
Compositional Deep Argument Flattening

MARTIN ELSMAN, University of Copenhagen, Denmark

We present a mechanism for unboxing function arguments in a way that allows nested objects and curried

arguments to be passed to functions flattened and unboxed in registers. The mechanism supports that the

transformation is performed in multiple passes, perhaps interleaved by other optimisation passes that promote

new opportunities for argument unboxing, flattening, and uncurrying. Moreover, the technique fits well

within a framework for incremental recompilation where transformations may be applied to functions across

compilation unit boundaries.

We report on key properties of the technique, including a type preservation property and compositional

properties. We also report on an implementation and on the performance benefits of the approach.

1 INTRODUCTION
Unboxing of function arguments is paramount for achieving high performance, in particular

in the context of compilers that implement support for polymorphic functions using a uniform

representation of values. Various techniques may be used for unboxing and uncurrying and it

is important that functions may be called using efficient calling conventions also when the calls

pass compilation unit boundaries. At the same time, it must hold that a transformed program

does not perform worse than the non-transformed program, in particular with respect to memory

usage. Such a guarantee can be provided if it is ensured that transformed call sites will not lead to

additional allocations that were not previously performed by the non-transformed function.

In this paper, we present a mechanism for unboxing function arguments in a way that allows

nested objects and curried arguments to be passed to functions flattened and unboxed in regis-

ters. The mechanism supports that the transformation is performed in multiple passes, perhaps

interleaved by other optimisation passes that promote new opportunities for argument unboxing,

flattening, and uncurrying. More importantly, the technique is designed so that unboxing deci-

sions for a function are made based only on analysing the function definition (i.e., the function

body) and not its non-recursive uses. Such a design turns out to fit well within a framework for

incremental recompilation where transformations may be applied to functions across compilation

unit boundaries [7], which is in contrast to how similar optimisations are made in compilers that

assume whole-program compilation [3, 20, 21]. The technique is based on the concept of so-called

compositional argument transformers, which serve to adjust function types and call sites and which

are compositions of atomic transformations that each eliminates an argument, adds a new unboxed

argument, or uncurries the function.

The mechanism is concerned only with the optimisation of calling conventions for so-called

known functions, that is, functions that are defined using letrec-definitions and which (by conven-

tion) are always fully applied. Unknown-functions use a uniform representation of arguments and

an optimiser will do its best for eliminating unknown functions at compile time, using standard

optimisation techniques such as inlining (compile-time beta-reductions) and function specialisation

[11, 17]. This paper is concerned with optimisations that cannot be performed with these standard

optimisation techniques, including argument flattening and uncurrying of functions, which also

directly eliminates a certain class of unknown functions.

The contributions of this work are as follows:

• We present a mechanism for unboxing function arguments in a way that allows nested

objects and curried arguments to be passed to functions flattened and unboxed in registers.

ML Family Workshop 2025. October 16, 2025. Singapore.

Author’s address: Martin Elsman, Department of Computer Science, University of Copenhagen, Universitetsparken 5,

Copenhagen, Denmark, DK-2100, mael@di.ku.dk.

HTTPS://ORCID.ORG/0000-0002-6061-5993
https://orcid.org/0000-0002-6061-5993

2 Martin Elsman

• We demonstrate key properties of the technique, including a type preservation property

and compositional properties.

• We have implemented the technique in the MLKit, a Standard ML compiler, which uses

a smart-recompilation management system for achieving fast rebuilds upon changes of

source code. We describe the implementation and outline how the technique is integrated

with other optimisations.

• We give an overview of the performance benefits of the technique based on a series of

benchmarks and discuss how the technique can be extended to allow for more unboxing.

The extended abstract is structured as follows. In Section 2, we present examples that benefit from

compositional deep argument flattening. In Section 3, we present a minimal polymorphic typed

functional language for which we provide a type system. In Section 4, we present the argument

flattening technique and demonstrate the key properties of the technique.

In Section 7, we present a series of benchmarks and demonstrate the effectiveness of the tech-

nique in terms of performance improvements observed when enabling the various features of the

technique. In Section 8, we present related work. In Section 9, we conclude and discuss future work.

2 EXAMPLES OF DEEP ARGUMENT FLATTENING
Good examples of functions that benefit from deep argument flattening are functions that operate

on 2-dimensional real-vectors, including an add function on such vectors and the dot-product

function dotp over such vectors. In Standard ML, here are some definitions:

type v2 = real * real

val zero : v2 = (0.0, 0.0)

fun add (x1,y1) (x2,y2) : v2 = (x1+x2,y1+y2)

fun dotp (x1,y1) (x2,y2) : real = x1*x2+y1*y2

Conventionally, calling conventions for the functions add and dotp can be obtained from the types

of the functions:

val add : v2 → v2 → v2

val dotp : v2 → v2 → real

Without knowing more about the functions, their types suggest that, given v2-values as arguments,

each of the functions should return functions that again will accept v2-values as arguments. Due to

the possibility of writing polymorphic functions that will extract elements from arbitrary triples, it

is standard to represent values of type v2 as boxed tuples containing references to boxed floating-

point values. That is, without knowing more about a function than its type, due to polymorphism,

all values are required to be represented using one word (in memory or in a register). Letting add

and dotp return closures that are immediately called with their second argument is expensive and

most ML implementations therefore make use of inlining strategies or whole-program compilation

techniques to mitigate the problematic overhead. An alternative strategy would be to recognise that

some functions may be represented uncurried. For instance, the add function could be implemented

with the type v2*v2→v2. The reason this representation is possible is that applying add to one

argument has no effect other than returning a closure. Moreover, because the add function is not

using the v2 values for anything else than using their components (e.g., none of the v2 values are

stored in data structures), it would be safe to pass the elements of the v2 values unboxed, which

leads to add having the internal type ⟨real,real,real,real⟩→v2, where the function now takes

multiple parameters. Finally, because each of the passed boxed real values are only destructed by

the add function, we can pass the arguments unboxed in floating-point registers (or on the stack,

depending on the calling convention for the specific architecture), as reflected in add having the

Compositional Deep Argument Flattening 3

internal representation type ⟨f64,f64,f64,f64⟩→v2, where f64 is the type of unboxed floating

point values, which are not allowed to be instantiated for type variables in calls to polymorphic

functions.

Notice that partial applications of add and dotp may be safely translated into explicit closures.

Thus map (add zero) [zero,zero] will be compiled into the intermediate-level code map (fn x

⇒ add ⟨0.0,0.0,f64(#1 x),f64(#2 x)⟩) [zero,zero], while guaranteeing that code execution is

not duplicated at runtime. The deep argument flattening technique that we present assumes that

decisions on how a function is represented (its calling convention) is purely a property of the

function itself and not of its call sites. We further assume that all call sites may be updated using

the notion of compositional argument transformers. Here is a compositional argument transformer

that turns out to be a valid compositional argument transformer for both the add and dotp functions

and which describes how call-sites to these functions should be updated to safely represent calls to

the functions:

𝜇 = drop 1 ◦ drop 1 ◦ drop 1 ◦ drop 1 ◦ f64 4 ◦ f64 3 ◦ f64 2 ◦ f64 1

◦ drop 1 ◦ drop 1

◦ addprj(2, 2) ◦ addprj(2, 1) ◦ addprj(1, 2) ◦ addprj(1, 1)

◦ uncurry

The argument transformer 𝜇 is composed of a series of atomic transformers (to be read from

the right), which can be used to transform both types and call sites. For transforming the type

v2→v2→real of dotp, first it is uncurried, yielding the type ⟨v2,v2 ⟩→real. Then four unboxing

transformations happen, followed by two drop transformations, which yields the type ⟨real,real
,real,real⟩→real. Finally, four float-unboxing transformations add unboxed float arguments

corresponding to the boxed real arguments, followed by four drop transformations, which yield

the final type ⟨f64,f64,f64,f64⟩→real.

Notice that the present work are concerned only with arguments and not with return values. We

envision that the transformation mechanism that we present here can be used also to return values

unboxed in registers and on the stack.

3 A MINIMAL LANGUAGE
We present a simple polymorphically-typed functional language. We give a type system for the

system compatible with a standard small-step contextual semantics (which we do not present here).

The language features recursive functions and tuples. The language does not feature sum types,

for which unboxing can be considered as an orthogonal problem [9], and for simplicity, we leave

out the formalisation of unboxing floating-point arguments, which can be modeled as unboxing

singleton tuples.

We assume a denumerable infinite set of type variables, ranged over by 𝛼 . Whenever 𝑜1, · · · , 𝑜𝑛 is

some sequence of objects, we use the notation ®𝑜 (𝑛) to denote this sequence and we shall sometimes

just write ®𝑜 if the length of the sequence is either non-restricted or is implicitly determined from

the context. We define types (𝜏) and type schemes (𝜎) according to the following grammar:

𝜏 ::= 𝛼 | int | 𝜏, · · · , 𝜏 → 𝜏 | 𝜏 → 𝜏 | 𝜏 × · · · × 𝜏

𝜎 ::= ∀®𝛼.𝜏

Notice that we distinguish between function types with multiple arguments and function types

with a single argument. For type schemes ∀®𝛼.𝜏 , we consider ®𝛼 bound in 𝜏 and we consider type

schemes identical up to renaming of bound variables. We use 𝑆 to range over type substitutions,
which map type variables to types. When 𝐴 is some object, we write 𝑆 (𝐴) to denote the object 𝐴

4 Martin Elsman

with each free occurrences of a type variables 𝛼 ∈ Dom 𝐴 replaced with 𝑆 (𝛼). When 𝜎 = ∀®𝛼.𝜏 ′
is some type scheme and 𝜏 is some type, we write 𝜎 ≥ 𝜏 if there exists a substitution 𝑆 such that

Dom 𝑆 = { ®𝛼} and 𝑆 (𝜏 ′) = 𝜏 .

