growth of effects. For example, when applying the map
{ε 7→ {get(ρ0),put(ρ2)}} to the effect {get(ρ9), ε}, say, we would presum-
ably yield the effect {get(ρ9),get(ρ0),put(ρ2)} in which the fact that the
original effect had to be at least as large as whatever ε stands for, is lost.
Instead, we define substitution so that applying the effect substitution {ε 7→
ε.{get(ρ2),put(ρ)}} to {get(ρ9), ε} yields {get(ρ9), ε,get(ρ2),put(ρ)}.

We can now give a complete definition of atomic effects. An atomic effect
is either an effect variable or a term of the form get(ρ) or put(ρ), where ρ as
usual ranges over region variables. An effect is a finite set of atomic effects.

One can get the MLKit to print region-annotated type schemes with
places of all binding occurrences of value variables. Also, one can choose to
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have arrow effects included in the printout by passing the options print types

and print effects to the MLKit compiler. Although passing these options
gives very verbose output, it is instructive to look at such a term at least
once, to see how arrow effects are instantiated. We show the full output for
the apply example in Figure 13.2.

In reading the output, it is useful to know that the MLKit represents
effects and arrow effects as graphs, the nodes of which are region variables,
effect variables, put, get, or U (for “union”; U by itself means the empty
set). Region variables are leaf nodes. A put or get node has emanating
from it precisely one edge; it leads to the region variable in question. An
effect variable node (written e followed by a sequence number) is always
the handle of an arrow effect; there are edges from the effect variable to
the atomic effects of that arrow effect, either directly, or via union nodes
or other effect variable nodes. For instance, e13(U(U,get(r8),e11)) in the
figure denotes an effect variable with an edge to a union node that has edges
to an empty union node, a get node, and an effect variable node.

When a term containing arrow effects is printed, shared nodes that have
already been printed are marked with a @; their children are not printed
again. In the figure, the binding occurrence of apply has been printed with
its region-annotated type scheme. Each non-binding occurrence of apply

has been printed with four square-bracketed lists. The first list is the actual
region arguments; the following three are instantiation lists that show the
range of the substitution by which the bound variables of the type scheme
was instantiated, in the same order as the bound variables occurred. For
example, in the second use of apply, r8 was instantiated to r25.

13.4 On the Lack of Region Polymorphism

Unlike identifiers bound by fun, lambda-bound function identifiers are never
region-polymorphic. So in an expression of the form

(fn f => · · · f · · · f · · ·)

all the uses of f use the same regions. Indeed, because f occurs free in the
type environment while region inference analyses the body of the lambda
abstraction, none of the regions that appear in the type of f will be de-
allocated inside the body of the lambda abstraction. Also, such a region
must be bound outside the lambda abstraction, so any attempt to reset
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fun apply

:all

’a0,’a2,r7,r8,r9,r10,e11,e12,e13.

((’a0,r10)-e11->(’a2,r9),r8)

-e12(put(r7))->

((’a0,r10)-e13(U(U,get(r8),e11))->(’a2,r9),r7)

at r1

[r7:1]

[r8:0, r9:0, r10:0]

(f)=

fn e13 at r7 x:(’a0,r10) => f x;

val y:(real,r5) =

letregion r16:1, r17:1, r18:1

in apply

[r16]

[real,real]

[r16,r17,r5,r18]

[e14(get(r1),get(r18),put(r5)),

e19(put(r16)),

e15(e14(get(r1),get(r18),put(r5)),get(r17))

]

(fn e14 at r17 n:(real,r18) =>

letregion r21:1

in (n + 1.0at r21) at r5

end (*r21:1*)

)

5.0at r18

end (*r16:1, r17:1, r18:1*);

val z:int =

letregion r24:1, r25:1

in apply

[r24]

[int,int]

[r24,r25,r2,r2]

[e22,e26(put(r24)),e23(e22,get(r25))]

(fn e22 at r25 m:int => m)

6

end (*r24:1, r25:1*)

Figure 13.2: The instantiation of arrow effects keeps different applications
of the same function (here apply) apart. The output was obtained by
compiling the program kitdemo/apply.sml with options -print types,
-print effects, and -maximum inline size 0.
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such a region inside the body of the abstraction will cause the storage mode
analysis to complain (by Rule (B1) of Section 12.2).

Therefore, when a function f is passed as argument to another function
g, as in the expression g(f), first regions are allocated for the use of f , then
g is called, and finally, the regions are de-allocated (provided they are not
global regions). Whether the letregion construct thus introduced encloses
the call site immediately, as in

letregion ρ1, . . . , ρn in g(f) end

or further out, as in

letregion ρ1, . . . , ρn in . . . g(f) . . . end

depends on the type and effect of the expression g(f) in the usual way:
regions can be de-allocated when they occur free neither in the type with
place of the expression nor in the type environment.

13.5 Examples: map and foldl

Consider the program5

fun map f [] = []

| map f (x::xs) = f(x) :: map f xs

val x = map (fn x => x+1) [7,11]

This formulation of map is not the most efficient one in the MLKit, because it
will create one closure for each element in the list, due to currying.6 However
it serves to illustrate the point made in the previous section about allocating
regions in connection with higher-order functions. The region-annotated ver-
sion is listed in Figure 13.3. We see that the region that appears free in the
type with place of the successor function (i.e., r26) is allocated prior to the

5Program kitdemo/map.sml.
6When map and the application of map appear in the same compilation unit, the MLKit

will automatically specialise map to a recursive function that does not have this defect.
This specialisation is the result of a general optimisation of curried functions that are
invariant in their first argument. The output we present in this section was obtained by
passing to the MLKit compiler the option -maximum specialise size 0.
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let fun map at r1 [r7:1, r8:0] (var255)=

fn at r7 var256 =>

(case var256

of nil => nil

| _ =>

let val xs = #1 decon_:: var256;

val x = #0 decon_:: var256

in ::

(var255 x,

letregion r20:1

in map[r20,r8] var255 xs

end (*r20:1*)

) at r8

end

) (*case*) ;

val x =

letregion r26:1, r27:INF, r28:1

in map[r26,r1] (fn at r28 x => x + 1)

:: (7, :: (11, nil) at r27) at r27

end (*r26:1, r27:INF, r28:1*)

in {|x: _, map: (_,r1)|}

end

Figure 13.3: Although this version of map creates a closure for each list
element, the region-polymorphic recursion (of map) ensures that that closure
is put in a region local to map. Thus, these closures do not pile up in r26,
the region of the initial argument.
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call of map and that it stays alive throughout the evaluation of the body of
map. Notice, however, that the closures that are created when map is applied
do not pile up in r27, the region of the successor function. Instead, they are
put in local regions bound to r20, one closure in each region. Also, if we had
given some more complicated argument to map, the body of that function
could include letregion expressions. For each list element, regions would
then be allocated, used, and then de-allocated before proceeding to the next
list element.

So it might appear that higher-order functions are nothing to worry about
when programming with regions. That is not so, however. The limitation
that lambda-bound functions are never region-polymorphic can lead to space
leaks. Here is an example:

fun foldl f acc [] = acc

| foldl f acc (x::xs) = foldl f (f(x,acc)) xs

val x = foldl (fn (x,acc) => 10*acc+x) 0 [7,2];

Because f is lambda-bound, all the pairs created by the expression (x,acc)

will pile up in the same region. The storage mode analysis will infer storage
mode attop for the allocation of the pair, by rule (B1) of Section 12.2;
because foldl is curried, there are several lambdas between the formal region
parameter of foldl that indicates where the pair should be put and the
allocation point of the pair.

It does not help to uncurry foldl and turn foldl into a region endomor-
phism:

fun foldl(p as (f,[],_)) = p

| foldl(f,x::xs,acc) = foldl(f,xs,f(x,acc))

val x = #3(foldl(fn(x,acc) => 10*acc+x,[7,2],0));

The storage mode analysis will still give attop for the allocation of the pair
(x,acc), because the region of the pair is free in the region-annotated type
of f, which is locally live at that point.

What if we require that f be curried, so as to avoid the creation of the
pair altogether?7

7Program kitdemo/fold2.sml.
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fun foldl f b xs =

let fun loop(p as ([], b)) = p

| loop(x::xs, b) = loop(xs,f x b)

in

#2(loop(xs,b))

end

The region-annotated version of this program appears in Figure 14.4 on
page 143. This saves the allocation of a pair inside loop, although the saving
is lost if the evaluation of f x creates a closure.

In short, folding a function over a list may leak two words of memory for
each list element.
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Chapter 14

The Function Call

Standard ML allows function applications of the form

exp1exp2

where exp1 is the operator and exp2 is the operand. The syntax for function
application is overloaded, in that it is used for three different purposes in
ML:

1. applications of built-in operations such as +, =, and :=

2. applications of unary value constructors (including ref) and unary ex-
ception constructors

3. applications of user-defined functions, that is, functions introduced by
fn or fun

This chapter is about the last kind of function applications; in the following,
we use the term function application to stand for applications of user-defined
functions only.

Function applications are ubiquitous in Standard ML programs; in par-
ticular, iteration is often achieved by function calls. Not surprisingly, careful
compilation of function calls is essential for obtaining good performance.

The MLKit partitions function calls into four kinds, which are imple-
mented in different ways. At best, a function call is simply realised by a
jump in the target code. The resource conscious programmer will want to
know the special cases; for example, when doing an iterative computation, it

135
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is important to know whether the space usage is going to be independent of
the number of iterations.

The MLKit performs a backwards flow analysis, called call conversion, to
determine what function calls are tail calls and, more generally, what function
calls fall into the four special cases. We say that expressions produced by this
analysis are call-explicit. One can inspect call-explicit programs by passing
the option

-print call explicit expression

to the MLKit compiler, and thus check whether specific function calls in
the code turn out as intended. Call-explicit expressions are produced after
regions have been dropped (page 62) but before native code generation.

We shall first give a brief description of the parameter passing mechanism
in general and then discuss the different kinds of function calls provided,
working our way from the most specialised (and most efficient) cases towards
the default cases.

14.1 Parameter Passing

Parameters to functions are passed either on the runtime stack or, if possible,
in registers. Also region parameters to region-polymorphic functions are
passed on the runtime stack or in registers.

14.2 Tail Calls and Non-Tail Calls

A call that is the last action of a function is referred to as a tail call. After
region inference, the MLKit performs a tail call analysis (in one backwards
scan through the program). It is significant that the tail call analysis happens
after region inference; as we saw in Section 12.3, a function call that looks like
a tail call in the source program may end up as a non-tail call in the region-
annotated program, because the function has to return to free memory. The
tail call analysis divides function calls into four different kinds of calls:

jmp: tail calls of known functions

funcall: non-tail calls of known functions

fnjmp: tail calls of unknown functions

fncall: non-tail calls of unknown functions



14.3. TAIL CALL OF KNOWN FUNCTION (JMP) 137

In the sections to follow, we describe each of these kinds of calls in detail.

14.3 Tail Call of Known Function (jmp)

A call to a region-polymorphic function (i.e., a known function) takes the
form

f [ρ1, . . ., ρn] <e1, . . . , em>

where ρ1, . . ., ρn are actual region parameters to the function, f is the name
of a region-polymorphic function, and e1 · · · em, m ≥ 1 are value arguments
to the function (we often omit the brackets < · · · > when m = 1.) The MLKit
turns such a function call into the form

jmp f [ρ1, . . ., ρn] <e1, . . . , em>

if the call appears in a tail-call position, that is, if the call is the last thing the
current function needs to do. Because the start address of f is known during
compilation (because f is region-polymorphic), such a call is as efficient as
an assembly language jump to a constant label (not taking into account the
shuffling of arguments needed to match the calling convention for f .

The way to avoid that a letregion construct is wrapped around the
function call (and thus causes the call not to be recognized as a tail call) is
to turn the calling function into a region endomorphism, when possible.

The following is an example of how one obtains a tail call to a known
function:1

local

fun f’(p as (0,b)) = p

| f’(n,b) = f’(n-1,n*b)

in

fun f(a,b) = #2(f’(a,b))

end;

The call-explicit version of f’ appears in Figure 14.1.
There is a more efficient version of the function f that exploits the

MLKit’s unboxing of function arguments, but in general, one can rely on
unboxing to ensure tail-calls only when the elements of the argument tuple

1Program kitdemo/tail.sml.
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fun f’ attop r1 [r7:inf] (var256)=

(case #0 var256

of 0 => var256

| _ =>

let val b = #1 var256; val n = #0 var256

in jmp f’[sat r7] (n - 1, n * b) sat r7

end

) (*case*) ;

Figure 14.1: An example where a function call turns into a tail call to a
known function.

themselves are unboxed; otherwise there is a risk that, for each invocation,
fresh regions are introduced to hold the arguments to the call, and the call
would need to return to de-allocate these regions.

The MLKit can transform a call into a jmp tail call even in the case that
the call appears in the body of a fn expression. Consider the following two
mutually recursive functions g and h:2

fun g (n,b) = h (n-1) b

and h 0 b = b

| h n b = g(n,n*b)

Here h calls g in a tail position. The call explicit version of the program is
listed in Figure 14.2, and indeed, the call to g is recognized as a tail call.
Also notice that the MLKit does not try to in-line g in h (or vice-versa),
although such an optimisation would certainly improve on the efficiency of the
generated code. Another example of a jmp tail call is shown in Section 14.8.

14.4 Non-Tail Call of Known Function (funcall)

In the case that a call to a known function cannot be turned into a tail call,
because the call needs to return to do more work, the call is transformed into

funcall f [ρ1, . . . , ρn] exp

2Program kitdemo/tail2.sml.
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let fun g attop r1 [] (n, b)=

letregion r9:3

in fncall funcall h[atbot r9] (n - 1) b

end (*r9:3*)

and h attop r1 [r12:3] (var255)=

fn attop r12 var256 =>

(case var255

of 0 => var256

| _ => jmp g[] <var255, var255 * var256>

) (*case*)

in {|g: (_,r1), h: (_,r1)|}

end

Figure 14.2: A function call can turn into a tail call even in the case that the
call appears in the body of a fn expression.

where funcall is the mnemonic used for non-tail calls to region-polymorphic
functions. One example is the call to h in Figure 14.2. Here the call to h

take a region argument r9 and an ordinary argument (n-1); the call to h

returns width a closure, which needs to be applied to b before the function
g can de-allocate the region r9 and return.

