Experience Report: Type-Safe Multi-Tier Programming
with Standard ML Modules

Martin Elsman

Department of Computer Science,
University of Copenhagen, Denmark

mael@di.ku.dk

Abstract

We describe our experience with using Standard ML modules and
Standard ML’s core language typing features for ensuring type-
safety across physically separated tiers in an extensive web applica-
tion built around a database-backed server platform and advanced
client code that accesses the server through asynchronous server
requests.

1. Introduction

The iAlpha Platform is an advanced asset management system
featuring a number of analytics modules for combining trading
strategies suggested by fund managers. Technically, the application
is comprised of approximately 40.000 lines of Standard ML and is
built around the SMLserver [9, 10, 11] and SMLtoJs [7] compiler
frameworks, which, respectively, allows for Standard ML code to
be executed in a web server context and in web browsers.

Our approach to type-safe cross-tier communication is simple:
We make sure that all communication between a client and the
web server happens through a shared module interface, that is,
through a Standard ML signature, which is located in a shared
file that is part of both the code base for clients (compiled with
SMLtolJs) and the code base for the web server (compiled with
SMLserver). Whereas the server implementation of a particular
function specified by a signature will often access the underlying
database, the client implementation will instead operate as a proxy
for the server-provided function. But there is a catch! Because the
client functionality needs to be asynchronous, the type of the client
function will have to be slightly different from the type of the server
counterpart. Here type abstraction and parameterised types come to
the rescue. By abstracting over function result types in the shared
signature, using where type constraints, the server code and the
client code can provide sufficiently different types for the functions.

So how does the actual communication happen? The underlying
serialisation and deserialisation of data is implemented using type-
indexed pickle combinators [6, 15], which requires some unfortu-
nate, albeit type-safe, boilerplate programming. A module, which
is compiled both for the server and for the client provides the nec-
essary picklers for both the arguments and the result value for each
function together with a unique name for the function. Using this

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ML Family Workshop (ML "2018) September 28, 2018, St. Louis, Missouri, USA
Copyright (© 2018 Held by the authors.

Philip Munksgaard

iAlpha AG, Switzerland
philip@ialpha.xyz

Ken Friis Larsen

Department of Computer Science,
University of Copenhagen, Denmark

kflarsen@di.ku.dk

shared module, it is now possible, on the server, to implement a
module that for each function responds to a request by first deseri-
alising the argument into a value, calls the particular function and
replies to the client with a serialised version of the result value.
Dually, on the client side, for each function, the client code can
serialise the argument and send the request asynchronously to the
server. When the server responds, the client will deserialise the re-
sult value and apply the handler function to the value. Both for the
server part and for the client part, the code can be implemented in
a type-safe fashion. In particular, if an interface type changes, the
programmer will be notified about all type-inconsistencies at com-
pile time.

To decrease drastically the amount of boilerplate code that a
user needs to manage, we have developed a tool, named SMLex-
pose, which reads the SERVICES signature and writes the various
boilerplate structures.! We shall discuss this tool further in Sec-
tion 6.

In general, a large number of generic libraries are part both of
the client code base and the web server code base. Such code is
often functorised and can be tested in isolation from the application
using a traditional Standard ML compiler.

In the next section, we briefly present the two Standard ML
compiler frameworks involved, namely SMLserver and SMLtoJs.
We then present two libraries that are essential for the solution,
namely a deferred library for managing asynchronous requests on
clients and the type-indexed serialisation library that is used both on
the server and on clients for serialising and deserialising data. We
then demonstrate how the pieces are composed through a concrete
example, for which the server exposes to clients a functionality for
obtaining daily stock closing quotes for a particular ticker, such as
the Carlsberg stock. Finally, we present related work and conclude.

2. The Tools

SMLserver is a web server platform and compiler for Standard
ML programs, also called scripts. It provides access to a variety
of RDBMSs through an efficient generic implementation of con-
nection pooling. It also supports type-safe data caching and script
scheduling. Scripts, which may share common library code, are
compiled into bytecode, which is loaded only once but may be ex-
ecuted many times upon client requests. The framework is built
around an Apache web server module [16] and provides a multi-
threaded execution model, which allows multiple requests to be
served simultaneously. Scripts are executed without reference trac-
ing garbage collection. Instead, SMLserver applies region-based
memory management [8, 9, 21], which works well, for instance,
in a web-server context where scripts run shortly but are executed
often.