For defining the grammar of values and expressions, we assume a denumerable infinite set of

program variables, ranged over by 𝑥 and 𝑓 , and we use 𝑑 to ranger over integer constants. We define

values (𝑣), access expressions (𝑎), patterns (𝑝 and 𝑞), and expressions (𝑒) as follows:

𝑣 ::= 𝑑 | 𝜆𝑥 : 𝜏 .𝑒 | (𝑣, · · · , 𝑣) | fix 𝑓 : 𝜎 ®𝑝 = 𝑒

𝑎 ::= 𝑥 | #𝑖 𝑎 | 𝑣

𝑝 ::= 𝑥 : 𝜏

𝑒 ::= 𝑎 | 𝑒 𝑒 | 𝑓 𝑎, · · · , 𝑎 | (𝑒, · · · , 𝑒) | fun 𝑓 : 𝜎 ®𝑝 = 𝑒 in 𝑒

Notice that ordinary lambda abstractions are distinguished from recursive function definitions,

both for values and expressions. For reasons that will become clear later, we separate access

expressions from ordinary expressions. When 𝑎 is some access expression denoting a tuple, the

access expression #𝑖 𝑎, where 𝑖 is some positive integer, projects the 𝑖′𝑡ℎ element of the tuple

(assuming the number of elements in the tuple is larger than 𝑖).

For values of the form 𝜆𝑥 : 𝜏 .𝑒 , we consider 𝑥 bound in 𝑒 . Further, for values of the form

fix 𝑓 : ∀®𝛼.𝜏 ®𝑝 = 𝑒 and for expressions of the form fun 𝑓 : ∀®𝛼.𝜏 ®𝑝 = 𝑒 in 𝑒′, we consider 𝑓 bound

in 𝑒 and in 𝑒′ and we consider program variables in ®𝑝 bound in 𝑒 . Moreover, we consider ®𝛼 bound in

𝜏 , ®𝑝 , and 𝑒 . Values and expressions are considered identical up to renaming of bound type variables

and bound program variables. As is standard, we write 𝑒 [𝑣/𝑥] for the substitution of the value 𝑣

for the variable 𝑥 in the expression 𝑒 . When ®𝑝 = 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 is some pattern sequence, we

write types(®𝑝) to denote the type sequence 𝜏1, · · · , 𝜏𝑛 .
We sometimes write let 𝑥 : 𝜏 = 𝑒1 in 𝑒2 as an abbreviation for (𝜆𝑥 : 𝜏 .𝑒2) 𝑒1. We also sometimes

write 𝑓 𝑒1, · · · , 𝑒𝑛 as an abbreviation for let 𝑥1 : 𝜏1 = 𝑒1 in · · · let 𝑥𝑛 : 𝜏𝑛 = 𝑒𝑛 in 𝑓 𝑥1, · · · , 𝑥𝑛 and

we write #𝑖 𝑒 as an abbreviation for let 𝑥 : 𝜏 = 𝑒 in #𝑖 𝑥 , with suitable fresh variables 𝑥, 𝑥1, · · · , 𝑥𝑛 .
A type environment (Γ) maps program variables to type schemes and when Γ and Γ′ are type

environments with disjoint domains, we write Γ, Γ′ to denote map composition. Moreover, we

write 𝑥 : 𝜎 to denote a singleton type environment mapping 𝑥 to the type scheme 𝜎 and we write ·
to denote the empty type environment.

3.1 Type System
We define a type system for the language, which is based on a standard Hindley-Milner type system

with polymorphic types. The type system, which is presented in Figure 1, is defined in terms of a

set of inference rules that allow inferences of sentences of the form ⊢ 𝑣 : 𝜎 , which are read, the

value 𝑣 has type scheme 𝜎 , and of the form Γ ⊢ 𝑒 : 𝜎 , which are read, the expression 𝑒 has type

scheme 𝜎 in the type environment Γ.
The following two propositions hold, which are easily shown by induction on the respective

typing derivations:

Proposition 3.1 (Typing Closed Under Value Substitution). If Γ, 𝑥 : 𝜎 ′ ⊢ 𝑒 : 𝜎 and ⊢ 𝑣 : 𝜎 ′

then Γ ⊢ 𝑒 [𝑣/𝑥] : 𝜎 .

Proposition 3.2 (Typing Closed Under Type Substitution). If Γ ⊢ 𝑒 : 𝜎 then 𝑆 (Γ) ⊢ 𝑆 (𝑒) :
𝑆 (𝜎), for any type substitution 𝑆 .

Moreover, we shall be using the following additional properties for the typing judgment:

Proposition 3.3 (Typing Depends Only on Free Variables). If Γ, 𝑥 : 𝜎 ′ ⊢ 𝑒 : 𝜎 and 𝑥 ∉ fv 𝑒

then Γ ⊢ 𝑒 : 𝜎 .

Compositional Deep Argument Flattening 5

Value Typing ⊢ 𝑣 : 𝜎

⊢ 𝑑 : int
[tv-int]

𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2
⊢ 𝜆𝑥 : 𝜏1 .𝑒 : 𝜏1 → 𝜏2

[tv-lam]

⊢ 𝑣𝑖 : 𝜏𝑖 , 𝑖 = 1, · · · , 𝑛
⊢ (𝑣1, · · · , 𝑣𝑛) : 𝜏1 × · · · × 𝜏𝑛

[tv-tup]

𝜎 = ∀®𝛼. ®𝜏 → 𝜏 types 𝑝 = ®𝜏
𝑓 : ®𝜏 → 𝜏, ®𝑝 ⊢ 𝑒 : 𝜏
⊢ fix 𝑓 : 𝜎 ®𝑝 = 𝑒 : 𝜎

[tv-fix]

Expression Typing Γ ⊢ 𝑒 : 𝜎

Γ(𝑥) = 𝜎

Γ ⊢ 𝑥 : 𝜎
[t-var]

𝑖 ∈ {1, · · · , 𝑛}
Γ ⊢ 𝑎 : 𝜏1 × · · · × 𝜏𝑛

Γ ⊢ #𝑖 𝑎 : 𝜏𝑖
[t-sel]

⊢ 𝑣 : 𝜎

Γ ⊢ 𝑣 : 𝜎
[t-val]

Γ ⊢ 𝑒 : 𝜎 𝜎 ≥ 𝜏

Γ ⊢ 𝑒 : 𝜏 [t-sub]

Γ ⊢ 𝑒𝑖 : 𝜏𝑖 , 𝑖 = 1, · · · , 𝑛
Γ ⊢ (𝑒1, · · · , 𝑒𝑛) : 𝜏1 × · · · × 𝜏𝑛

[t-tup]

Γ ⊢ 𝑒 : ®𝜏 (𝑛) → 𝜏 Γ ⊢ 𝑎𝑖 : 𝜏𝑖 , 𝑖 = 1, · · · , 𝑛
Γ ⊢ 𝑒 𝑎1, · · · , 𝑎𝑛 : 𝜏

[t-fapp]

Γ ⊢ 𝑒1 : 𝜏1 → 𝜏2 Γ ⊢ 𝑒2 : 𝜏1
Γ ⊢ 𝑒1 𝑒2 : 𝜏2

[t-app]

Γ, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏2
Γ ⊢ 𝜆𝑥 : 𝜏1.𝑒 : 𝜏1 → 𝜏2

[t-lam]

𝜎 = ∀®𝛼. ®𝜏 → 𝜏 types 𝑝 = ®𝜏 { ®𝛼} ∩ ftv(Γ, 𝜎 ′) = ∅
Γ, 𝑓 : ®𝜏 → 𝜏, ®𝑝 ⊢ 𝑒1 : 𝜏 Γ, 𝑓 : 𝜎 ⊢ 𝑒2 : 𝜎 ′

Γ ⊢ fun 𝑓 : 𝜎 ®𝑝 = 𝑒1 in 𝑒2 : 𝜎
′ [t-fun]

Fig. 1. Type system for the minimal language.

Proposition 3.4 (Typing Closed Under Access Expression Substitutions). If Γ ⊢ 𝑒 : 𝜎 and
Γ ⊢ 𝑎 : 𝜏 and Γ(𝑥) = 𝜏 then Γ ⊢ 𝑒 [𝑥/𝑒] : 𝜎 .

Proposition 3.5 (Typing Closed Under Extended Environments). If Γ ⊢ 𝑒 : 𝜎 and Dom Γ ∩
Dom Γ0 = ∅ then Γ, Γ0 ⊢ 𝑒 : 𝜎 .

4 ARGUMENT FLATTENING
We now formalise the notion of deep argument flattening, which, for simplicity, is defined only for

expressions that are fix-free, that is, for expressions not containing fix constructs.

We first introduce the notion of compositional argument transformers, which are compositions

of atomic transformers that aim at eliminating an argument, adding a new unboxed argument,

or uncurrying a function. In the following, we write prj(𝑖, 𝜏1 × · · · × 𝜏𝑛) to mean 𝜏𝑖 , provided

𝑖 ∈ {1, · · · , 𝑛}. The grammar for compositional argument transformers is as follows:

𝜇 ::= drop(𝑖) | addprj(𝑖, 𝑗) | uncurry | 𝜇 ◦ 𝜇 | id

6 Martin Elsman

Call-site transformation 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ

®𝑎′ = 𝑎1, · · · , 𝑎𝑖−1, 𝑎𝑖+1, · · · , 𝑎𝑛
drop(𝑖) ⊢call 𝑓 ®𝑎 (𝑛) : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏, · [c-drop]

addprj(𝑖, 𝑗) ⊢call 𝑓 ®𝑎 (𝑛) : 𝜏 ⇒ 𝑓 ®𝑎, # 𝑗 𝑎𝑖 : 𝜏, · [c-add]

𝑥 ∉ fv(𝑓 ®𝑎)
uncurry ⊢call 𝑓 ®𝑎 : 𝜏 → 𝜏 ′ ⇒ 𝑓 ®𝑎, 𝑥 : 𝜏 ′, 𝑥 : 𝜏

[c-unc]

𝜇1 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′′ : 𝜏 ′′, Γ1
𝜇2 ⊢call 𝑓 ®𝑎′′ : 𝜏 ′′ ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ2

𝜇2 ◦ 𝜇1 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ1, Γ2
[c-comp]

id ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎 : 𝜏, · [c-id]

Fig. 2. Transforming call sites. The rules specify how a call site is transformed given a compositional argument
transformer 𝜇.