This case completes all possible cases of applications of region-polymorphic
functions. We now turn to function applications where the operator is not
the name of a region-polymorphic function.

14.5 Tail Call of Unknown Function (fnjmp)

Consider the case
exp1 exp2

where (a) the call is a tail call and (b) exp1 is not the name of a region-
polymorphic function.

Here exp1 is evaluated to a closure in memory, pointed to by a standard
closure register. Then exp2 is evaluated and the result put in a standard
argument register. The first word in the closure contains the address of the
code of the function. This address is fetched into a third register and a jump
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to the address is made. Because the call is a tail call, it induces no allocation,
neither on the stack nor in regions. It is thus as efficient as an indirect jump
in assembly language.

The mnemonic used in call-explicit expressions for this special case is

fnjmp exp1 exp2

14.6 Non-Tail Call of Unknown Function (fncall)

Consider the case
exp1 exp2

where (a) the call is not a tail call and (b) exp1 is not the name of a region-
polymorphic function.

Applications of this form are implemented as follows. First exp1 is evalu-
ated and the result, a pointer to a closure, is stored in the standard closure
register. Then exp2 is evaluated and stored in the standard argument regis-
ter. Then live registers and a return address are pushed onto the stack and
a jump is made to the code address that is stored in the first word of the
closure pointed to by the standard closure register. Upon return, registers
are restored from the stack.

The mnemonic used in call-explicit expressions for this special case is

fncall exp1 exp2

14.7 Example: Function Composition

The Standard ML Basis Library declares function composition as follows3

fun (f o g) x = f(g x)

The resulting call-explicit expression produced by the MLKit is

fun o attop r1 [r7:3] (f, g)=

fn attop r7 x => fnjmp f (fncall g x)

Notice that f o g first creates a closure in r7 and then returns. The closure
is of size three words and contains a pointer to the code for the function and
pointers to the closures for f and g. When called, the created function first
performs a non-tail call of g and then a tail call to f.

3Program kitdemo/compose.sml.
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14.8 Example: foldl Revisited

Consider the following declaration of folding over lists:4

fun foldl f b xs =

case xs of

[] => b

| x::xs’ => foldl f (f x b) xs’

The recursive call of foldl is a call of a known function, but not a tail
call; foldl returns a closure, which is subsequently applied to the value of
(f x b). This too returns a closure, which in turn is applied to xs’. The
resulting call-explicit expression is shown in Figure 14.3. Notice that upon
each iteration, fresh regions for holding two closures are being allocated for
the duration of the recursive call. Thus, space usage is linear in the length
of the list (4 words for each list cell, to be precise).

An alternative version of foldl assumes that f is curried:5

fun foldl f b xs =

let fun loop(p as ([], b))= p

| loop(x::xs, b) = loop(xs,f x b)

in

#2(loop(xs,b))

end

It is compiled into the call-explicit expression in Figure 14.4. Here the loop
is implemented as a jump and there is no new allocation in each iteration,
except, of course, for the allocation that f might make.6

As an exercise, consider the following variant of foldl, which assumes
that f takes a pair as an argument:7

fun foldl’ f b xs =

let fun loop(p as ([], b))= p

| loop(x::xs, b) = loop(xs,f(x,b)))

4Program kitdemo/fold1.sml.
5Program kitdemo/fold2.sml.
6All the allocations made by the calls to f (one call for each element of the list) are

put in the same regions. If the list is very long or the values produced large, it may be a
good idea to copy the final result to separate regions.

7Program kitdemo/fold3.sml.
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fun foldl attop r1 [r7:4, r8:4] (f)=

fn attop r7 b =>

fn attop r8 xs =>

(case xs

of nil => b

| _ =>

let val xs’ = #1 decon_:: xs;

val x = #0 decon_:: xs

in letregion r22:4

in fncall

letregion r24:4

in fncall

funcall foldl[atbot r24,atbot r22] f

(fncall fncall f x b)

end (*r24:4*)

xs’

end (*r22:4*)

end

) (*case*)

Figure 14.3: The straightforward implementation of foldl uses space linear
in the length of the list. (Program kitdemo/fold1.sml.)
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fun foldl attop r1 [r7:3, r8:3] (f)=

fn attop r7 b =>

fn attop r8 xs =>

letregion r19:1

in let fun loop atbot r19 [r20:inf] (var256)=

(case #0 var256

of nil => var256

| _ =>

let val b = #1 var256;

val xs = #1 decon_:: #0 var256;

val x = #0 decon_:: #0 var256

in jmp loop[sat r20]

(xs,

fncall fncall f x b

) sat r20

end

) (*case*)

in letregion r26:inf

in let val v39423 =

funcall loop[atbot r26]

(xs, b) atbot r26

in #1 v39423

end

end (*r26:inf*)

end

end (*r19:1*)

Figure 14.4: The result of compiling the efficient version of foldl

(kitdemo/fold2.sml) is an iterative function that avoids argument pairs
piling up in one region.
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in

#2(loop(xs,b))

end

Interestingly, this program contains a potential space leak. Can you detect
it? If not, the MLKit will tell you when you compile the program if you pass
the compiler the option -warn on escaping puts.



Chapter 15

ML Basis Files and Modules

In Section 2.8 we described how to compile and run single-file programs.
In this chapter, we describe how to program in the large with the MLKit,
using Standard ML Modules and the possibility of organising source files in
ML Basis Files. The MLKit fully supports Standard ML Modules and it
has a sophisticated system for avoiding unnecessary recompilation. In the
following section, we describe the notion of ML Basis Files. We then turn to
show how to program with structures, signatures, and functors. To enable
the programmer to write efficient programs using the Modules language, we
shall also explain how the MLKit compiles Modules language constructs.

15.1 ML Basis Files

An ML Basis File, in short MLB-file, is a file that lists the SML source files
that make up a project or a library. An MLB-file can also reference other
MLB-files, so one can organise projects in a hierarchical manner. MLB-files
are enforced not to be cyclic.

MLB-files have file extension .mlb. The content of an MLB-file is a basis
declaration, for which the grammar is given in Figure 15.1. We assume a
denumerable infinite set of basis identifiers Bid, ranged over by bid. We
use longbid to range over long basis identifiers, that is, non-empty lists of
basis identifiers separated by a punctuation letter (.). Basis identifiers can
be used for giving a name to a group of compilation units and allow for
expressing source dependencies, exactly, as a directed acyclic graph, within
one MLB-file.
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bdec ::= bdec bdec sequential basis declaration
| ε empty basis declaration
| local bdec in bdec end local declaration
| basis bid = bexp basis identifier binding
| open longbid∗ opening of a basis
| atbdec
| path.mlb include

atbdec ::= path.sml source file
| path.sig source file

bexp ::= bas bdec end basis declaration grouping
| let bdec in bexp end let expression
| longbid

Figure 15.1: Grammar for MLB-files, i.e., files with extension .mlb. For some
file extension .ext, path.ext denotes either an absolute path or a relative path
(relative to the directory in which the MLB-file is located) to a file on the
underlying file system.
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In an MLB-file, one can reference source files and other MLB-files using
absolute or relative paths. Relative paths are relative to the location of the
MLB-file. Paths can reference environment variables using the $(ENVVAR)

notation, where ENVVAR is an environment variable.
Until now, we have seen a few examples of MLB-files that reference the

Basis Library, using the $(SML LIB) environment variable (see Section 6.4
for such an example). In Section 15.4, we present an example of an MLB-
file that reference other MLB-files. In Section 19.7, we shall see an example
of how an MLB-file can be compiled and linked with external object files,
produced with a C compiler, for instance. MLB-files may contain Standard
ML style comments. The declared identifiers of an MLB-file is the union
of the identifiers being declared by source files in the MLB-file, excluding
source files that are included using local. As an example of the use of basis
identifiers and local to limit what identifiers are declared by an MLB-file,
consult the MLB-file basis/basis.mlb.

Every source file must contain a Standard ML top-level declaration; the
scope of the declaration is all the subsequent source files mentioned in the
MLB-file and all other MLB-files that reference this MLB-file. Thus, a source
file may depend on source files mentioned earlier in the MLB-file and on other
referenced MLB-files. The meaning of an entire MLB-file is the meaning of
the top-level declaration that would arise by expanding all referenced MLB-
files and then concatenating all the source files listed in the MLB-file (with
appropriate renaming of declared identifiers of source files that are included
using local), in the order they are listed, except that each MLB-file is exe-
cuted only the first time it is imported.

The MLKit has a system for managing compilation and recompilation of
MLB-files. The system guarantees that the result of first modifying one or
more source files and then using the separate compilation system to rebuild
the executable is the same as if all source files were recompiled.

Thus, the separate compilation system is a way of avoiding recompiling
parts of a (possibly) long sequence of declarations, while ensuring that the
result is always the same as if one had compiled the entire program from
scratch. As an example, consider the MLB-file (kitdemo/scan.mlb) for the
text scanning example of Section 12.6. It contains the following three lines:

$(SML_LIB)/basis/basis.mlb

lib.sml

scan.sml
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The source files for the project are lib.sml and scan.sml, which are both
located in the directory where scan.mlb is located. Whereas each of the
source files lib.sml and scan.sml depends on the Basis Library, the source
file scan.sml also depends on lib.sml.

Compiling an MLB-file is easy; simply give it as an argument to the
MLKit executable. When the MLB-file is first compiled, the MLKit detects
automatically when a source file has been modified (by checking file modifi-
cation dates). After a project has been successfully compiled and linked, it
can be executed by running the command

run

in the working directory.
The MLKit compiles each source file of an MLB-file one at a time, in the

order mentioned in the project file. A source file is compiled under a given set
of assumptions, which provides, for instance, region-annotated type schemes
with places for free variables of the source file. Also, compilation of a source
file gives rise to exported information about declared identifiers. Exported
information may occur in assumptions for source files mentioned later in the
MLB-file.

There are two rules that govern when a source file is recompiled. A
source file is recompiled if either (1) the user has modified the source file or
(2) the assumptions under which the source file was previously compiled have
changed. To avoid unnecessary recompilation, assumptions for a source file
depend on only its free identifiers. Moreover, if a source file has been compiled
earlier, the MLKit seeks to match the new exported information to the old
exported information by renaming generated names to names generated when
the source file was first compiled. Matching allows the compiler to use fresh
names (stamps) for implementing generative data types, for instance, and still
achieve that a source file is not necessarily recompiled even though source
files, on which it depends, are modified.

Let us assume that we modify the source file lib.sml of the text scan-
ning example, after having compiled the MLB-file kitdemo/scan.mlb once.
When compiling the MLB-file again, the MLKit checks whether the assump-
tions under which the source file scan.sml was compiled have changed, and
if so, recompiles scan.sml. Modifying only comments or string constants
inside lib.sml or extending its set of declared identifiers does not trigger
recompilation of scan.sml.



15.2. STRUCTURES 149

Some of the information a source file depends on is the ML type schemes of
its free variables. It also depends on, for example, the region-annotated type
schemes with places of its free variables. Thus it can happen that a source
file is recompiled even though the ML type assumptions for free variables
are unchanged. For instance, the region-annotated type scheme with place
for a free variable may have changed, even though the underlying ML type
scheme has not.

As an example, consider what happens if we modify the function readWord

in the source file lib.sml so that it puts its result in a global region. This
modification will trigger recompilation of the source file scan.sml, because
the assumptions under which it was previously compiled have changed. Be-
sides changes in region-annotated type schemes with places, changes in mul-
tiplicities and in physical sizes of formal region variables of functions may
also trigger recompilation.

15.2 Structures

The support for Modules together with the possibility of dividing top-level
declarations into different source files provide a mechanism for programming
in the large. In the MLKit, structures exist only at compile time. Thus one
need not worry where structures live at runtime.

We illustrate the compile-time nature of structures with the following ex-
ample. Consider the MLB-file PolySet.mlb,1 which mentions the source files
PolySet.sml, INT SET.sml, and IntSet.sml. The source file PolySet.sml

contains the following top-level declaration:

structure PolySet =

struct

type ’a set = ’a list

val empty = []

fun singleton x = [x]

fun mem(x,[]) = false

| mem(x,y::ys) = x=y orelse mem(x,ys)

fun union(s1,[]) = s1

| union(s1,x::s2) = if mem(x,s1) then union(s1,s2)

else x::union(s1,s2)

1MLB-file: kitdemo/PolySet.mlb.
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end

The code generated by the MLKit for the PolySet structure is exactly as
if the declarations were written outside of a structure. As a consequence,
when you refer to a component of a structure using qualified identifiers (e.g.,
PolySet.mem), no code is generated for fetching the component from the
structure. Moreover, when opening a structure, using the open declaration,
no code is generated for rebinding the identifiers that become visible.

15.3 Signatures

In the MLKit, signature declarations exist only at compile time. That is, a
signature declaration does not result in any code being generated. The source
file INT SET.sml in the MLB-file PolySet.mlb, mentioned earlier, contains
the signature declaration

signature INT_SET =

sig

type ’a set

val empty : int set

val singleton : int -> int set

val mem : int * int set -> bool

val union : int set * int set -> int set

end

Signatures are used in two contexts; for specifying arguments to functors
and for providing restricted views of structures using transparent and opaque
signature constraints. We defer the discussion of the use of signatures for
specifying arguments to functors to Section 15.4.

Transparent signature constraints may both restrict components from a
structure and make polymorphic components less polymorphic. Moreover,
opaque signature constraints may also make type components of structures
abstract. Consider the structure declarations

structure IntSet1 : INT_SET = PolySet

structure IntSet2 :> INT_SET = PolySet

located in the source file kitdemo/IntSet.sml. No code is generated for the
structure declarations. Instead, the compiler memorises that if you refer to
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the long identifier IntSet1.mem, for instance, then it is actually PolySet.mem

that is applied with type instance int.
As for the second declaration, opaque signature constraints are elimi-

nated at compile time (after elaboration) and transformed into transparent
signature constraints.

15.4 Functors

Functors map structures to structures. The MLKit specialises a functor
every time it is applied. Thus, types that are abstract for the programmer
(inside a functor body) become visible to the compiler. Region-annotated
type schemes and other information about identifiers in the actual functor
argument are available when the MLKit compiles the functor body.

