
Fault-Tolerant Voting in a Simply-Typed Lambda Calculus

Martin Elsman
IT University of Copenhagen, Denmark

mael@itu.dk

Abstract
In this paper we present a translation from the simply typed lambda
calculus into an extended simply typed lambda calculus that en-
ables programs to be tolerant to transient faults. The translation
triples all basic instructions and generates majority voting code for
ensuring correct control-flow.

We demonstrate that the generated voting code causes evalua-
tion to proceed successfully even in the presence of a transient fault
corrupting a register other than a control flow register (i.e., the stack
pointer or the instruction pointer).

Categories and Subject Descriptors D.1 [Programming Tech-
niques]: Applicative (Functional) Programming; D.3.1 [Program-
ming Languages]: Formal Definitions and Theory—Semantics

Keywords Transient Faults, Lambda Calculus, Compilation, Op-
timization

1. Introduction
A transient fault occurs when an energetic ray or a particle cause
a bit-flip in the central processing unit, causing a change in the
content of a register or an error in the instruction logic causing the
result register of an instruction to become semantically wrong.

Transient faults (also called soft errors) are arguably becom-
ing a larger and larger problem for computing. When performance
of microprocessors increase with a growing number of transistors
per square millimeter, processors are also becoming more volatile
to transient faults caused by various kinds of radiation (alpha parti-
cles, neutrons, and cosmic rays) [4, 14]. Much work has focused on
using software-only techniques and hardware/software hybrid tech-
niques for fault detection and fault tolerance for transient faults (see
[14, 13] for some good overviews), but only recently have correct-
ness properties of the techniques been investigated formally [18, 8].

In previous work, Walker et al. [18] have given a translation
from the simply typed lambda calculus into λzap, an extended
lambda calculus that uses majority voting to guarantee well-typed
λzap programs to execute correctly, even in the presence of a
transient fault. The translation essentially triples all basic opera-
tions and uses majority voting for operations that may change the
control-flow of the program. An essential part of the dynamic se-
mantics of Walker et al.’s faulty lambda calculus is the primitive
voting operation, which is used to guarantee correct control-flow
behaviour, for function calls and conditionals, in the presence of

Copyright c© 2007, Martin Elsman, IT University of Copenhagen, Denmark. All
rights reserved. Reproduction of all or part of this work is permitted for educational
or research use on condition that this copyright notice is included in any copy.

IT University of Copenhagen Technical Report. June 2007.

transient faults. The voting operation is trusted in the sense that
Walker et al.’s faulty lambda calculus does not consider the effects
of transient faults during voting. This setup suggests that special
hardware support may be needed for voting.

The work by Walker et al. on the faulty lambda calculus as-
sumes the Single Event Upset (SEU) fault model, which suggests
that at most one fault occurs during evaluation. In this work, we
adopt the SEU fault model and extend Walker et al.’s work by giv-
ing a translation to a refined lambda calculus that does not provide
a built-in voting mechanism, but rather provides two simple oper-
ations that are sufficient for compiling away voting in the transla-
tion and are atomic in the sense that it is assumed that no transient
faults corrupt the operations. Intuitively, the first atomic operation
allocates a function closure and stores the closure address in three
distinct registers. The second atomic operation checks atomically
whether two addresses to closures are identical and if so calls the
function denoted by the closure. In case the addresses are different,
an alternative expression is evaluated.

The two atomic operations make explicit the assumptions of
our approach. Whereas the first atomic operation can be imple-
mented atomically on traditional architectures, using a few test-
ing and fault-correcting operations, special architectural support is
needed for the second atomic operation for 100 percent safety with
respect to the SEU fault model. Without special architectural sup-
port, a transient fault on the comparison flag or on the target ad-
dress during the comparison and branch code sequence can pass
non-detected. However, making the assumptions explicit makes it
straightforward to reason about the probability of a non-detected
(and non-corrected) transient fault.

The contributions of our work is illustrated with the following
diagram:

S ↪→ S′

⇒ ⇒

S0 →∗
0 Si →∗

0 Sn

→
1

�

Sz →∗
0 Sz

n

First assume that S is a source language machine state that eval-
uates in one step into a source language machine state S′. Then
translating S into the target language equipped with atomic opera-
tions for fault-tolerant computing yields S0 that, in the presence of
no faults (indicated with the 0 on the relation→∗

0), evaluates in zero
or more steps into the machine state Sn, which is also the result of
translating S′. Now, if at any point during evaluation of S0 to Sn,
say at machine state Si, a transient fault occurs (indicated with the
1 on the relation →1), which will render the system in a machine
state Sz (z for zap), then evaluation can proceed to a machine state
Sz

n, which essentially contains enough information to extract the

1

machine state S′. In particular, if S′ is essentially an integer value
d then a majority voting applied to Sz

n will result in the integer d.
Whereas the faulty translation we propose is similar to that of

Walker et al. [18] in that it triples all basic operations, the trans-
lation differs in the way function application and conditional ex-
pressions (operations that may change control-flow) are translated.
Instead of relying on the dynamic semantics of the target language
to do the voting, our faulty translation generates code for the voting.
Effectively, a conditional expression

if e then e1 else e2

is translated into the following code:

let 〈x1, x2, x3〉 = e′

in if x1 then if x2 then e′1
else if x3 then e′1 else e′2

else if x2 then if x3 then e′1 else e′2
else e′2

Here e′, e′1, and e′2 are the results of translating e, e1, and e2, re-
spectively, and the let construct binds the three results of evaluat-
ing the faulty translation of e. Notice that the code is safe up-to one
fault in any of the values x1, x2, and x3; if at most one fault has
occurred, before or during voting, the correct branch is taken.