I'SMLexpose is hosted at https://github.com/melsman/smlexpose.

https://github.com/melsman/smlexpose

RWP Example: Sheeps
Score: 1 Time: 22481

Use your mouse to put the sheeps in the box!

Figure 1. Hosting a Standard ML compiler in a browser.

SMLtoJs is a compiler that compiles Standard ML programs

into efficient JavaScript code. In essence, it allows developers to
construct client-based web applications in a Higher-Order and
Typed (HOT) language. SMLtoJs compiles large programs and
features a rich set of libraries, including most of the Standard ML
Basis Library [12] and a library for functional reactive program-
ming; it can even compile itself, which provides for a Standard ML
compiler working in a browser, as illustrated in Figure 1.
SMLtolJs also supports easy JavaScript integration, which allows
for encapsulating a number of JavaScript libraries as Standard ML
modules accessible on the client. Such libraries include GUI li-
braries, such as the Dojo toolkit* and various charting functionality
from Highcharts.?

Both SMLserver and SMLtoJs are built around the MLKit in-
frastructure, which makes use of a number of crucial optimisation
techniques for generating efficient code, including elimination of
polymorphic equality [4], heavy function inlining, specialisation
of higher-order functions [20], and static interpretation of modules

[5].

3. A Deferred Library

Inspired by the OCaml Core Async library [14], it is possible in
portable Standard ML to define a module that implements so-called
deferred values, which are values that may be filled once and that,
when filled, may trigger other computations. Important parts of
the signature for such a Deferred module is given in Figure 2.
The module provides standard monadic operations, including ret
and >>=, for composing deferred values, but it also features, for
instance, an all combinator, which allows programmers to com-
pose deferred values so that clients can make multiple server re-
quests in parallel. The library also handles exceptions properly. If
the computation associated with a deferred value results in an ex-
ception, the exception is raised when the deferred value is peeked
with the peek function. Another more proper way for code to re-
act to modifications of deferred values is for the code to listen to
changes using the upon function. This function takes as arguments
a deferred value and two functions, which are executed once the
deferred value is filled or when the associated computation results
in a raised exception.

One JavaScript object that is directly exposed to Standard
ML programmers through a Standard ML structure is the object
XMLHttpRequest, which is supported by most web browsers.
Based on this module and the Deferred module, functionality

2 The Dojo toolkit is available from http://dojotoolkit.org.
3 Highcharts is available from http://highcharts.com.

structure Deferred : sig

type ’a t

val ret : a -> ’a t

val >>= : ’at *x (’a -> ’b t) -> ’b t
val >>| : ’at *x (’a -> ’b) -> ’b t
val both : ’at *x bt -> (’a ¥ ’b) t
val any : ’a t list -> ’a t

val all : ?a t list -> ’a list t

val throw : exn -> ’a t

val upon : ’a t -> (’a->unit)

-> (exn->unit) -> unit
(x Low-level operations x)

val new : unit -> ’a t

val set a t -> ’a -> unit

val setexn : ’a t -> exn -> unit

val peek : ’a t -> ’a option
end

Figure 2. Important parts of the Deferred module.

structure Pickle : sig
type ’a pu
val int int pu
val string int pu
val pair : ’a pu -> ’b pu -> (’a*x’b)pu
val list : ’a pu -> ’a list pu
val pickle : ’a pu -> ’a -> string
val unpickle : ’a pu -> string -> ’a
end

Figure 3. A simple library for type-indexed serialisation.

for asynchronous HTTP requests can be expressed directly as it is
done in the following Async module:

structure Async : sig
val httpRequest

{method: string,
binary: bool,
url: string,
headers: (string*string)list,
body: string option}
-> string Deferred.t

end

The function httpRequest takes as argument a record specify-
ing HTTP request information and returns a deferred value, which
identifies the asynchronous task. As mentioned, an asynchronous
task may be executed in parallel with other asynchronous tasks,
using the client’s parallel capabilities. Compared to the OCaml
Core library, which is implemented using low-level system pro-
gramming, the SMLtoJs Async module is implemented based on
browser capabilities.