For practical reasons, it is important that not all functor applications
are expanded at once, since this could cause intermediate representations of
programs to become as large as (or even much larger than) the entire pro-
gram. Further, non-restricted in-lining could lead to unnecessary recompila-
tion upon modification of source files. Instead, the largest structure declara-
tions not containing functor applications are compiled into separate chunks of
machine object code. Assumptions for compiling these structure declarations
are memorised, so that the generated code can be reused upon modification
of source files if the assumptions do not change.

Consider the following MLB-file:2

$(SML_LIB)/basis/basis.mlb

local utils/utils.mlb

in SET.sml Set.sml SetApp.sml

end

The MLB-file reference the MLB-file utils.mlb from the utils directory.3

This MLB-file provides a structure ListUtils that contains the function
pr list with type scheme (’a -> string) -> ’a list -> string. The
content of the file Set.sml is listed in Figure 15.2. It declares the functor
Set, which takes as arguments the element type for the set, an ordering
function on elements, and a function for providing a string representation of
elements.

2MLB-file: kitdemo/Set.mlb.
3MLB-file: kitdemo/utils/utils.mlb.
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The source file SetApp.sml is listed in Figure 15.3. It constructs a struc-
ture IntSet by applying the functor Set to appropriate arguments including
an ordering operation on integers and an operation for giving the string rep-
resentation of an integer. The IntSet structure is used for constructing a
set {2,5}, which the program prints using the built-in print function.

The body of the Set functor is instantiated to form the code for the
IntSet structure. The result of instantiating the Set functor is first trans-
lated into a Lambda program and then translated into a MulExp program.
The MulExp call-explicit code for the mem function is shown in Figure 15.4.

Notice that the code for the mem function refers to compiled code for the
lt function; the MLKit does not by default propagate enough information
accross module boundaries that the use of the lt function is reduced to a
built-in comparison on integers. Instead, for simplicity, the MLKit compiles
the argument to the Set functor in the source file SetApp.sml into separate
code:

let fun lt attop r1 [] (v39503-0, v39503-1)=

v39503-0 < v39503-1;

fun pr attop r1 [r9:inf] (a)=

jmp toString[sat r9] a

in {|pr: (_,r1), lt: (_,r1)|}

end

Here, the toString function comes from the Int structure of the Standard
ML Basis Library and the primitive operation < provides a built-in compar-
ison on integers.
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functor Set (eqtype elem (*total order*)

val lt : elem * elem -> bool

val pr : elem -> string)

: SET where type elem = elem =

struct

type elem = elem

type set = elem list

val empty : set = []

fun singleton e = [e]

fun mem x l =

let fun mem’ [] = false

| mem’ (y::ys) = if lt(y,x) then mem’ ys

else not(lt(x,y))

in mem’ l

end

fun union(s1,s2) =

let fun U (t as ([], [], acc)) = t

| U ([], y::ys, acc) = U([], ys, y::acc)

| U (x::xs, [], acc) = U(xs, [], x::acc)

| U (s1 as x::xs, s2 as y::ys, acc) =

U(if lt(x,y) then (xs, s2, x::acc)

else if lt(y,x) then (s1, ys, y::acc)

else (xs, ys, y::acc))

in rev(#3(U(s1, s2, [])))

end

val pr = fn s => ListUtils.pr_list pr s

end

Figure 15.2: The source file kitdemo/Set.sml.
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structure IntSet = Set(type elem = int

val lt = op <

fun pr a = Int.toString a)

open IntSet

val _ = print (pr (union(singleton 2, singleton 5)))

Figure 15.3: The source file kitdemo/SetApp.sml.

fun mem attop r1 [r10:4] (x)=

fn attop r10 l =>

letregion r14:3

in let fun mem’ atbot r14 [] (var260)=

(case var260

of nil => false

| _ =>

let val ys = #1 decon_:: var260;

val y = #0 decon_:: var260

in (case funcall lt[] <y, x>

of true => jmp mem’[] ys

| _ =>

jmp not[] funcall lt[] <x, y>

) (*case*)

end

) (*case*)

in funcall mem’[] l

end

end (*r14:3*);

Figure 15.4: The MulExp call-explicit code for the mem function resulting
from instantiating the Set functor.
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Garbage Collection

The MLKit supports reference tracing garbage collection in combination with
the region memory model [Hal99, HET02]. Currently, only the native back-
end supports garbage collection. Garbage collection is also possible with
region profiling enabled.

The way to tell the compiler to generate code that supports garbage
collection is to pass the option -gc to the MLKit compiler.

16.1 Dangling Pointers

The region type system supports deallocation of memory that is not accessed
in the remainder of the execution of the program. Because of this principle,
the execution model may lead to dangling pointers, that is, pointers that
point into memory that has been discharged. When garbage collection is
enabled, the region type system is modified slightly so as to guarantee that
no dangling pointers occur during execution [Els03]. The following example
illustrates how the enabling of garbage collection changes the way programs
are compiled:

val f = let val x = ref (2, [1])

in fn y => (#1 (!x), y)

end

val r = f 5
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When garbage collection is disabled, the program is compiled into the fol-
lowing MulExp program:1

val f =

letregion r7:2

in let val x =

let val v291610 =

(2, :: (1, nil) attop r7) attop r1

in ref attop r1 v291610

end

in fn attop r1 y =>

(let val v291617 = ![] x

in #0 v291617

end ,

y

) attop r1

end

end (*r7:2*);

val r = f 5

Notice here that region r7, which contains the list [1], is de-allocated before
the function f is applied to the value 5. If we chose to run this program
together with a reference tracing garbage collector, a fatal error could occur:
The memory that contains the list [1] could be reused for other purposes at
the time the garbage collector tries to trace the dangling pointer.

Figure 16.1 shows the MulExp program produced when garbage collection
is enabled.2 When garbage collection is enabled, the MLKit makes sure
that whenever a closure is live all values stored in the closure are kept live
as long as the closure is live. Assume that the type with place µ of the
function associated with the closure is on the form (µ1

ε.ϕ−−→µ2, ρ0). The
MLKit enforces the restriction by requiring that for each region variable ρ
that occur free in the type of free variables of the function (those variables for
which values are stored in the closure at runtime), ρ occur free in µ. In the
implementation, the requirement may lead to extra get effects being added
to ε.ϕ when garbage collection is enabled. In the example, an imposed get

1Compiled with mlkit -no gc -maximum inline size 0 -Ppse -w 40

dangling.sml from within the kitdemo directory.
2Compiled with mlkit -gc -maximum inline size 0 -Ppse -w 40 dangling.sml

from within the kitdemo directory.
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val f =

let val x =

let val v291610 =

(2, :: (1, nil) attop r1) attop r1

in ref attop r1 v291610

end

in fn attop r1 y =>

(let val v291617 = ![] x

in #0 v291617

end ,

y

) attop r1

end ;

val r = f 5

Figure 16.1: The MulExp program produced when compiling the program
kitdemo/dangling.sml with garbage collection enabled. To avoid dangling
pointers when garbage collection is enabled, all values in the closure for f are
kept alive as long as the closure itself.

effect on the arrow effect in the type for f makes it impossible to wrap a
letregion around the binding for f. (See [TT93, page 50] and [Els03] for
more information about this requirement.)

16.2 Instrumenting the Executable

Executables produced by the MLKit with garbage collection enabled can be
instrumented by use of command-line options. For instance, if the MLKit has
produced a file run, one can pass the option -verbose gc to run to enable
the printing of garbage collection information at runtime. An overview of
available command-line options is shown by passing the option -help to the
generated executable:

Usage: ./run

[-help, -h]

[-disable_gc | -verbose_gc] [-heap_to_live_ratio d]

where
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-help, -h Print this help screen and exit.

-disable_gc Disable garbage collector.

-verbose_gc Show info after each collection.

-heap_to_live_ratio d Use heap to live ratio d, ex. 3.0.
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Chapter 17

Region Profiling

We have already seen several examples of the use of the profiler. We shall
now explain in more detail how to profile programs. For example, we shall
see how one can find out precisely what allocation points in the program
contribute to allocation in a particular region.

The profiler consists of several tools that can be used to analyse the
dynamic memory behavior of a program. First of all, the profiler lets you
create graphs of the dynamic memory usage of the program. Three different
kinds of graphs may be created:

• A region profile is a graph that gives a global view of the memory usage
by showing the total number of bytes allocated in regions and on the
stack as a function of time. In the graph, regions that arise from the
same

letregion ρ in e end

expression are collected into one colored band, labelled ρ. The region
variables that label bands are always global or letregion-bound, never
formal region parameters.

• An object profile is a graph that, for a particular region, shows the ob-
jects allocated in the region, with one coloured band for each allocation
point in the region-annotated program1. Each allocation point is an-
notated with a program point, which is a unique number that identifies

1Every occurrence of an at in the region-annotated program is an allocation point.
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the allocation.2 To inspect region-annotated programs with program
points, pass the MLKit compiler the option -print program points

in addition to the option -print call explicit expression, say.3

If you have an object profile showing that program point pp42, say,
contributes with allocation, you can search for pp42 in the region-
annotated program and thus find the construct that caused the al-
location.

• A stack profile is a graph that shows the stack memory usage, as a
function of time.

In addition to the possibility of generating programs with program points,
it is also possible, during compilation, to generate a region flow graph, which
shows how regions may be passed around at runtime when region-polymorphic
functions are applied. The region flow graph comes in handy when profiling
large programs and when one wants to find out why a formal region variable
is instantiated to a certain letregion-bound region variable.

The following example clarifies the use of a region flow graph. Suppose
the region profile shows that r5 is responsible for most of the memory usage.
Further, suppose an object profile of r5 shows that program point pp345 is
responsible for most of the allocation. Searching for pp345 in the region-
annotated program, you may find that the allocation at pp345 is into some
other region variable, r34, say. Here r34 will be a formal region parameter
of a region-polymorphic function that at runtime has been instantiated to
r5 by one or more calls of region-polymorphic functions. You can now use
the region flow graph to find the cascade of region polymorphic applications
that ends up instantiating r34 to r5.

The profiling process is sketched in Figure 17.1.
We will now show an example on how to profile a concrete program that

contains a space leak and then show how the profiler can be used to improve
the program. We then explain in more detail how to specify the profiling
strategies and how the profiles are generated.

2Program points are unique. In particular, for a project with two program units, the
program points in the region-annotated programs for the two units will be distinct.

3Program points are annotated during physical size inference.
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Figure 17.1: Overview of the profile process. The process sometimes requires
the programmer to refine the runtime profiling strategy, or even the compile-
time profiling strategy. Dotted boxes represent output from the compiler,
from executing the program, and from using the tool rp2ps, which generates
PostScript graphs from the exported data file.



164 CHAPTER 17. REGION PROFILING

scan_rev1 - Region profiling Fri May 25 08:54:26 2001
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Figure 17.2: Memory is accumulated in the top two bands. The global regions
r1 and r211397 hold the largets amount of memory. The graph was gen-
erated by first compiling the kitdemo/scan rev1.mlb project with profiling
enabled. Then by executing echo life.sml | run -realtime -microsec

1000 and finally by typing rp2ps -region -name scan rev1.

17.1 Example: Scanning Text Files Again

In this section, we concentrate on the general principles of profiling. As an
example, we investigate a revised version of the peoject kitdemo/scan.mlb

(see Section 12.6). Instead of asking for a list of input files to scan (as
project scan.mlb does), the revised version of the scan project asks for only
one input file, which it then scans 50 times.4

The first thing to do is to get an overview of the memory usage of the
program. A region profile of the program gives you just that. See Figure 17.2.

4Project kitdemo/scan rev1.mlb.
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scan_rev1 - Object profiling on region 211397 Fri May 25 15:04:30 2001
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Maximum allocated bytes in this region: 2420.

Figure 17.3: There seems to be a space leak at program point pp14788. The
graph was generated by typing rp2ps -object 211397.

The graph shows that region r211397 accumulates more memory for each
time it scans the file life.sml.

To see what happens in region r211397, we make an object profile of
that region, see Figure 17.3. The object profile shows that program point
pp14788 continually allocates memory that is first freed when the program
stops. We now search for pp14788 in the log files of the basis library, that
is, we execute the UNIX command

$ fgrep pp14788 *.log

in the directory basis, and find that the program point pp14788 appears in
the file General.sml.log, which contains the following fragment:

fun implode attop r1 pp14787 [r105882:inf] (chars)=

ccall(implodeCharsProfilingML, sat r105882 pp14788, chars);
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So the space leak is caused by function implode being called with region
r211397 instantiated for the formal region variable r105882.

We now search for r211397 in file scan rev1.sml.log and find the fol-
lowing fragment of the region flow graph:

readWord[r211165:inf] --r211165 atbot--> [*r211397*]

toString[r140988:inf] --r140988 attop--> LETREGION[r211397:inf]

The fragment is read as follows. The formal region variable r211165 is
instantiated to the letregion-bound region variable r211397 in a call to
toString. Moreover, also the formal region variable r211165 (of function
readWord) is instantiated to r211397. (The asterisks (*) denote that the
node has been displayed before.)

Region flow graphs are local to each program fragment in a project. A call
to a non-local region-polymorphic function introduces an edge in the region
flow graph, but the graph says nothing about in which module the called
function is located. Thus, it may be necessary to look in several log files
to find the path from a formal region variable to an actual region variable.
By inspecting the call-explicit programs found in basis/Int.sml.log and
kitdemo/lib.sml.log one finds that both toString and readWord even-
tually call implode. However, readWord is called only initially, thus, we
conclude that the space leak is caused by function toString (from the Int

structure) being called with region r211397 instantiated for the formal re-
gion variable r140988. Indeed, by inspecting the calls to toString in the
call-explicit program found in scan rev1.sml.log, we see that toString is
called with actual region r211397.

The concat function from the initial basis catenates a list of strings. But
all the strings in the argument list to concat are required to be in the same
region. Thus, whenever a file is reported (see Figure 17.4), strings created
by the Int.toString function are put in the region that also holds the file
name for the report (which is read using the function readWord); and this
region is non-local to the do it function, which implements the main loop of
the program.