Applying a compositional argument transformer 𝜇 to a type 𝜏 , written 𝜇 (𝜏), yields a new type,

provided the transformer matches the type:

drop(𝑖)(®𝜏 (𝑛) → 𝜏) = 𝜏1, · · · , 𝜏𝑖−1, 𝜏𝑖+1, · · · , 𝜏𝑛 → 𝜏

addprj(𝑖, 𝑗)(®𝜏 (𝑛) → 𝜏) = ®𝜏, prj(𝑗, 𝜏𝑖) → 𝜏

uncurry(®𝜏 → (𝜏 → 𝜏 ′)) = ®𝜏, 𝜏 → 𝜏 ′

(𝜇2 ◦ 𝜇1) (𝜏) = 𝜇2 (𝜇1 (𝜏))
id(𝜏) = 𝜏

The result of applying a compositional argument transformer 𝜇 to a type scheme 𝜎 = ∀®𝛼.𝜏 , written
𝜇 (𝜎), is the type scheme ∀®𝛼.𝜇 (𝜏).
For specifying the effect of applying a compositional argument transformer to a call site 𝑓 ®𝑎 ,

we define the relation 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, which states that applying the transformer 𝜇

to the call site 𝑓 ®𝑎 yields a new call site expression 𝑓 ®𝑎′ of type 𝜏 ′. The relation is defined by the

inference rules in Figure 2. Rule c-drop expresses that argument 𝑖 is dropped from the argument

sequence. Rule d-add expresses that an a additional argument is added to the argument sequence.

Rule c-unc expresses uncurrying. Rules c-comp and c-id express how call sites are transformed by

the composition of argument transformers and the identity argument transformer, respectively.

Whenever a type environment Γ binds variables only to monomorphic types, we use the notation

Γ → 𝜏 to denote the type of a function that takes arguments of types as determined by Γ and

returns a value of type 𝜏 :

(·) → 𝜏 = 𝜏

(Γ, 𝑥 : 𝜏 ′) → 𝜏 = Γ → (𝜏 ′ → 𝜏)
The following property holds:

Proposition 4.1 (Preservation of Call Site Types). If 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑒′ : 𝜏 ′, Γ then
𝜏 = Γ → 𝜏 ′.

Example 4.2. Consider a function f of type 𝜏 = int × int → int → int, which takes a pair

of integers as argument and returns a function that takes an integer as argument and returns

an integer. Now, assume that, by analysing the body of f, it is recognised that its argument is

deconstructed at all uses and that the function immediately returns a function of type int → int.

In that case, we can assume that the function can be transformed to take instead all three integers

Compositional Deep Argument Flattening 7

Optimisations 𝜇 ⊢opt (𝜏, ®𝑝, 𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′)

𝑝𝑖 = 𝑥𝑖 : 𝜏𝑖 𝑥𝑖 ∉ fv(𝑒) types(®𝑝) = ®𝜏 types(®𝑞) = ®𝜏 ′
®𝑝 = 𝑝1, · · · , 𝑝𝑛 ®𝑞 = 𝑝1, · · · , 𝑝𝑖−1, 𝑝𝑖+1, · · · , 𝑝𝑛−1
drop(𝑖) ⊢opt (®𝜏 → 𝜏, ®𝑝, 𝑒) ⇒ (®𝜏 ′ → 𝜏, ®𝑞, 𝑒) [o-drop]

𝑝𝑖 = 𝑥𝑖 : 𝜏
′
1
× · · · × 𝜏 ′𝑚 0 ≤ 𝑗 < 𝑚 types(®𝑝) = ®𝜏

addprj(𝑖, 𝑗) ⊢opt (®𝜏 → 𝜏, ®𝑝, 𝑒) ⇒ (®𝜏, 𝜏 ′𝑗 → 𝜏, (®𝑝, 𝑥 : 𝜏 ′𝑗), 𝑒 [𝑥/# 𝑗 𝑥𝑖])
[o-add]

types(®𝑝) = ®𝜏
uncurry ⊢opt (®𝜏 → 𝜏 → 𝜏 ′, ®𝑝, 𝜆𝑥 : 𝜏 .𝑒) ⇒ (®𝜏, 𝜏 → 𝜏 ′, (®𝑝, 𝑥 : 𝜏), 𝑒) [o-unc]

𝜇1 ⊢opt (𝜏, ®𝑝, 𝑒) ⇒ (𝜏 ′′, ®𝑟, 𝑒′′) 𝜇2 ⊢opt (𝜏 ′′, ®𝑟, 𝑒′′) ⇒ (𝜏 ′, ®𝑞, 𝑒′)
𝜇2 ◦ 𝜇1 ⊢opt (𝜎, ®𝑝, 𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′) [o-comp]

id ⊢opt (𝜏, ®𝑝, 𝑒) ⇒ (𝜏, ®𝑝, 𝑒) [o-id]

Fig. 3. The optimisation judgment. The rules specify the conditions under which an argument transformer 𝜇
is a valid transformer for transforming a function of type 𝜏 , with function parameters ®𝑝 , and function body 𝑒
into a refined type 𝜏 ′, refined function parameters ®𝑞, and a refined function body 𝑒′.

unboxed in registers, which is enforced by associating the function with the argument transformer

𝜇 = uncurry ◦ drop(1) ◦ addprj(1, 2) ◦ addprj(1, 1). Applying the argument transformer to the

function type 𝜏 yields 𝜇 (𝜏) = int, int, int → int. Moreover, based on the call site transformation

𝜇 ⊢ 𝑓 𝑦 : int → int ⇒ 𝑓 #1 𝑦, #2 𝑦, 𝑥 , 𝑥 : int, we can envision that each call site 𝑓 𝑦

may be transformed into the expression 𝜆𝑥 : int.𝑓 #1 𝑦, #2 𝑦, 𝑥 , which may lead to compile-time

𝛽-reductions and static tuple projections depending on the call-site contexts.

Argument flattening makes use of a so-called optimisation judgment for identifying function

transformations, transforming parameters, and defining a so-called access map. The optimisation

judgment takes the form 𝜇 ⊢opt (𝜏, ®𝑝, 𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′), where 𝜇 is an argument transformer, the

left-hand triple (𝜏, ®𝑝, 𝑒) specifies the type of the function, the parameter sequence, and the function

body. The the right-hand triple (𝜏 ′, ®𝑞, 𝑒′) specifies the type of the function, its parameter sequence,

and a parameter-transformed function body.

The rules defining the optimisation judgment are given in Figure 3. Rule o-drop specifies that an

argument may be dropped if the argument parameter is not used in the body of the function. Rule o-

add suggests the addition of a new function parameter corresponding to a particular projection of

an argument tuple. Rule o-uncurry specifies uncurrying of a function body that consists directly

of an immediate lambda-abstraction. Rules o-id and o-comp specify the identity transformation

and how transformations are composed, respectively. The rules specify, through the parameter

sequences ®𝑝 and ®𝑞, how optimisations modify parameters.

In the following, we use the notation 𝜆Γ.𝑒 to denote a function that takes arguments according

to Γ and returns the value resulting from evaluating 𝑒:

𝜆(·).𝑒 = 𝑒

𝜆(Γ, 𝑥 : 𝜏 ′).𝑒 = 𝜆Γ.𝜆𝑥 : 𝜏 ′ .𝑒

The following property holds and is proven by induction over the derivation of the optimisation

judgment.

8 Martin Elsman

Flattening 𝜙 ⊢ 𝑒 ⇒ 𝑒′ : 𝜏

𝜙 (𝑥) = (𝜏, id)
𝜙 ⊢ 𝑥 ⇒ 𝑥 : 𝜏

[f-var]

𝜙 ⊢ 𝑑 ⇒ 𝑑 : int
[f-int]

𝑖 ∈ {1, .., 𝑛}
𝜙 ⊢ 𝑎 ⇒ 𝑎′ : 𝜏1 × · · · × 𝜏𝑛

𝜙 ⊢ #𝑖 𝑎 ⇒ #𝑖 𝑎′ : 𝜏𝑖
[f-sel]

𝜙, 𝑥 : (𝜏, id) ⊢ 𝑒 ⇒ 𝑒′ : 𝜏 ′

𝜙 ⊢ 𝜆𝑥 : 𝜏 .𝑒 ⇒ 𝜆𝑥 : 𝜏 .𝑒′ : 𝜏 → 𝜏 ′
[f-lam]

𝜙 (𝑓) = (𝜎, 𝜇) 𝜎 ≥ ®𝜏 → 𝜏

𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ

𝜙 ⊢ 𝑓 ®𝑎 ⇒ 𝜆Γ.𝑓 ®𝑎′ : Γ → 𝜏 ′
[f-fapp]

𝜙 ⊢ 𝑒1 ⇒ 𝑒′
1
: 𝜏1 → 𝜏2

𝜙 ⊢ 𝑒2 ⇒ 𝑒′
2
: 𝜏1

𝜙 ⊢ 𝑒1 𝑒2 ⇒ 𝑒′
1
𝑒′
2
: 𝜏2

[f-app]

𝜙 ⊢ 𝑒𝑖 ⇒ 𝑒′𝑖 : 𝜏𝑖 , 𝑖 = 1, · · · , 𝑛
𝜙 ⊢ (𝑒1, · · · , 𝑒𝑛) ⇒ (𝑒′

1
, · · · , 𝑒′𝑛) : 𝜏1 × · · · × 𝜏𝑛

[f-tup]

𝜏 = ®𝜏 → Γ0 → 𝜏0 𝜇 ⊢opt (𝜏, ®𝑝, 𝜆Γ0 .𝑒1) ⇒ (𝜏 ′, ®𝑞, 𝑒′
1
)

𝜙, 𝑓 : (𝜏, 𝜇), ®𝑞 : id ⊢ 𝑒′
1
⇒ 𝑒′′

1
: 𝜏0 𝜙, 𝑓 : (∀®𝛼.𝜏, 𝜇) ⊢ 𝑒2 ⇒ 𝑒′

2
: 𝜏 ′′

𝜙 ⊢ fun 𝑓 : ∀®𝛼.𝜏 ®𝑝 = 𝜆Γ0.𝑒1 in 𝑒2 ⇒ fun 𝑓 : ∀®𝛼.𝜏 ′ ®𝑞 = 𝑒′′
1
in 𝑒′

2
: 𝜏 ′′

[f-fun]

Fig. 4. Deep argument flattening. The rules apply to fix-free expressions for which references to fun-bound
functions appear only in direct application contexts of the form 𝑓 ®𝑎 . The rules express how, given a flattening
environment 𝜙 , an expression 𝑒 is transformed into another expression 𝑒′ of type 𝜏 .

