
Certified Symbolic Management of
Financial Multi-party Contracts ∗

Patrick Bahr
Department of Computer Science,
University of Copenhagen (DIKU)

Copenhagen, Denmark
paba@di.ku.dk

Jost Berthold
Commonwealth Bank of Australia †

Sydney, Australia
jberthold@acm.org

Martin Elsman
Department of Computer Science,
University of Copenhagen (DIKU)

Copenhagen, Denmark
mael@di.ku.dk

Abstract
Domain-specific languages (DSLs) for complex financial contracts
are in practical use in many banks and financial institutions to-
day. Given the level of automation and pervasiveness of software
in the sector, the financial domain is immensely sensitive to soft-
ware bugs. At the same time, there is an increasing need to analyse
(and report on) the interaction between multiple parties. In this pa-
per, we present a multi-party contract language that rigorously rel-
egates any artefacts of simulation and computation from its core,
which leads to favourable algebraic properties, and therefore al-
lows for formalising domain-specific analyses and transformations
using a proof assistant. At the centre of our formalisation is a sim-
ple denotational semantics independent of any stochastic aspects.
Based on this semantics, we devise certified contract analyses and
transformations. In particular, we give a type system, with an ac-
companying type inference procedure, that statically ensures that
contracts follow the principle of causality. Moreover, we devise a
reduction semantics that allows us to evolve contracts over time, in
accordance with the denotational semantics. From the verified Coq
definitions, we automatically extract a Haskell implementation of
an embedded contract DSL along with the formally verified con-
tract management functionality. This approach opens a road map
towards more reliable contract management software, including the
possibility of analysing contracts based on symbolic instead of nu-
meric methods.

Categories and Subject Descriptors D.3.1 [Programming Lan-
guages]: Formal Definitions and Theory; D.2.4 [Software Engi-
neering]: Software/Program Verification—Correctness proofs

General Terms Languages, Verification

Keywords Domain-Specific Language, Financial Contracts, Coq,
Haskell, Certified Code, Type System, Semantics

∗ This work has been partially supported by the Danish Council for Strate-
gic Research under contract number 10-092299 (HIPERFIT [6]), and the
Danish Council for Independent Research under Project 12-132365.
† This research was done at DIKU, University of Copenhagen.

1. Introduction
The modern financial industry is characterised by a large degree of
automation and pervasive use of software for many purposes, span-
ning from day-to-day accounting and management to valuation of
financial derivatives, and even automated high-frequency trading.
To meet the demand for quick time to market, many banks and fi-
nancial institutions today use domain-specific languages (DSLs) to
describe complex financial contracts.

The seminal work by Peyton-Jones, Eber, and Seward on bilat-
eral financial contracts [28] shows how an algebraic approach to
contract specification can be used for valuation of contracts (when
combined with a model of the underlying observables).1 It also in-
troduces a contract management model where contracts gradually
evolve into the empty contract as knowledge of underlying observ-
ables becomes available and decisions are taken.

In almost all prior work on financial contract languages, con-
tracts are modelled as bilateral agreements held by one of the in-
volved parties. In contrast, our approach uses a generalised contract
model where a contract specifies the obligations and rights of po-
tentially many different parties involved in the contract. This gen-
eralisation requires the contract writer to be explicit about parties
involved in transferring rights and assets. The additional dimension
of flexibility allows, for instance, for tools to analyse the effect of
parties defaulting or merging. For valuation purposes, and for other
analyses, a contract can be viewed from the point of view of a par-
ticular party to obtain the classical bilateral contract view. More-
over, portfolios can be expressed simply by composing contracts.
On top of that, the multi-party perspective is required for certain
kinds of risk analyses, demanded by regulatory requirements for
certain financial institutions, such as the daily calculation of Credit
Value Adjustments (CVA) [12].

In view of the pervasive automation in the financial world, con-
ceptual as well as accidental software bugs can have catastrophic
consequences. Financial companies need to trust their software sys-
tems for contract management. For systems where the contracts are
written independently from the underlying contract management
software stack, trust needs to be mitigated at different levels.

First, there is the question whether a particular contract behaves
according to the contract writer’s intent, and in particular, whether
the contract can be executed according to the underlying execu-
tion model. In this paper, we partially address this issue by pro-
viding a type system for the contract language, which guarantees
that contracts can indeed be executed. In particular, the type sys-
tem guarantees causality of contracts, which means that asset trans-

1 The ideas have emerged into the successful company LexiFi, which has
become a leading software provider for a range of financial institutions.
LexiFi is a partner of the HIPERFIT Research Center [6], hosted at DIKU.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from Permissions@acm.org.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.

ICFP’15, August 31 – September 2, 2015, Vancouver, BC, Canada
ACM. 978-1-4503-3669-7/15/08...$15.00
http://dx.doi.org/10.1145/2784731.2784747

315

fers cannot depend on a decision or the value of an underlying ob-
servable which will only be available in the future. Similarly, we
demonstrate that essential contract properties can be derived from
symbolic contract specifications alone, and that contract manage-
ment can be described as symbolic goal-directed manipulation of
the contract, avoiding any stochastic aspects, which are often added
to contract languages for valuation purposes.

Second, one may ask whether the implementation of the con-
tract management framework and the accompanying contract anal-
yses behave correctly over time—not only for the common scenar-
ios, but also in all corner cases and for all possible compositions
of contract components. To address this issue, we have based the
symbolic contract management operations and the associated con-
tract analyses on a precise cash-flow semantics for contracts, which
we have modelled and checked using the Coq proof assistant. Us-
ing the code extraction functionality of Coq, the certified contract
analyses and transformations are extracted into a Haskell module,
which serves as the certified core of a financial contract manage-
ment library. The two approaches work hand-in-hand and provide
a highly desirable and highly trustworthy code base.

In summary, the contributions of this paper are the following:

• We present an expressive multi-party contract DSL (Section 2)
and demonstrate that it can express real-world contracts and
portfolios, such as foreign exchange swaps and options, credit
default swaps, and portfolios holding contracts with multiple
counter-parties.2 The contract DSL has been designed for sym-
bolic rather than numerical computation, and cleanly separates
all stochastic aspects from the core contract combinators.

• By means of a denotational cash-flow semantics for the DSL
(Section 2.3), we precisely and succinctly characterise con-
tract properties (e.g., causality) and transformations (e.g., par-
tial evaluation).

• We devise a type-system that statically ensures that contracts
follow the principle of causality, together with an accompany-
ing type inference procedure (Section 3.2).

• We derive a reduction semantics for the contract language,
which evolves contracts over time in accordance with the de-
notational semantics (Section 4.2). As we will show, our type
system is a crucial ingredient for establishing computational ad-
equacy of the reduction semantics.

• We formally verify the correctness of our contract manage-
ment functionality including type inference, reduction seman-
tics, contract specialisation (partial evaluation), and horizon in-
ference.

• Using the code extraction functionality of the Coq system,
we generate an implementation of the certified analyses and
transformations in Haskell.

The certified implementation of the contract language is avail-
able online3 together with Coq proofs of all propositions and theo-
rems mentioned in this paper. Currently, the contract framework is
being deployed in a contract and portfolio pricing and risk calcula-
tion prototype [26], developed at the HIPERFIT Research Center.

2. The Contract Language
A financial contract is an agreement between several parties that
stipulates future asset transfers (i.e., cash-flows) between those
parties. These stipulations may depend on observable underlying
values such as foreign exchange rates, stock prices, and market

2 Examples were provided by partners of the HIPERFIT Research Center.
3 See https://github.com/HIPERFIT/contracts.

indexes. But they can also be at the discretion of one of the involved
parties (e.g., in an option).

Our contract language allows us to express such contracts suc-
cinctly and in a compositional manner. To facilitate compositional-
ity, our language employs a relative notion of time. Figure 1 gives
an overview of the language’s syntax. But before we discuss the
language in more detail, we explore it with the help of four con-
crete example contracts.

2.1 Examples
We shall illustrate our contract DSL using examples from the for-
eign exchange (FX) market and days as the basic time unit, but the
concepts generalise easily to other settings. For the purpose of our
examples, cash-flows are based on a fixed set of currencies.

At first, we consider the following forward contract, an agree-
ment to purchase an asset in the future for a fixed price.

Example 1 (FX Forward). In 90 days, party X will buy 100 US
dollars for a fixed rate 6.5 of Danish kroner from party Y .

90 ↑ 100× (USD(Y → X) & 6.5× DKK(X → Y))

The contract USD(Y → X) stipulates that party Y must
transfer one unit of USD to party X immediately. Similarly,
DKK(X → Y) stipulates that party X must transfer one unit of
DKK to party Y . The combinator × allows us to scale a contract
by a real-valued expression. In the example, we use it with the
constants 6.5 and 100. The combinator & combines two contracts
conjunctively. Finally, the combinator ↑ translates a contract into
the future. In the above example, we translate the whole trade of
100 US dollars for Danish kroner 90 days into the future.

A common contract structure is to repeat a choice between
alternatives until a given end date. Our language supports this
repetitive check directly using the following conditional, which is
an iterating generalisation of a simple alternative (if-then-else):

if . . . within . . . then . . . else . . .

As an example, consider an American option, where one party may,
at any time before the contract ends, decide to execute the purchase.

Example 2 (FX American Option). Party X may, within 90 days,
decide whether to (immediately) buy 100 US dollars for a fixed rate
6.5 of Danish kroner from party Y .

if obs(X exercises option, 0) within 90

then 100× (USD(Y → X) & 6.5× DKK(X → Y))

else ∅

This contract uses an observable external decision, expressed
using obs (which uses a time offset 0, meaning the current day),
and the if-within construct, which monitors this decision of partyX
over the 90 days time window. If X chooses to exercise the option
before the end of the 90 days time window, the trade comes into
effect. Otherwise, the contract becomes empty (∅) after 90 days.

The expression language also features an accumulation combi-
nator acc, which accumulates a value over a given number of days
from the past until the current day. The accumulator can be used
to describe Asian options (or average options), for which a price
is established from an average of past prices instead of just one
observed price.