4. Type-Indexed Serialisation

Another essential functionality is for values at one tier to be seri-
alised into a byte stream and deserialised into an equivalent value
at the opposite tier. Such a functionality can be implemented us-
ing so-called pickle combinators [6, 15], which are type-indexed
functions that are composed from basic picklers for base types and
combinators, which take other picklers as arguments and produces
picklers for structural types, such as tuples. For the example we are
going to present here, it suffices to show the simple signature for
the pickling library in Figure 3.

http://dojotoolkit.org
http://highcharts.com

Pickled values can be very compact due to the fact that type
information need not be serialised. Moreover, the approach sup-
ports even cyclic data structures to be serialised (e.g., through
ref-values). One aspect to mention here is that due to the lack
of JavaScript proper tail-calls, the library depends on a number
of advanced optimisations being performed by SMLtoJs, includ-
ing heavy inlining and specialisation of higher-order functions, as
mentioned earlier. With these optimisations in place, the Pickle
library supports very large data structures to be communicated be-
tween tiers.

Another issue is the potential inconsistency between different
versions of pickle code occuring on clients and servers, for instance
during code deployment. The Pickle library allows for a represen-
tation of the type of the serialized data (or a hash of the type) to be
serialised and checked against the type at the receiving end. In this
way, consistency can be checked and managed dynamically.

5. An Example: Fetching Stock Quotes

As an example of how cross-tier type-safety is achieved, consider
an example where a client needs to fetch stock closing quotes from
a server given a ticker symbol identifying the stock. The following
SERVICES signature, which is shared by the client code and the
server code, specifies the service:

signature SERVICES = sig

type ’a res

type ticker = string and isodate = string

val quotes ticker -> (isodate*real)list res
end

The signature specifies a function quotes, which takes a ticker
value and returns a result value of type (isodate*real)list
res. Notice how the res type constructor wraps the actual result
type of the function. We shall make use of this parameterisation to
support both asynchronous and direct implementations.

Besides from the service signature, the server code and the
client code also share a ServiceDefs module, which provide type-
indexed serialisation code for the services:

structure ServiceDefs = struct
structure P = Pickle
type (’a,’b)t =
{id:string, arg:’a P.pu, res:’b P.pu}
val quotes =
{id="quotes", arg=P.string,
res=P.list(P.pair(P.string,P.real))}
end

Using the shared code parts, we can now construct the appropri-
ate client code for a proxy for the functionality. The client code is
shown in Figure 4. Notice how the res type constructor is specified
to be the type constructor for deferred values. Also notice that the
signature ascription asserts that the types for the pickle values in the
ServiceDefs module are consistent with the type of the service in
the SERVICES signature.

A simple server implementation of the service is listed in
Figure 5. The wrap helper function takes a service definition
and a function of appropriate type and returns a function of
type string->string. The expose function extracts the ser-
vice name from the request header, which is used to identify
and call the associated wrapped service. Upon a request to the
service url, SMLserver may be set up to execute the expose
function. The function calls the functions Web.getHeader and
Web.getRequestData functions to retrieve information about the
request. Using this request data, the proper function can be eval-
uated and the result send back to the client using the function
Web.returnBinary.

signature CLIENT_SERVICES =
SERVICES where type ’a res = ’a Deferred.t

structure ClientServices CLIENT_SERVICES =

struct
structure P = Pickle
type ’a res = ’a Deferred.t
type ticker = string
and isodate = string
fun mk (sd: (’a,’b)ServiceDefs.t)

(arg:’a) ’b res =
let val m =
Async.httpRequest
{method="PO0OST",
binary=true,
url="http://mysite.com/service",
headers=[("serviceid" ,#id sd)],
body=SOME (P.pickle (#arg sd)arg)}
in Deferred.>>| (m,P.unpickle (#res sd))
end
val quotes = mk ServiceDefs.quotes
end