Proposition 4.3 (Type Argument Transformation). Assume 𝜏 = ®𝜏 → Γ0 → 𝜏0 and types ®𝑝 =

®𝜏 and Γ, ®𝑝, Γ0 ⊢ 𝑒 : 𝜏0. If 𝜇 ⊢opt (𝜏, ®𝑝, 𝜆Γ0.𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′) then 𝜇 (𝜏) = 𝜏 ′ and 𝜏 ′ = ®𝜏 ′ → 𝜏0, where
®𝜏 ′ = types ®𝑞 and Γ, ®𝑞 ⊢ 𝑒′ : 𝜏0. Moreover, if 𝑒 is on the form 𝜆Γ1.𝑒1 for some 𝑒1, then 𝑒′ if of the form
𝜆Γ1 .𝑒

′
1
, for some 𝑒′

1
.

The last property is necessary for the proposition to be sufficiently strong that it can be shown

by induction. Details are provided in Appendix A.

Argument flattening proper is formalised as a set of inference rules that allow inference of

sentences of the form 𝜙 ⊢ 𝑒 ⇒ 𝑒′ : 𝜏 , where 𝑒 and 𝑒′ are expressions, 𝜏 is a type, and 𝜙 is a flattening
environment mapping program variables to pairs (𝜎, 𝜇) of a type scheme and a compositional

argument transformer. As an abbreviation, when Γ is some type environment 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 ,

we write Γ : id to denote the flattening environment 𝑥1 : (𝜎1, id), · · · , 𝑥𝑛 : (𝜎𝑛, id).
The inference rules for argument flattening are given in Figure 4. The rules apply to fix-free

expressions for which references to fun-bound functions appear only in direct application contexts

of the form 𝑓 ®𝑎 , perhaps enforced by 𝜂-expansion. Most of the rules are straightforward inductive

rules with the exception of rules f-acc, f-fapp and f-fun. Rule f-acc takes care of variables and of

replacing tuple accesses, when possible. Rule f-fapp specifies that a call to a known polymorphic

function 𝑓 may be transformed according to the argument transformer 𝜇 associated with the

function 𝑓 in the flattening environment 𝜙 . Rule f-fun specifies how and under what conditions a

polymorphic known (i.e., fun-bound) function 𝑓 is transformed. Notice that the rule supports the

transformation of both recursive and non-recursive call sites.

5 TYPE SOUNDNESS
We shall now set out to demonstrate that typing is closed under deep argument flattening. We first

define a relation that relates variables in a source type environment Γ with variables in a target

Compositional Deep Argument Flattening 9

Environment Modeling 𝜙 ⊢ Γ ∼ Γ′

𝜙 ⊢ Γ ∼ Γ′ 𝜇 (𝜎) = 𝜎 ′

𝜙, 𝑥 : (𝜎, 𝜇) ⊢ Γ, 𝑥 : 𝜎 ∼ Γ′, 𝑥 : 𝜎 ′ [e-var] · ⊢ · ∼ · [e-emp]

Fig. 5. Relating environments.

environment Γ′ through a flattening environment 𝜙 . The relation is written 𝜙 ⊢ Γ ∼ Γ′ and is

defined in Figure 5.

Before stating a property expressing that deep argument flattening is type-preserving, we first

state a few auxiliary propositions. First, the following proposition states that the typing of access

expressions under related environments is identical:

Proposition 5.1 (Relation of Access Expression Typings). If 𝜙 ⊢ Γ ∼ Γ′ and Γ ⊢ 𝑎 : 𝜏 then
Γ′ ⊢ 𝑎 : 𝜏 .

This property follows by the assumption that fun-bound variables are always fully applied and

thus cannot appear in access expressions.

The following proposition relates the typing of a call expression with the typing of its translation:

Proposition 5.2 (Translation of Call Expressions Closed Under Typings). Assume 𝜎 ≥
®𝜏 → 𝜏 . If Γ, 𝑓 : 𝜎 ⊢ 𝑓 ®𝑎 : 𝜏 and 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ0 and 𝜎 ′ = 𝜇 (𝜎) then
Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑓 ®𝑎′ : 𝜏 ′ and 𝜏 = Γ0 → 𝜏 ′.

The proposition is demonstrated by induction on the relation 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ0.
Details are given in Appendix A.

The following proposition states that deep argument flattening, as defined by the flattening

relation, is type-preserving:

Proposition 5.3 (Typing Preserved Under Transformation). Assume𝜙 ⊢ Γ ∼ Γ′ and Γ ⊢ 𝑒 : 𝜏 .
If 𝜙 ⊢ 𝑒 ⇒ 𝑒′ : 𝜏 then Γ′ ⊢ 𝑒′ : 𝜏 .

The proposition is proven by straightforward induction and by use of Proposition 4.3 for the f-fun

case and Proposition 5.2 for the f-fapp case.

Notice that Proposition 5.3 talks only about expressions 𝑒 for which a transformation derivation

exists, which assumes that 𝑒 is fix-free and that all references to fun-bound functions are fully

applied.

6 MULTIPLE OPTIMISATION PHASES
The process of deep argument flattening may benefit from traditional intermediate optimisation

phases such as common sub-expression elimination, function specialisation, inlining, constant

folding, dead-code elimination, and tuple-elimination. An implementation may interleave phases

and compose argument transformers to create single transformers for functions.

Figure 6 lists a simplified version of the optimisation algorithm implemented in the MLKit.

The main optimisation function takes as argument an optimisation environment (E), a flattening
environment (P), and an expression (e), the compilation unit expression. The function returns a triple

(e',E',P') of an (hopefully) optimised compilation unit expression, an optimisation environment,

and a flattening environment. The optimisation environment E' and the flattening environment

P' are used for compiling other compilation units that depends on the compiled compilation

unit, for instance, to adjust call sites of exported functions using argument transformers. Each

loop-function is iterated until there are no more code changes or until a maximum iteration limit

10 Martin Elsman

fun optimise (E:env) (P:phi) e =

let fun loop1 N E e =

let val () = reset_changes ()

val (e, E1) = contract E e

val e = (cse o eliminate_explicit_records) e

in if changes () andalso N > 0

then loop1 (N-1) E e

else (e, E1)

end

fun loop2 N E P e =

let val () = reset_changes ()

val (e, P1) = flatten P e

val (e, _) = contract E e

val e = (cse o eliminate_explicit_records) e

in if changes () andalso N > 0 then

let val (e,P2) = loop2 (N-1) E

(phi_nofun P) e

in (e, phi_compose(P1,P2))

end

else (e, P1)

end

val (e, E') = loop1 MAX_ITER E e

val (e, P') = loop2 MAX_ITER (unknown_env E) P e

in (e,E',P')

end

Fig. 6. A simplified version of the MLKit optimisation algorithm. Each expression rewrite forces a flag (a
boolean reference) to be set to true. The flag may be dereferenced using the function changes and set to
false using the function reset_changes. The binary infix-function o denotes function composition whereas
phi_compose denotes composition of flattening environments.

(i.e., 20) is reached. The loop1 function takes, besides from a counter N and an expression e, an

optimiser environment E as argument, which allow for inlining, function specialisation, and constant

folding to happen across compilation unit boundaries. The contract function implements efficient

contract and reduce steps, which in a down-sweep and an up-sweep implements constant-folding,

inlining, dead-code elimination, and function specialisation [1]. Common subexpression elimination

(i.e., cse) and elimination of explicit tuples (i.e., eliminate_explicit_records) are intra-procedural

and are interleaved with the other optimisations, which aim at introducing new optimisation

opportunities. The loop2 function starts by performing a flattening transformation using P, the

environment mapping external function definitions to compositional argument transformers. Notice

that P is used only for the first iteration of loop2. After the first iteration, all calls to externally

defined functions have been modified according to the argument transformers in P. For consecutive

passes, argument transformers in P are set to the identity transformer (id) using the function

phi_nofun. Notice also that inlining of functions across compilation unit boundaries, which, as

mentioned, is performed in the loop1 phase, takes precedence over deep argument flattening

across compilation unit boundaries, which is performed in the loop2 phase; no inlining or constant

propagation happen across compilation unit boundaries in the loop2 phase, which is enforced

Compositional Deep Argument Flattening 11

by the unknown_env function. Finally, notice that deep argument flattening is interleaved with

other optimisations in the loop2 phase, as other optimisations may trigger new opportunities for

argument flattening, including argument uncurrying, argument unboxing, and argument dropping.

The resulting flattening environments for consecutive passes are composed using the phi_compose

function, which takes care of composing argument transformers for exported functions. In practice,

optimisations stabilise after about five iterations.

Compared to the argument flattening presented in Section 4, the implementation of argument

flattening in the MLKit is extended to support also the passing of arguments of type real (IEEE

64-bit floats) unboxed in floating-point registers, as demonstrated in Section 2.

6.1 Deep Argument Flattening and Incremental Recompilation
The deep argument flattening technique fits well within a framework for incremental recompilation

[7], for which compilation units are compiled in separation but with the possibility that static

information about functions is passed across compilation unit boundaries at compile time. A

particular important aspect of the presented deep argument flattening technique is that it is

compositional and that the composition of argument transformers expresses how each call site is

transformed to match the refined function implementation. With respect to checking whether a

compilation unit needs to be recompiled upon changes of source code, it suffices to check whether

the compilation unit itself has changed or for each imported function whether any information

about the function has changed, such as its type or its compositional argument transformer.

MLKit and ReML [10], which shares the source code with MLKit, uses region inference and

region-basedmemorymanagement to complement reference-tracing garbage collection [19]. Region

inference is a type-based program analysis, which also requires refined type information to be

passed across compilation unit boundaries at compile time. The deep argument flattening technique

makes use of the same mechanism as region inference to detect, upon changes of source code, if

assumptions about an imported function has changed.

7 BENCHMARKS
In this section, we evaluate the technique based on a series of benchmarks. All benchmarks

are executed on a Thinkpad P14s Gen 4 equipped with a 13th Gen 16-core Intel Core i7-1360P

processor and 32GiB RAM. The machine runs Ubuntu 25.04. We compare the performance of

code generated by different configurations of MLKit 4.7.15, which implements the techniques

presented in this paper, and MLton 20241230, a state-of-the-art Standard ML compiler, which uses

a whole-program-compilation approach and which also implements deep flattening of arguments

(and also deep-flattening of data structures). Reported numbers are average wall-clock-times of 20

runs, for which we have removed the five largest outliers.