One artifact of the approach taken here is that the soundness
proof relies heavily on the translation and not only on the type sys-
tem for the target language. Because a fault can occur at any step in
the dynamic semantics of the target program, the soundness proof
has to consider all possibilities, even faults occurring during vot-
ing. It is an open problem how to capture correctness of generated
voting code in a type system (i.e., that any single fault will lead to
correct results).

In the present setup, the technique assumes fault-safe control
registers for holding the instruction pointer, the stack pointer, and
the environment for the current closure. In this respect, the setup
here is not different from that of [18], from which we have bor-
rowed the particular machine state model.

For self-containedness and clarity, we have chosen to present
the technique for incorporating voting in the generated code as a
translation from a standard simply typed lambda calculus to an ex-
tended simply typed lambda calculus with functions that take mul-
tiple arguments and return multiple values and atomic primitives
for implementing voting. Another equivalent approach would be to
use Walker et al.’s λzap [18] as the source language for a transla-
tion into our extended language and show that the built-in voting
primitives in the λzap language can be eliminated and translated
into equivalent voting code in the extended language.

1.1 Outline
In Section 1.2, we first give an overview of related work.

In Section 2, we briefly present the source language of the
translation, a simply typed lambda calculus with booleans and
integers. We provide a dynamic contextual small-step semantics as
well as a type system for the language and state a type soundness
result saying that “well-typed programs do not get stuck”.

In Section 3, we present an extended lambda calculus, which
supports functions that take multiple arguments and return multiple
results. The language also supports two new atomic operations that
are sufficient for incorporating in-lined voting.

In Section 4, we present a translation from the source language
to the extended language and prove that the result of the translation
is sound with respect to the semantics of the source language
and that a single transient fault during execution of an extended
language program results in three values for which two of the
values agree with the result of the non-faulty semantics of the
source language program.

Finally, in Section 5, we describe future work and conclude.

1.2 Related Work
Most related to this work is the work by Walker et al. on which the
present work builds [18]. Whereas Walker et al. focus on deriving a
type system for the intermediate language, the focus in this paper is
on generating fault-tolerant code for in-lined voting and to establish
a soundness result that expresses that in-lined voting code works
correctly in the presence of any single transient fault occurring
during evaluation.

Also very much related to our work is the work by Perry et
al. on a fault-tolerant typed assembly language [8], a type-based
framework for ensuring that transient faults in the processor do not
go undetected. Whereas the work on a typed assembly language
for fault-tolerance seems very promising, their framework does not
provide full fault-tolerance in the sense that programs are guaran-
teed to operate correctly even in the presence of a single fault. For
such a guarantee, their framework would be required to incorporate
some kind of voting mechanism. A delicate issue in using a typed
assembly language for our compilation of voting, would be to sup-
port, in the type system, propagation of comparison results in such
a way that appropriate (sound) voting code would be enforced by
the type system.

Several previous approaches to software-implemented fault de-
tection and fault tolerance have been covered in the literature [9,
10, 12, 11, 13, 5].

In [9], Rebaudengo at al. make use of data duplication and in-
sertion of control-flow check code to harden software by detecting
data faults and control-flow faults (faults occurring during execu-
tion of conditional statements and jumps between basic blocks). In
[10], Rebaudengo at al. extend their previous work by using data
duplication and check-sums to recover from transient data faults.

None of the above mentioned approaches, except the approach
taken in [18], have been verified formally in terms of correctness or
soundness results.

Another line of related work is work on policy based techniques,
such as software fault isolation (SFI) [17, 6], control-flow integrity
(CFI) [1, 2], and hybrids [16, 15]. None of these techniques, how-
ever, protect against transient faults occurring immediately after
evaluation of protection code (i.e., check code or sand-boxing code)
or against faults occurring within the boundaries of the sand-boxing
or during execution of sand-boxing code.

At a technical level, the work here is also related to the work
by Yoshida et al. on logical reasoning for higher-order functions
with local state [19]. In our work (and in the work by Walker et al.
[18]), machine states (M ; e), where M maps labels to values and
e is an expression, are considered identical up-to consistent renam-
ing of labels. In the work by Yoshida et al., the same equalities are
assured by extending machine states to be on the form νl̃.(M ; e),
where the first part existentially quantifies over the label set l̃ to pro-
vide implicit renaming. Whereas we need the property to enforce
only one kind of non-determinacy in the dynamic semantics (fault
introduction), Yoshida et al. also use the property to ease the rea-
soning about when two states are observationally equivalent; pro-
grams that differ only in the order memory is allocated should result
in identical machine states.

2. The Source Language
We assume a denumerable infinite set of labels, ranged over by l,
and a denumerable infinite set of variables, ranged over by x. The
grammar for source language values and source language expres-

2

sions is given as follows:

v ::= l | true* | false* | n*
e ::= x | v | n | true | false

| λx.e | e1 e2

| if e then e1 else e2 | let x = e1 in e2

| e1 op e2 op ∈ {+, <}
Notice that the grammar distinguishes between values (e.g., true*)
and expressions evaluating to a value in one step (e.g., true).