316

https://github.com/HIPERFIT/contracts

Example 3 (FX Asian Option). After 90 days, partyX may decide
to buy USD 100; paying the average of the exchange rate USD to
DKK observed over the last 30 days.

90 ↑ if obs(X exercises option, 0) within 0

then 100× (USD(Y → X) &(rate × DKK(X → Y)))

else ∅
where rate = acc(λr. r + obs(FX(USD,DKK), 0), 30, 0)/30

Here, rate is just a meta variable to facilitate the reading of
the contract. In addition to the decision expressed as a Boolean
observable, this contract uses an obs expression to observe the
exchange rate between USD and DKK (again at offset 0, thus on the
current day). Observed values are accumulated to the rate using an
acc expression. The rate is determined as the average of the USD
to DKK exchange rates observed over the 30 days before the day
when the scaled payment is made (acc has a backwards-stepping
semantics with respect to time). More generally, the acc construct
can be used to propagate a state through a value computation.

So far, all contracts only had two parties. To illustrate the multi-
party aspect of our language, we consider a simple credit default
swap (CDS) for a zero-coupon bond, which involves three parties.

Example 4 (CDS for a zero-coupon bond). The issuerX of a zero-
coupon bond agrees to pay the holder Y a nominal amount, say
DKK 1000, at an agreed time in the future, say in 30 days. For this
contract we also want to model the eventuality that the issuer X
defaults. To this end, we use an observable “X defaults”:

if obs(X defaults, 0) within 30 then ∅
else 1000× DKK(X → Y)

The seller Z of a CDS agrees to pay the buyer Y a compensation,
say DKK 900, in the event that the issuer X of the underlying
bond defaults. In return, the buyer Y of the CDS pays the seller
Z a premium. In this case, we consider a simple CDS with a
single premium paid up front, say DKK 10. This agreement can
be specified in the contract language as follows:

(10× DKK(Y → Z)) & if obs(X defaults, 0) within 30

then 900×DKK(Z → Y)

else ∅
Let cbond and cCDS be the above bond and CDS contract, respec-
tively. We then combine the two contracts conjunctively to form the
contract cbond & cCDS that describes the interaction between the
CDS and the underlying bond that the CDS insures. In this com-
pound contract, Y acts both as the holder of the bond and the buyer
of the CDS, thereby interacting with the two parties X and Z.

We will consider more realistic examples of CDSs with regular
interest and premium payments in Section 5.2.

2.2 Simple Type System for Contracts
In this section, we present the contract language systematically
using a simple type system. This type system allows us to give
a well-defined denotational semantics (see Section 2.3), but it is
too lax to rule out contracts that violate the principle of causality.
Therefore, we shall refine this type system in Section 3.2 such that
it takes temporal aspects into account, which in turn facilitates a
computationally adequate reduction semantics (Section 4.2).

Figure 1 gives an overview of the syntax of the contract lan-
guage including the expression sub-language. For the syntax we as-
sume a countably infinite set of variables Var, a set of labels Label,
a set of assets Asset, a set of parties Party, and a set of operators
Op.

Labels are used to refer to observables. To this end, we assume
that each label in Label is assigned a unique type τ , and we write

types τ ::= Real | Bool
expressions e ::= x | r | b | obs(l, t) | op(e1, . . . , en) |

acc(λx. e1, d, e2)

contracts c ::= ∅ | let x = e in c | d ↑ c | c1 & c2 | e× c |
a(p→ q) | if e within d then c1 else c2

where x ∈ Var, r ∈ R, b ∈ B, l ∈ Label, t ∈ Z,
d ∈ N, a ∈ Asset, p, q ∈ Party, op ∈ Op

Figure 1. Syntax of the contract language.

Γ ` e : τ

x : τ ∈ Γ

Γ ` x : τ Γ ` r : Real Γ ` b : Bool

l ∈ Labelτ
Γ ` obs(l, t) : τ

Γ ` ei : τi

` op : τ1 × · · · × τn → τ

Γ ` op(e1, . . . , en) : τ

Γ, x : τ ` e1 : τ

Γ ` e2 : τ

Γ ` acc(λx. e1, d, e2) : τ

Γ ` c : Contr

Γ ` ∅ : Contr Γ ` a(p→ q) : Contr

Γ ` c : Contr

Γ ` d ↑ c : Contr

Γ ` ci : Contr

Γ ` c1 & c2 : Contr

Γ ` e : Real Γ ` c : Contr

Γ ` e× c : Contr

Γ ` e : τ Γ, x : τ ` c : Contr

Γ ` let x = e in c : Contr

Γ ` e : Bool Γ ` ci : Contr

Γ ` if e within d then c1 else c2 : Contr

Figure 2. Simple typing rules for contracts and expressions.

` op : τ1 × · · · × τn → τ

` ⊕ : Real× Real→ Real for ⊕ ∈ {+,−, ·, /,max ,min}
` ⊕ : Real× Real→ Bool for ⊕ ∈ {≤, <,=,≥, >}
` ⊕ : Bool× Bool→ Bool for ⊕ ∈ {∧,∨}
` ¬ : Bool→ Bool

` if : Bool× τ × τ → τ for τ ∈ {Real,Bool}

Figure 3. Typing of expression operators.

Labelτ for the set of labels of type τ . For instance, in our examples
in Section 2.1, we assume that ”FX(USD,DKK)” ∈ LabelReal
and ”X exercises option” ∈ LabelBool. Moreover, we assume that
labels in LabelBool may have an associated party that has control
over it. That is, there is a partial mapping π : LabelBool ⇀ Party.
For instance, we have that π(X exercises option) = X for all X ∈
Party. In other words, the label “X exercises option” represents a
decision taken by party X .

Figure 2 presents the simple type system for the contract lan-
guage. The typing rules use typing environments Γ, which are
partial mappings from variables to expression types. Instead of
∅ ` c : Contr, we also write ` c : Contr, and we call a contract c
closed if ` c : Contr.

The expression sub-language includes a number of common
real-valued and Boolean operators, which are covered by the judge-

317

ment ` op : τ1 × · · · × τn → τ , defined in Figure 3. Instead of
⊕(e1, e2), we also write e1 ⊕ e2, instead of ¬(e) we write ¬e, and
instead of if(e1, e2, e3) we write if e1 then e2 else e3.

Notice that our contract language also features let bindings of
the form let x = e in c. The intuitive meaning of such a contract is
that it evaluates the expression e at the current time and “stores” the
resulting value in x for later reference in the contract c. Let bindings
are essential for providing a fixed reference point in time, which is
necessary for contracts constructed by the if-within combinator. For
instance, we might wish to write an option contract that is cancelled
as soon as a foreign exchange rate rises beyond a threshold relative
to a previously observed exchange rate:

let x = obs(FX(EUR,USD), 0)

in if obs(FX(EUR,USD), 0) ≥ 1.1 · x within 30

then ∅ else coption

The above contract is equivalent to the zero contract if the exchange
rate EUR/USD rises 10 percent above the exchange rate observed
at the time the contract started. Otherwise, the option described by
the (elided) contract coption becomes available.

Similarly, the let binding is also useful in the then branch of
the if-within combinator and in the accumulation function in an
expression formed by acc. We shall see more examples of using
let bindings in Section 2.5.

In this paper, let bindings are limited to bind expressions only. It
is straightforward to extend the language and its metatheory to in-
clude let bindings for contracts, and for practical implementations
this is very useful in order to obtain compact contract representa-
tions. However, such let bindings have no semantic impact, and in
the interest of simplicity and conciseness we have elided them.

2.3 Denotational Semantics
The denotational semantics of a contract is given with respect to
an external environment, which provides values for all observables
and choices involved in the contract. A contract’s semantics is then
given as a series of cash-flows between parties over time.

Given an expression type τ ∈ {Real,Bool}, we write JτK for its
semantic domain, where JRealK = R and JBoolK = B. External en-
vironments (or simply environments for short) provide facts about
observables and external decisions involved in contracts. The set of
environments Env consists of functions ρ : Label×Z→ R∪B that
map each time offset t ∈ Z and label l ∈ Labelτ that identifies an
observable or a choice, to a value ρ(l, t) in JτK. Notice that the sec-
ond argument t is an integer and not necessarily a natural number.
That is, an environment may provide information about the past
as well as the future. Environments are essential to the semantics
of Boolean and real-valued expressions, which is otherwise a con-
ventional semantics of arithmetic and logic expressions. In addition
to environments, we also need variable assignments that map each
free variable of type τ to a value in JτK. Given a typing environment
Γ, we define the set of variable assignments in Γ, written JΓK, as
the set of all partial mappings γ from variable names to R∪B such
that γ(x) ∈ JτK iff x : τ ∈ Γ.

Figure 4 details the full denotational semantics of expressions
and contracts. We first look at the semantics of expressions: Given
an expression typing Γ ` e : τ , the semantics of e, denoted E JeK
is a mapping of type JΓK × Env → JτK. Instead of E JeK (γ, ρ),
we write E JeKγ,ρ. For each operator op with the typing judgement
` op : τ1 × · · · × τn → τ , we define a corresponding semantic
function JopK : Jτ1K× · · · × JτnK→ JτK. For example, J+K is the
usual addition on R.

In order to give a semantics to the acc combinator, we need
to shift environments in time. To this end, we define for each

E JeK : JΓK× Env→ JτK

E JrKγ,ρ = r; E JbKγ,ρ = b; E JxKγ,ρ = γ(x)

E Jobs(l, t)Kγ,ρ = ρ(l, t)

E Jop(e1, . . . , en)Kγ,ρ = JopK (E Je1Kγ,ρ , . . . , E JenKγ,ρ)

E Jacc(λx. e1, d, e2)Kγ,ρ =

{
E Je2Kγ,ρ if d = 0

E Je1Kγ[x 7→v],ρ if d > 0

where v = E Jacc(e1, d− 1, e2)Kγ,ρ/−1

C JcK : JΓK× Env→ N→ Party × Party × Asset→ R

C J∅Kγ,ρ = λn.λt.0

C Je× cKγ,ρ = λn.λ(p, q, a).E JeKγ,ρ · C JcKγ,ρ (n)(p, q, a)

C Jc1 & c2Kγ,ρ = λn.λt.C Jc1Kγ,ρ (n)(t) + C Jc2Kγ,ρ (n)(t)

C Jd ↑ cKγ,ρ = delay(d , C JcKγ,ρ), where

delay(d, f) = λn.