Figure 4. Client code for implementing an asynchronous proxy for
the server functionality.

signature SERVER_SERVICES =
SERVICES where type ’a res = ’a

structure Services :> SERVER_SERVICES =
struct

type ’a res = ’a
type ticker = string
and isodate = string

fun quotes ticker =
[("2018-01-01",23.1)] (% Or: ask DB x)
end

structure ServerExpose : sig
val expose : unit -> unit
end =
struct
structure P = Pickle

fun wrap {id,arg,res} (f:’a -> ’b) =
P.pickle res o f o P.unpickle arg

fun expose () =
case Web.getHeader "serviceid" of
NONE => raise Fail "missing header"
| SOME id =>
let val data = Web.getRequestData()
val f string -> string =
case id of
"quotes" =>
wrap ServiceDefs.quotes
Services.quotes
| _ => raise Fail "no service"
in Web.returnBinary(f data)
end
end

Figure 5. Server code for implementing the quotes functionality.

The scheme is naturally extended to support and manage sim-
ple client-side caching. Often, however, more complex caching
is needed, for instance for ensuring that multiple data items are
fetched using a single query. We are currently experimenting with
various interfaces for facilitating such caching. Orthogonally to
caching, authentication and authorisation can be controlled using
additional arguments.

6. Automatic Generation of Boilerplate Code

As the critical reader may suggest, the approach is somewhat heavy
on writing boilerplate code for picklers. Moreover, when adding a
new service function or when altering the type of an existing service
function, several files need to be updated.

To decrease this writing and modification of boilerplate code,
we have constructed a simple tool, named SMLexpose, which
takes as input a SERVICES signature from which it generates the
ServiceDefs structure, the ClientServices structure, and the
ServerExpose structure. With proper integration of SMLexpose
in the build process, using simple make targets, adding a new ser-
vice or modifying an existing service now only amounts to creating
a type for the service along with a server implementation, after
which the service is readily available at the client side.

7. Related Work

There is a large body of related work focusing on tier-less web
programming. Such work include ML5 [18], which uses modal
logic for controlling code running in different “worlds”. Similarly,
Links [3], Eliom [19], and Ur/Web [2], compile certain code into
JavaScript to execute in a browser and other code into code to
be executed on a server. Whereas these systems provide different
elegant solutions to constructing multi-tier web applications in a
single language, our approach has been to resist the temptation
of adding additional domain-specific features to the Standard ML
language.

Another line of related work includes compiler frameworks that
seek to compile existing languages into JavaScript, such as the
Google Web Toolkit [13], O’Browser [1], and earlier work on the
Hop language (Scm2Js) [17] by Loitsch and Serrano, which im-
plements tail-calls for their Scheme implementation similar to how
tail calls are implemented for SMLtoJs. Another related project is
the js_of_ocaml project, which compiles OCaml bytecode into
JavaScript. Similar to SMLtolJs, this implementation also limits the
implementation of tail calls to direct recursive function calls [22].

8. Conclusions and Future Work

We have outlined a simple solution for ensuring cross-tier type-
safety in web applications using the SMLserver and SMLtolJs tools.
The approach scales well to large applications with many per-
formance critical communication points. There are various possi-
bilities for future work, including proper integrated treatments of
caching, authentication, and authorisation. Whereas the SMLex-
pose tool that we have implemented decreases the amount of boiler-
plate code needed for serialisation, the simple approach to type-safe
multi-tier programming works well even without such a tool. All in
all, it turns out that the time for writing the boilerplate code is not
dramatic and that the type-safety obtained is invaluable.

References

[1] Benjamin Canou, Vincent Balat, and Emmmanuel Chailloux.
O’Browser: Objective Caml on browsers. In 2008 ACM Interna-
tional Workshop on ML (ML’08), 2008.

[2] Adam Chlipala. Ur/web: A simple model for programming the web. In
Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium

on Principles of Programming Languages, POPL " 15, pages 153165,
New York, NY, USA, 2015. ACM.