The different configurations of MLKit that we compare are the following:

Uncurrying Tuple argument unboxing Real argument unboxing

MLKit0

MLKituc ✓
MLKituc,tup ✓ ✓
MLKit ✓ ✓ ✓

Here MLKit0 is a version of MLKit without any argument flattening and MLKituc is a version of

MLKit that implements uncurrying. The MLKituc,tup version of MLKit implements uncurrying

and tuple argument unboxing, whereas MLKit is the default version of MLKit, which performs

uncurrying, tuple argument unboxing, and real argument unboxing. The MLKit configurations that

we report on all use MLKit’s native x86-64 backend. In addition, MLKit also features a JavaScript

12 Martin Elsman

 0

 0.5

 1

 1.5

barnes-hut

fft fib37
kbc

lexgen

life logic
m
andelbrot

m
lyacc

m
puz

MLKit0 MLKituc MLKituc,uba MLKit MLton

E
x
e
c
u
ti
o
n

ti
m
e

(s
e
c
)

 0

 0.5

 1

 1.5

 2

 2.5

m
sort

nucleic

professor

ratio
ray

sim
ple

tak
tsp

vliw
zebra

zern

MLKit0 MLKituc MLKituc,uba MLKit MLton

E
x
e
c
u
ti
o
n

ti
m
e

(s
e
c
)

Fig. 7. Average wall-clock execution times for MLKit-generated executables compared to average wall-clock
execution times for MLton generated executables. For each vertical bar, markers specify the absolute standard
deviation for the corresponding 15 runs.

backend [8], which also benefits from the intermediate language optimisations that we report

on here. We have not, however, evaluated directly the effect of the optimisations on JavaScript

platforms.

The benchmark results are shown in Figure 7 in terms of user times. Wall-clock execution times

are shown in Table 1. There are several observations to be made. First, throughout all benchmarks,

MLKit0 does not perform significantly better than other MLKit configurations. Second, uncurrying

provides improvements for kbc (Knuth-Bendix Completion), logic (unification-based deduction),

msort (Merge-sort), and ray (a ray-tracing benchmark). Most significant is the effect of enabling

unboxing of tuple arguments, which leads to significant improvements for barnes-hut, mpuz, simple,

tak, zebra, and zern. Enabling also unboxing of real arguments leads to further improvements for

barnes-hut, mandelbrot, ray, and tsp.

Comparing the performance results with those obtained with MLton, we observe that most of

the benchmarks perform better with MLton than they do with any MLKit configuration. Exceptions

are the benchmarks fib37, life, mandelbrot, mlyacc, msort, simple, and tsp, which run faster with

the default MLKit configuration. Those benchmarks that performs particularly poorly with MLKit,

compared to MLton, are barnes-hut, fft, kbc, lexgen, logic, mpuz, ratio, ray, vliw, zebra, and zern.

We believe that the main reason for MLton’s better performance is MLton’s deep-flattening of data

structures and function return values.

Compositional Deep Argument Flattening 13

Table 1. Benchmark average wall-clock execution times (in seconds) for different MLKit configurations and
MLton. Averages and their relative standard errors are computed, for each benchmark, based on 20 runs with
the wall-clock execution time for the five worst runs removed.

𝐵𝑒𝑛𝑐ℎ𝑚𝑎𝑟𝑘 𝐿𝑖𝑛𝑒𝑠 MLKit0 MLKituc MLKituc,tup MLKit MLton

barnes-hut 1245 0.76 ± 1% 0.77 ± 1% 0.72 ± 1% 0.69 ± 1% 0.31 ± 1%

fft 71 0.28 ± 5% 0.29 ± 4% 0.27 ± 4% 0.28 ± 4% 0.15 ± 4%

fib37 7 0.19 ± 3% 0.22 ± 2% 0.19 ± 2% 0.19 ± 3% 0.20 ± 2%

kbc 682 0.47 ± 0% 0.35 ± 1% 0.36 ± 1% 0.36 ± 1% 0.10 ± 0%

lexgen 1322 0.37 ± 1% 0.35 ± 1% 0.35 ± 1% 0.33 ± 1% 0.23 ± 2%

life 202 0.33 ± 1% 0.33 ± 2% 0.33 ± 2% 0.33 ± 1% 0.35 ± 1%

logic 355 0.98 ± 1% 0.87 ± 0% 0.82 ± 1% 0.83 ± 1% 0.35 ± 2%

mandelbrot 62 0.38 ± 1% 0.39 ± 1% 0.38 ± 1% 0.24 ± 2% 0.26 ± 0%

mlyacc 7385 0.19 ± 3% 0.17 ± 3% 0.15 ± 3% 0.15 ± 0% 0.18 ± 2%

mpuz 124 0.37 ± 1% 0.39 ± 2% 0.34 ± 1% 0.34 ± 2% 0.13 ± 3%

msort 113 0.57 ± 2% 0.46 ± 2% 0.41 ± 2% 0.41 ± 2% 0.58 ± 3%

nucleic 3215 0.12 ± 5% 0.12 ± 4% 0.13 ± 5% 0.12 ± 7% 0.09 ± 0%

professor 282 0.27 ± 2% 0.22 ± 2% 0.19 ± 2% 0.19 ± 3% 0.17 ± 2%

ratio 620 0.62 ± 1% 0.62 ± 1% 0.61 ± 1% 0.61 ± 1% 0.22 ± 4%

ray 533 1.84 ± 0% 1.49 ± 0% 1.46 ± 0% 1.42 ± 0% 0.66 ± 1%

simple 1055 1.03 ± 3% 1.01 ± 2% 0.65 ± 3% 0.65 ± 3% 0.74 ± 9%

tak 12 0.62 ± 1% 0.63 ± 1% 0.50 ± 1% 0.50 ± 1% 0.48 ± 1%

tsp 494 0.42 ± 1% 0.42 ± 1% 0.41 ± 1% 0.34 ± 1% 0.52 ± 1%

vliw 3681 0.32 ± 2% 0.33 ± 0% 0.30 ± 2% 0.30 ± 2% 0.15 ± 0%

zebra 313 1.12 ± 0% 1.16 ± 0% 0.67 ± 0% 0.67 ± 0% 0.26 ± 0%

zern 605 0.53 ± 3% 0.53 ± 3% 0.34 ± 1% 0.35 ± 1% 0.20 ± 2%

8 RELATEDWORK
Highly related to the current work is work on tuple flattening [21], arity raising [3], and unboxing

of tuples [12–14, 18]. In this work we are, in particular, interested in supporting compiler implemen-

tations that do not assume compilation of whole programs. At the same time we are interested in

supporting that some unboxing and flattening decisions can cross module boundaries by enriching

the static information available at compile time.

Also related to this work is work on establishing and expressing dependencies between function

implementations and function uses, in particular to ensure that a function’s calling convention is

satisfied by all possible calls to the function [16]. Compared to the higher-order setting supported

in [16], our work does not support non-standard calling conventions for unknown functions (i.e.,

functions that are not fun-bound).

Another area of related work is work on type systems for memory layout [15], representation

polymorphism [6], unboxed data types [4], and bit-stealing [2, 9], which together allows for more

compact representations of data structures. Also related to our work is work on expressing boxing

and unboxing operations in an intermediate language, while supporting polymorphism and higher-

order functions [5]. Such mechanisms seam valuable for extending our work to also support

unboxing and specialised calling conventions involving higher-order functions.

14 Martin Elsman

9 CONCLUSION AND FUTUREWORK
We have presented a technique for improving function argument passing that work well together

with a framework that supports incremental compilation. There are many possibilities for future

work. First, we have not here demonstrated a soundness property for the technique. We conjecture,

however, that, using standard operational semantics techniques, it should be possible to demonstrate

a soundness property, perhaps using a logical-relation argument. Another possibility for future work

would be to support also flattened return values and to investigate the possibility for supporting

flattening of higher-order functions based on properties of how passed functions are used within a

known function.

Finally, providing support for flattening of abstract local data structures seems often paramount

for obtaining code as efficient as that generated with MLton. We leave such an effort as future

work.

REFERENCES
[1] Andrew W. Appel and Trevor Jim. 1997. Shrinking lambda expressions in linear time. J. Funct. Program. 7, 5 (sep

1997), 515–540. https://doi.org/10.1017/S0956796897002839

[2] Thaïs Baudon, Gabriel Radanne, and Laure Gonnord. 2023. Bit-Stealing Made Legal: Compilation for Custom Memory

Representations of Algebraic Data Types. Proc. ACM Program. Lang. 7, ICFP, Article 216 (aug 2023), 34 pages.

https://doi.org/10.1145/3607858

[3] Lars Bergstrom and John Reppy. 2009. Arity raising in Manticore. In Proceedings of the 21st International Conference on
Implementation and Application of Functional Languages (South Orange, NJ, USA) (IFL’09). Springer-Verlag, Berlin,
Heidelberg, 90–106.

[4] Nicolas Chataing, Stephen Dolan, Gabriel Scherer, and Jeremy Yallop. 2024. Unboxed Data Constructors: Or, How cpp

Decides a Halting Problem. Proc. ACM Program. Lang. 8, POPL, Article 51 (jan 2024), 31 pages. https://doi.org/10.

1145/3632893

[5] Paul Downen. 2024. Call-by-Unboxed-Value. Proc. ACM Program. Lang. 8, ICFP, Article 265 (Aug. 2024), 35 pages.
https://doi.org/10.1145/3674654

[6] Richard A. Eisenberg and Simon Peyton Jones. 2017. Levity polymorphism. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation (Barcelona, Spain) (PLDI 2017). Association for

Computing Machinery, New York, NY, USA, 525–539. https://doi.org/10.1145/3062341.3062357

[7] Martin Elsman. 2008. A Framework for Cut-Off Incremental Recompilation and Inter-Module Optimization. Technical
Report. IT University of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark.

[8] Martin Elsman. 2011. SMLtoJs: Hosting a Standard ML Compiler in a Web Browser. In Proceedings of the 1st ACM
SIGPLAN International Workshop on Programming Language and Systems Technologies for Internet Clients (Portland,
Oregon, USA) (PLASTIC ’11). Association for Computing Machinery, New York, NY, USA, 39–48. https://doi.org/10.