{
f(n− d) if n ≥ d
λx.0 otherwise

C Ja(p→ q)Kγ,ρ =

{
λn.λt.0 if p = q

unita,p,q otherwise, where

unita,p,q(n)(p′, q′, b) =

1 if b = a, p = p′, q = q′, n = 0

−1 if b = a, p = q′, q = p′, n = 0

0 otherwise

C Jlet x = e in cKγ,ρ = C JcKγ[x7→v],ρ , where v = E JeKγ,ρ
C Jif e within d then c1 else c2Kγ,ρ = iter(d, ρ), where

iter(i, ρ′) =
C Jc1Kγ,ρ′ if E JeKγ,ρ′ = true

C Jc2Kγ,ρ′ if E JeKγ,ρ′ = false ∧ i = 0

delay(1, iter(i− 1, ρ′/1)) if E JeKγ,ρ′ = false ∧ i > 0

Figure 4. Denotational semantics of expressions and contracts.

environment ρ ∈ Env and time offset t ∈ Z, the promotion of ρ
by t as the following mapping:

ρ/t : (l, i) 7→ ρ(l, i+ t) (i ∈ Z, l ∈ Label)

In other words, ρ/t is time-shifted t days into the future.
The semantics of acc iterates the argument e1 by stepping back-

wards in time. This behaviour can be expressed equivalently us-
ing promotion of expressions, in analogy to promotion of environ-
ments. Promoting an expression by t days translates all contained
observables and choices t days into the future. For any expression
e and t ∈ Z, the expression t ⇑ e, is defined as:

t ⇑ e = e if e is a literal or variable

t ⇑ obs(l, t′) = obs(l, t+ t′)

t ⇑ op(e1, . . . , en) = op(t ⇑ e1, . . . , t ⇑ en)

t ⇑ acc(λx. e1, d, e2) = acc(λx.(t ⇑ e1), d, t ⇑ e2)

Observables and choices are translated, and the promotion propa-
gates downwards into all subexpressions.

Promotion of expressions can be semantically characterised by
promotion of environments:

318

Lemma 1. For all expressions e, t ∈ Z, variable assignments γ,
and environments ρ, we have that E Jt ⇑ eKγ,ρ = E JeKγ,ρ/t.

Thus, acc(λx. e1, d, e2) is semantically equivalent to

e1[x 7→ (−1 ⇑ e1)[x 7→ . . . (−(d− 1) ⇑ e1)[x 7→ −d ⇑ e2] . . .]]

where we use the notation e[x 7→ e′] to denote the substitution of
e′ for the free variable x in e.

The semantics of a contract is given by its cash-flow trace, a
mapping from time into the set Trans of asset transfers between
two parties:4

Trans = Party × Party × Asset→ R
Trace = N→ Trans

Given a contract typing Γ ` c : Contr, the semantics of c,
denoted C JcK is a mapping of type JΓK × Env → Trace. Instead
of C JcK (γ, ρ), we write C JcKγ,ρ. Given a closed contract c (i.e.,
` c : Contr), we simply write C JcKρ instead of C JcK∅,ρ, where ∅
denotes the empty variable assignment.

The semantics of a unit transfer a(p→ q) may seem confusing
at first, but it reflects the nature of cash-flows: If the two parties
p and q coincide, it is equivalent to the zero contract. Otherwise,
the semantics is a trace that has exactly two non-zero cash-flows:
one from p to q and one in the converse direction but negative. A
consequence of this approach is that for each contract c, we have
the following anti-symmetry property:

Lemma 2. For all γ, ρ, n, p, q, a, we have that

C JcKγ,ρ (n)(p, q, a) = −C JcKγ,ρ (n)(q, p, a)

In other words, if there is a cash-flow of magnitude r in one di-
rection, there is a cash-flow of magnitude−r in the other direction.

The typing rules for the contract language and the expression
sub-language ensure that the semantics given above is well-defined.

Proposition 3 (well-defined semantics). Let Γ be a typing environ-
ment, γ ∈ JΓK, and ρ ∈ Env.

(i) Given Γ ` e : τ , we have that E JeKγ,ρ ∈ JτK.
(ii) Given Γ ` c : Contr, we have that C JeKγ,ρ ∈ Trace.

As a corollary, we obtain that each closed contract c yields a
total function C JcK : Env→ Trace.

2.4 Contract Equivalences
The denotational semantics provides a natural notion of contract
equality. For each typing environment Γ, we define the equivalence
relation ≡Γ as follows:

c1 ≡Γ c2 iff
Γ ` c1 : Contr,Γ ` c2 : Contr, and
C Jc1Kγ,ρ = C Jc2Kγ,ρ for all γ ∈ JΓK , ρ ∈ Env

That means, whenever we have that c1 ≡Γ c2, then we can replace
any occurrence of c1 in a contract c by c2 without changing the
semantics of c. As a shorthand we use the notation c1 ≡ c2 iff
Γ ` c1 : Contr,Γ ` c2 : Contr implies c1 ≡Γ c2 for all Γ.

A number of simple equivalences can be proved easily using
the denotational semantics; Figure 5 gives some examples. These
equivalences can be used to simplify a given contract, for instance
to achieve a normalised format suitable for further processing.

Many of the equivalences in Figure 5 look similar to the axioms
of vector spaces. The reason is that the set Trans forms a vector

4 The informed reader might notice that this semantics is bound to adding all
transfers between two parties on one particular day. This so-called "netting"
is used throughout in our model. In real-world financial contracts, parties
would explicitly agree on netting, or otherwise handle cash-flows from
different contracts as separate entities.

e1 × (e2 × c) ≡ (e1 · e2)× c
d1 ↑ (d2 ↑ c) ≡ (d1 + d2) ↑ c
d ↑ (c1 & c2) ≡ (d ↑ c1) &(d ↑ c2)

e× (c1 & c2) ≡ (e× c1) &(e× c2)

d ↑ (e× c) ≡ (d ⇑ e)× (d ↑ c)
(e1 × c) &(e2 × c) ≡ (e1 + e2)× c

d ↑ ∅ ≡ ∅
r × ∅ ≡ ∅
0× c ≡ ∅
c& ∅ ≡ c

c1 & c2 ≡ c2 & c1

d ↑ if b within e then c1 else c2 ≡
if d ⇑ b within e then d ↑ c1 else d ↑ c2

Figure 5. Some contract equivalences.

space over the field R, where the semantics of ∅, &, and × are the
zero vector, vector addition, and scalar multiplication, respectively.

2.5 Observing the Passage of Time
In a contract of the form if b within d then c1 else c2, we
know how much time has passed when we enter subcontract c2,
namely d days. This we do not know for the subcontract c1; we
only know that between 0 and d days have passed. However, the
contract language’s let bindings provide a mechanism to observe
the passage of time also when entering the subcontract c1. To this
end, we assume an observable with label time ∈ LabelReal, whose
value is the “current time”. We can then modify the above contract
such that we can observe how much time has passed before b
became true and the subcontract c1 was entered:

let y = obs(time, 0)

in if b within d then let x = obs(time, 0)− y in c1 else c2

The variable x of type Real scopes over the contract c1 and de-
notes the time that has passed between entering the whole if-within
contract and entering the subcontract c1.

Because the above construction is useful and common when
formulating contracts, we give it the following shorthand notation:

if b within d then x. c1 else c2

The variable y is not explicitly mentioned in this shorthand notation
and is assumed to be an arbitrary fresh variable.

We can use this construction, for example, to express a callable
bond, that is, a bond where the issuer may decide to redeem the
bond prematurely. The amount to be paid to the holder of the bond
may depend on the time passed before the issuer decided to call the
bond.

if obs(X calls bond, 0) within 30

then x. ((30− x) + 100)× USD(X → Y)

else 100× USD(X → Y)

For the sake of presentation, the above contract is rather simplistic,
but illustrates the underlying concept: the issuer of the bond, party
X , can call the bond at any time, with the penalty of paying more
to the holder of the bond, party Y , depending on the time left until
maturity (30− x).

We still need to formally define the semantics of the time ob-
servable. We cannot define the value of the time observable in ab-
solute terms, since our contract language is deliberately constraint
to relative time. Consequently, the time observable is defined as a
relative concept: each environment ρ satisfies the equation

ρ(time, t+ t′) = ρ(time, t) + t′ for all t, t′ ∈ Z
Concretely, the above invariant can be achieved by using environ-
ments ρ at the top level that satisfy ρ(time, t) = t.

319

2.6 Calendars
A notoriously thorny issue for formal contract languages in the fi-
nancial domain is the calendar, which is used for expressing and
referring to properties about dates such as holidays and business
days. Fortunately, observables provide an elegant interface for cal-
endric properties.

To illustrate this, we consider a Boolean observable that is true
whenever we have a business day. However, “business day” is not
an absolute concept and varies by region. Therefore, we assume
that for each currency a, we have a label business(a) ∈ LabelBool
denoting whether a given day is a business day for currency a.

In Section 2.1, we considered various examples for foreign
exchange options, where the actual exchange was expressed by a
contract c such as

c = 100× (USD(Y → X) & 6.5× DKK(X → Y))

In reality, however, such exchanges cannot happen on any arbitrary
date, but only on days that are business days for all involved cur-
rencies. Therefore, real contracts typically state that the exchange
must be executed on the first day that is a business day for all in-
volved currencies. With the help of the business observable, this
refinement is expressed by the following contract c′:

c′ = if obs(business(USD), 0) ∧ obs(business(DKK), 0)

within 365 then c else c

The contract c′ states that we enter the foreign exchange contract c
on the first day that is a business day for both USD and DKK, or in
a year at the latest. Thus, a more realistic version of the contract in
Example 2 is the following:

if obs(X exercises option, 0) within 90 then c′ else ∅

Instead of the simple foreign exchange contract c, the above con-
tract uses the refined version c′.