One way of solving the space leak is to make a copy of filename at the
call to report file in function scan file:

fun scan_file (filename: string) : (int*int)option=

let val is = TextIO.openIn filename

in let val (n,inside) = scan is
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fun report_file(filename, n, inside) =

writeln(concat[filename, ": size = ", Int.toString n,

" comments: ", Int.toString inside, " (",

(Int.toString(percent(inside, n))

handle _ => "-"), "%)"])

fun scan_file (filename: string) : (int*int)option=

let val is = TextIO.openIn filename

in let val (n,inside) = scan is

in TextIO.closeIn is;

report_file(filename, n, inside);

SOME(n,inside)

end handle NotBalanced =>

(writeln(filename ^ ": not balanced");

TextIO.closeIn is;

NONE)

end handle IO.Io {name,...} =>

(writeln(name^" failed."); NONE)

fun main():unit =

case readWord(TextIO.stdIn)

of SOME filename =>

let fun do_it 0 = ()

| do_it n = (scan_file filename; do_it (n-1))

in do_it 50

end

| NONE => ()

Figure 17.4: Fragments of scan rev1.sml. All the strings in the argument
list to concat are put in the same region.



168 CHAPTER 17. REGION PROFILING

scan_rev2 - Region profiling Fri May 25 15:02:29 2001
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Figure 17.5: There is no space leak: no matter how many times we scan the
file, the project will use the same number of words. The graph was gen-
erated by executing echo life.sml | run -realtime -microsec 10000

and rp2ps name scan rev2 -region.

in TextIO.closeIn is;

report_file(filename^"", n, inside);

SOME(n,inside)

end handle NotBalanced =>

(writeln(filename ^ ": not balanced");

TextIO.closeIn is;

NONE)

end handle IO.Io {name,...} =>

(writeln(name^" failed."); NONE)

Project kitdemo/scan rev2.mlb implements the modification. Figure 17.5
shows a region profile of the scan rev2.mlb project.
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17.2 Compile-Time Profiling Strategy

Before compiling a program for the purpose of profiling, one must decide on
a compile-time profiling strategy; see Figure 17.1. The compile-time profiling
strategy directs the embedding of profiling instructions in the generated code
and instructs the compiler whether to report a region flow graph.

Region profiling is enabled by passing the option -region profiling (or
simply -prof) to the MLKit compiler. If you want the MLKit to report
region-annotated programs with program points, you should pass the op-
tion -print all program points to the MLKit compiler together with one
or more of the options -print physical size inference expression and
-print call explicit expression..

To make the compiler report a region flow graph, pass the option

-print region flow graph

to the MLKit compiler at compile time. The region flow graph is reported
both in text format and in a .vcg file, which, when interpreted by the VCG
tool, provides a graphical version of the graph.5

As a running example, we use the life program.6 We assume that the op-
tions -prof, -print all program points, and -print region flow graph

are passed to the MLKit compiler together with the option

-print call explicit expression

By also passing the option -log to file to the MLKit compiler, the
MLKit generates several files, of which we have life.log (containing, among
other things, the call-explicit region-annotated program with program points
and the region flow graph in text layout), life.vcg (the region flow graph
to be displayed with the VCG tool) and the executable file run.

5The VCG tool (Visualization of Compiler Graphs) can be obtained from

http://www.cs.uni-sb.de/RW/users/sander/html/gsvcg1.html.

We use version 1.30, which can be found in file vcg.1.30.r3.17.tar.
6Program: kitdemo/life.sml.
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17.3 The Log File

In the file life.log you find the call-explicit region-annotated program with
program points and the region flow graph in text layout for the life.sml

source file. The region flow graph is found by searching for REGION FLOW

GRAPH FOR PROFILING. The graph contains the following fragment (modified
slightly to fit here):

cp_list[r211368:inf]

--r211368 sat--> [*r211368*]

--r211368 sat--> nthgen’[r211902:inf]

--r211902 atbot--> LETREGION[r212422:inf]

--r211902 sat--> [*r211902*]

--r211368 atbot--> LETREGION[r212384:inf]

The region flow graph is almost equivalent to the graph used by the storage
mode analysis (see page 104). In the graph, region variables are nodes and
there is an edge between two nodes ρ and ρ′ if ρ is a formal region parameter
of a function that is applied to actual region parameter ρ′. It follows that
letregion-bound region variables are always leaf nodes.

Nodes in the graph are written in square brackets, which are labeled with
the token LETREGION or the name of the function for which the region variable
is a formal parameter. For example, the notation cp list[r211368:inf]

identifies the node r211368, which is a formal region parameter of the func-
tion cp list. An asterisk inside a square bracket means that the node has
been written earlier. Only the node identifier (i.e., the region variable) will
then be printed. The size of the region is printed after the region variable;
we use inf for infinite regions and size for finite regions of size size words.

Edges are written with the from node identifier annotated on them. The
edge points to the to node. The fragment

cp_list[r211368:inf]

--r211368 sat--> [*r211368*]

is read: there is an edge from node r211368 to node r211368 and node
r211368 has been written earlier. From the cycle in the graph, one can
conclude that cp list calls itself recursively; if you look in file life.sml,
you will find something like
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fun cp_list[] = []

| cp_list((x,y)::rest) =

let val l = cp_list rest

in (x,y):: l

end

The region flow graph can get very complicated to read because we may
have mutually recursive functions, which give many edges and cycles. If
the graphs get too complicated, you may find help in the strongly connected
component (scc) version of the graph. The scc graph is found by searching
for [sccNo in the log file. Each scc is identified by a unique scc number. The
region variables contained in each scc is annotated on the scc node.

Consider, for example, the following fragment of the scc version of the
region flow graph for the life program:

[sccNo 97: r211904,] --sccNo 97--> [sccNo 96: r212427,];

Here, we have a scc node (id 97) containing region variable r211904 and an
edge to scc node (id 96) containing region variable r212427.

17.4 Using the VCG Tool

The VCG tool can be used to visualise region flow graphs exported in .vcg

files. We assume that the tool is installed and that it can be started by typing
xvcg at the command prompt. We use the file life.sml.vcg as a running
example. Typing xvcg life.sml.vcg at the command prompt gives the
window shown in Figure 17.6.

The two graphs are exported folded, meaning that they are represented in
the window as one node each. To unfold a graph choose Unfold Subgraph

from the pull-down menu inside the xvcg window. The pull-down menu
is activated by pressing one of the mouse buttons. After activating Unfold

Subgraph, choose with the left mouse button the node representing the graph
that you want to unfold. Then press the right mouse button to unfold the
chosen graph. Figure 17.7 shows a small fraction of the unfolded region flow
graph.

The graph is read in the same way as the text-based version in the log
file. It can be printed out, scaled, and so on from the pull-down menu. The
graph is folded again by choosing Fold Subgraph and clicking on one of the
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Figure 17.6: The VCG graph contains two nodes. The node “Region flow
graph” represents the folded region flow graph and the node “SCC graph”
represents the folded strongly connected componemt graph.

nodes. All nodes in the graph then turn black; clicking on the right mouse
button then folds the graph.

17.5 Runtime Profiling Strategy

When the source program has been compiled and linked, you have an exe-
cutable file, run. Typing run at the command prompt will execute the pro-
gram with a predefined runtime profiling strategy, which is displayed when
the program is run with the -verbose option:

---------------------Profiling-Enabled---------------------

The profile timer (unix virtual timer) is turned on.

A profile tick occurs every 1th second.

Profiling data is exported to file profile.rp.

-----------------------------------------------------------

You can change the profiling strategy by passing command line arguments
directly to the executable. The second line says that a virtual timer is used.
There are three possible timers, each of which can be enabled using one of
the following options:7

7A complete description can be found in the manual page for getitimer.
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Figure 17.7: A small fragment of the region flow graph.

-realtime Real time.

-virtualtime The execution time for the process.

-profiletime The execution time for the process together with the time
used in the operating system on behalf of the process.

The third line says that a profile tick occurs every 1 second. A profile
tick is when the program stops normal execution, and memory is traversed
to collect profile data. The more often a profile tick occurs the more detailed
you profile (and the slower the program will run). The time slot (i.e., the
time between to succeeding profile ticks) to use is specified by the -sec n and
-microsec n options. A time slot of half a second is specified by -microsec

500000 and not by -sec 0.5.8

The fourth line says that the collected profile data is exported to the file
profile.rp. The default file name setting can be changed with the -file

name option.
There are several other possible command-line options; use the -h option

or the -help option for details. When garbage collection is enabled, options
for controlling garbage collection are also available as command-line options
(see Section 16).

8The lowest possible time slot to use is system dependent.
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17.6 Regions Statistics

If the executable file run is executed with the option -showStat then re-
gion statistics is printed just before the program terminates. Region statis-
tics includes information about the use of regions and does not depend on
the specifics of the runtime profiling strategy; in fact, region statistics in-
cludes only exact, non-sampled values for the program. Assuming that run

is the executable file generated by compiling the program life with pro-
filing enabled, executing ./run -showStat yields—just before the program
terminates—the region statistics shown in Figure 17.8.

The MALLOC part of Figure 17.8 shows how memory is allocated from the
operating system.

Each infinite region form a linked list of one or more region pages whose
size is found in the REGION PAGES part. The value

Max number of allocated pages: 45

multiplied by

Size of one page: 1016 bytes

gives

Max space for region pages: 45720 bytes (0.0Mb)

In the INFINITE REGIONS part, we see the number of calls to infinite
region operations such as allocateRegionInf and alloc. The program al-
locates 95764 infinite regions and de-allocates 95761; the three global regions
are not de-allocated before the region statistics is printed and the program
terminates. The program allocates 858816 objects in infinite regions. Infinite
regions has been reset 123378 times. The deallocateRegionsUntil opera-
tion is called whenever an exception is raised, thus, we see that no exceptions
were raised by the program.

Because objects allocated in infinite regions are not split across different
region pages (except strings), it is not always possible to fill out a region
page entirely. In the ALLOCATION part, the value

Infinite regions utilisation (36048/45720): 79%
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MALLOC

Number of calls to malloc: 2

Alloc. in each malloc call: 30720 bytes

Total allocation by malloc: 61440 bytes (0.1Mb)

REGION PAGES

Size of one page: 1016 bytes

Max number of allocated pages: 45

Number of allocated pages now: 4

Max space for region pages: 45720 bytes (0.0Mb)

INFINITE REGIONS

Size of infinite region descriptor: 16 bytes

Number of calls to allocateRegionInf: 95764

Number of calls to deallocateRegionInf: 95761

Number of calls to alloc: 858816

Number of calls to resetRegion: 123378

Number of calls to deallocateRegionsUntil: 0

ALLOCATION

Max alloc. space in pages: 17912 bytes (0.0Mb)

incl. prof. info: 36048 bytes (0.0Mb)

Infinite regions utilisation (36048/45720): 79%

STACK

Number of calls to allocateRegionFin: 1797844

Number of calls to deallocateRegionFin: 1797844

Max space for finite regions: 6116 bytes (0.0Mb)

Max space for region descs: 256 bytes (0.0Mb)

Max size of stack: 33780 bytes (0.0Mb)

incl. prof. info: 35660 bytes (0.0Mb)

in profile tick: 18768 bytes (0.0Mb)

Figure 17.8: Region statistics for the life program.
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shows memory utilisation for infinite regions at the moment where the pro-
gram has allocated the largest amount of memory in infinite regions.

In the STACK part, we see that the program allocates and de-allocates
the same number of finite regions. We also see that the space used for finite
regions is 6116 bytes and that the total use of stack space is 33780 bytes
(excluding space used to hold profiling information). The stack size values

incl. prof. info: 35660 bytes (0.0Mb)

in profile tick: 18768 bytes (0.0Mb)

can be used to see if it is necessary to profile with a smaller time slot, which
will often lower the difference between the two values.

17.7 Processing the Profile Data File

The profile datafile profile.rp can be processed by the graph generator
rp2ps (read: RegionProfile2PostScript) found in the bin directory.9 The
graph generator is controlled by command line options.

A region profile is produced by typing

$ rp2ps -region

at the command prompt. The program produces a PostScript file in file
region.ps by reading profile information from the profile data file profile.rp,
see Figure 17.1. A region profile for the life program is shown in Figure 1.5
on page 28. The region that occupies the largest area is at the top. If there
are more regions than can be shown in different shades, then the smallest
regions are collected in an OTHER band at the bottom.

Each region is identified with a number that matches a letregion-bound
region variable in the region-annotated program. Infinite regions end with
inf and finite regions end with fin. There are also a band named rDesc and
a band named stack. The rDesc band shows the memory used on region
descriptors of infinite regions on the stack. The stack band shows stack usage
excluding finite regions and region descriptors for infinite regions.

The vertical line marked “Maximum allocated bytes in regions” in Fig-
ure 1.5 is called the maximum allocation line; it shows the maximum number

9The rp2ps program is based on a Haskell profiler written by Colin Runciman, David
Wakeling and Niklas Röjemo.
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life - Object profiling on region 212422 Sun May 27 16:09:43 2001
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Maximum allocated bytes in this region: 8576.

Figure 17.9: The object profile shows all allocation points allocating into
region r212422.

of bytes allocated in regions when the program was executed. Because we
also show the stack use on the graph (as the rDesc and stack band), the
maximum allocation line is offset upwards by the stack use at the point where
region allocation was at its highest. The space between the maximum allo-
cation line and the top band shows the inaccuracy of the profiling strategy.
To decrease the gap, it often helps to use a smaller time slot.

The largest region shown in Figure 1.5 is r212422. An object profile of
region r212422 is produced by typing

$ rp2ps -object 212422

at the command prompt. We obtain the object profile shown in Figure 17.9.

We see that allocation point pp29479 is responsible for the largest amount
of allocations in the program. The allocation point may be found in the
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life - Stack profiling Sun May 27 16:14:21 2001
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Figure 17.10: Memory usage on the stack excluding space for finite regions.

region-annotated program resulting from compiling the life program (re-
member to enable printing of program points). In general, program points
may also stem from the Basis Library (search the .log files in the directory
basis).

The stack profile shown in Figure 17.10 shows memory usage on the stack,
excluding space used by finite regions. A stack profile is generated by typing

$ rp2ps -stack

at the command prompt.

17.8 Advanced Graphs with rp2ps

This section gives a quick overview of the more advanced options that can
be passed to rp2ps. First of all, it is possible to name the profiles with
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the -name option. Comments are inserted on the x-axis with the -comment

option.
The profile data file may contain a large number of samples (the data

collected by a profile tick is called a sample). By default, rp2ps uses only
64 samples. You can alter the setting with the -sampleMax option. The
following two algorithms are used to sort out samples:

-sortBySize The n (specified by -sampleMax) largest samples are shown.

-sortByTime The n samples shown are equally distributed over time (de-
fault).