1145/2093328.2093336

[9] Martin Elsman. 2024. Double-Ended Bit-Stealing for Algebraic Data Types. Proc. ACM Program. Lang. 8, ICFP, Article
239 (Aug. 2024), 33 pages. https://doi.org/10.1145/3674628

[10] Martin Elsman. 2024. Explicit Effects and Effect Constraints in ReML. Proc. ACM Program. Lang. 8, POPL, Article 79
(Jan. 2024), 25 pages. https://doi.org/10.1145/3632921

[11] Martin Elsman and Niels Hallenberg. 1995. An Optimizing Backend for the ML Kit Using a Stack of Regions. Student

Project 95-7-8, University of Copenhagen (DIKU).

[12] Fritz Henglein and Jesper Jørgensen. 1994. Formally Optimal Boxing. In Conference Record of POPL’94: 21st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages. ACM Press, 213–226.

[13] Xavier Leroy. 1992. Unboxed Objects and Polymorphic Typing. In Conference Record of the Nineteenth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL). ACM Press, 177–188.

[14] Xavier Leroy. 1997. The effectiveness of type-based unboxing. In Proceedings of the 1997 ACM Workshop on Types in
Compilation (Amsterdam). https://api.semanticscholar.org/CorpusID:2398412

[15] Leaf Petersen, Robert Harper, Karl Crary, and Frank Pfenning. 2003. A type theory for memory allocation and

data layout. In Proceedings of the 30th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(New Orleans, Louisiana, USA) (POPL ’03). Association for Computing Machinery, New York, NY, USA, 172–184.

https://doi.org/10.1145/604131.604147

[16] Benjamin Quiring, David Van Horn, John Reppy, and Olin Shivers. 2025. Webs and Flow-Directed Well-Typedness

Preserving Program Transformations. Proc. ACM Program. Lang. 9, PLDI, Article 177 (June 2025), 25 pages. https:

https://doi.org/10.1017/S0956796897002839
https://doi.org/10.1145/3607858
https://doi.org/10.1145/3632893
https://doi.org/10.1145/3632893
https://doi.org/10.1145/3674654
https://doi.org/10.1145/3062341.3062357
https://doi.org/10.1145/2093328.2093336
https://doi.org/10.1145/2093328.2093336
https://doi.org/10.1145/3674628
https://doi.org/10.1145/3632921
https://api.semanticscholar.org/CorpusID:2398412
https://doi.org/10.1145/604131.604147
https://doi.org/10.1145/3729280
https://doi.org/10.1145/3729280

Compositional Deep Argument Flattening 15

//doi.org/10.1145/3729280

[17] David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert Harper, and Peter Lee. 1996. TIL: A Type-

Directed Optimizing Compiler for ML. In Proc. ACM SIGPLAN ’96 Conference on Programming Language Design and
Implementation. 181–192. citeseer.nj.nec.com/tarditi95til.html

[18] Peter J. Thiemann. 1995. Unboxed values and polymorphic typing revisited. In Proceedings of the Seventh International
Conference on Functional Programming Languages and Computer Architecture (La Jolla, California, USA) (FPCA ’95).
Association for Computing Machinery, New York, NY, USA, 24–35. https://doi.org/10.1145/224164.224175

[19] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A Retrospective on Region-Based Memory

Management. Higher-Order and Symbolic Computation 17, 3 (01 Sep 2004), 245–265. https://doi.org/10.1023/B:

LISP.0000029446.78563.a4

[20] Stephen Weeks. 2006. Whole-Program Compilation in MLton. In Proceedings of the 2006 Workshop on ML (Portland,

Oregon, USA) (ML ’06). Association for Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/1159876.

1159877

[21] Lukasz Ziarek, Stephen Weeks, and Suresh Jagannathan. 2008. Flattening tuples in an SSA intermediate representation.

Higher Order Symbol. Comput. 21, 3 (sep 2008), 333–358. https://doi.org/10.1007/s10990-008-9035-3

https://doi.org/10.1145/3729280
https://doi.org/10.1145/3729280
https://doi.org/10.1145/3729280
citeseer.nj.nec.com/tarditi95til.html
https://doi.org/10.1145/224164.224175
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1007/s10990-008-9035-3

16 Martin Elsman

A APPENDIX: PROOFS
Proposition 4.3. (Type Argument Transformation). Assume 𝜏 = ®𝜏 → Γ0 → 𝜏0 and types ®𝑝 = ®𝜏
and Γ, ®𝑝, Γ0 ⊢ 𝑒 : 𝜏0. If 𝜇 ⊢opt (𝜏, ®𝑝, 𝜆Γ0.𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′) then 𝜇 (𝜏) = 𝜏 ′ and 𝜏 ′ = ®𝜏 ′ → 𝜏0, where
®𝜏 ′ = types ®𝑞 and Γ, ®𝑞 ⊢ 𝑒′ : 𝜏0. Moreover, if 𝑒 is on the form 𝜆Γ1.𝑒1 for some 𝑒1, then 𝑒′ if of the form
𝜆Γ1 .𝑒

′
1
, for some 𝑒′

1
.

Proof. By induction over the derivation of 𝜇 ⊢opt (𝜏, ®𝑝, 𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′).
Case o-drop We have ⌈1⌉ 𝜇 = drop(𝑖) and ⌈2⌉ ®𝑝 = 𝑝1, · · · , 𝑝𝑛 and ⌈3⌉ ®𝑞 = 𝑝1, · · · , 𝑝𝑖−1, 𝑝𝑖+1, · · · 𝑝𝑛
and ⌈4⌉ 𝜏 ′ = ®𝜏 ′ → 𝜏0, where ®𝜏 ′ = types ®𝑞 and ⌈5⌉ Γ0 = · and ⌈6⌉ 𝑒′ = 𝑒′ and ⌈7⌉ 𝑥𝑖 ∉ fv 𝑒 . It

follows from definition of 𝜇 (𝜏) that 𝜇 (𝜏) = 𝜏 ′ as required. Using ⌈2⌉, ⌈3⌉, ⌈6⌉, ⌈7⌉, and assumptions,

we can apply Proposition 3.3 to get Γ, ®𝑞 ⊢ 𝑒′ : 𝜏0, as required. The last property follows immediately

due to ⌈6⌉.
Case o-add We have ⌈1⌉ 𝜇 = addprj(𝑖, 𝑗) ⌈2⌉ ®𝑝 = 𝑝1, · · · , 𝑝𝑛 and 𝑝𝑖 = 𝑥𝑖 : (𝜏 ′1 × · · · × 𝜏 ′𝑚) and
⌈3⌉ ®𝑞 = ®𝑝, 𝑥 : 𝜏 ′𝑗 and ⌈4⌉ Γ0 = · and ⌈5⌉ 𝑒′ = 𝑒 [𝑥/# 𝑗 𝑥𝑖] and ⌈6⌉ ®𝜏 ′ = ®𝜏, 𝜏 ′𝑗 and ⌈7⌉ 𝜏 ′ = ®𝜏 ′ → 𝜏0,

where ®𝜏 ′ = types ®𝑞. We have from the definition of 𝜇 (𝜏) and from the definition of prj(𝑖, 𝑗) that
⌈8⌉ 𝜇 (𝜏) = 𝜏 ′ as required. We also have ⌈7⌉ as required. Let 𝑎 = # 𝑗 𝑥𝑖 . From [t-sel], [t-var], ⌈2⌉,
and ⌈3⌉, we have ⌈10⌉ Γ, ®𝑞 ⊢ 𝑎 : 𝜏 ′𝑗 . From Proposition 3.4 and ⌈10⌉, and because (Γ, ®𝑞) (𝑥) = 𝜏 ′𝑗 , we

have Γ, ®𝑞 ⊢ 𝑒 [𝑥/𝑎] : 𝜏0, as required. The last property follows immediately due to ⌈5⌉.
Case o-unc We have ⌈1⌉ 𝜏 = ®𝜏 → Γ0 → 𝜏0 and ⌈2⌉ 𝜇 = uncurry and ⌈3⌉ Γ0 = 𝑥 : 𝜏1 and

⌈4⌉ ®𝜏 = types ®𝑝 and ⌈5⌉ 𝜏 ′ = ®𝜏, 𝜏1 → 𝜏0 and ⌈6⌉ ®𝑞 = ®𝑝, 𝑥 : 𝜏1 and ⌈7⌉ ®𝜏 ′ = ®𝜏, 𝜏1 and ⌈8⌉ 𝑒′ = 𝑒 .

From the definition of 𝜇 (𝜏), we have 𝜇 (𝜏) = 𝜏 ′ as required. We also have ⌈5⌉ and types ®𝑞 = ®𝜏 ′, as
required. From assumptions, we have ⌈9⌉ Γ, ®𝑝, 𝑥 : 𝜏1 ⊢ 𝑒 : 𝜏0. Now, from ⌈6⌉, ⌈8⌉, and ⌈10⌉, we have
Γ, ®𝑞 ⊢ 𝑒′ : 𝜏0, as required. The last property follows immediately due to ⌈8⌉.
Case o-comp We have ⌈1⌉ 𝜏 = ®𝜏 → (Γ0 → 𝜏0) and ⌈2⌉ Γ, ®𝑝, Γ0 ⊢ 𝑒 : 𝜏0 and ⌈3⌉ 𝜇2 ◦ 𝜇1 ⊢opt
(𝜏, ®𝑝, 𝜆Γ0 .𝑒) ⇒ (𝜏 ′, ®𝑞, 𝑒′). From [o-comp] and ⌈3⌉, we have ⌈4⌉ 𝜇1 ⊢opt (𝜏, ®𝑝, 𝜆Γ0 .𝑒) ⇒ (𝜏 ′′, ®𝑟, 𝑒′′) and
⌈5⌉ 𝜇2 ⊢opt (𝜏 ′′, ®𝑟, 𝑒′′) ⇒ (𝜏 ′, ®𝑞, 𝑒′). We assume Γ1 and Γ2 such that ⌈6⌉ Γ0 = Γ1, Γ2 and ⌈7⌉ 𝜆Γ0.𝑒 =

𝜆Γ1 .𝜆Γ2.𝑒 . From ⌈2⌉, ⌈6⌉, and ⌈7⌉, and by repeated use of [t-lam], we have ⌈8⌉ Γ, ®𝑝, Γ1 ⊢ 𝜆Γ2.𝑒 :

Γ2 → 𝜏0. From ⌈1⌉, we have ⌈9⌉ 𝜏 = ®𝜏 → (Γ1 → (Γ2 → 𝜏0)). From ⌈4⌉ and ⌈7⌉, we have

⌈10⌉ 𝜇1 ⊢opt (𝜏, ®𝑝, 𝜆Γ1.𝜆Γ2.𝑒) ⇒ (𝜏 ′′, ®𝑟, 𝑒′′).
By induction applied to ⌈8⌉, ⌈9⌉, and ⌈10⌉, we have ⌈11⌉ 𝜇1 (𝜏) = 𝜏 ′′ and ⌈12⌉ 𝜏 ′′ = ®𝜏 ′′ → (Γ2 →

𝜏0), where ®𝜏 ′′ = types ®𝑟 , and ⌈13⌉ Γ, ®𝑟 ⊢ 𝑒′′ : Γ2 → 𝜏0 and ⌈14⌉ if 𝜆Γ2.𝑒 = 𝜆Γ2.𝜆Γ3.𝑒3, for some 𝑒3,

then ⌈15⌉ 𝑒′′ = 𝜆Γ2.𝜆Γ3 .𝑒
′
3
for some 𝑒′

3
. From ⌈13⌉ and ⌈15⌉, we have ⌈16⌉ Γ, ®𝑟 ⊢ 𝜆Γ2.𝜆Γ3.𝑒′3 : Γ2 → 𝜏0.