3. Temporal Properties of Contracts
With the denotational semantics of contracts at hand, we can char-
acterise a number of temporal properties that are relevant for man-
aging contracts. We shall consider two examples: causality, the
property that a contract does not stipulate cash-flows that depend
on “future” observables, and contract horizon, the minimum time
span until a contract is certain to be zero.

In principle, both the causality property and the contract horizon
can be effectively computed via the decidability of the first order
theory of real closed fields. However, this approach would result in
computationally very expensive procedures (even more so since the
acc combinator and the if-within have to be unrolled). But more
importantly, minor additions to the expression language such as
exponentiation and logarithm, which are common in finance, break
the decidability. Therefore, we will devise sound approximations
of these temporal properties. Moreover, as we shall see below, the
approximation of causality via a type system provides additional
benefits—most importantly a computational adequacy result for
our reduction semantics in Section 4.2.

3.1 Contract Horizon
We define the horizon h ∈ N of a closed contract c as the minimal
time until the last potential cash-flow stipulated by the contract,
under any environment. That is, it is the smallest h ∈ N with

C JcKρ (i)(x) = 0 for all ρ ∈ Env, i ≥ h, and x

In other words, after h days, the cash-flow for the contract c remains
zero, for any environment ρ. Notice that since c is closed, that is,
` C : Contr, we know that C JcKρ (i) is defined for any ρ and i.

HOR(∅)
HOR(a(p→ q))

= 0

= 1

HOR(e× c) = HOR(c)

HOR(d ↑ c) = d⊕ HOR(c)

HOR(let x = e in c) = HOR(c)

HOR(c1 & c2) = max(HOR(c1), HOR(c2))

HOR

(
if e within d

then c1else c2

)
= d⊕max(HOR(c1), HOR(c2))

where
a⊕ b =

{
0 if b = 0

a+ b otherwise

Figure 6. Symbolic horizon.

By dropping the minimality requirement, we can devise a sim-
ple, sound approximation of the horizon, which is given in Figure 6.
We can show that the semantic contract horizon is never greater
than the symbolic horizon computed by HOR:

Proposition 4 (soundness of symbolic horizon). Let h be the
horizon of a closed contract c. Then h ≤ HOR(c).

3.2 Contract Causality
At the moment, the contract language allows us to write contracts
that make no sense in reality as they make stipulations about cash-
flow at time t that depends on input from the external environment
strictly after t. In other words, such contracts are not causal. For
instance, we may stipulate a transfer to be executed today using the
foreign exchange rate of tomorrow:

obs(FX(USD,DKK), 1)× DKK(X → Y)

Using the denotational semantics, we can give a precise defini-
tion of causality. Given t ∈ Z, we define an equivalence relation =t

on Env that intuitively expresses that two environments agree until
(and including) time t. We define that ρ1 =t ρ2 iff s ≤ t implies
ρ1(l, s) = ρ2(l, s), for all l ∈ Label, and s ∈ Z. Causality can
then be captured by the following definition: A closed contract c is
causal iff for all t ∈ N and ρ1, ρ2 ∈ Env, we have that ρ1 =t ρ2

implies C JcKρ1 (t) = C JcKρ2 (t). That is, the cash-flows at any
time t do not depend on observables and decisions after t.

As mentioned earlier, contract causality is in principle decid-
able, but it is computationally expensive, and decidability is easily
lost with minor additions to the expression language. Moreover,
causality is not a compositional property; a contract may be causal
even though a subcontract is not causal. For instance, any contract
of the form c&(−1×c) is trivially causal since it is equivalent to ∅;
but cmay well be non-causal. Compositionality is important for the
reduction semantics as we shall see in Section 4.2. Therefore, we
develop a compositional, conservative approximation of causality.
The simplest such approximation is to require that for every sub-
expression of the form obs(l, t), we have that t ≤ 0. We call a
contract that conforms to this syntactic criterion obviously causal.

Most practical contracts are in fact obviously causal and we
have yet to find a causal contract that cannot be transformed into
an equivalent contract that is obviously causal. For example, the
following contract is causal but not obviously causal:

obs(FX(USD,DKK), 1)× 1 ↑ DKK(X → Y)

However, the above contract is equivalent to the following obvi-
ously causal contract (cf. Figure 5):

1 ↑ obs(FX(USD,DKK), 0)× DKK(X → Y)

A more realistic example is the following chooser option, where
the buyer X may choose, in 30 days, whether to have a (European)

320

Γ e : τ t where t ∈ Z−∞

Γ r : Realt Γ r : Boolt
l ∈ Labelτ t ≤ t′

Γ obs(l, t) : τ t′

x : τ t ∈ Γ t ≤ t′

Γ x : τ t′
` op : τ1 × · · · × τn → τ Γ ei : τ ti

Γ op(e1, . . . , en) : τ t

Γ, x : τ−∞ e1 : τ t Γ+d e2 : τ t+d

Γ acc(λx. e1, d, e2) : τ t

Γ c : Contrt where t ∈ Z−∞

Γ−d c : Contrt−d

Γ d ↑ c : Contrt
t ≤ 0

Γ a(p→ q) : Contrt

Γ ∅ : Contrt
Γ e : Realt

′
Γ c : Contrt

′
t ≤ t′

Γ e× c : Contrt

Γ ci : Contrt

Γ c1 & c2 : Contrt
Γ e : τs Γ, x : τs c : Contrt

Γ let x = e in c : Contrt

Γ e : Bool0 Γ c1 : Contrt Γ−d c2 : Contrt−d

Γ if e within d then c1 else c2 : Contrt

Figure 7. Time-indexed type system.

call or put option. The buyer X may then, 30 days later, exercise
the option. We formulate the contract in terms of the payout with
respect to a given strike price:

let price = obs(FX(DKK,USD), 60) in

let payout = if obs(X chooses call option, 30)

then max (price − strike, 0)

else max (strike − price, 0)

in 60 ↑ (payout × DKK(Y → X))

Again this contract can be transformed into an equivalent contract
that is obviously causal, but the above formulation is closer to the
informal description of the contract.

The simple syntactic criterion of obvious causality is rather re-
strictive for formulating contracts. Moreover, it is very fragile as
it is not necessarily preserved by equivalence preserving contract
transformations. For example, applying any of the equivalences
from Figure 5 involving promotion of expressions (d ⇑ e) from
left-to right may destroy obvious causality. To address these prob-
lems, we refine the typing rules for contracts and expressions by
indexing types with time offsets. The intuition of these time in-
dices is the following: If an expression e has type τ t, then the value
of e is available at time t and any time after that. In other words, e
does not depend on observations and decisions made strictly after
time t. In contrast, if a contract c is of type Contrt, then c makes
no cash-flow stipulations strictly before t.

Time indices t range over the set Z−∞ = Z ∪ {−∞}, that is,
we assume a time −∞ that is before any other time t ∈ Z. We
also assume a total order ≤ on Z−∞, which is the natural order on
Z extended by −∞ ≤ t for all t ∈ Z−∞. Moreover, we define
the addition t + d of a time t ∈ Z−∞ by a number d ∈ Z: if
t ∈ Z, then the addition is just ordinary addition in Z, otherwise
−∞+ d = −∞. Subtraction t− d is defined as t+ (−d).

The refined typing rules are given in Figure 7. To distinguish the
refined type system from the simple type system we use the nota-
tion instead of `. The typing rules use timed type environments,

Γ Ì e : τ t where t ∈ Z−∞

Γ Ì b : Bool−∞ Γ Ì r : Real−∞
l ∈ Labelτ

Γ Ì obs(l, t) : τ t

x : τ t ∈ Γ

Γ Ì x : τ t
Γ Ì ei : τ tii ` op : τ1 × · · · × τn → τ

Γ Ì op(e1, . . . , en) : τmaxi ti

Γ, x : τ−∞ Ì e1 : τ t1 Γ+d Ì e2 : τ t2

Γ Ì acc(λx. e1, d, e2) : τmax(t1,t2−d)

Γ Ì c : Contrt where t ∈ Z±∞

Γ−d Ì c : Contrt

Γ Ì d ↑ c : Contrt+d Γ Ì a(p→ q) : Contr0

Γ Ì ∅ : Contr+∞
Γ Ì e : Realt

′
Γ Ì c : Contrt t′ ≤ t

Γ Ì e× c : Contrt

Γ Ì ci : Contrti

Γ Ì c1 & c2 : Contrmini ti

Γ Ì e : τs Γ, x : τs Ì c : Contrt

Γ Ì let x = e in c : Contrt

Γ Ì e : Boolt t ≤ 0 Γ Ì c1 : Contrt1 Γ−d Ì c2 : Contrt2

Γ Ì if e within d then c1 else c2 : Contrmin(t1,t2+d)

Figure 8. Type inference algorithm.

which map variables to time-indexed types instead of plain types.
Moreover, the typing rules use the notation Γ+d to denote the timed
type environment that is obtained from Γ by adding d to all time in-
dices, that is, x : τ t+d ∈ Γ+d iff x : τ t ∈ Γ. The notation Γ−d is
defined accordingly: x : τ t−d ∈ Γ−d iff x : τ t ∈ Γ.

The typing rules provide some insight into the temporal prop-
erties of expression and contract constructs. Starting with the typ-
ing of expressions, we can see that constants are available at any
time and thus have an arbitrary time index; observables at time t
are available at any time after t; and operators op have no tempo-
ral interaction. The typing rule for acc can be difficult to read at
first, but it directly reflects its temporal behaviour: e2 is evaluated
d days in the past. This is reflected by the shift of the time indices
d days into the future, which means variables become available d
days later, but also that e2 only needs be become available d days
later. The other component e1 is evaluated from d days in the past
until the present, hence there is no shift in the time indices. The
time index on the accumulation variable x indicates that there are
no temporal restrictions on x. Alternatively, we could have avoided
the additional −∞ time index and reformulated this typing rule to
use any time index t′ ∈ Z instead of −∞. However, the present
approach simplifies the proofs.