The -sortBySize option is useful if your profiles have a large gap between
the top band and the maximum allocation line. If there is a large gap when
using option -sortBySize, then it may help to profile with a smaller time
slot. You can use the -stat option to see the number of samples in the
profile data file. It is printed as Number of ticks:.

Figure 17.11 shows the profile for the following command line:

$ rp2ps -region -sampleMax 50 -name life \

-comment 0.6 "A comment at time 0.6" -sortBySize

The graph generator recognises several options that are not mentioned
here. Help on these options is obtained by typing rp2ps -h or rp2ps -help

at the command prompt.
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life - Region profiling Sun May 27 17:15:52 2001
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Figure 17.11: It is possible to insert comments in profile graphs.



Chapter 18

Controling MLKit Compilation

We have already described how to compile and run single source files (Sec-
tion 2.8) and MLB-files (Chapter 15). In the following sections, we give an
overview of MLKit options for controling printing and layout of intermediate
forms. One useful command-line option is the -help option; Appendix A
shows the output of executing mlkit -help in a version of the MLKit that
uses the native x86 backend.

18.1 Printing of Intermediate Forms

A series of options may be used to control printing of intermediate forms
during compilation. A summary of the major phases that produce printable
intermediate forms is shown in Figure 18.1. The phases are listed in the order
they take place in the MLKit.

The optimiser, which rewrites a Lambda program, collects statistics about
the optimisation. This statistics is printed if the option

-statistics after optimisation

is provided.
Storage mode analysis (see Chapter 12) results in a MulExp expression,

which can be printed if the option -print storage mode expression is pro-
vided. After that, region parameters for which there are only get effects on
in the type scheme for a region polymorphic function are removed from the
MulExp expression (see page 62). To see the resulting expression, turn on

181
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Phase Result Flag(s) that Print Result
Elaboration Lambda (∗)
Elim. of Poly. Eq. Lambda (∗)
Lambda Optimiser Lambda -Pole (∗)
Spreading RegionExp (∗)
Region Inference RegionExp (∗)
Multiplicity Inference MulExp (∗)
K-normalisation MulExp
Storage Mode Analysis MulExp -Psme (∗)
Dropping of Regions MulExp -Pdre (∗)

-Pdresm

Physical Size Inference MulExp -Ppse (∗)
Call Conversion MulExp -Pcee (∗)

Figure 18.1: The table shows how different options correspond to printing
different intermediate program representations. The option -debug causes
all intermediate forms marked (∗) to be printed. Thus, one can select phases
individually or ask to have all intermediate forms printed. The phases that
follow K-normalisation all work on K-normal forms, but, for readablity, terms
are printed as if they had not been normalised.



18.2. LAYOUT OF INTERMEDIATE FORMS 183

-print drop regions expression or

-print drop regions expression with storage modes

The latter flag also prints storage modes.
Physical size inference then determines the size in words of finite region

variables. For instance, a finite region that will contain a pair will have physi-
cal size two words. To see the expression after physical size inference, provide
the option -print physical size inference expression. After that, call
conversion converts the MulExp expression to a call-explicit expression (see
page 136). To see the result, provide the option

-print call explicit expression

After that, dependent on which backend is used, either native machine
code or bytecode is generated. If you use the native backend you can in-
spect the code at different steps of the transformation into machine code by
providing different options (use the -help option to see which. Similarly, if
you use the bytecode backend, different options control printing the bytecode
generated by the MLKit; again, use the -help option to see which flags are
available.

18.2 Layout of Intermediate Forms

While the switches described in the previous section concern which interme-
diate forms to print, the switches described in this section Layout control
how the different forms are printed.

The options -print types, -print effects, and -print regions con-
trol the printing of region-annotated types, effects, and region allocation
points (e.g., at ρ). All eight combinations of these three flags are possible,
but if -print effects is turned on, it is best also to turn the two others
on so that one can see where the effect variables and region variables that
appear in arrow effects are bound.



184 CHAPTER 18. CONTROLING MLKIT COMPILATION



Chapter 19

Calling C Functions

In this chapter, we describe how the MLKit programmer can call C functions
from within Standard ML programs. The MLKit allows ML values to be
passed to C functions, which again may return ML values. Not all ML
values are represented as if they were C values. For instance, C strings are
null-terminated arrays of characters, whereas ML strings in the MLKit are
represented as a linked list of bounded sized character arrays. To allow the
programmer to conveniently convert between C values and ML values, the
MLKit provides conversion functions and macros for commonly used data
structures.

When the MLKit calls a C function, data structures returned by the func-
tion are stored in regions that are allocated by the MLKit. For dynamically
sized objects of the resulting value, such as strings and lists, regions are allo-
cated by the MLKit and passed to the C function as additional arguments;
the C function must then itself allocate space in these regions for the dynam-
ically sized data structures. Moreover, for those parts of the resulting value
for which the size can be determined statically, pointers to already allocated
space are passed to the C function as additional arguments.

In both cases, the MLKit uses region inference to infer the lifetime of re-
gions that are passed to the C function. The region inference algorithm does
not analyse C functions. Instead, the MLKit inspects the ML type provided
by the programmer. The MLKit assumes that functions with monomor-
phic types are region exomorphisms; region endomorphic functions may be
described using ML polymorphism, see Section 19.6.

For every C function that is called from an ML program, the order of the
additional region arguments is uniquely determined by the ML result type
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of the function. This type must be constructed from lists, records, booleans,
reals, strings, integers, and type variables.

When profiling is enabled, yet another additional argument, a program
point, is passed to the C function. This argument provides allocation prim-
itives with information about what points in the program contributes with
allocation; see Section 19.4.

Examples of existing libraries that can be accessed from within ML pro-
grams include the X Window System and standard UNIX libraries providing
functions such as time, cp, and fork. There are limitations to the scheme,
however. First, because C and the MLKit do not share value representations,
transmitting large data structures between C and ML will often involve sig-
nificant copying. Second, some C libraries require the user to set up call-back
functions to be executed when specific events occur. It is not currently pos-
sible with the MLKit to have a C function call an ML function.

19.1 Declaring Primitives and C Functions

The MLKit conforms in large parts to the Standard ML Basis Library. Part
of the functionality found in this library is programmed in C and linked to the
MLKit runtime system. The declarations in system dependent parts of the
library use a special built-in identifier called prim, which is declared to have
type scheme ∀αβ.string ∗ α → β in the initial basis. A primitive function
is then declared by passing its name to prim. For example, the declaration

fun (s : string) ^ (s’ : string) : string =

prim ("concatString", (s, s’))

declares string catenation. The argument and result types are explicitly
stated so as to give the primitive the correct type scheme. The string
"concatString" denotes a C function identifier.1 For the example decla-
ration, the MLKit generates a call to the C function concatString with
arguments s and s’. The C function must then of course be present at link-
time; if not, the MLKit complains.2A convenient way to declare a C function

1Some primitives (e.g., "=" and ":=") are recognised and implemented in assembler by
the compiler.

2When profiling is enabled, the MLKit automatically appends the extension Prof for
those functions that take regions (and thus a program point) as argument; see Section 19.4.
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is to use the following scheme:

fun vid (x1 : τ1, . . . , xn : τn) : τ = prim(c func, (x1, . . . , xn))

The result type τ must be of the form

τ ::= α | int | bool | unit

| τ1 ∗ . . . ∗ τn | τ list | real | string

If the result type is one of α, int, bool, or unit then the result value can
be returned in a single register. Contrary, if the result type represents an
allocated value, the C function must be told where to store the value. For any
type that is either real or a non-empty tuple type, and does not occur in a list
type of the result type τ , the MLKit allocates space for the value and passes
a pointer to the allocated space as an additional argument to the C function.
For any type representing an allocated value that is either string or occurs
in a list type of the result type τ , the MLKit cannot statically determine the
amount of space needed to store the value. Instead, regions are passed to the
C function as additional arguments and the C function must then explicitly
allocate space in these regions as needed, using a C function provided by the
runtime system. The order in which these additional arguments are passed
to the C function is determined by a pre-order traversal of the result type τ .
For a list type, regions are given in the order:

1. region for auxiliary pairs

2. regions for elements (if necessary)

We now give an example to show what extra arguments are passed to
a C function, given the result type. In the example, we use the following
(optional) naming convention: names of arguments holding addresses of pre-
allocated space in regions start with vAddr, while names of arguments holding
addresses of region descriptors (to be used for allocation in a region) start
with rAddr.

Example 1 Given the result type (int ∗ string) list ∗ real, the follow-
ing extra arguments are passed to the C function (in order): vAddrPair,
rAddrLPairs, rAddrEPairs, rAddrEStrings and vAddrReal, see Figure 19.1.

Here vAddrPair holds an address pointing to pre-allocated storage in
which the tuple of the list and the (pointer to the) real should reside. The
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Figure 19.1: The order of pointers to allocated space and infinite regions is
determined from a pre-order traversal of the result type (int∗string) list∗
real.

argument rAddrLPairs holds the region address for the auxiliary pairs of
the list. Similarly, the arguments rAddrEPairs and rAddrEStrings hold
region addresses for element pairs and strings, respectively. The argument
vAddrReal holds the address for pre-allocated storage for the real.

Additional arguments holding pointers to pre-allocated space and infinite
regions are passed to the C function prior to the ML arguments. Consider
again the ML declaration

fun vid (x1 : τ1, . . . , xn : τn) : τ = prim(c func, (x1, . . . , xn))

The C function c func must then be declared as

int c func (int addr1, . . . , int addrm, int x1, . . . , int xn)

where addr 1, . . ., addrm are pointers to pre-allocated space and infinite re-
gions as described above.

19.2 Conversion Macros and Functions

The runtime system provides a small set of conversion macros and functions
for use by C functions that need to convert between ML values and C values.
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Using these conversion macros and functions for converting between repre-
sentations protects you against future changes in the representation of ML
values. The conversion macros and functions are declared in the header files:

src/Runtime/Tagging.h

src/Runtime/String.h

src/Runtime/List.h

19.2.1 Integers

There are two macros for converting between the ML representation of inte-
gers and the C representation of integers:3

#define convertIntToC(i)

#define convertIntToML(i)

To convert an ML integer i_ml to a C integer i_c, write

i_c = convertIntToC(i_ml);

To convert a C integer i_c to an ML integer i_ml, write

i_ml = convertIntToML(i_c);

The macros demonstrated here are used in the examples 2, 3, and 6 in Sec-
tion 19.10.

19.2.2 Units

The following constant in the conversion library denotes the ML representa-
tion of ():

#define mlUNIT

3These macros are the identity maps when garbage collection is disabled.
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19.2.3 Reals

An ML real is represented as a pointer into a region containing the real. To
convert an ML real to a C real, we dereference the pointer. To convert a
C real to an ML real, we update the memory to contain the C real. The
following two macros are provided:

#define convertRealToC(mlReal)

#define convertRealToML(cReal, mlReal)

Converting an ML real r_ml to a C real r_c can be done with the first
macro:

r_c = convertRealToC(r_ml);

Converting from a C real to an ML real (being part of the result value of
the C function) is done in one or two steps depending on whether the real is
part of a list or not. If the real is not in a list the memory containing the
real has been allocated before the C call, see Section 19.1:

convertRealToML(r_c, r_ml);

If the ML real is part of a list element, then space must be allocated for the
real before converting it. If rAddr identifies a region for the real, you write:

allocReal(rAddr, r_ml);

convertRealToML(r_c, r_ml);

These macros are used in the examples 3, 6 and 8 in Section 19.10.

19.2.4 Booleans

Four constants provide the values of true and false in ML and in C. These
constants are defined by the following macros:4

#define mlTRUE 3

#define mlFALSE 1

#define cTRUE 1

#define cFALSE 0

4For historical reasons, booleans in the MLKit are tagged even when garbage collection
is disabled.
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Two macros are provided for converting booleans:

#define convertBoolToC(i)

#define convertBoolToML(i)

Converting booleans is similar to converting integers:

b_c = convertBoolToC(b_ml);

b_ml = convertBoolToML(b_c);

19.2.5 Records

Records are boxed. One macro is provided for storing and retrieving ele-
ments:

#define elemRecordML(recAddr, offset)

An element can be retrieved from a record rec_ml by writing

e_ml = elemRecordML(rec_ml, offset);

where the first element has offset 0. An element e_ml is stored in an ML
record rec_ml by writing

elemRecordML(rec_ml, offset) = e_ml;

Two specialized versions of the elemRecordML macro are provided for pairs:

#define first(x)

#define second(x)

If the record is to be part of a list element then it is necessary to allocate
the record before storing into it. This allocation is done with the macro

#define allocRecordML(rAddr, size, vAddr)

where rAddr denotes a region (i.e., a pointer to a region descriptor), size
is the size of the record (i.e., the number of components), and vAddr is a
variable in which allocRecordML returns a pointer to storage for the record.
The record is then stored, component by component, by repeatedly calling
elemRecordML with the pointer vAddr as argument.

The above macros are used in examples 8, 9 and 7 in Section 19.10.
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19.2.6 Strings

Strings are boxed and always allocated in infinite regions. It is possible to
print an ML string by using the C function

void printStringML(StringDesc *str);

Strings are converted from ML to C and vice versa using the two C
functions

void convertStringToC(StringDesc *mlStr, char *cStr,

int cStrLen, int exn);

StringDesc *convertStringToML(int rAddr, char *cStr);

An ML string str_ml is converted to a C string str_c in already allocated
storage of size size bytes by writing

convertStringToC(str_ml, str_c, size, exn);

where exn is some ML exception value (see Section 19.3) to be raised if the
ML string has size greater than size.

A C string is converted to an ML string in the region denoted by rAddr

by writing

str_ml = convertStringToML(rAddr, str_c);

The following function returns the size of an ML string:

int sizeString(StringDesc *str);

These macros are used in the examples 7 and 5 in Section 19.10.

19.2.7 Lists

Lists are always allocated in infinite regions. A list uses, as a minimum, one
region for the auxiliary pairs of the list, see Figure 5.1 on page 53.

We shall now show three examples of manipulating lists. The first exam-
ple traverses a list. Consider the following C function template:
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void traverse_list(int ls) {

int elemML;

for ( ; isCONS(ls); ls=tl(ls)) {

elemML = hd(ls);

/*do something with the element*/

}

return;

}

The ML list is passed to the C function in parameter ls. The example
uses a simple loop to traverse the list. The parameter ls points at the first
constructor in the list. Each time we have a CONS constructor we also have
an element, see Figure 5.1. The element can be retrieved with the hd macro.
One retrieves the tail of the list by using the tl macro.