From ⌈5⌉ and ⌈15⌉, we have ⌈17⌉ 𝜇2 ⊢opt (𝜏 ′′, ®𝑟, 𝜆Γ2.𝜆Γ3.𝑒′3) ⇒ (𝜏 ′, ®𝑞, 𝑒′). From ⌈16⌉ and repeated

use of [t-lam], we have ⌈18⌉ Γ, ®𝑟, Γ2 ⊢ 𝜆Γ3 .𝑒′3 : 𝜏0.
By induction applied to ⌈12⌉, ⌈18⌉, and ⌈17⌉, we have ⌈19⌉ 𝜇2 (𝜏 ′′) = 𝜏 ′ and ⌈20⌉ 𝜏 ′ = ®𝜏 ′ → 𝜏0,

where ®𝜏 ′ = types ®𝑞, and ⌈21⌉ Γ, ®𝑞 ⊢ 𝑒′ : 𝜏0 and ⌈22⌉ 𝑒′ = 𝜆Γ3 .𝑒
′′
3
, for some 𝑒′′

3
. From ⌈19⌉ and ⌈11⌉,

we have 𝜇2 (𝜇1 (𝜏)) = 𝜏 ′ and thus (𝜇2 ◦ 𝜇1) (𝜏) = 𝜏 ′, as required. We also have ⌈20⌉ and ⌈21⌉ as
required. Moreover, we have, as required, from ⌈14⌉, ⌈15⌉, and ⌈22⌉ that, if 𝑒 = 𝜆Γ3 .𝑒3, for some 𝑒3,

then 𝑒′ = 𝜆Γ3.𝑒
′′
3
, for some 𝑒′′

3
.

Case o-id This case follows immediately from assumptions.

□

Proposition 5.2. (Translation of Call Expressions Closed Under Typings). Assume 𝜎 ≥
®𝜏 → 𝜏 . If Γ, 𝑓 : 𝜎 ⊢ 𝑓 ®𝑎 : 𝜏 and 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ0 and 𝜎 ′ = 𝜇 (𝜎) then
Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑓 ®𝑎′ : 𝜏 ′ and 𝜏 = Γ0 → 𝜏 ′.

Proof. By induction on the relation 𝜇 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ0. We proceed by case

analysis.

Compositional Deep Argument Flattening 17

Case c-drop We have ⌈1⌉ ®𝑎′ = 𝑎1, · · · , 𝑎𝑖−1, 𝑎𝑖+1, · · · , 𝑎𝑛 and ⌈2⌉ Γ0 = · and ⌈3⌉ 𝜏 ′ = 𝜏 . From

assumptions and [t-fapp], we have ⌈4⌉ Γ, 𝑓 : 𝜎 ⊢ 𝑎𝑖 : 𝜏𝑖 , for all 𝑖 = 1..𝑛. Because access expressions

do not contain fun-bound variables, we have ⌈5⌉ Γ, 𝑓 : 𝜎 ′ ⊢ 𝑎𝑖 : 𝜏𝑖 , for all 𝑖 = 1..𝑛. Because

𝜇 = drop(𝑖) and from the definition of 𝜇 (𝜎) and 𝜇 (𝜎) = 𝜎 ′
, we have ⌈6⌉ 𝜎 ′ ≥ ®𝜏 ′ → 𝜏 , where

®𝜏 ′ = 𝜏1, · · · , 𝜏𝑖−1, 𝜏𝑖+1, · · · , 𝜏𝑛 . Now, from [t-fapp], [t-sub], [t-var], ⌈1⌉, ⌈2⌉, ⌈3⌉, ⌈5⌉, and ⌈6⌉, we
have Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑓 ®𝑎′ : 𝜏 ′, as required. Moreover, from ⌈2⌉ and ⌈3⌉, we have 𝜏 = Γ0 → 𝜏 ′, as
required.

Case c-unc We have ⌈1⌉ ®𝑎′ = ®𝑎, 𝑥 and ⌈2⌉ Γ0 = 𝑥 : 𝜏0 and ⌈3⌉ 𝜏 = Γ0 → 𝜏 ′. From assumptions and

[t-fapp], we have ⌈4⌉ Γ, 𝑓 : 𝜎 ⊢ 𝑎𝑖 : 𝜏𝑖 with ®𝜏 = 𝜏1, · · · , 𝜏𝑛 . Because access expressions do not contain
fun-bound variables, we have ⌈5⌉ Γ, 𝑓 : 𝜎 ′ ⊢ 𝑎𝑖 : 𝜏𝑖 . Moreover, we can assume 𝑥 is picked fresh

such that Dom Γ0 ∩ Dom Γ = ∅. Thus, from Proposition 3.5, we have ⌈6⌉ Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑎𝑖 : 𝜏𝑖 . From
assumptions and ⌈3⌉, we have ⌈7⌉ 𝜎 ≥ ®𝜏 → Γ0 → 𝜏 ′. From assumptions, we have ⌈8⌉ 𝜎 ′ = 𝜇 (𝜎).
Because 𝜇 = uncurry, from the definition of 𝜇 (𝜎), and from ⌈7⌉, we have ⌈9⌉ 𝜎 ′ ≥ ®𝜏, 𝜏0 → 𝜏 ′.
It follows that we have ⌈11⌉ 𝜎 ′ ≥ ®𝜏 ′ → 𝜏 ′, where ®𝜏 ′ = ®𝜏, 𝜏0. From assumptions, we have

𝑎′𝑖 = 𝑎𝑖 for 𝑖 = 1..𝑛 and 𝑎′𝑛+1 = 𝑥 , where ®𝑎′ = 𝑎′
1
, · · · , 𝑎′𝑛+1. From ⌈2⌉, and [t-var], we have

⌈12⌉ Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑥 : 𝜏0. It follows from ⌈12⌉ and ⌈6⌉ that ⌈13⌉ Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑎′𝑖 : 𝜏 ′𝑖 for 𝑖 = 1..𝑛 + 1.

From [t-fapp], [t-sub], [t-var], ⌈11⌉, and ⌈13⌉, we have Γ, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑓 ®𝑎′ : 𝜏 ′ as required. We

also have ⌈3⌉ as required.
Case c-comp From [c-comp], we have ⌈1⌉ 𝜇1 ⊢call 𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′′ : 𝜏 ′′, Γ1 and ⌈2⌉ 𝜇2 ⊢call
𝑓 ®𝑎′′ : 𝜏 ′′ ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ2 and ⌈3⌉ Γ0 = Γ1, Γ2. From assumptions, we have ⌈4⌉ 𝜎 ≥ ®𝜏 → 𝜏 and

⌈5⌉ Γ, 𝑓 : 𝜎 ⊢ 𝑓 ®𝑎 : 𝜏 .

By induction using ⌈1⌉, ⌈4⌉, ⌈5⌉, and by letting ⌈8⌉ 𝜎1 = 𝜇1 (𝜎), we have ⌈6⌉ Γ, Γ1, 𝑓 : 𝜎1 ⊢ 𝑓 ®𝑎′′ :

𝜏 ′′ and ⌈7⌉ 𝜏 = Γ1 → 𝜏 ′′. From [t-fapp], [t-sub], [t-var], and ⌈6⌉, we have there exists ®𝜏 ′′ such that

⌈9⌉ 𝜎1 ≥ ®𝜏 ′′ → 𝜏 ′′ and ⌈10⌉ Γ, Γ1 ⊢ 𝑎′′𝑖 : 𝜏 ′′𝑖 for all 𝑎′′𝑖 in ®𝑎′′, where ®𝜏 ′′ = 𝜏 ′′
1
, · · · , 𝜏 ′′

𝑘
.

Now, by induction using ⌈2⌉, ⌈6⌉, ⌈9⌉, we have ⌈11⌉ Γ, Γ1, Γ2, 𝑓 : 𝜇2 (𝜎1) ⊢ 𝑓 ®𝑎′ : 𝜏 ′, where
⌈12⌉ 𝜏 ′′ = Γ2 → 𝜏 ′. From ⌈3⌉, ⌈8⌉, and ⌈11⌉, we have Γ, Γ0, 𝑓 : 𝜎 ′ ⊢ 𝑓 ®𝑎′ : 𝜏 ′, as required.
Moreover, from ⌈7⌉ and ⌈12⌉, we have ⌈13⌉ 𝜏 = Γ1 → Γ2 → 𝜏 ′, thus, from ⌈3⌉ and ⌈13⌉, we also
have 𝜏 = Γ0 → 𝜏 ′, as required.

Case c-id This case follows immediately from assumptions, [c-id], and from Γ0 = ·.
Case c-add This case follows similarly to the cases for c-unc and c-drop. □

Proposition 5.3. (Typing Preserved Under Transformation). Assume 𝜙 ⊢ Γ ∼𝜌 Γ′ and
Γ ⊢ 𝑒 : 𝜏 . If 𝜙 ⊢ 𝑒 ⇒ 𝑒′ : 𝜏 then Γ′ ⊢ 𝑒′ : 𝜏 .

Proof. By induction over the derivation of 𝜙 ⊢ 𝑒 ⇒ 𝑒′ : 𝜏 . Most of the cases are either trivial or

follow directly by induction. We show the three interesting cases.