Turning to the contract typing rules, we see that ∅ stipulates
no cash-flows, and that a(p→ q) stipulates an immediate cash-
flow. The typing for & indicates that it has no temporal interaction,
and the typing for ↑ directly indicates the temporal shift expressed
by ↑. The typing rule for let binding is also without surprises. It
expresses the fact that let takes a snapshot in time. The rule for
× is a crucial one as it connects the expression language with the
contract language. It is arguably the most important typing rule as
it expresses the essential property for causality: an expression e
can only meaningfully scale a contract c if e is available at some
time t′ and cmakes no stipulations strictly before t′. The additional
inequality t ≤ t′ seems arbitrary and superfluous, but is essential
as we will argue at the end of this section. Finally, the typing for if-
within is somewhat dual to the typing of acc: instead of coming

321

from the past like acc, if-within moves into the future. Hence,
the typing of c2 is shifted d days into the past. The typing of the
predicate e expresses that we need to know its value immediately
to decide whether one of the two subcontracts is entered.

The typing rules in Figure 7 refine the original simple typing
rules in Figure 2: well-typing () implies simple well-typing (`):

Proposition 5. Let Γ be a timed type environment and |Γ| a type
environment such that for each x and τ there is some t such that
x : τ t ∈ Γ iff x : τ ∈ |Γ|. Then we have

(i) Γ e : τ t implies |Γ| ` e : τ , and
(ii) Γ c : Contrt implies |Γ| ` c : Contr.

Most importantly, we have that well-typed contracts are causal.

Theorem 6. If c : Contrt, then c is causal.

Finally, we will give a sound and complete type inference proce-
dure that is able to decide whether a given contract c is well-typed.

The time-indexing of types induces a subtyping order≤ derived
from the order ≤ on Z−∞ defined as follows:

τ t11 ≤ τ
t2
2 iff τ1 = τ2 and t1 ≤ t2

An essential property of expression and contract typing is that
both are closed under subtyping, albeit in opposite directions:

Lemma 7.

(i) If Γ e : τ t, then Γ e : τs for all s ≥ t.
(ii) If Γ c : Contrt, then Γ c : Contrs for all s ≤ t.

Expression typing is upwards closed, whereas contract typing
is downwards closed. As a consequence, we know that well-typed
expressions have minimal types. Moreover, if we extend the set
of time indices Z−∞ with an additional maximal element +∞,
we also obtain that well-typed contracts have maximal types. This
property allows us to devise a simple type inference algorithm. For
the sake of clarity, we present the type inference algorithm in the
form of syntax-directed typing rules, which are shown in Figure 8.
In contrast to the typing judgement , the syntax-directed judge-
ment Ì assigns contracts (and expressions) at most one type—
namely the maximal (resp. minimal) type according to the judge-
ment. Notice that contracts are typed with the extended set of time
indices set Z±∞ = Z ∪ {−∞,+∞}. The ordering ≤ is extended
to Z±∞ in the obvious way. Moreover, we define addition of el-
ements t ∈ Z±∞ with numbers d ∈ Z by −∞ + d = −∞,
+∞+ d = +∞, and otherwise as ordinary addition in Z.

We can then show that this type inference procedure is sound
and complete:

Theorem 8 (Type inference is sound and complete).

(i) If Γ Ì c : Contrt, then Γ c : Contrs for all s ≤ t.
(ii) If Γ c : Contrs, then Γ Ì c : Contrt for a unique t ≥ s.

Thus, according to Theorem 6, we obtain that if type inference
returns a type for a contract c, then c is causal.

Corollary 9. If ∅ Ì c : Contrt for some t, then c is causal.

The key ingredient for the simplicity of the type inference pro-
cedure is the closure under subtypes respectively supertypes as ex-
pressed in Lemma 7. This property will also be important in the
next section where we discuss contract transformations. Lemma 7
is crucial for showing that well-typing is preserved by contract
transformations, in particular contract specialisation and contract
reduction.

In the light of this observation, it is worthwhile reconsidering
the typing rule for the scaling combinator ×, in particular the
condition t ≤ t′. This condition seems odd at first. We could
get away with requiring t = t′. The resulting type system would

still entail causality and we would be able to give a sound and
complete type inference procedure. However, we would lose part
(ii) of Lemma 7. The condition t ≤ t′ in the typing rule for
× decouples the time indices of contract and expression types as
much as possible while still enforcing causality. This decoupling
is necessary due to the different interpretation of time indices for
expression types compared to contract types. This difference in
interpretation also manifests itself in the difference in the subtyping
behaviour described in Lemma 7.

Apart from this technical problem, changing the typing of ×
by requiring t′ = t, also has the severe practical consequence
that fewer contracts would be typeable. Among such contracts that
would not be typeable anymore are many realistic contracts that
one would expect to be typeable. For example, the contract

(obs(l, 0)× a(p→ q)) &(obs(l, 1)× 1 ↑ a(p→ q))

would not be typeable anymore.

4. Contract Transformations
The second important aspect of contract management is the trans-
formation of contracts according to the semantics. We will con-
sider two contract transformations, namely specialisation, which
partially evaluates a contract based on partial information about the
external environment, and advancement, which moves a contract
into the future. The second transformation can be considered an
operational semantics that is computationally adequate for the de-
notational semantics presented in Section 2.3.

These contract transformations are based on external knowledge
provided by a partial external environment, that is, on facts about
observables and external decisions, which become gradually avail-
able as time passes. To this end, we consider the set of partial ex-
ternal environments EnvP, a superset of Env:

EnvP = Labelτ × Z⇀ JτK

A contract c can be transformed based on a partial environment
ρ ∈ EnvP that encodes the available knowledge about observables
and decisions that may influence c, leading to a specialised or
advanced contract.

4.1 Contract Specialisation
The objective of specialisation is to simplify a given contract c
based on partial information about the external environment, that
is, based on knowledge about some of the observables and deci-
sions. The resulting contract c′ is equivalent to the original contract
c under any external environment that is compatible with the partial
external environment that was the input to the specialisation. The
primary application of specialisation is the instantiation of a con-
tract to a concrete starting time. A contract may refer to values of
observables before the starting time of the contract. Specialisation
allows us to instantiate such contracts with these known values of
observables. Beyond this simple application, specialisation of ex-
pressions is also a crucial ingredient for the reduction semantics in
Section 4.2.

Before we can define specialisation more formally, we need to
introduce some terminology: An environment ρ′ ∈ Env extends
a partial environment ρ ∈ EnvP iff ρ(l, t) = ρ′(l, t) for all
(l, t) ∈ dom(ρ). Furthermore, we define the set of partial variable
assignments JΓKP for a type environment Γ as the set of all partial
mappings γ from variable names into R ∪ B such that γ(x) ∈ JτK
if x : τ ∈ Γ. That is, a partial variable assignment may not assign a
value to all variables in Γ. A variable assignment γ′ ∈ JΓK extends
a partial variable assignment γ ∈ JΓKP iff γ(x) = γ′(x) for all
x ∈ dom(γ).

Given Γ ` c1 : Contr, Γ ` c2 : Contr, γ ∈ JΓKP, and ρ ∈
EnvP, we say that c1 and c2 are γ, ρ-equivalent, written c1 ≡γ,ρ c2,

322

spC(c, γ, ρ) =

c if c = ∅ ∨ c = a(p→ q)

let x = e′

in spC(c′, γ′, ρ)
if c = (let x = e in c′) ∧
e′ = spE(e, γ, ρ) ∧

γ′ =

{
γ[x 7→ e′] if e′∈ R ∪ B
γ otherwise

spE(e, γ, ρ)× spC(c′, γ, ρ) if c = e× c′

l ↑ spC(c′, γ, ρ/d) if c = d ↑ c′

spC(c1, γ, ρ) & spC(c2, γ, ρ) if c = c1 & c2
trav(γ, ρ, b, c1, c2, 0, d, c) if c = if b within d

then c1 else c2

trav(γ, ρ, b, c1, c2, d
′, d, c) =

d′ ↑ spC(c1, γ, ρ) if spE(b, γ, ρ) = true

d′ ↑ spC(c2, γ, ρ) if spE(b, γ, ρ) = false ∧ d = 0

trav(γ, ρ/1, b, c1, c2,
d′ + 1, d− 1, c)

if spE(b, γ, ρ) = false ∧ d > 0

c otherwise

Figure 9. Contract specialisation function spC.

iff C Jc1Kγ′,ρ′ = C Jc2Kγ′,ρ′ for all γ′ ∈ JΓK and ρ′ ∈ Env
that extend γ and ρ, respectively. The specialisation function spC
takes an external environment ρ and a variable assignment γ, and
transforms a contract c into a contract c′ with c ≡γ,ρ c′.

In order to implement such a function spC, we also need a cor-
responding specialisation function spE on expressions. To this end,
we define a corresponding notion of γ, ρ-equivalence on expres-
sions: Given Γ ` e1 : τ , Γ ` e2 : τ , γ ∈ JΓKP, and ρ ∈ EnvP,
we say that e1 and e2 are γ, ρ-equivalent, written e1 ≡γ,ρ e2, iff
E Je1Kγ′,ρ′ = E Je2Kγ′,ρ′ for all γ′ ∈ JΓK and ρ′ ∈ Env that extend
γ and ρ, respectively.

The definition of spC is given in Figure 9. We have elided the
definition of spE, which is straightforward and can be found in
the Coq source files associated with this paper. The definition of
spC uses underlined versions of ×, ↑, & and let. These are smart
constructors for the corresponding contract language construct.
They are functions that construct a contract that is equivalent to the
contract that would have been constructed if we used the original
contract language construct. But in addition it tries to simplify the
contract. For instance, × is defined as follows:

e× c =

c if e = 1

∅ if e = 0 ∨ c = ∅
e× c otherwise

The other smart constructors work similarly. In particular, let x =
e in c is equal to c if there is no free occurrence of x in c.

Moreover, spC uses an auxiliary function trav, also defined in
Figure 9, which tries to simplify the if-within construct.