2.1 Source Language Dynamic Semantics
For the source language, evaluation contexts, ranged over by E,
take the following form:

E ::= [·] | E e | v E | let x = E in e

| if E then e1 else e2

| E op e | v op E

When E is an evaluation context and e is an expression, we write
E[e] to denote the expression resulting from filling the hole in E
with e.

Memory maps, ranged over by M , map labels to lambda ex-
pressions

M ::= ε | M, l 7→ λx.e l 6∈ Dom(M)

Machine states, ranged over by S, are pairs (M ; e) of a memory
map M and an expression e. A terminal machine state, Sv, is a
machine state of the form (M ; v), where M is a memory map and
v is a value. Single-step reductions take the form S ↪→ S′, where
S and S′ are machine states. We consider machine states identical
up-to consistent renaming of labels, which makes allocation in the
dynamic semantics deterministic; we shall discuss this issue later
in Section 4.5.

Small Step Reductions M ; e ↪→ M ′; e′

M ; e ↪→ M ′; e′ E 6= [·]
M ; E[e] ↪→ M ′; E[e′]

(1)

M ; λx.e ↪→ (M, l 7→ λx.e); l
(2)

M(l) = λx.e

M ; l v ↪→ M ; e[v/x]
(3)

M ; if true* then e1 else e2 ↪→ M ; e1
(4)

v 6= true*

M ; if v then e1 else e2 ↪→ M ; e2
(5)

M ; false ↪→ M ; false*
(6)

M ; true ↪→ M ; true*
(7)

M ; n ↪→ M ; n*
(8)

M ; let x = v in e ↪→ M ; e[v/x]
(9)

n = n1 + n2

M ; n1* + n2* ↪→ M ; n*
(10)

n1 < n2

M ; n1* < n2* ↪→ M ; true*
(11)

n2 ≤ n1

M ; n1* < n2* ↪→ M ; false*
(12)

The transitive, reflexive closure of ↪→, written ↪→∗, is defined
by the following two rules:

S ↪→ S′ S′ ↪→∗ S′′

S ↪→∗ S′′ (13)

S ↪→∗ S
(14)

We further define S ↑ to mean that there exists an infinite
sequence S ↪→ S1 ↪→ S2 ↪→ · · ·. Moreover, when S = (M ; e) is
some machine state and E is an evaluation context, we write E[S]
to mean (M ; E[e]).

2.2 Source Language Type System
Types, ranged over by τ take the following form:

τ ::= bool | nat | τ → τ ′

Type assumptions Γ map variables and labels to types:

Γ ::= Γ, x : τ | Γ, l : τ | ε

The type system allows inferences among sentences of the form
Γ `s e : τ , which are read: “under the assumptions Γ, the
expression e has type τ .”

Typing Judgments for Expressions Γ `s e : τ

Γ(x) = τ

Γ `s x : τ
(15)

Γ(l) = τ

Γ `s l : τ
(16)

Γ `s true* : bool
(17)

Γ `s false* : bool
(18)

Γ `s true : bool
(19)

Γ `s false : bool
(20)

Γ `s n* : nat
(21)

Γ `s n : nat
(22)

Γ `s e : bool Γ `s e1 : τ Γ `s e2 : τ

Γ `s if e then e1 else e2 : τ
(23)

3

Γ `s e1 : τ Γ, (x : τ) `s e2 : τ ′

Γ `s let x = e1 in e2 : τ ′ (24)

Γ `s e1 : τ → τ ′ Γ `s e2 : τ

Γ `s e1 e2 : τ ′ (25)

Γ, (x : τ) ` e : τ ′

Γ `s λx.e : τ → τ ′ (26)

Γ `s e1 : nat Γ `s e2 : nat
Γ `s e1 < e2 : bool

(27)

Γ `s e1 : nat Γ `s e2 : nat
Γ `s e1 + e2 : nat

(28)

Following the approach of [18], typing of machine states is defined
by point-wise typing of memory maps.

Typing Judgments for Memory `s M : Γ

Dom(M) = Dom(Γ)
for all l ∈ Dom(M).

M(l) = λx.e
Γ(l) = τ → τ ′

Γ, (x : τ) `s e : τ ′

`s M : Γ
(29)

The expression part e of a machine state (M ; e) is typed under the
type assumptions provided by the memory map M .

Typing Judgments for Machine States `s (M ; e) : τ

`s M : Γ Γ `s e : τ

`s (M ; e) : τ
(30)

2.3 Properties of the Source Language
We first give a few definitions before we present a unique decompo-
sition proposition, which is used for the proofs of type preservation
and progress [7].

A redex, ranged over by r, is an expression of the form

r ::= n | l v | let x = v in e | λx.e

| if v then e1 else e2 | true | false
| v1 op v2 op ∈ {+, <}

The following unique decomposition proposition states that any
well-typed term is either a value or the term can be decomposed
into a unique context and a unique well-typed redex. Moreover,
filling the context with an expression of the same type as the redex
results in a well-typed term:

PROPOSITION 1 (Unique Decomposition). If `s (M ; e) : τ then
either e is a value v or there exists a unique E, a unique redex e′,
and a unique τ ′ such that e = E[e′] and `s (M ; e′) : τ ′.
Furthermore, for all e′′ such that `s (M ; e′′) : τ ′, it follows that
`s (M ; E[e′′]) : τ .