Case f-var From assumptions and [t-var], we have ⌈1⌉ Γ(𝑥) = 𝜏 and from assumptions and [f-

var], we have ⌈2⌉ 𝜙 (𝑥) = (𝜏, id) and ⌈3⌉ 𝑒′ = 𝑥 . From assumptions and [e-var], we have 𝜇 (𝜏) = 𝜏 ′,
thus, because 𝜇 = id follows from ⌈2⌉, we have ⌈4⌉ 𝜏 ′ = 𝜏 . From [e-var], we have ⌈5⌉ Γ′ (𝑥) = 𝜏 . It

follows from [t-var], ⌈5⌉, and ⌈3⌉ that Γ′ ⊢ 𝑒′ : 𝜏 , as required.
Case f-fapp From rule f-fapp, we have ⌈1⌉ 𝜙 (𝑓) = (𝜎, 𝜇) and ⌈2⌉ 𝜎 ≥ ®𝜏 → 𝜏 and ⌈3⌉ 𝜇 ⊢call
𝑓 ®𝑎 : 𝜏 ⇒ 𝑓 ®𝑎′ : 𝜏 ′, Γ0 and ⌈4⌉ 𝜏 = Γ0 → 𝜏 ′ and ⌈5⌉ 𝑒′ = 𝜆Γ0.𝑓 ®𝑎′ and ⌈6⌉ 𝑒 = 𝑓 ®𝑎 .

From [e-var], we have ⌈7⌉ Γ(𝑓) = 𝜎 and ⌈8⌉ Γ′ (𝑓) = 𝜎 ′
and ⌈9⌉ 𝜎 ′ = 𝜇 (𝜎). From assumptions,

we have ⌈10⌉ Γ ⊢ 𝑓 ®𝑎 : 𝜏 From ⌈7⌉, we have ⌈11⌉ Γ = Γ1, 𝑓 : 𝜎 , for some Γ1. We can now

apply Proposition 5.2 using ⌈2⌉, ⌈10⌉, ⌈11⌉, ⌈3⌉, and ⌈9⌉ to get ⌈12⌉ Γ1, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑓 ®𝑎′ : 𝜏 ′ and
⌈13⌉ 𝜏 = Γ0 → 𝜏 ′. From ⌈8⌉, we have ⌈14⌉ Γ′ = Γ′

1
, 𝑓 : 𝜎 ′

, for some Γ′
1
. From ⌈12⌉, [t-fapp], [t-sub], [t-

var], we have ⌈15⌉ Γ1, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑎′𝑖 : 𝜏 ′𝑖 , for all 𝑎′𝑖 ∈ ®𝑎′, ⌈16⌉ ®𝜏 ′ = 𝜏 ′
1
, · · · , 𝜏 ′

𝑘
and ⌈17⌉ 𝜎 ′ = ®𝜏 ′ → 𝜏 ′.

Because 𝑓 ∉ fv(®𝑎′), we can apply Proposition 3.3 to ⌈15⌉ to get ⌈18⌉ Γ1, Γ0 ⊢ 𝑎′𝑖 : 𝜏 ′𝑖 , for all 𝑎′𝑖 ∈ ®𝑎′.

18 Martin Elsman

From ⌈1⌉, we have ⌈19⌉ 𝜙 = 𝜙1, 𝑓 : (𝜎, 𝜇), for some 𝜙1. From [e-var], assumptions, ⌈11⌉, ⌈14⌉, ⌈19⌉,
we have ⌈20⌉ 𝜙1 ⊢ Γ1 ∼ Γ′

1
. From [e-var] and ⌈20⌉, we have ⌈21⌉ 𝜙1, Γ0 : id ⊢ Γ1, Γ0 ∼ Γ′

1
, Γ0. From

Proposition 5.1 using ⌈21⌉ and ⌈18⌉, we have ⌈22⌉ Γ′
1
, Γ0 ⊢ 𝑎′𝑖 : 𝜏 ′𝑖 , for all 𝑎′𝑖 ∈ ®𝑎′. From Proposition 3.5

using ⌈22⌉, we have ⌈23⌉ Γ′
1
, 𝑓 : 𝜎 ′, Γ0 ⊢ 𝑎′𝑖 : 𝜏 ′𝑖 , for all 𝑎′𝑖 ∈ ®𝑎′. Now, using [t-fapp], [t-sub], [t-var],

⌈14⌉, ⌈16⌉, ⌈17⌉, and ⌈23⌉, we have ⌈24⌉ Γ′, Γ0 ⊢ 𝑓 ®𝑎′ : 𝜏 ′. From ⌈24⌉ and by repeated use of

[t-lam], we have ⌈25⌉ Γ′ ⊢ 𝜆Γ0.𝑓 ®𝑎′ : Γ0 → 𝜏 ′. From ⌈5⌉, ⌈13⌉, and ⌈25⌉, we have Γ′ ⊢ 𝑒′ : 𝜏 , as
required.

Case f-fun From [f-fun], we have ⌈1⌉ 𝜏1 = ®𝜏 → Γ0 → 𝜏0 and ⌈2⌉ 𝑒 = fun 𝑓 : ∀®𝛼.𝜏1 ®𝑝 = 𝜆Γ0 .𝑒1 in 𝑒2
and ⌈3⌉ 𝑒′ = fun 𝑓 : ∀®𝛼.𝜏 ′

1
®𝑞 = 𝑒′′

1
in 𝑒′

2
and ⌈4⌉ 𝜇 ⊢opt (𝜏1, ®𝑝, 𝜆Γ0.𝑒1) ⇒ (𝜏 ′

1
, ®𝑞, 𝑒′

1
) and ⌈5⌉ 𝜙, 𝑓 :

(𝜏1, 𝜇), ®𝑞 : id ⊢ 𝑒′
1
⇒ 𝑒′′

1
: 𝜏0 and ⌈6⌉ 𝜙, 𝑓 : (∀®𝛼.𝜏1, 𝜇) ⊢ 𝑒2 ⇒ 𝑒′

2
: 𝜏 . From assumptions and

[t-fun], we have ⌈7⌉ Γ, 𝑓 : 𝜏1, ®𝑝 ⊢ 𝜆Γ0 .𝑒1 : 𝜏0 and ⌈8⌉ types ®𝑝 = ®𝜏 and ⌈9⌉ Γ, 𝑓 : ∀®𝛼.𝜏1 ⊢
𝑒2 : 𝜏 and ⌈10⌉ { ®𝛼} ∩ ftv(Γ, 𝜏) = ∅. From ⌈7⌉ and by repeated application of [t-lam], we have

⌈11⌉ Γ, 𝑓 : 𝜏1, ®𝑝, Γ0 ⊢ 𝑒1 : 𝜏0. We can now apply Proposition 4.3 using ⌈1⌉, ⌈8⌉, ⌈11⌉, and ⌈4⌉ to get
⌈12⌉ 𝜇 (𝜏1) = 𝜏 ′

1
and ⌈13⌉ 𝜏 ′

1
= ®𝜏 ′ → 𝜏0, where ⌈14⌉ ®𝜏 ′ = types ®𝑞, and ⌈15⌉ Γ, 𝑓 : 𝜏1, ®𝑞 ⊢ 𝑒′

1
: 𝜏0.

Now, let ⌈16⌉ 𝜙 ′ = 𝜙, 𝑓 : (𝜏1, 𝜇), ®𝑞 : id. Further, let ⌈17⌉ Γ1 = Γ, 𝑓 : 𝜏1, ®𝑞 and ⌈18⌉ Γ′
1
= Γ′, 𝑓 : 𝜏 ′

1
, ®𝑞.

From assumptions we have ⌈19⌉ 𝜙 ⊢𝜌 Γ ∼ Γ′. Now, from the definitions of Γ1, Γ
′
1
, 𝜙 ′

, from [e-var]

and ⌈12⌉, we have ⌈20⌉ 𝜙 ′ ⊢ Γ1 ∼ Γ′
1
. From ⌈16⌉ and ⌈5⌉, we have ⌈21⌉ 𝜙 ′ ⊢ 𝑒′

1
⇒ 𝑒′′

1
: 𝜏0. From ⌈17⌉

and ⌈15⌉, we have ⌈22⌉ Γ1 ⊢ 𝑒′1 : 𝜏0. We can now apply induction using ⌈20⌉, ⌈22⌉, and ⌈21⌉ to get

⌈23⌉ Γ′
1
⊢ 𝑒′′

1
: 𝜏0.

Now, let ⌈24⌉ 𝜙 ′′ = 𝜙, 𝑓 : (∀®𝛼.𝜏1, 𝜇), let ⌈25⌉ Γ2 = Γ, 𝑓 : ∀®𝛼.𝜏1, and let ⌈26⌉ Γ′
2
= Γ′, 𝑓 : ∀®𝛼.𝜏 ′

1
.

From ⌈12⌉, we have ⌈27⌉ 𝜇 (∀®𝛼.𝜏1) = ∀®𝛼.𝜏 ′
1
. From the definitions of 𝜙 ′′

, Γ2, and Γ′
2
, and from [e-var]

and ⌈27⌉, we have ⌈28⌉ 𝜙 ′′ ⊢ Γ2 ∼ Γ′
2
. From ⌈6⌉ and ⌈24⌉, we have ⌈29⌉ 𝜙 ′′ ⊢ 𝑒2 ⇒ 𝑒′

2
: 𝜏 . From ⌈9⌉

and ⌈25⌉, we have ⌈30⌉ Γ2 ⊢ 𝑒2 : 𝜏 . We can now apply induction using ⌈28⌉, ⌈30⌉, and ⌈29⌉ to get

⌈31⌉ Γ′
2
⊢ 𝑒′

2
: 𝜏 .

Now, from [t-fun], ⌈3⌉, ⌈10⌉, ⌈13⌉, ⌈18⌉, ⌈23⌉, ⌈26⌉, and ⌈31⌉, we have Γ′ ⊢ 𝑒′ : 𝜏 , as required.
□

	Abstract
	1 Introduction
	2 Examples of Deep Argument Flattening
	3 A Minimal Language
	3.1 Type System

	4 Argument Flattening
	5 Type Soundness
	6 Multiple Optimisation Phases
	6.1 Deep Argument Flattening and Incremental Recompilation

	7 Benchmarks
	8 Related Work
	9 Conclusion and Future Work
	References
	A Appendix: Proofs