Example 5. Reconsider the CDS contract from Example 4. We
want to see what happens if party X defaults. To this end, we
define the partial environment ρ such that ρ(X defaults, i) = true
if i = 15, ρ(X defaults, i) = false if i 6= 15, and otherwise ρ is
undefined. In other words, we assume that party X defaults after
15 days: with this input, spC transforms the contract into

(10× DKK(Y → Z)) & (15 ↑ 900× DKK(Z → Y))

That is, Y pays Z DKK 10 today and Z pays Y DKK 900 in
15 days. On the other hand, if X does not default, that is, if

ρ(X defaults, i) = false for all i, then spC transforms the contract
into

(30 ↑ 1000× DKK(X → Y)) & (10× DKK(Y → Z))

That is, Y pays Z DKK 10 today and X pays Y DKK 100 in 30
days.

We can show that spC and spE indeed implement specialisation
of contracts and expressions, respectively:

Theorem 10. Let Γ be a typing environment, γ ∈ JΓKP, and
ρ ∈ EnvP.

(i) Given Γ ` e : τ , we have that spE(e, γ, ρ) ≡γ,ρ e.
(ii) Given Γ ` c : Contr, we have that spC(c, γ, ρ) ≡γ,ρ c.

In particular, we have that specialisation preserves the typing,
that is, Γ ` c : Contr implies that Γ ` spC(c, γ, ρ) : Contr, and
analogously for the refined type system.

4.2 Reduction Semantics and Contract Advancement
In addition to the denotational semantics, we equip the contract
language with a reduction semantics [2], which advances a contract
by one time unit. This reduction semantics allows us to modify
a contract according to the passage of time and the knowledge
of observables that gradually becomes available. In addition, the
reduction semantics will tell us the concrete asset transfers that
have to occur according to the contract.

We write c T
=⇒ρ c′, to denote that c is advanced to c′ in the

partial environment ρ ∈ EnvP, where T ∈ Trans represents the
transfers that the contract c stipulates during this time unit, and c′

is the contract that describes all remaining obligations except these
transfers (both under the assumptions represented by ρ). In order
to define T

=⇒ρ, we have to generalise it such that it works on open
contracts as well. To this end, we also index the relation with a
partial variable assignment γ. In sum, the reduction semantics is a
relation written as c T

=⇒γ,ρ c
′, and we use the notation c T

=⇒ρ c
′ for

the special case that γ is the empty variable assignment. The full
definition of the reduction semantics is given in Figure 10.

We can show that the reduction semantics is computationally
adequate w.r.t. the denotational semantics. In order to express this
property, we need the notion that partial environment ρ ∈ EnvP is
historically complete. By this we mean that ρ(l, i) is defined for all
l ∈ Label and i ≤ 0. In other words, we have complete knowledge
about the past. For the sake of a clearer presentation, we formulate
the adequacy property in terms of closed contracts only:

Theorem 11 (Computational adequacy of T
=⇒ρ). Let c : Contrt

and ρ ∈ EnvP.

(i) If c T
=⇒ρ c

′, then the following holds for all ρ′ that extend ρ:
(a) C JcKρ′ (0) = T , and
(b) C JcKρ′ (i+ 1) = C Jc′Kρ′/1 (i) for all i ∈ N,

(ii) If c T
=⇒ρ c

′, then c′ : Contrt−1.
(iii) If ρ is historically complete, then there is a unique c′ such that

c
T
=⇒ρ c

′ and T = C JcKρ (0).

Property (i) expresses that the reduction semantics is sound; (ii)
expresses type preservation, and (iii) expresses a progress property.

Combining the three individual properties above, and special-
ising it to total environments ρ ∈ Env, we can conclude that any
well-typed contract yields an infinite reduction sequence, which re-
veals the contract’s complete denotational semantics:

c
CJcKρ(0)
=====⇒ρ c0

CJcKρ(1)
=====⇒ρ/1 c1

CJcKρ(2)
=====⇒ρ/2 . . .

323

c
T
=⇒γ,ρ c

′

0 ↑ c T
=⇒γ,ρ c′ ∅ T0=⇒γ,ρ ∅ a(p→ q)

Tp,q,a
====⇒γ,ρ ∅

d > 0

d ↑ c T0=⇒ρ d− 1 ↑ c

c
T
=⇒γ,ρ c

′ r = spE(e, γ, ρ) r ∈ R

e× c r∗T
==⇒γ,ρ r× c′

ci
Ti=⇒γ,ρ ci

c1 & c2
T1+T2====⇒γ,ρ c1 & c2

c
T0=⇒γ,ρ c

′ e′ = spE(e, γ, ρ)

e× c T0=⇒γ,ρ (−1 ⇑ e′)× c′

spE(e, γ, ρ) = e′

c
T
=⇒γ′,ρ c

′
γ′ =

{
γ[x 7→ e′] if e′ ∈ R ∪ B
γ otherwise

let x = e in c
T
=⇒γ,ρ let x = −1 ⇑ e′ in c

spE(e, γ, ρ) = false c2
T
=⇒γ,ρ c

′

if e within 0 then c1 else c2
T
=⇒γ,ρ c′

spE(e, γ, ρ) = true c2
T
=⇒γ,ρ c

′

if e within d then c1 else c2
T
=⇒γ,ρ c′

spE(e, γ, ρ) = false d > 0

if e within d
then c1 else c2

T0=⇒γ,ρ
if e within d− 1
then c1 else c2

where T0 = λt.0 r ∗ T = λt.r · T (t)

T1 + T2 = λt.T1(t) + T2(t)

Tp,q,a = λ(p′, q′, a′).

1 if (p′, q′, a′) = (p, q, a)

−1 if (p′, q′, a′) = (q, p, a)

0 otherwise

Figure 10. Contract reduction semantics.

Because contracts have a finite horizon (see Section 3.1), we know
that there is some n ∈ N such that ci ≡ ∅ for all i ≥ n. In addition,
one can show that there is some n ∈ N such that ci = ∅ for all
i ≥ n.

It is intuitively expected that we require a contract c to be
causal in order to obtain a reduction c

T
=⇒ρ c′, given that ρ is

only historically complete. For instance, given the contract c1 =
obs(l, 1) × a(p→ q), which is clearly not causal, we do not
know its cash-flow T at time 0 given only knowledge about the
environment at time 0 and earlier, since T depends on the value of
the observable l at time 1.

However, even causality is not enough, and indeed our progress
result in Theorem 11 requires well-typing. In fact, we cannot hope
to devise a compositional reduction semantics that is adequate for
all causal contracts. The problem is that causality is not a composi-
tional property! For example, similarly to the contract c1, also the
contract c2 = obs(l, 1) × a(q → p) is not causal. However, the
contract c1 & c2 is equivalent to ∅ and thus is causal. Therefore,
being able to capture a conservative notion of causality that is com-
positional, for example, in the form of well-typing, is crucial for
the computational adequacy of the reduction semantics.

A central lemma for proving property (iii) of Theorem 11, is
that the specialisation function spE is complete in the sense that it
yields a literal if given a partial environment and a partial variable
assignment that is “sufficiently defined”. More concretely, we have
that if Γ e : τ t, then spE(e, γ, ρ) ∈ JτK, given that ρ ∈ EnvP

and γ ∈ JΓKP are sufficiently defined. The “sufficiently defined”
condition is dependent on the typing of e. It requires that γ(x) is
defined whenever x : σs ∈ Γ and s ≤ t, and that ρ(l, i) is defined
whenever i ≤ t. In other words, γ and ρ satisfy the temporal
dependencies implicated by the typing Γ e : τ t.

In order to make the reduction semantics practically useful, we
implement it in the form of a function adv that takes a contract
c, a partial variable assignment γ, and a partial external environ-
ment ρ and returns a contract c′ together with the transfer function
T ∈ Trans such that c T

=⇒γ,ρ c′. The function adv can be im-
plemented by transcribing the inference rules from Figure 10 into
a function definition. However, we have to make a small change
in order to obtain an effectively computable function. The issue
is the second rule for contracts of the form e × c. To implement
this rule we have to check whether the derived transfer function
for the contract c is equal to T0, the empty transfer function. This
is undecidable if we use the full function space Trans of transfer
functions. However, transfer functions T that are the result of the
semantics of a contract have finite support, that is, T (t) 6= 0 for
only finitely many t. Hence, we can represent transfer functions
using finite maps, with which we can efficiently check whether a
transfer function is the empty transfer function T0. The implemen-
tation for adv can be found in the associated Coq source code along
with the proof that it adequately implements the reduction seman-
tics. The implementation also makes use of the antisymmetry of
transfer functions, that is, the fact that T (p, q, a) = −T (q, p, a)
(cf. Lemma 2), by only storing one of the values T (p, q, a) and
T (q, p, a).

5. Coq Formalisation and Code Extraction
We have formalised the contract language in the Coq theorem
prover. To this end, we have chosen an extrinsically typed repre-
sentation using de Bruijn indices. That is, the abstract syntax of
contracts and expressions is represented as simple inductive data
types and the typing rules are given separately as inductive predi-
cate definitions.

The use of extrinsic typing—as opposed to intrinsic typing,
where the type system of the meta language is used to encode the
object language’s type system—has two important benefits. First
of all, we have two different type systems: the simple type system
from Figure 2 and the time-indexed type system from Figure 7.
With intrinsic typing, we would need to choose a single one. Sec-
ondly, the types representing the abstract syntax of contracts and
expressions are simple algebraic data types. Coq’s built-in code ex-
traction to generate Haskell or OCaml code does not work very well
outside of the realm of algebraic data types—extraction is, at best,
difficult with general inductive type families.

The use of extrinsic typing has some drawbacks, though. Some
functions that are total on well-typed contracts (e.g., the denota-
tional semantics) are only partial on untyped contracts. Transfor-
mations such as contract specialisation and advancement require a
separate proof showing that well-typing is preserved.

All propositions and theorems given in Sections 2, 3, and 4 were
proved using our formalisation in Coq. In the remainder of this
section, we describe how executable Haskell code is produced from
this formalisation. The resulting Haskell implementation provides
an embedded domain-specific language to write concrete contracts
and exposes the contract analysis and management functionality
that we discussed in Sections 3 and 4.