PROOF By induction over the derivation Γ `s e : τ , where
`s M : Γ. �

The proofs of the following type preservation and progress
propositions is then straightforward and standard [7].

PROPOSITION 2 (Type Preservation). If `s S : τ and S ↪→ S′

then `s S′ : τ .

PROOF By induction over the structure of the expression-part of
S, using Proposition 1. �

PROPOSITION 3 (Progress). If `s S : τ then either (1) S is a
terminal machine state Sv; or (2) there exists S′ such that S ↪→ S′.

PROOF By induction over the structure of the expression-part of
S, using Proposition 1. �

PROPOSITION 4 (Type Soundness). If `s S : τ then either S↑
or there exists a terminal machine state Sv such that S ↪→∗ Sv.

PROOF By induction on the number of machine steps using Propo-
sition 2 and Proposition 3. �

3. The Extended Language
We now extend the source language to allow functions to take
multiple arguments and return multiple results. We use c to range
over a finite set of colors. We use vs to denote (colored) value
sequences 〈v1 . c1, · · · , vn . cn〉, n ≥ 0 and xs to denote (colored)
variable sequences 〈x1 . c1, · · · , xn . cn〉, n ≥ 0. Moreover, we
use cs to denote color sequences 〈c1, · · · , cn〉, n ≥ 0. Intuitively,
colors are used in what follows to distinguish different copies of
tripled computation.

We also extend the source language with two atomic operations
that capture precisely the assumptions of the approach, as described
in the introduction.

Intuitively, the first atomic operation λcsxs.e simultaneously
loads the same function label into a sequence of distinct colored
registers, as specified by the color sequence cs. The source lan-
guage lambda expression λx.e can be encoded in the extended
language by the expression λcs〈x〉.e′, where e′ is the extended-
language version of e and where cs is a singleton color sequence.

The second atomic operation appe [l1, l2] a else e atomically
checks if l1 and l2 are identical labels and if so calls the function
denoted by l1 and l2 with a as argument. In case the labels are
different, the expression e is evaluated instead.

Notice that atomicity here refers to the requirement that, for
100 percent soundness of the approach, the operation must operate
faithfully even if a transient fault occurs during the operation.

The grammar for the extended language is as follows:

v ::= l | true* | false* | n*

w ::= v . c

vs ::= w | 〈w1, · · · , wn〉 n ≥ 0

cs ::= 〈c1, · · · , cn〉 n ≥ 0

xs ::= 〈x1 . c1, · · · , xn . cn〉 n ≥ 0

op ::= + | <
e ::= x . c | w | n . c | true . c | false . c

| λcsxs.e | appe [e1, e2] e else e′

| e1 e2 | e opc e′ | 〈e1, · · · , en〉 n ≥ 0

| if e then e1 else e2 | let xs = e1 in e2

Assuming xs = 〈x1 . c1, · · · , xn . cn〉 and vs = 〈v1 .
c1, · · · , vn.cn〉 and provided e is an extended language expression,
we define the substitution of vs for xs in e, written e[vs/xs], as the
simultaneous substitution of pairs vi . ci for free occurrences of
pairs xi . ci in e, assuming 1 ≤ i ≤ n. Notice that substitutions,
according to the above definition, must be color preserving.

3.1 Dynamic Semantics
Evaluation contexts, ranged over by E, take the following form:

4

E ::= [·] | E e | w E | appe [E, e] e′ else e′′

| appe [w, E] e else e′ | appe [w, w′] E else e

| let xs = E in e | if E then e1 else e2

| E opc e | w opc E

| 〈w1, ..., wn, E, e1, ..., em〉 n, m ≥ 0

As for the source language, when E is an evaluation context and e
is an expression, we write E[e] to denote the expression resulting
from filling the hole in E with e.

Memory maps, ranged over by M , map labels to lambda ex-
pressions

M ::= ε | M, l 7→ λxs.e l 6∈ Dom(M)

As for the source language, machine states, ranged over by S,
are pairs (M ; e) of a memory map M and an expression e. A
terminal (extended language) machine state Sv is a machine state
on the form (M ; vs), for some memory map M and value sequence
vs. Single-step, possibly faulty, reductions take the form S →k S′,
where k is either 0 or 1 (indicating whether a transient fault has
occurred) and where S and S′ are machine states. As for the
source language, extended language machine states are considered
identical up-to consistent renaming of labels. Treating machine
states identical up-to consistent renaming of labels is essential for
establishing appropriate fault tolerance properties; we shall come
back to this issue in Section 4.5.

Small Step Reductions M ; e →k M ′; e′

n = n1 + n2

M ; n1* . c1 +c n2* . c2 →0 M ; n* . c
(31)

wi 6= n . c′, i ∈ {1, 2}
M ; w1 +c w2 →0 M ; v . c

(32)

n1 < n2

M ; n1* . c1 <c n2* . c2 →0 M ; true* . c
(33)

n2 ≤ n1

M ; n1* . c1 <c n2* . c2 →0 M ; false* . c
(34)

wi 6= n . c′, i ∈ {1, 2}
M ; w1 <c w2 →0 M ; v . c

(35)

vs = 〈l1 . c1, · · · , ln . cn〉 li = l

M ; λ〈c1,···,cn〉xs.e →0 (M, l 7→ λxs.e); vs
(36)

M(l) = λxs.e
M ; (l . c) vs →0 M ; e[vs/xs]