The following four macros are provided in the src/Runtime/List.h header
file:

#define isNIL(x)

#define isCONS(x)

#define hd(x)

#define tl(x)

The next example explains how to construct a list backwards. Consider
the following C function template:

int mk_list_backwards(int pairRho) {

int *resList, *pair;

makeNIL(resList);

while (/*more elements*/) {

ml_elem = ...;

allocRecordML(pairRho, 2, pair);

first(pair) = (int) ml_elem;

second(pair) = (int) resList;

makeCONS(pair, resList);

}

return (int) resList;

}

First, we create the NIL constructor, which marks the end of the list. Then,
each time we have an element, we allocate a pair. We store the element in
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the first cell of the pair. A pointer to the list constructed so far is put in the
second cell of the pair. (In this release of the MLKit, the makeCONS macro
simply assigns its second argument the value of its first argument.) In the
example, we have assumed that the elements are unboxed, thus, no regions
are necessary for the elements.

The last example shows how a list can be constructed forwards. It is more
clumsy to construct the list forwards because we have to return a pointer to
the first element. Consider the following C function template.

int mk_list_forwards(int pairRho) {

int *pair, *cons, *temp_pair, res;

/* The first element is special because we have to */

/* return a pointer to it. */

ml_elem = ...

allocRecordML(pairRho, 2, pair);

first(pair) = (int) ml_elem;

makeCONS(pair, cons);

res = (int) cons;

while (/*more elements*/) {

ml_elem = ...

allocRecordML(pairRho, 2, temp_pair);

first(temp_pair) = (int) ml_elem;

makeCONS(temp_pair, cons);

second(pair) = (int) cons;

pair = temp_pair;

}

makeNIL(cons);

second(pair) = (int)cons;

return res;

}

We create the CONS constructor and pair for the first element and return
a pointer to the CONS constructor (the pair) as the result. We then construct
the rest of the list by constructing a CONS constructor and a pair for each
element. It is necessary to use a temporary variable for the pair (temp_pair)
because we have to update the pair for the previous element. The second
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component of the last pair contains the NIL constructor and thus denotes the
end of the list.

The two macros makeCONS and makeNIL are provided in the List.h header
file:

#define makeNIL(rAddr, ptr)

#define makeCONS(rAddr, pair, ptr)

19.3 Exceptions

C functions are allowed to raise exceptions and it is possible for the ML code
to handle these exceptions. A C function cannot declare exceptions locally,
however. As an example, consider the ML declaration:

exception Exn

fun raiseif0 (arg : int) : unit =

prim("raiseif0", (arg, Exn))

If we want the function raiseif0 to raise the exception value Exn if the
argument (arg) is 0 then we use the function raise_exn provided by the
runtime system, by including the header file src/Runtime/Exception.h.
The C function raiseif0 may be defined thus:

void raiseif0(int i_ml, int exn) {

int i_c;

i_c = convertIntToC(i_ml);

if (i_c == 0) raise_exn(exn);

return;

}

There is no need to make the function return the value mlUNIT; in case the
type of the return value is unit then the MLKit automatically inserts code
for returning the ML value () after the call to the C function.

Exceptions are used in examples 6 and 7 in Section 19.10.

19.4 Program Points for Profiling

To support profiling, the programmer must provide special profiling versions
of those C functions that allocate space in regions (i.e., that take regions as



196 CHAPTER 19. CALLING C FUNCTIONS

additional arguments). If profiling is enabled and at least one pointer to a
region is passed to the C function then also a program point that represents
the call to the C function is passed. The program point is used by the C
function when allocating space in regions, as explained in Section 19.4. The
program point is passed as the last argument:

int c funcProf (int addr1, . . . , int addrm,
int x1, . . . , int xn, int pPoint)

No special version of the C function is needed if it does not allocate into
infinite regions; in this case, the same C function can be used both when
profiling is enabled and disabled.

A program point passed to a C function is an integer; it identifies the
allocation point that represents the C call in the program, see Chapter 17.

The runtime system provides special versions of various allocation macros
and functions presented earlier in this chapter:

#define allocRealProf(realRho, realPtr, pPoint)

#define allocRecordMLProf(rhoRec, ssize, recAddr, pPoint)

StringDesc *convertStringToMLProf(int rhoString,

char *cStr,

int pPoint);

Here is the profiling version of the C function mk_list_backwards:

int mk_list_backwardsProf(int pairRho, int pPoint) {

int *resList, *pair;

makeNIL(resList);

while (/*more elements*/) {

ml_elem = ...;

allocRecordMLProf(pairRho, 2, pair, pPoint);

first(pair) = (int) ml_elem;

second(pair) = (int) resList;

makeCONS(pair, resList);

}

return (int) resList;

}

The example shows that it is not difficult to make the profiling version of a
C function; use the Prof versions of the macros and use the extra argument
pPoint, appropriately. The same program point is used for all allocations in
the C function, perceiving the C function as one entity.
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19.5 Storage Modes

As described in Chapter 12 on page 99, actual region parameters contain a
storage mode at runtime, if the region is infinite. A C function may check
the storage mode of an infinite region to see whether it is possible to reset the
region before allocating space in it. The header file src/Runtime/Region.h

of the runtime system provides a macro is_inf_and_atbot, which can be
used to test whether resetting is safe, assuming that the arguments to the C
function are dead.

The C function resetRegion, which is also provided by the runtime sys-
tem in the header file src/Runtime/Region.h, can be used to reset a region.
Consider again the mk_list_backwards example. If the atbot bit of the
region for the list is set, then this region can be reset prior to constructing
the list:

int mk_list_backwards(int pairRho) {

int *resList, *pair;

if (is_inf_and_atbot(pairRho)) resetRegion(pairRho);

makeNIL(resList);

...

}

The C programmer should be careful not to reset regions that potentially
contain live values. In particular, the C programmer must be conservative
and take into acount possible region aliasing between regions holding argu-
ments and regions holding the result. Clearly, if a region that the C function
is supposed to return a result in contains part of the value argument(s) of
the function, then the function should not first reset the region and then try
to access the argument(s).

19.6 Endomorphisms by Polymorphism

Until now, we have seen examples only of C functions that are region ex-
omorphic, that is, functions that, in general, write their result into regions
that are different from those in which the arguments reside.

A region endomorphic function has the property that the result of calling
the function is stored in the same regions that hold the arguments to the
function. Region endomorphic functions are useful when the result of the
function shares with parts of the arguments. Consider the C function
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int select_second(int pair) {

return second(pair);

}

which selects the second component of pair (cast to an integer); the identifier
second is defined in the header file Tagging.h by the macro definition

#define second(x) (*((int *)(x)+1))

Now, for the MLKit to make correct, that is safe, decisions about when
to de-allocate regions, the endomorphic properties of a C function must be
expressed in the region-annotated type scheme for value identifiers to which
the C function is bound. The programmer can tell the MLKit about region
endomorphic behavior of a C function by using type variables. For example,
here is an ML declaration that binds a value identifier second to the C
function select_second:5

fun second(pair : ’a * ’b) : ’b =

prim("select_second", pair)

The MLKit associates the following region-annotated type scheme to the
value identifier second:

∀α1α2ρ1ρ2ρ3ε.((α1, ρ1) ∗ (α2, ρ2), ρ3)
ε.{get(ρ3)}−−−−−−−→(α2, ρ2)

Notice that the region-annotated type scheme expresses the region endomor-
phic behavior of the C function.

19.7 Compiling and Linking

To use a set of C functions in the ML code, one must first compile the C
functions into an object file. (Remember to include appropriate header files.)

As an example, the file kitdemo/libmylib.c holds a set of example C
functions. This file is compiled into an archive (in the form of a single object
file) by typing (from the shell)

5MLB-file: kitdemo/select second.mlb. The C file select second.c must be
compiled (using gcc) to form the object file (archive) libselect second.a before the
project can be compiled: mlkit -no gc -dirlibs "." -libs "m,dl,c,select second"

select second.mlb.
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$(SML_LIB)/basis/basis.mlb

mylib.sml

test_mylib.sml

Figure 19.2: Linking with external object files is done by use of the prim

primitive, which in this case is used in the file mylib.sml for declaring a
series of ML functions.

$ gcc -o libmylib.a -c libmylib.c

in the kitdemo directory. Now, to compile the file to work with profiling,
type

$ gcc -DPROFILING -o libmylib-p.a -c libmylib.c

The MLB-file mylib.mlb, which is listed in Figure 19.2, mentions the file
mylib.sml, which declares a series of ML functions to be used in the file
test_mylib.sml.

Once the archives have been generated, the appropriate archive can be
passed to the mlkit compiler, using the options -libs and -libdirs, as
follows:

$ mlkit -no_gc -o mylibtest -libdirs "." \

-libs "m,c,dl,mylib" mylib.mlb

...

$ mlkit -no_gc -prof -o mylibtest-p -libdirs "." \

-libs "m,c,dl,mylib-p" mylib.mlb

...

To learn more about the options -libs and -libdirs, type

$ mlkit --help

on the command line.
You may consult the file kitdemo/Makefile to see how one can further

automate an appropriate build process.
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fun isNullFP(s : foreignptr) : bool = prim("__is_null", s)

val b = Dynlib.dlopen (SOME "libcrack.so", Dynlib.NOW, false)

val _ = Dynlib.dlsym ("testdyn","FascistCheck",b)

fun fascistCheck a : string option =

let val b : foreignptr =

prim("@:", ("testdyn", a : string,

"/usr/lib/cracklib_dict"))

in if isNullFP b

then NONE

else SOME(prim ("fromCtoMLstring", b))

end

Figure 19.3: Dynamic linking of the function FascistCheck from the library
libcrack.so. The ML function fascistCheck calls FascistCheck with
the argument (a,/usr/lib/cracklib dict) and converts the resulting C
string into an ML string. This example uses the auto conversion feature as
described in the next section.

19.8 Dynamic Linking

The MLKit supports dynamic linking at runtime. This is done using the
dlopen and dlsym functions from the MLKit library basis/dynlink.mlb.
The function dlopen opens a given library and the function dlsym associates
a name with a given function in the library. If the name is already linked,
the exception Fail is raised.

Using the functions dlopen and dlsym, as shown in Figure 19.3, you can
call a dynamically linked library function using a primitive call to ’:’.

If ’:’ is called with a name that has no association, the exception Match

is raised.

19.9 Auto Conversion

For C functions that are simple, in a sense that we shall soon define, the
MLKit can generate code that automatically converts representations of ar-
guments from ML to C and representations of results from C back to ML.
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Auto conversion is enabled by prepending a @-character to the name of
the C function, as in the following example:

fun power_auto(base : int, n : int) : int =

prim ("@power_auto", (base, n))

The power function may then be implemented in C as follows:

int power_auto(int base, int n) {

int p;

for (p = 1; n > 0; --n) p = p * base;

return p;

}

No explicit conversion is needed in the C code. Auto conversion is only
supported when the arguments of the ML function are of type int or bool

and when the result has type unit, int, or bool. It works also when profiling
is enabled.

The example shown here is example 4 of Section 19.10; it is part of the
mylib.mlb project.

19.10 Examples

Several example C functions are located in the file kitdemo/libmylib.c.
The MLB-file kitdemo/mylib.mlb, which is listed in Figure 19.2, makes use
of these functions.

The source file mylib.sml, which is part of the mylib.mlb project, con-
tains the following ML declarations:

fun power(base: int, n: int) : int =

prim ("power", (base, n))

fun power_auto(base: int, n: int) : int =

prim ("@power_auto", (base, n))

fun power_real (base: real, n: int) : real =

prim ("power_real", (base, n))

fun print_string_list (ss: string list) : unit =
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prim ("print_string_list", ss)

exception Power

fun power_exn (base: real, n: int) : real =

prim ("power_exn", (base, n, Power))

exception DIR

fun dir (directory: string) : string list =

prim ("dir", (directory, DIR))

fun real_list () : real list =

prim ("real_list", ())

fun change_elem (p : int*string) : string*int =

prim ("change_elem", p)

The C function implementations are summarized below (see the files
libmylib.c and mylib.sml in the kitdemo directory for detailed comments.)

Example 2 The power function shows how to convert integers with the
macros convertIntToC and convertIntToML.

Example 3 The power real function shows how to convert reals with the
macros convertRealToC and convertRealToML.

Example 4 The power auto function shows the use of auto conversion,
which allows for easy linking to certain C functions.

Example 5 The print string list example shows how to traverse a list
of strings. The technique can easily be adobted to other data structures (e.g.,
to lists of lists of strings).

Example 6 The power exn function shows how an exception can be raised
from a C function.

Example 7 The dir function shows how a list can be constructed back-
wards. We use the UNIX system calls opendir and readdir to read the
contents of the specified directory.



19.10. EXAMPLES 203

Notice also that we check the infinite regions for resetting at the start of
the C function. The checks should be placed at the start of the function,
orelse not inserted at all.

If you compare the C functions dir and dirProf you may see how the
function dirProf is modified to work with profiling.

Example 8 Function real list constructs a list of reals forwards. The re-
als are allocated in an infinite region. It may be more convenient to construct
the list backwards in the C function and then apply a list reverse function
on the result list in the ML program.

Example 9 Function change elem shows the use of the macro elemRecordML.
The result type is string*int. The function swaps the two elements in the
pair. The MLKit passes an address to pre-allocated space for the result pair,
and an infinite region for the result string.

At first thought it should be enough to just swap the two arguments,
and not copy the string into the string region, that is, one could write the
following function:

? int change_elem(int newPair, int stringRho, int pair) {

? int firstElem_ml, secondElem_ml;

? firstElem_ml = elemRecordML(pair, 0);

? secondElem_ml = elemRecordML(pair, 1);

? elemRecordML(newPair, 0) = secondElem_ml;

? elemRecordML(newPair, 1) = firstElem_ml;

? return newPair;

? }

This function may work sometimes but it is not safe! Region inference expects
the result string to be allocated in stringRho, and may therefore de-allocate
the region containing the argument string, secondElem_ml, while the string
in the returned pair is still live. The safe version of change_elem is found
in libmylib.c. See Section 19.6 for inspiration to how a safe non-copying
swap function can be implemented.
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Chapter 20

Summary of Changes

20.1 Changes Since Version 4

This section provides an overview of the main changes to the MLKit since
version 4.