5.1 Generating Certified Code
Our goal is to obtain a certified contract management engine imple-
mented in Haskell. That is, the implementation should satisfy the
properties that we have proved in Coq. While ideally, one would

324

like the entire software stack (and even hardware stack) on which
contracts are being managed to be certified, there are several non-
certified components involved: The generated Haskell code has
been compiled with a non-certified Haskell compiler and runs un-
der a non-certified runtime system, most likely on top of a non-
certified operating system. Another component that must be trusted
is Coq’s code extraction itself (which has been addressed to some
extent [23]). Our work requires trust in these lower-level compo-
nents.

Instead of extracting Haskell code for types and functions from
Coq’s standard library, such as list and option, we map these
to the corresponding implementations in Haskell’s standard library.
Coq’s code extraction facility provides corresponding customisa-
tion features that allow this mapping. In addition, our Coq formal-
isation uses axiomatised abstract types, that is, types that are only
given by their properties, and we can thus not extract code for them.
Examples are the types for assets, parties and finite maps as well as
the type of real numbers. We use the same customisation mecha-
nism to map these types to corresponding types in Haskell.

Code extraction from Coq into Haskell (or OCaml) does not
simply translate function and type definitions from one language to
another. It also elides logical parts, that is, those of sort Prop. Using
data types containing proofs and defining functions that operate on
them can be useful for establishing invariants that are maintained by
those functions. In many cases, this simplifies the proofs drastically.
Code extraction strips those “embedded” proofs from the code.

5.2 Implementing an Embedded Domain-Specific Language
In order to make the contract language usable, we need to provide a
front end that allows the user to write contracts in a convenient sur-
face syntax. In particular, we do not want the user to write contracts
using de Bruijn indices. Instead of writing a parser that translates
the surface syntax into abstract syntax, we have implemented the
contract language as an embedded domain-specific language. This
approach allows us to provide a contract management framework
with minimal effort. In addition, the approach leads to less uncerti-
fied code.

In order to build a combinator library to construct contracts and
expressions, we use the approach of Atkey et al. [5]. This approach
allows us to provide a combinator library that uses higher-order ab-
stract syntax (HOAS) to represent variable binders. For example,
expressions are represented by a type Int → Expr, where Expr is
the type of expressions extracted from the Coq formalisation and
the integer argument is used to keep track of the levels of nested
variable binders. In addition, this approach uses type classes in or-
der to keep the representation abstract. This abstraction ensures
parametricity, which is needed in order to guarantee that the rep-
resentation of binders is adequate. The interface of the resulting
Haskell combinator library is given in Figure 11.

The type classes E and C are used to provide an abstract inter-
face for constructing expressions and contracts, respectively. The
use of these two type classes allows us to use types of the form
exp t both for expressions and for bound variables (cf. the type
signatures of acc and letc in Figure 11). The type Contr represents
closed contracts. In addition, we use the types R and B to indicate
that an expression is of type Real or Bool, respectively. We can also
use Haskell decimal literals to write Real-typed literals in the ex-
pression language as well as the built-in if-then-else construct both
for expression- and contract-level conditionals (i.e., if-within).

Figure 12 illustrates the use of the combinators. It shows a
complete Haskell file that imports the contract library and defines
two contracts: the Asian and the American option that we have
presented in Section 2.1.

Figure 13 shows a more complex contract expressed in the
Haskell EDSL: it describes a bond that is insured by a credit de-

−− Expresssions
acc :: E exp ⇒ (exp t → exp t) → Int → exp t → exp t
rObs :: E exp ⇒ RealObs→ Int → exp R
bObs :: E exp ⇒ BoolObs→ Int → exp B

max, min, (+), (∗), (/), (−) :: E exp ⇒ exp R→ exp R→ exp R
(==), (<), (≤), (>), (>), (≥) :: E exp ⇒ exp R→ exp R→ exp B

(&&), (| |) :: E exp ⇒ exp B→ exp B→ exp B
not :: E exp ⇒ exp B→ exp B
false , true :: E exp ⇒ exp B

−− Contracts
type Contr = forall exp contr . C exp contr ⇒ contr

transfer :: C exp contr ⇒ Party → Party → Asset → contr
zero :: C exp contr ⇒ contr
letc :: C exp contr ⇒ exp t → (exp t → contr) → contr
(&) :: C exp contr ⇒ contr → contr → contr
(!) :: C exp contr ⇒ Int → contr → contr
(#) :: C exp contr ⇒ exp R→ contr → contr
ifWithin :: C exp contr ⇒ exp B→ Int → contr → contr → contr

−− Contract management
horizon :: Contr → Int
welltyped :: Contr → Bool
advance :: Contr → ExtEnvP→ (Contr, FMap)
specialise :: Contr → ExtEnvP→ Contr

Figure 11. Interface for the Haskell extracted contract library.

{−# LANGUAGE RebindableSyntax #−}

import RebindableEDSL

asian :: Contr
asian = 90 ! if bObs (Decision X " exercise ") 0

then 100 # (transfer Y X USD &
(rate # transfer X Y DKK))

else zero
where rate = (acc (λr → r +

rObs (FX USD DKK) 0) 30 0) / 30

american :: Contr
american = if bObs (Decision X " exercise ") 0 ‘ within ‘ 90

then 100 # (transfer Y X USD &
(6.23 # transfer X Y DKK))

else zero

Figure 12. Complete Haskell code for Asian and American option.

fault swap (CDS). We have already seen a similar—but simpler—
contract in Example 4, where we considered a CDS for a zero-
coupon bond. The contract in Figure 13 describes a bond that pays
a monthly interest during the 12 months term of the bond. Also the
CDS is different: the buyer has to pay a monthly premium instead
of a single up-front premium.

6. Related Work
Contract Languages. Research on formal contract languages can
be traced back to the work of Lee [21] on electronic contracts. Since
then, many different approaches have been studied. An overview
over this broad area of contract formalisms can be found in the
surveys by Hvitved [13, 14].

Most relevant to our work is the pioneering work on finan-
cial contracts by Peyton Jones et al. [28]. This work has evolved
into the company LexiFi, which has implemented the techniques
on top of their MLFi variant of OCaml [24]. The resulting con-

325

{−# LANGUAGE RebindableSyntax #−}

import RebindableEDSL

bondCDS :: Contr
bondCDS = bond (12 :: Int) DKK 10 1000 Y X

& cds (12 :: Int) DKK 9 1000 Y Z X

cds months cur premium comp buyer seller ref = step months
where step i = if i ≤ 0 then zero

else premium # transfer buyer seller cur &
if bObs (Default ref) 0 ‘ within ‘ 30
then comp # transfer seller buyer cur
else step (i−1)

bond months cur inter nom holder issuer = step months
where step i = if i ≤ 0

then nom # transfer issuer holder cur
else inter # transfer issuer holder cur &
if bObs (Default issuer) 0 ‘ within ‘ 30
then zero
else step (i−1)

Figure 13. Complete Haskell code for a CDS for a bond.

tract management platform runs worldwide in many financial in-
stitutions through its integration in key financial institutions, such
as Bloomberg5, and with large asset-management platforms, such
as SimCorp Dimension [30], a comprehensive asset-management
platform for financial institutions.

Based also on earlier work on contract languages [3], in the
last decade, domain specific languages for contract specifications
have been widely adopted by the financial industry, in particular in
the form of payoff languages, such as the payoff language used by
Barclays [9]. It has thus become well-known that domain specific
languages for contract management result in more agility, shorter
time-to-market for new products, and increased assurance of soft-
ware quality. See also [1] for an overview of resources related to
domain specific languages for the financial domain.

Multi-party contracts have been investigated earlier in the work
by Andersen et al. [2] and Henglein et al. [11] on establishing a
formal transaction system for enterprise resource planning (ERP).
In this line of work, the contract language resembles a process
calculus, which is used to match up concrete transactions with
abstract specifications of transactions agreed upon in a contract.
The absence of explicit observables in these languages avoids the
issue of syntactically expressible contracts that are not causal.

Semantics. We equipped our contract language with a denota-
tional semantics as well as an operational semantics in the form
of a reduction relation. Likewise, Peyton Jones et al. [28] consid-
ered a denotational semantics, however, their semantics is based on
stochastic processes. Our denotational semantics draws from pre-
vious work on trace-based contract formalisms [2, 15, 20]. How-
ever, in order to accommodate the financial domain we needed to
add observables to the language and consequently the semantics.
While many financial contracts can be formulated without observ-
ables, we found examples—such as double barrier options—that
we were not able to express without observables.

In a later version of their work, Peyton-Jones and Eber also
sketched an operational semantics for contract management [27].
A full reduction semantics is given by Andersen et al. [2] as well

5 Press release available at http://www.lexifi.com/clients/press_
release_en/bloomberg.

as Hvitved et al. [15] along with proofs of their adequacy with
respect to the corresponding denotational semantics. The absence
of observables in the work of Andersen et al. [2] and Hvitved
et al. [15] simplifies the reduction semantics: there is no need to
partially evaluate expressions and it is syntactically impossible to
write contracts that are not causal.

A different semantic approach that we did not discuss in this
paper is an axiomatic semantics. Such an axiomatic treatment has
been studied by Schuldenzucker [29]. Interestingly, this axiomati-
sation of two-party contracts is not based on equality of contracts
but rather an order ≤ on contracts. Equality of contracts is then
derived from the order ≤.

Software Verification and Certified Software. In the course of
the last decade, formal software verification has grown into a ma-
ture technology. It has been applied to realistic software systems
such as compilers [22] and operating system kernels [18]. The use
of code extraction to obtain executable code from a formally veri-
fied implementation is an established technique in the community
[7, 10, 23]. Despite the demonstrated feasibility of verification of
critical pieces of software, we have yet to see adoption of this tech-
nology for financial software in general and for financial contract
languages in particular.