(37)

M ; if true* . c then e1 else e2 →0 M ; e1
(38)

w 6= true* . c

M ; if w then e1 else e2 →0 M ; e2
(39)

M ; false . c →0 M ; false* . c
(40)

M ; true . c →0 M ; true* . c
(41)

M ; n . c →0 M ; n* . c
(42)

M ; let xs = vs in e →0 M ; e[vs/xs]
(43)

M(l) = λxs.e
M ; appe [l . c, l . c′] vs else e′ →0 M ; e[vs/xs]

(44)

v1 6= v2

M ; appe [v1 . c, v2 . c′] vs else e →0 M ; e
(45)

M ; e →k M ′; e′ E 6= [·]
M ; E[e] →k M ′; E[e′]

(46)

M ; E[v . c] →1 M ; E[v′ . c]
(47)

Notice that (47) implements a Single Event Upset (SEU) model
[18]; the rule allows for a single transient fault to alter a value on
the stack or a value in a register.

Notice also that because substitutions must preserve colors, to
apply (37), (43), and (44), it must first be established that vs and xs
agree on colors.

Further notice that colors have no influence on the reductions
and are only there for proving properties about reductions. An im-
plementation may therefore erase colors from terms before execu-
tion.

The transitive, reflexive closure of →k, written →∗
k, is defined

by the following two rules:

S →j S′ S′ →∗
k S′′

S →∗
j+k S′′ (48)

S →∗
0 S

(49)

We further define S ↑k to mean that there exists an infinite
sequence S →∗

k S1 ↪→0 S2 ↪→0 · · ·. As for the source language,
when S = (M ; e) is some machine state and E is an evaluation
context, we write E[S] to mean (M ; E[e]).

3.2 A Type System for the Faulty Language
We now present a simple type system for the extended language.
The type system associates terms with colors and is similar to the
type system for the faulty lambda calculus, developed in [18].

Types, ranged over by τ , and type and color sequences 〈τ1 .
c1, · · · , τn . cn〉, ranged over by κ, take the following form:

κ ::= 〈τ1 . c1, · · · , τn . cn〉 | τ . c

τ ::= bool | nat | κ → κ′

Type assumptions Γ map labels to types and variables to types
and colors:

Γ ::= Γ, l : τ | Γ, x : τ . c | ε

The type system allows inferences among sentences of the form
Γ ` e : κ, which are read: “under the assumptions Γ, the expression
e has type and color sequence κ.”

We often write (xs : κ) to denote the type assumptions (x1 :
τ1 . c1, · · · , xn : τn . cn) when xs = 〈x1 . c1, · · · , xn . cn〉 and
κ = 〈τ1 . c1, · · · , τn . cn〉 for some colors c1, · · · , cn.

5

Typing Judgments for Expressions Γ ` e : κ

Γ(x) = τ . c

Γ ` x . c : τ . c
(50)

Γ(l) = τ

Γ ` l . c : τ . c
(51)

Γ ` true* . c : bool . c
(52)

Γ ` false* . c : bool . c
(53)

Γ ` true . c : bool . c
(54)

Γ ` false . c : bool . c
(55)

Γ ` n* . c : nat . c
(56)

Γ ` n . c : nat . c
(57)

Γ ` e : bool Γ ` e1 : κ Γ ` e2 : κ

Γ ` if e then e1 else e2 : κ
(58)

Γ ` e1 : κ Γ, (xs : κ) ` e2 : κ′

Γ ` let xs = e1 in e2 : κ′ (59)

Γ ` e1 : κ → κ′ . c Γ ` e2 : κ

Γ ` e1 e2 : κ′ (60)

Γ ` e1 : κ → κ′ . c1 Γ ` e2 : κ → κ′ . c2

Γ ` e : κ Γ ` e′ : κ′

Γ ` appe [e1, e2] e else e′ : κ′ (61)

Γ, (xs : κ) ` e : κ′

τi = κ → κ′ i = [1..n]

Γ ` λ〈c1,···,cn〉xs.e : 〈τ1 . c1, · · · , τn . cn〉
(62)

Γ ` ei : τi . ci i = [1..n]

Γ ` 〈e1, · · · , en〉 : 〈τ1 . c1, · · · , τn . cn〉
(63)

Γ ` ei : nat . ci i = [1, 2]

Γ ` e1 +c e2 : nat . c
(64)

Γ ` ei : nat . ci i = [1, 2]

Γ ` e1 <c e2 : bool . c
(65)

Typing Judgments for Memory ` M : Γ

Dom(M) = Dom(Γ)
for all l ∈ Dom(M).

M(l) = λxs.e
Γ(l) = κ → κ′

Γ, (xs : κ) ` e : κ′

` M : Γ
(66)

Typing Judgments for Machine States ` (M ; e) : κ

` M : Γ Γ ` e : κ

` (M ; e) : κ
(67)

3.3 Properties of the Extended Language
We now carry over the results of Section 2.3 to the extended
language.

A redex, ranged over by r, is an expression of the form

r ::= n . c | w vs | let xs = vs in e | λcsxs.e
| if v . c then e1 else e2 | true . c | false . c

| w1 opc w2 op ∈ {+, <}
| appe [w1, w2] vs else e

PROPOSITION 5 (Unique Decomposition). If ` (M ; e) : κ then
either e is a value sequence vs or there exists a unique E, a unique
redex e′, and a unique τ ′ such that e = E[e′] and ` (M ; e′) : τ ′.
Furthermore, for all e′′ such that ` (M ; e′′) : τ ′, it follows that
` (M ; E[e′′]) : κ.