Support for compiling ML Basis Files

ML Basis Files allows for expressing source dependencies, exactly (as a di-
rected acyclic graph). ML Basis Files thus provides a mechanism for pro-
gramming “in the very large”.

File-based Separate Compilation

The MLKit now supports file-based separate compilation, based on depen-
dencies established from ML Basis Files. The compiler serializes symbol table
information to disk for each compilation unit, so that this information can
be deserialized and used when compiling other compilation units.

Updated Standard ML Basis Library

The MLKit implementation of the Standard ML Basis Library now conforms
to the specification published in [GR04].

205
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Untagged Pairs, Triples and References

The MLKit now support untagged representations of heap-allocated pairs,
triples, and Standard ML references, even when garbage collection is enabled.

20.2 Changes Since Version 3

This section provides an overview of the main changes to the MLKit since
version 3, but before version 4.

Garbage Collection

The MLKit supports reference tracing garbage collection in combination with
the region memory model. Garbage collection is supported only in the na-
tive backend version of the MLKit. To enable garbage collection, pass the
option -gc to the MLKit compiler. Garbage collection is also possible with
region profiling enabled. See Chapter 16 for more information about garbage
collection with the MLKit.

X86 Backend

The HPPA backend of the MLKit version 3.0 and earlier has been replaced
with an x86 native backend, which uses the GNU assembler to create native
machine code on x86 machines.

Bytecode Backend

For portability, the MLKit now provides a bytecode backend and a bytecode
interpreter. Which backend is used by the MLKit compiler is determined
when the MLKit itself is compiled, but it is possible to have both a native
version and a bytecode version of the MLKit compiler installed on the same
system.

Unboxing of Function Arguments

By default, the MLKit performs a simple local unboxing analysis to figure
out if a function taking a tuple as argument can be transformed into a func-
tion taking multiple arguments. Only functions that use only the individual
elements of the argument tuple undergo transformation. The optimisation
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can be disabled by passing the option -no unbox function arguments to
the MLKit compiler.

Removal of Region Vectors

In the MLKit version 3.0 and earlier, actual region parameters were passed
to a region polymorphic function in a region vector, which itself was allocated
in a region. In version 4.0, actual region parameters to region polymorphic
functions are passed in registers and on the stack. This simplification im-
proves pretty printing of region annotated terms and on what function calls
turn into tail calls (see Section 14.3).

20.3 Changes Since Version 2

This section provides an overview of the main changes to the MLKit since
version 2.0 but before version 3.0 of the MLKit.

Modules and Separate Compilation

The most important development since Version 2 is the ability to compile
Modules and the discipline of separate compilation. A distinguished feature
of the way modules are compiled is that module constructs do not give rise to
any code, so there is no runtime overhead in using modules [Els99b, Els99a].
See Chapter 15.

Standard ML Basis Library

The MLKit support a large portion of the Standard ML Basis Library, based
on the Moscow ML version of the library. To see exactly what parts of the
Standard ML Basis Library are supported, consult the MLB-file basis.mlb

located in the directory basis.

Scalability

The MLKit now compiles fairly large programs, including Hafnium’s Ann-
oDomini (58.000 lines of SML) and the MLKit itself (around 80.000 lines).
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New Match Compiler

The pattern compiler has been rewritten, based on Sestoft’s method [Ses96],
which is also the basis of the Moscow ML match compiler.

New StatObject Module

The MLKit contains a module, StatObject, which implements the seman-
tic objects of the static semantics of the Core. Originally, this was a very
clean and very inefficient implementation of the Defininion. In version 2 of
the MLKit, StatObject was replaced by an imperative and efficient, but
complicated module. In version 3, StatObject uses a clean, efficient and im-
perative implementation of StatObject. This is particularly useful for those
who want to reuse the front-end of the MLKit for other purposes.

Unboxed Representation of Lists

List constructors are now represented unboxed, that is, the least significant
bits of a list value is used to distinguish between nil and a pointer to a pair
(::) holding the head and the tail of the list. Thus, a list takes up only one
region (for the auxiliary pairs) plus any regions for the elements of the list.
Consult Chapter 5 for details.
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Appendix A

Command-Line Options

This appendix shows the output of executing mlkit -help, where mlkit is
the version of the MLKit compiler that uses the x86 native backend. The
options are slightly different for the version of the MLKit compiler that uses
the bytecode backend.

MLKit version 4.3.0, Jan 24, 2006 [X86 Backend]

Usage: mlkit [OPTION]... [file.sml | file.sig | file.mlb]

Options:

--version, -v, -V

Print MLKit version information and exit.

--man

Print man-page and exit.

--help

Print help information and exit.

--help S

Print help information about an option and exit.

--chat, -verbose (off)

Print a message for each compilation step in the compiler.
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--comments_in_x86_asmcode (off)

Insert comments in x86 assembler code.

--compile_only, -c (off)

Compile only. Suppresses generation of executable

--compiler_timings, -timings (off)

Show compiler timings for each compilation phase.

--contract (on)

Contract is responsible for in-lining, specialization,

elimination of dead code, and much else (Lambda

Expression Optimiser).

--contract_regions, -cr (off)

When this option is enabled, identically typed

regions bound by the same letregion construct

are unified. Moreover, region parameters to

non-exported functions are trimmed whenever

possible.

--cross_module_opt, -cross_opt (on)

Enable cross-module optimisation including in-lining

of small functions and specialisation of small

recursive functions. Which optimisations are performed

across modules is controlled by individual optimisation

flags.

--dangling_pointers, -dangle (off)

When this option is disabled, dangling pointers

are avoided by forcing values captured in

closures to live at-least as long as the closure

itself. So as to make garbage collection sound,

this option is disabled by default when garbage

collection is enabled.

--dangling_pointers_statistics (off)
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When enabled, the compiler prints statistics about

the number of times strengthening of the region typing

rules (to avoid dangling pointers during evaluation)

effects the target program. This flag is useful only

when the flag -gc or -no_dangle is enabled.

--debug_compiler, -debug (off)

Print intermediate forms of a program during compilation.

--debug_linking (off)

Debug linking of target code by showing which object

files are linked together.

--debug_man_enrich (off)

During interactive use, show information about why a

program unit need be recompiled. In the MLKit, a

program unit (or a functor body) is recompiled if

either (a) the program unit is modified, or (b)

information about an identifier for which the program

unit depends upon has changed.

--debug_which_at (off)

Debug storage mode analysis.

--delete_target_files (on)

Delete assembler files produced by the compiler. If you

disable this flag, you can inspect the assembler code

produced by the compiler.

--disable_atbot_analysis (off)

Disable storage mode analysis. That is, turn all

allocation directives into attop.

--disable_flow_var (off)

Disable optimised compilation of control-flow

code, such as conditional expressions.

--eliminate_explicit_records (on)
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Eliminate bindings of explicit records only used for

selections. Transform

let r = (e1,...,en) in ... #i r .. #j r ...

into

let x1=e1 in ... let xn=en in ... xi .. xj ...

(Lambda Expression Optimiser).

--extended_typing, -xt (off)

When this flag is enabled, SMLserver requires

scripts to be functor SCRIPTLET’s, which are

automatically instantiated by SMLserver in a

type safe way. To construct and link to XHTML

forms in a type safe way, SMLserver constructs an

abstract interface to the forms from the functor

arguments of the scriptlets. This interface is

constructed and written to the file scripts.gen.sml

prior to the actual type checking and compilation

of the project.

--garbage_collection, -gc (on)

Enable garbage collection. When enabled, regions are

garbage collected during execution of the program. When

garbage collection is enabled, all values are tagged. Due

to region inference, for most programs, the garbage

collector is invoked less often than for systems based

only on garbage collection. When garbage collection is

enabled, introduction of dangling pointers are avoided by

forcing values captured in closures to live at-least as

long as the closure. Moreover, enabling garbage

collection implicitly enables the preservation of tail

calls (see the option ‘‘preserve_tail_calls’’.)

--gdb_support, -g (off)

When enabled, the compiler passes the option --gstabs

to ‘as’ (The GNU Assembler) and preserves the generated

assembler files (.s files). Passing the --gstabs

option to ‘as’ makes it possible to step through

the generated program using gdb (The GNU Debugger).
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--generational_garbage_collection, -gengc (off)

Enable generational garbage collection. Same as option

garbage collection except that two generations are used

for each region.

--import_basislib, -basislib (on)

Import Basis Library automatically in your projects. If

you wish to make use of the Standard ML Basis Library

in your projects, this option should be turned on, unless

you wish to import the Basis Library manually in your

projects.

--install_dir S (/home/mael/mlkit/kit)

Installation directory for the MLKit. For normal

execution you should not modify this value. However,

if you wish to use the MLKit with an altered runtime

system and you do not wish to exchange the .o-files in

the bin-subdirectory (for example because you are running

the MLKit on a shared system), you can update this

setting and the system will try to link to a runtime

system in the bin-subdirectory found in the new install

directory.

--libdirs S

This option controls where ld looks for

archives. The format is a comma-separated list

of directories; see the -libs entry. The default

is the empty list; thus ’ld’ will look for

libraries in only the system specific default

directores. The directories are passed to ’ld’

using the -L option.

--libs S (m,c,dl)

For accessing a foreign function residing in

an archive named libNAME.a from Standard ML code

(using prim), you need to add ’NAME’ to this

comma-separated list. Notice that an object file
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(with extension ’.o’) is an archive if it is

renamed to have extension ’.a’. You may need to

use the -libdirs option for specifying

directories for which ld should look for library

archives. The libraries are passed to ’ld’ using

the -l option.

--link_code S, -link S

Link-files to be linked together to form an

executable.

--link_code_scripts S, -link_scripts S

Link-files for SMLserver scripts; link-files

specified with -link represent libraries when

mlkit is used with SMLserver.

--link_time_dead_code_elimination, -ltdce (on)

Link time dead code elimination.

--load_basis_files S, -load S

Basis files to be loaded before compilation

proper.

--log_to_file (off)

Log to files instead of stdout.

--maximum_inline_size N (50)

Functions smaller than this size (counted in abstract

syntax tree nodes) are in-lines, even if they are used

more than once. Functions that are used only once are

always in-lined.

--maximum_specialise_size N (200)

Curried functions smaller than this size (counted in

abstract syntax tree nodes) are specialised if all

applications of the function within its own body are

applied to its formal argument, even if they are used

more than once. Functions that are used only once are
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specialised no matter their size. See also the option

--specialize_recursive_functions.

--minimize_fixs (on)

Minimize fix constructs (Lambda Expression Optimiser).

--namebase S (dummyBase)

Name base to enforce unique names when compiling

mlb-files.

--no_contract

Opposite of --contract.

--no_cross_module_opt, -no_cross_opt

Opposite of --cross_module_opt, -cross_opt.

--no_dangling_pointers, -no_dangle

Opposite of --dangling_pointers, -dangle.

--no_delete_target_files

Opposite of --delete_target_files.

--no_eliminate_explicit_records

Opposite of --eliminate_explicit_records.

--no_garbage_collection, -no_gc

Opposite of --garbage_collection, -gc.

--no_generational_garbage_collection, -no_gengc

Opposite of --generational_garbage_collection, -gengc.

--no_import_basislib, -no_basislib

Opposite of --import_basislib, -basislib.

--no_link_time_dead_code_elimination, -no_ltdce

Opposite of --link_time_dead_code_elimination, -ltdce.

--no_minimize_fixs
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Opposite of --minimize_fixs.

--no_optimiser, -no_opt

Opposite of --optimiser, -opt.

--no_preserve_tail_calls, -no_ptc

Opposite of --preserve_tail_calls, -ptc.

--no_print_regions, -no_Pregions

Opposite of --print_regions, -Pregions.

--no_raggedRight

Opposite of --raggedRight.

--no_region_inference, -no_ri

Opposite of --region_inference, -ri.

--no_register_allocation

Opposite of --register_allocation.

--no_repository, -no_rep

Opposite of --repository, -rep.

--no_specialize_recursive_functions

Opposite of --specialize_recursive_functions.

--no_type_check_lambda

Opposite of --type_check_lambda.

--no_unbox_function_arguments

Opposite of --unbox_function_arguments.

--no_uncurrying, -no_uncurry

Opposite of --uncurrying, -uncurry.

--optimiser, -opt (on)

Enable optimisation of intermediate language code

(Lambda Expressions). Which optimisations are performed
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is controlled by individual flags. The optimisations

include function in-lining, function specialisation,

fix-minimization, unboxing of function arguments, and

elimination of unnecessary record constructions.

--output S, -o S (run)

The name of the executable file generated by

the Kit.

--preserve_tail_calls, -ptc (on)

Avoid the wrapping of letregion constructs around

tail calls. Turning on garbage collection

automatically turns on this option.

--print_K_normal_forms (off)

Print Region Expressions in K-Normal Form. Applicable,

only after storage mode analysis has been applied.

--print_all_program_points, -Ppp (off)

Print all program points when printing physical size

inference expressions.

--print_bit_vectors (off)

--print_calc_offset_program (off)

--print_call_explicit_expression, -Pcee (off)

Print Region Expression with call annotations.

--print_clos_conv_program, -Pccp (off)

Print Region Expression after closure conversion.

--print_closed_export_bases, -Pceb (off)

Controls printing of closed export bases.

--print_drop_regions_expression, -Pdre (off)

Print Region Expression after dropping word regions and

regions arguments with only get-effects.
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--print_drop_regions_expression_with_storage_modes, -Pdresm (off)

Print Region Expression after dropping word regions and

regions arguments with only get-effects. Also print

atbot and attop annotations resulting from storage mode

analysis.

--print_effects, -Peffects (off)

Print effects in region types.

--print_export_bases, -Peb (off)

Controls printing of export bases.

--print_fetch_and_flush_program (off)

Print program with instructions for activation

record fetching and flushing.

--print_lift_conv_program, -Plcp (off)

Print Region Expression after lifting. Used for the

compilation into byte code (KAM).

--print_linearised_program (off)

Print a linearlised representation of the

program unit.

--print_normalized_program (off)

Print Region Expression after K-normalisation.

--print_opt_lambda_expression, -Pole (off)

Print Lambda Expression after optimisation.