Ezra Cooper, Sam Lindley, Philip Wadler, and Jeremy Yallop.
Links: Web programming without tiers. In Proceedings of the
5th International Conference on Formal Methods for Components
and Objects, FMCO’06, pages 266-296, Berlin, Heidelberg, 2007.
Springer-Verlag.

[3

[ty

[4

=

Martin Elsman. Polymorphic equality—no tags required. In Second
International Workshop on Types in Compilation (TIC’98), March
1998.

Martin Elsman. Static interpretation of modules. In Procedings
of Fourth International Conference on Functional Programming
(ICFP’99), pages 208-219. ACM Press, September 1999.

[6] Martin Elsman. Type-specialized serialization with sharing. In
Sixth Symposium on Trends in Functional Programming (TFP’05),
September 2005.

Martin Elsman. SMLtoJs: Hosting a Standard ML compiler in a web
browser. In Proceedings of the 1st ACM SIGPLAN International
Workshop on Programming Language and Systems Technologies for
Internet Clients, PLASTIC *11, pages 39-48, New York, NY, USA,
2011. ACM.

Martin Elsman and Niels Hallenberg. A region-based abstract machine
for the ML Kit. Technical Report TR-2002-18, Royal Veterinary and
Agricultural University of Denmark and IT University of Copenhagen,
August 2002. IT University Technical Report Series.

[5

=

[7

—

[8

—

[9

—

Martin Elsman and Niels Hallenberg. Web programming with
SMLserver. In International Symposium on Practical Aspects of
Declarative Languages (PADL’03). Springer-Verlag, January 2003.

[10] Martin Elsman, Niels Hallenberg, and Carsten Varming. SMLserver—
A Functional Approach to Web Publishing (Second Edition), April
2007. (174 pages). Available via http://www.smlserver.org.

[11] Martin Elsman and Ken Friis Larsen. Typing XHTML Web
applications in ML. In International Symposium on Practical Aspects
of Declarative Languages (PADL’04). Springer-Verlag, June 2004.

[12] Emden R. Gansner and editors John H. Reppy. The Standard ML
Basis Library. Cambridge University Press, 2004.

[13] Google. Google Web Toolkit (GWT). Documentation at
http://code.google.com/webtoolkit/.

[14] Jason Hickey, Anil Madhavapeddy, and Yaron Minsky. Real World
OCaml. O’Reilly & Associates, 2014.

[15] Andrew J. Kennedy. Functional pearl: Pickler combinators. Jounal of
Functional Programming, 14(6):727-739, November 2004.

[16] Nick Kew. The Apache Modules Book: Application Development with
Apache (Prentice Hall Open Source Software Development Series).
Prentice Hall PTR, Upper Saddle River, NJ, USA, 2007.

[17] Florian Loitsch and Manuel Serrano. Hop client-side compilation.
In Proceedings of the 8th Symposium on Trends on Functional
Languages, 2007.

[18] Tom Murphy, VIL, Karl Crary, and Robert Harper. Type-safe
distributed programming with MLS. In Proceedings of the 3rd
Conference on Trustworthy Global Computing, TGC’07, pages 108—
123, Berlin, Heidelberg, 2008. Springer-Verlag.

[19] Gabriel Radanne and Jérome Vouillon. Tierless web programming
in the large. In Companion Proceedings of the The Web Conference
2018, WWW ’18, pages 681-689, 2018.

[20] Manuel Serrano and Pierre Weis. Bigloo: a portable and optimizing
compiler for strict functional languages. In Second International
Symposium on Static Analysis, pages 366-381, September 1995.

[21] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. A
retrospective on region-based memory management. Higher-Order
and Symbolic Computation (HOSC), 17(3):245-265, September 2004.

[22] Jérdme Vouillon and Vincent Balat. From bytecode to JavaScript: the
js_of_ocaml compiler. Softw., Pract. Exper., 44(8):951-972, 2014.

	Introduction
	The Tools
	A Deferred Library
	Type-Indexed Serialisation
	An Example: Fetching Stock Quotes
	Automatic Generation of Boilerplate Code
	Related Work
	Conclusions and Future Work