PROOF By induction over the derivation Γ ` e : κ, where
` M : Γ. �

PROPOSITION 6 (Type Preservation). If ` S : κ and S →0 S′

then ` S′ : κ

PROOF By induction over the structure of the expression-part of
S, using Proposition 5. �

PROPOSITION 7 (Progress). If ` S : κ then either (1) S
is a terminal machine state Sv; or (2) there exists S′ such that
S →0 S′.

PROOF By induction over the structure of the expression-part of
S, using Proposition 5. �

PROPOSITION 8 (Type Soundness). If ` S : τ then either S↑0

or there exists a terminal machine state Sv such that S →∗
0 Sv.

PROOF By induction on the number of machine steps using Propo-
sition 6 and Proposition 7. �

The following proposition expresses that evaluation is determin-
istic, which depends crucially on the fact that machine states are
considered identical up-to consistent renaming of labels.

PROPOSITION 9 (Evaluation is Deterministic). If S →0 S′ and
S →0 S′′ then S = S′′.

PROOF By induction on the structure of e in S. �

This proposition is used later in the proof of the fault-tolerance
property.

4. The Faulty Translation
A translation environment (ρ) is a mapping from identifiers to
triples of identifiers:

ρ ::= ρ′, x 7→ (x1, x2, x3) x 6∈ Dom(ρ′) ∧
xi = xj ⇒ i = j ∧
xi 6∈ Ran(ρ′)

| ε

The side conditions on valid translation environments are enforced
to avoid variable capture.

The faulty translation is defined inductively over source lan-
guage expressions as a function [[e]]ρ = e′, where e is a source

6

[[x]]ρ = 〈〈x1, x2, x3〉〉
where ρ(x) = (x1, x2, x3)

[[λx.e]]ρ = λ〈r,g,b〉〈〈x1, x2, x3〉〉.e′
where e′ = [[e]](ρ, x 7→ (x1, x2, x3))

[[n]]ρ = 〈〈n, n, n〉〉

[[true]]ρ = 〈〈true, true, true〉〉

[[false]]ρ = 〈〈false, false, false〉〉

[[let x = e1 in e2]]ρ =
let 〈〈x1, x2, x3〉〉 = [[e1]]ρ
in [[e2]](ρ, x 7→ (x1, x2, x3))

[[if e then e1 else e2]]ρ =
let 〈〈x1, x2, x3〉〉 = [[e]]ρ
in if x1 . r then

if x2 . g then [[e1]]ρ
else if x3 . b then [[e1]]ρ else [[e2]]ρ

else
if x2 . g then if x3 . b then [[e1]]ρ else [[e2]]ρ
else [[e2]]ρ

[[e1 e2]]ρ =
let 〈〈x1, x2, x3〉〉 = [[e1]]ρ
in appe [x1 . r, x2 . g] ([[e2]]ρ)

else appe [x1 . r, x3 . b] ([[e2]]ρ)
else (x2 . g) ([[e2]]ρ)

[[e1 op e2]]ρ = op ∈ {+, <}
let 〈〈x1, x2, x3〉〉 = [[e1]]ρ
in let 〈〈y1, y2, y3〉〉 = [[e2]]ρ

in 〈x1 . r opr y1 . r, x2 . g opg y2 . g, x3 . b opb y3 . b〉

[[v]]ρ = 〈〈v, v, v〉〉

Figure 1. Translation of Expressions and Values.

language expression, ρ is a translation environment, and where e′

is the result of translating e. For the translation, we assume three
colors r, g, and b. We often write 〈〈A, B, C〉〉 to mean 〈A . r, B .
g, C . b〉. The translation rules are presented in Figure 1.

Essentially, each primitive operation in the source program is
translated into three operations in the target language, correspond-
ing to the three different colors r, g, and b. Variable bindings are
also tripled, which means that a single let-binding is translated into
a let-binding construct in the target language, binding three distinct
variables with different colors r, g, and b. Moreover, arguments
to functions are tripled and so are return values from functions.
Control-flow operations (i.e., function calls and conditional expres-
sions) translate into code that involves voting. For conditional ex-
pressions, the translated code ensures that a branch is taken only if
two of the condition computations agree on the branch. For func-
tion calls, the translated code ensures that, provided two of the three
expressions denoting the function closure agree on a label, then the
function denoted by this label is called.

The potential quadratic increase in code size, caused by the
duplication of branch expressions, may be eliminated by replacing
large branches with calls to thunkified code prior to the translation.
In the case for function application, it is straightforward to avoid
the duplication caused by repeated translation of the argument
expression by introducing a let-binding construct for the argument.

[[bool]]0 = bool

[[nat]]0 = nat

[[τ1 → τ2]]0 = [[τ1]] → [[τ2]]

[[τ]] = 〈〈[[τ]]0, [[τ]]0, [[τ]]0〉〉

[[Γ]]ρ = Γ′

where Dom(Γ) = Dom(ρ) and
Dom(Γ′) = fv(Ran(ρ)) and“
(Γ(x) = τ and ρ(x) = (x1, x2, x3)) implies

[[τ]] = 〈Γ′(x1), Γ
′(x2), Γ

′(x3)〉
”

Figure 2. Translation of Types and Type Assumptions.