--print_physical_size_inference_expression, -Ppse (off)

Print Region Expression after physical size inference.

--print_region_flow_graph, -Prfg (off)

Print a region flow graph for the program fragment

and generate a .vcg-file, which can be viewed using

the xvcg program.
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--print_region_static_env0, -Prse0 (off)

Print imported region static environment prior to

region inference.

--print_regions, -Pregions (on)

Print region variables in types and expressions.

--print_register_allocated_program (off)

--print_rho_levels (off)

Print levels of region and effect variables in types and

intermediate forms. Levels control quantification of

region and effect variables.

--print_rho_types (off)

Print region types of region variables in types and

intermediate forms. Possible region types are:

w Type of regions containing only word values; these

regions are dropped from the program because word

values are represented unboxed.

p Type of regions containing pairs.

a Type of regions containing arrays.

r Type of regions containing references.

t Type of regions containing triples.

s Type of regions containing strings.

B Type of regions associated with type variables.

Regions of this type do not exist at runtime.

T Type of regions containing other than the above

kinds of values.

--print_simplified_program (off)

Print simplified program after register

allocation.

--print_storage_mode_expression, -Psme (off)

Print Region Expression after storage mode analysis
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--print_type_name_stamps, -Ptypestamps (off)

Print type name stamps and their attributes in types

and expressions.

--print_types, -Ptypes (off)

Print types when printing intermediate forms. For Lambda

Expressions, ordinary ML types are printed, whereas for

Region Expressions, region types are printed.

--print_word_regions, -Pwordregions (off)

Also print word regions that have been dropped.

--quotation, -quot (off)

Enable support for quotations and anti-quotations.

When enabled, the datatype

datatype ’a frag = QUOTE of string

| ANTIQUOTE ’a

is available in the initial environment. Moreover,

values of this datatype may be constructed using

the quotation/antiquotation syntax:

val s = "world"

val a : string frag list = ‘hello ^s - goodbye‘

--raggedRight (on)

Use ragged right margin in pretty-printing of

expressions and types.

--recompile_basislib, -scratch (off)

Recompile basis library from scratch. This option

is useful together with other options that control

code generation.

--region_inference, -ri (on)

With this flag disabled, all values are allocated in

global regions.

--region_profiling, -prof (off)

Enable region profiling. Object code stemming
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from compiling a program with region profiling enabled

is instrumented with profiling information. When a program

compiled with region profiling enabled is run, the program

produces a profile file run.rp, which can then be read

by the profiling tool rp2ps that comes with the MLKit to

produce profiling graphs of various forms.

--regionvar N (~1)

Uses the provided number as the id of the first

generated region variable. When this option is

provided together with the -c option, a file f.rv

is written in the MLB/ directory with two numbers

in it: the id for the first region variable

generated and the id for the last region variable

generated. The number given must be greater than

any id for a top-level region/effect variable (>9).

--register_allocation (on)

Perform register allocation. Without register allocation

enabled, programs run somewhat slower--but they run and

you save about 15 percent on compile time.

--report_file_sig, -sig (off)

Report signatures for each file read.

--repository, -rep (on)

Use in-memory repository to avoid unnecessary

recompilation. This flag should be disabled when

compiling mlb-files, which make use of the file system

as a repository.

--safeLinkTimeElimination (off)

Threat this module as a library in the sense that

the code can be eliminated if it is not used.

--specialize_recursive_functions (on)

Specialise recursive functions. Use the option

maximum_specialise_size to control which functions
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are specialised. If this flag is on, functions that are

applied only once are specialised, no matter the setting

of maximum_specialise_size (Lambda Expression Optimiser).

--statistics_after_optimisation (off)

Report optimisation statistics after optimisation of

Lambda Expression.

--strip (off)

If enabled, the Kit strips the generated executable.

--tag_pairs (off)

Use a tagged representation of pairs for garbage

collection. Garbage collection works fine with a

tag-free representation of pairs, so this option

is here for measurement purposes.

--tag_values, -tag (on)

Enable tagging of values as used when garbage

collection is enabled for implementing pointer

traversal.

--type_check_lambda (on)

Type check lambda expression prior to performing region

inference. Type checking is very fast and for normal use

you should not disable this option. Type checking

intermediate forms is very powerful for eliminating bugs

in the compiler.

--unbox_function_arguments (on)

Unbox arguments to fix-bound functions, for which the

argument ‘a’ is used only in contexts ‘#i a’. All call

sites are transformed to match the new function (Lambda

Expression Optimiser).

--uncurrying, -uncurry (on)

Enable uncurrying of curried functions. The uncurried

function takes its arguments unboxed in registers or
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on the stack. For partial applications and non-

application uses of the function, appropriate eta-

expansions are applied.

--warn_on_escaping_puts (off)

Enable the compiler to issue a warning whenever a

region type scheme contains a put effect on a region

that is not quantified.

--width N, -w N (100)

Column width used when pretty printing intermediate code.
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!, 81
µ, see type and place
ρw, 43
*, 48
+, 48
-, 48
.mlb, 145
/, 48
::, 51
:=, 81
;, 70
<, 48
<=, 48
<>, 48
=, 48–50
>, 48
>=, 48
[ ], 58
^, 49
MLB-file, 145
~, 48

abs, 48
alignment, 48
allocation point, 98
allocReal, 190
allocRealProf, 196
allocRecordML, 191
allocRecordMLProf, 196
application extrusion, 74
arguments

multiple, 34, 46, 58, 206
arity, 87
arrow effect, 54, 124

auxiliary, 88
at, 41, 49, 52, 98
atbot, 98
attop, 98, 102
auto conversion, 200
auxiliary pairs, 53

backend
bytecode, 11, 33, 183, 206
hppa, 206
native, 11, 33, 183
x86, 206, 213

Basis Library, 47, 205
batch compilation, 36
block structure, 70
bottom of region, 98
boxing, 34, 43, 82
Br, 87
bytecode, 11

C, 17
calling, 36, 185

C examples, 201
call conversion, 136, 183
call-back function, 186
ceil, 48
cFALSE, 190
change elem, 203
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changes
since version 2, 207
since version 3, 206
since version 4, 205

chr, 49
-comment option, 179
comments

in MLB-file, 147
concat, 49
convertBoolToC, 191
convertBoolToML, 191
convertIntToC, 189
convertIntToML, 189
convertRealToC, 190
convertRealToML, 190
convertStringToC, 192
convertStringToML, 192
convertStringToMLProf, 196
cp, 64
cTRUE, 190

datatype, 87
declaration

local, 70
sequential, 69
value, 69

decon, 52
dir, 202
div, 48
dlopen

dlopen, 200
dlsym

dlsym, 200
double copying, 26
dynamic linking, 200

effect, 41, 45
atomic, 45

atomic, definition, 127
definition, 127
latent, 124

effect arity, 88
effect variable, 54, 124

bound, 59
elemRecordML, 191
endomorphism, see region endomor-

phism
environment, 69
-eps option, 30
-eps option, 116
equality

monomorphic, 46
polymorphic, 46

example programs, see kitdemo di-
rectory

exception, 93
generative, 93
handling, 95
raising, 94

exception, 93
exception constructor, 93
exception declaration, 93
exception name, 93
exception value, 94

constructed, 94
nullary, 94

exn, 94
exomorphism, see region exomor-

phism
explode, 49
expression

call-explicit, 183

-file option, 173
first, 191
floor, 48
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fn, 123
fnjmp, 139
foldl, 141
forceResetting, 20, 97, 111
frame, 42
free, 18
free list, 31
fromto, 58
fun, 124
funcall, 138
function, 57

Curried, 103, 124
first-order, 57
higher-order, 123
region polymorphic, 207

function arguments
multiple, 34, 46, 58, 206

function call
call-explicit, 136

function type
region-annotated, 124

functor, 151

garbage collection, 9, 19, 206
get, 45, 62

hd, 96, 193
heap, 17, 20
hello world, 37
-help option, 173, 179
-help option to mlkit, 181, 213

implode, 49
initial basis, 47–50
Int31 structure, 47
Int32 structure, 47
integer, 47
is inf and atbot, 197
isCONS, 193

isNIL, 193
iterator, 110

K-normalisation, 100
kitdemo directory, 37

Lambda, 34, 41, 181
lambda abstraction, 123, 124
Lambda optimiser, 35
LATEX document

including figure in, 30
Layout, 183
length of list, 110
let, 70
let floating, 73
letregion, 33, 43, 45, 71, 95, 102
Lf, 87
libmylib.c, 201
Life

game of, 23
life, 169
lifetime, 70–73

shortening, 73
list, 51, 208

auxiliary pairs, 53
region-annotated type, 53
tail, 53

live variable analysis, see variable
local, 70, 105

makeCONS, 195
makeNIL, 195
malloc, 18
matching, 148
merge sort, 64, 111
-microsec option, 173
mk list backwards, 193
mk list forwards, 194
ML Basis File, 145
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ML Basis Files, 10, 205
MLB-file, 36

comments in, 147
grammar, 145

MLB-files, 147
mlFALSE, 190
MLKit

Version 1, 11
Version 2, 11
Version 3, 11
Version 4.3.0, 10

mlkit

executable, 36
mlTRUE, 190
mlUNIT, 189
mod, 48
msort, 64, 111
MulExp, 35, 181
multiple function arguments, 34, 46,

58, 206
multiplicity, 32
multiplicity analysis, 35, 44
mylib.sml, 201

-name option, 179
nil, 51
not, 50
nthgen, 26

o, 140
-object option, 177
object profile, 161, 177
open declaration, 150
openIn, 78
openOut, 78
optimisation

statistics, 181
optimiser, 76

ord, 49

pair
auxiliary, 52, 88, 98

path
absolute, 147
relative, 147

pattern matching, 52
physical size inference, 183
power, 202
power auto, 202
power exn, 202
power real, 202
prim, 186
-print all program points, 169
-print call explicit expression,

136, 169
-print drop regions expression,

183
-print drop regions expression with storage modes,

100
-print effects, 183
-print physical size inference expression,

169, 183
-print region flow graph, 169
-print regions, 183
-print storage mode expression,

181
-print types, 183
print string list, 202
Printing of intermediate forms, 181
printStringML, 192
profile

object, 161
region, 161
stack, 162

profile data file, 176
profile strategy
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compile-time, 169
options, 172
runtime, 172

profile tick, 173
-profiletime option, 173
profiling

time slot, 173
program point, 161
program transformation, 73
projects

compiling, 64
running, 64

put, 45, 62
put-effect

escaping, 76

rDesc, see region descriptor
real, 48
real list, 203
-realtime option, 173
recompilation, 147

cut-off, 148
record, 41

runtime representation of, 45
unboxed, 46

recursion
polymorphic, 63

ref, 81
reference, 81

local, 85
referencing an MLB-file, 145
RegionExp, 32, 35
region, 18

auxiliary, 98
de-allocation, 44, 126
dropping of, 62
global, 94, 95
resetting, 20, 97

-region option, 30, 176
region aliasing, 104
region arity, 88
region descriptor, 31, 105
region endomorphism, 26, 63, 105,

108, 110, 185
region exomorphism, 63, 73, 185
region flow graph, 104, 162
region inference, 20

ground rule, 71
region name, 32, 99
region pages, 31, 174
region parameter, 59

actual, 57, 58
formal, 57, 58, 105

region polymorphism, 57–66, 98, 124,
137

region profile, 161, 176
region profiling, 22
-region profiling, 169
region size, 19, 31, 183

finite, 31
infinite, 31

region stack, 18
region statistics, 174
region variable, 33, 41

auxiliary, 88
region vector

removed, 207
region-annotated type, 42
region-annotated type scheme, 59

printing of, 127
region-annotated type scheme with

place, 60
region.ps, 30, 116
register, 41, 136

standard argument, 139, 140
standard closure, 139, 140
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resetRegion, 197
resetRegions, 20
resetRegions, 111
round, 48
rp2ps, 30, 116
rp2ps options, 176–179
run, 37, 148
runtime stack, 31
runtime system, 35
runtime type, 32, 48

-sampleMax option, 30, 116, 179
sat, 103
scan, 114
scan rev1.mlb, 164
scan rev2.mlb, 168
scope rules, 69–74
-sec option, 173
second, 191
separate compilation, 10, 205
Sieve of Eratosthenes, 72
signature constraint

opaque, 150
transparent, 150

signature declaration, 150
size, 49
sizeString, 192
smallPrime, 71
-sortBySize option, 179
-sortByTime option, 179
source file, 147
specialisation

functor, 151
spreading, 87
stack, 9, 17, 20, 70, 95, 136
-stack option, 178
stack band, 105
stack profile, 162, 178

standard argument register, 139, 140
standard closure register, 139, 140
Standard ML, 9

1997 revision, 47
Basis Library, 47, 205
Modules, 35, 145

Standard ML Basis Library, 207
-stat option, 179
-statistics after optimisation,

181
StatObject, 208
storage mode, 98
str, 49
String.h, 189
strongly connected component, 171
structure declaration, 149
substitution, 127
substring, 49

tagging, 206
Tagging.h, 189
tail recursion, 74
target program, 37
TextIO, 78
timer

prof, 173
real, 173
virtual, 173

tl, 96, 193
top of region, 98
traverse list, 192
tree, 87
trunc, 48
tuple, see record
type

region-annotated, 41, 53, 83, 124,
127

type scheme
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region-annotated, 59
type scheme with place

region-annotated, 60
type with place, 42

unit, 45
untagging, 206

val, 124
value

boxed, 34, 43
unboxed, 34, 43

value declaration, see declaration
value representation, 206
variable

lambda-bound, 123
locally live, 100
own, 85

VCG tool, 169, 171
-virtualtime option, 173

web site, 11
Word31 structure, 48
Word32 structure, 48
Word8 structure, 48
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Global Regions

r1 Holds values of type top, that is, records, exceptions, and closures.
r2 This region does not actually exist; it is used with unboxed values, such

as integers, booleans, and the 0-tuple.

r3 Holds values of type bot. Because no values has type bot, this region
contains no values. Region variables with region type bot are used with
type variables.

r4 Holds values of type string.
r5 Holds values of type τ1 × τ2, for any types τ1 and τ2.
r6 Holds values of type τ array and τ vector, for any type τ .
r7 Holds values of type τ ref, for any type τ .
r8 Holds values of τ1 × τ2 × τ3, for any types τ1, τ2, and τ3.
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