The only application of formal software verification in the fi-
nancial sector we have seen so far is Imandra [16], which has been
recently developed by the financial technology startup Aesthetic In-
tegration. The core of Imandra is a modelling language for describ-
ing financial algorithms. According to Aesthetic Integration, the
modelling language has both a formal semantics—for the purpose
of formal reasoning—and an executable semantics—for producing
executable code. The formal verification capabilities that the Iman-
dra system provides are limited to automated reasoning provided
by an SMT solver specialised to the financial domain. While this
setup limits the system’s reasoning power compared to the above-
mentioned software verification efforts that use proof assistants, the
use of automatic reasoning lowers the burden for proving properties
substantially.

Type Systems. The use of type systems to guarantee certain tem-
poral properties of programs has been extensively studied in the
literature. Most work in this direction stems from applying the
Curry-Howard correspondence to linear-time temporal logic (LTL)
or fragments thereof: Davies [8] devises a constructive variant of
LTL and uses it as a type system for binding time analysis. Apart
from the temporal ‘next’ modality, Davies’s system also features
time-indexing of the typing judgement and the variables in the typ-
ing context. Jeffrey [17] embeds LTL into a dependently typed pro-
gramming language to type functional reactive programs. However,
his underlying model of reactive types is much more expressive
than plain LTL and, for example, allows him to define the function
space of causal functions. Krishnaswami and Benton [19] present
a type system for functional reactive programs using time-indexed
types similar to ours. But in addition, they also have a ‘next’ modal-
ity inspired by Nakano’s calculus for guarded recursion [25]. More
recently, Atkey and McBride [4] extended Nakano’s calculus with
clock variables for practical programming with coinductive types.
Considering the special case of streams (as coinductive types), the
type system of Atkey and McBride ensures that all stream transfor-
mations satisfy the causality principle.

7. Conclusions and Future Work
We have presented a symbolic framework for modelling finan-
cial contracts that is capable of expressing common FX and other
derivatives. The framework describes multi-party contracts and can
therefore model entire portfolios for holistic risk analysis and man-
agement purposes. Contracts can be analysed for their temporal

326

http://www.lexifi.com/clients/press_release_en/bloomberg
http://www.lexifi.com/clients/press_release_en/bloomberg

dependencies and horizon, and gradually evolved until the hori-
zon has been reached, following a reduction semantics based on
gradually-available external knowledge in an environment.

Our contract language is implemented using the Coq proof
assistant, which enables us to certify the intended properties of
our contract analyses and transformations against the denotational
cash-flow trace semantics. We used Coq’s code extraction function-
ality to derive a Haskell implementation from the Coq formalisa-
tion. The resulting Haskell module can be used as a certified core
of a portfolio management framework.

As future work, we plan to explore and model more symbolic
contract transformations that are central to day-to-day contract
management, and to extend the contract analyses with features
relevant for contract valuation. We are also considering general-
ising contracts to use continuous time instead of discrete time.
That is, the denotational semantics of contracts is a function of
type R → Trans instead of N → Trans. We conjecture that the
transformations and analyses can still be performed in this gen-
eralised setting. For specialisation and advancement, we would
have to make additional assumptions about how the partial exter-
nal environments—which are input to these transformations—are
represented. A reasonable choice would be to assume that partial
external environments are given as a finite sampling.

Another natural extension of the language is an iteration com-
binator iter that behaves like the accumulation combinator acc,
but works on contracts instead of expressions. Such a combinator
would allow us to express concisely contracts with repetition, such
as the bond and CDS example from Figure 13. Currently, we rely
on the meta language (i.e., Haskell) to construct such contracts.
The contracts are represented in our core contract language and all
of our contract management tools apply to them. However, the iter
combinator would provide a more compact representation.

Our contract language can only express contracts with a finite
horizon, which covers most practically relevant financial contracts.
Although uncommon, there are financial contracts that are perpet-
ual (e.g., perpetual bonds such as UK World War I bonds). To ex-
press such contracts, we would need to extend the contract lan-
guage, for instance, with an if-within construct with unbounded
horizon or an unbounded version of the iter combinator.

Finally, we are interested in exploring the possibility of bridging
symbolic techniques with numerical methods, such as stochastic
and closed-form contract valuation (which is probably the most
important use case of contract DSLs in general). Our contract
analyses are geared towards identifying the external entities that
need to be modelled in a pricing engine and we are currently
working on deploying the certified contract engine in a contract
and portfolio pricing and risk calculation prototype [26].

Acknowledgements.
We would like to thank Fritz Henglein, LexiFi, the attendees of
NWPT 2014 as well as the anonymous referees of NWPT 2014
and ICFP 2015 for many useful comments and suggestions.

References
[1] DSLFin: Financial domain-specific language listing. http://www.

dslfin.org/resources.html, 2013.

[2] J. Andersen, E. Elsborg, F. Henglein, J. G. Simonsen, and C. Ste-
fansen. Compositional specification of commercial contracts. Int. J.
Softw. Tools Technol. Transf., 8(6):485–516, 2006.

[3] B. Arnold, A. Van Deursen, and M. Res. An algebraic specification
of a language for describing financial products. In ICSE-17 Workshop
on Formal Methods Application in Software Engineering, pages 6–13,
1995.

[4] R. Atkey and C. McBride. Productive coprogramming with guarded
recursion. In ICFP, pages 197–208, 2013.

[5] R. Atkey, S. Lindley, and J. Yallop. Unembedding domain-specific
languages. In ACM SIGPLAN Symposium on Haskell, pages 37–48,
2009.

[6] J. Berthold, A. Filinski, F. Henglein, K. Larsen, M. Steffensen, and
B. Vinter. Functional High Performance Financial IT – The HIPER-
FIT Research Center in Copenhagen. In TFP’11 – Revised Selected
Papers, 2012.

[7] A. Chlipala. Certified Programming with Dependent Types. MIT
Press, 2013.

[8] R. Davies. A temporal-logic approach to binding-time analysis. In
LICS, pages 184–195, 1996.

[9] S. Frankau, D. Spinellis, N. Nassuphis, and C. Burgard. Commercial
uses: Going functional on exotic trades. J. Funct. Program., 19(1):
27–45, 2009.

[10] F. Haftmann. From higher-order logic to Haskell: There and back
again. In PEPM, pages 155–158, 2010.

[11] F. Henglein, K. F. Larsen, J. G. Simonsen, and C. Stefansen. POETS:
Process-oriented event-driven transaction systems. J. Log. Algebr.
Program., 78(5):381 – 401, 2009.

[12] J. Hull and A. White. CVA and wrong-way risk. Financ. Anal. J., 68
(5):58–69, 2012.

[13] T. Hvitved. A survey of formal languages for contracts. In FLACOS,
pages 29–32, 2010.

[14] T. Hvitved. Contract Formalisation and Modular Implementation of
Domain-Specific Languages. PhD thesis, Department of Computer
Science, University of Copenhagen, 2011.

[15] T. Hvitved, F. Klaedtke, and E. Zalinescu. A trace-based model for
multiparty contracts. J. Log. Algebr. Program., 81(2):72–98, 2012.

[16] D. A. Ignatovich and G. O. Passmore. Creating safe and fair markets.
White Paper AI/1501, Aesthetic Integration, Apr. 2015. URL http:
//www.aestheticintegration.com/files/ai-wp1501.pdf.

[17] A. Jeffrey. LTL types FRP: Linear-time temporal logic propositions as
types, proofs as functional reactive programs. In PLPV, pages 49–60,
2012.

[18] G. Klein, J. Andronick, K. Elphinstone, T. Murray, T. Sewell,
R. Kolanski, and G. Heiser. Comprehensive formal verification of an
OS microkernel. ACM T. Comput. Syst., 32(1):2:1–2:70, 2014.

[19] N. Krishnaswami and N. Benton. Ultrametric semantics of reactive
programs. In LICS, pages 257–266, 2011.

[20] M. Kyas, C. Prisacariu, and G. Schneider. Run-time monitoring of
electronic contracts. In ATVA, pages 397–407, 2008.

[21] R. M. Lee. A logic model for electronic contracting. Decis. Support
Syst., 4(1):27–44, 1988.

[22] X. Leroy. Formal certification of a compiler back-end, or: program-
ming a compiler with a proof assistant. In POPL, pages 42–54, 2006.

[23] P. Letouzey. Extraction in Coq: An overview. In Computability in
Europe, volume 5028 of LNCS, pages 359–369, 2008.

[24] LexiFi. Contract description language (MLFi). http://www.
lexifi.com/technology/contract-description-language.

[25] H. Nakano. A modality for recursion. In LICS, pages 255–266, 2000.
[26] C. Oancea, J. Berthold, M. Elsman, and C. Andreetta. A financial

benchmark for GPGPU compilation. In CPC, 2015.
[27] S. Peyton Jones and J.-M. Eber. How to write a financial contract.

In J. Gibbons and O. de Moor, editors, The Fun of Programming.
Palgrave Macmillan, 2003.

[28] S. Peyton Jones, J.-M. Eber, and J. Seward. Composing contracts: an
adventure in financial engineering (functional pearl). In ICFP, 2000.

[29] S. Schuldenzucker. Decomposing contracts – a formalism for arbitrage
argumentations. Master’s thesis, Rheinische Friedrich-Wilhelms-
Universität Bonn, 2014.

[30] SimCorp A/S. XpressInstruments solutions. Company white-paper.
Available from http://simcorp.com, 2009.

327

http://www.dslfin.org/resources.html
http://www.dslfin.org/resources.html
http://www.aestheticintegration.com/files/ai-wp1501.pdf
http://www.aestheticintegration.com/files/ai-wp1501.pdf
http://www.lexifi.com/technology/contract-description-language
http://www.lexifi.com/technology/contract-description-language
http://simcorp.com

	Introduction
	The Contract Language
	Examples
	Simple Type System for Contracts
	Denotational Semantics
	Contract Equivalences
	Observing the Passage of Time
	Calendars

	Temporal Properties of Contracts
	Contract Horizon
	Contract Causality

	Contract Transformations
	Contract Specialisation
	Reduction Semantics and Contract Advancement

	Coq Formalisation and Code Extraction
	Generating Certified Code
	Implementing an Embedded Domain-Specific Language

	Related Work
	Conclusions and Future Work