[[M]] = M ′

where Dom(M) = Dom(M ′) and“
M(l) = λx.e implies

M ′(l) = λ〈〈x1, x2, x3〉〉.[[e]](x 7→ (x1, x2, x3))
”

[[(M ; e)]]ρ = ([[M]]; [[e]]ρ)

Figure 3. Translation of Memories and Machine States.

4.1 Properties of the translation
For proving that the translation preserves typings (in a precise
sense), we extend the translation to types as shown in Figure 2.

In what follows, extended language substitutions e[vs/xs] are
always on a form where vs = 〈〈v1, v2, v3〉〉 and xs = 〈〈x1, x2, x3〉〉,
for some values v1, v2, and v3, and some variables x1, x2, and x3.
Substitutions of this form are always defined and we shall use this
property implicitly in the proofs.

We are now in the position to state a property saying that
translation preserves typings:

PROPOSITION 10 (Translation Preserves Typing).

1. If Γ `s e : τ and Γ′ = [[Γ]]ρ then Γ′ ` [[e]]ρ : [[τ]].
2. If `s S : τ then ` [[S]]ε : [[τ]].

PROOF Part 1 can be proved using induction over the structure
of e. Part 2 can be proved directly by unfolding the definitions of
machine state typings and machine state translation, using part 1.
�

Notice that Proposition 10 also expresses that well-typed source
language programs may be translated.

The translation is extended to memories M and machine states
(M ; e), as shown in Figure 3.

PROPOSITION 11 If S →∗
0 S′ then E[S] →∗

0 E[S′].

PROOF Follows immediately by induction from (46), (48) and
(49). �

PROPOSITION 12 (Translation Closed Under Substitution). If e′ =
[[e]](ρ, x 7→ (x1, x2, x3)) then e′[〈〈v, v, v〉〉/〈〈x1, x2, x3〉〉] =
[[e[v/x]]]ρ.

PROOF By induction over the structure of e. �

7

PROPOSITION 13 (Translation Substitution Invariance). If e′ =
[[e]]ρ and {x1, x2, x3} ∩ fv(Ran(ρ)) = ∅, it holds for any v1, v2,
and v3 that e′[〈〈v1, v2, v3〉〉/〈〈x1, x2, x3〉〉] = e′.

PROOF By induction over the structure of e. �

We can now state a simulation proposition expressing that the
translation of a source language program evaluates in alignment
with the source language program. This property corresponds to
the upper part of the diagram in Section 1, where ⇒ corresponds
to translation in the empty environment:

S ↪→ S′

⇒ ⇒

S0 →∗
0 Si →∗

0 Sn

The proposition is expressed as follows with S0 = [[S]]ε and
Sn = [[S′]]ε:

PROPOSITION 14 (Simulation). If S ↪→ S′ and [[S]]ε and [[S′]]ε
exist then [[S]]ε →∗

0 [[S′]]ε.

PROOF By induction over the structure of e, where S = (M ; e)
and S′ = (M ′; e′).

CASE e = true It follows from (7) that e′ = true*. The result
follows easily from the definition of translation, using (46) and (41)
repeatedly.

CASE e = false As the case for e = true.

CASE e = n As the case for e = true.

CASE e = let x = e1 in e2 There are two subcases. Either (9)
is applied, in which case e1 is a value v, or (1) is applied.

In the first subcase, we have M ′ = M and e′ = e2[v/x]. We
also have [[e]]ε = let 〈〈x1, x2, x3〉〉 = 〈〈v, v, v〉〉 in [[e2]](x 7→
(x1, x2, x3)). From (43), it follows that [[e]]ε →0 [[e2]](x 7→
(x1, x2, x3))[〈〈v, v, v〉〉/〈〈x1, x2, x3〉〉]. Further, from Proposition 12,
we have [[e]]ε →0 [[e2[v/x]]]ε and thus [[e]]ε →0 [[e′]]ε. Finally,
because M = M ′, from assumptions and from (49), we have
[[(M, e)]]ε →∗

0 [[(M ′; e′)]]ε, as required.
In the second subcase, we have from (1) that there exists e′1 such

that (M, e1) ↪→ (M ′, e′1) and e′ = let x = e′1 in e2. By induc-
tion, we have [[(M, e1)]]ε →∗

0 [[(M ′; e′1)]]ε. We also have [[e]]ε =
let 〈〈x1, x2, x3〉〉 = [[e1]]ε in [[e2]](x 7→ (x1, x2, x3)). Because
[[e′]]ε = let 〈〈x1, x2, x3〉〉 = [[e′1]]ε in [[e2]](x 7→ (x1, x2, x3)),
we can apply Proposition 11 to get [[(M, e)]]ε →∗

0 [[(M ′; e′)]]ε, as
required.

CASE e = if eb then e1 else e2 There are three subcases to
consider. Either eb = true*, or eb is a value different from true*
or eb is not a value.

In the first subcase, where eb = true*, rule (4) must have been
applied, thus, we have e′ = e1 and M ′ = M . From the definition
of translation, it follows that

[[e]]ε = let 〈〈x1, x2, x3〉〉 = 〈〈true*, true*, true*〉〉
in if x1 . r then

if x2 . g then [[e1]]ε
else if x3 . b then [[e1]]ε else [[e2]]ε

else
if x2 . g then if x3 . b then [[e1]]ε else [[e2]]ε
else [[e2]]ε

Now, from Proposition 13, we have ([[e1]]ε)[vs/〈〈x1, x2, x3〉〉] =
[[e1]]ε and ([[e2]]ε)[vs/〈〈x1, x2, x3〉〉], for any vs = 〈〈v1, v2, v3〉〉,
thus, we can use (43) once and (38) twice to get ([[M]], [[e]]ε) →∗

0

([[M]], [[e1]]ε), as required.

In the second subcase, where eb is a value different from true*,
rule (5) must have been applied, thus, we have e′ = e2 and M ′ =
M . Following similar reasoning as in the previous subcase, but with
(39) used three times, we get ([[M]], [[e]]ε) →∗

0 ([[M]], [[e2]]ε), as
required.

In the third subcase where eb is not a value, rule (1) must
have been applied, thus, there exists e′b such that (M, eb) ↪→
(M ′, e′b) and e′ = if e′b then e1 else e2. By induction, we have
[[(M, eb)]]ε →∗

0 [[(M ′; e′b)]]ε. We also have

[[e]]ε = let 〈〈x1, x2, x3〉〉 = [[eb]]ε
in if x1 . r then

if x2 . g then [[e1]]ε
else if x3 . b then [[e1]]ε else [[e2]]ε

else
if x2 . g then if x3 . b then [[e1]]ε else [[e2]]ε
else [[e2]]ε

Because

[[e′]]ε = let 〈〈x1, x2, x3〉〉 = [[e′b]]ε
in if x1 . r then

if x2 . g then [[e1]]ε
else if x3 . b then [[e1]]ε else [[e2]]ε

else
if x2 . g then if x3 . b then [[e1]]ε else [[e2]]ε
else [[e2]]ε

we can apply Proposition 11 to get [[(M, e)]]ε →∗
0 [[(M ′; e′)]]ε, as

required.

CASE e = λx.e1 It follows by inspection that (2) must have
been applied, thus, we have e′ = l and M ′ = (M, l 7→
λx.e1). From the definition of translation, we have [[e]]ε =
λ〈r,g,b〉〈〈x1, x2, x3〉〉.[[e1]](x 7→ (x1, x2, x3)). From (36), we
have [[(M ; e)]]ε →0

“
([[M]], l 7→ λ〈〈x1, x2, x3〉〉.[[e1]](x 7→

(x1, x2, x3))); 〈〈l, l, l〉〉
”

. It follows from the definition of M ′ and
e′ and from the definition of translation of machine states that
[[(M ; e)]]ε →0 [[(M ′; e′)]]ε. Now from (48), we have [[(M ; e)]]ε →∗

0

[[(M ′; e′)]]ε, as required.

CASE e = e1 e2 There are several subcases to consider. Either
e1 = l and e2 = v, in which case (3) is applied, or e1 = l and e2

is a non-value expression, in which case (1) is applied, or both e1

and e2 are non-value expressions, in which case (1) is also applied.
We first consider the case where (3) is applied. In this case

M(l) = λx.e0 and e′ = e0[v/x] and M ′ = M . From the
definition of translation, we have

[[e]]ε = let 〈〈x1, x2, x3〉〉 = 〈〈l, l, l〉〉
in appe [x1 . r, x2 . g] 〈〈v, v, v〉〉

else appe [x1 . r, x3 . b] 〈〈v, v, v〉〉
else (x2 . g) 〈〈v, v, v〉〉

Using (43), it follows that we have

[[M ; e]]ε →0 [[M]]; appe [l . r, l . g] 〈〈v, v, v〉〉
else appe [l . r, l . b] 〈〈v, v, v〉〉

else (l . g) 〈〈v, v, v〉〉

Now, it also follows that [[M]](l) = λ〈〈x1, x2, x3〉〉.[[e0]](x 7→
(x1, x2, x3)). Thus, using (44), (48), and (49), it follows that
[[M ; e]]ε →∗

0 [[M]]; [[e0]](x 7→ (x1, x2, x3))[〈〈v, v, v〉〉/〈〈x1, x2, x3〉〉].
Finally, from Proposition 12 and because e′ = e0[v/x], we can
conclude [[M ; e]]ε →∗

0 [[M ′; e′]]ε, as required.
The remaining subcases make use of contextual reasoning and

are straightforward.

8

CASE e = e1 op e2 The proof for this case is similar to the case
for application.

�

Notice that Proposition 14 does not assume well-typedness of S
and S′.

4.2 Fault Propagation
Before we can state a fault tolerance property for the system, we
define a fault propagation relation, S �c S′, where S and S′ are
machine states and c is a color. Provided S is a non-faulty machine
state, S′ denotes a machine state that may differ from S in that
values decorated with the color c may differ in S and S′.

Machine State Fault Propagation S �c S′

M �c M ′ e �c e′

(M ; e) �c (M ′; e′)
(68)

Memory Fault Propagation M �c M ′

M �c M ′ e �c e′

(M, l 7→ λxs.e) �c (M ′, l 7→ λxs.e′)
(69)

ε �c ε
(70)

Expression Fault Propagation e �c e′

x . c′ �c x . c′
(71)

v . c �c v′ . c
(72)

w �c w
(73)

n . c′ �c n . c′
(74)

true . c′ �c true . c′
(75)

false . c′ �c false . c′
(76)

e �c e′

λcsxs.e �c λcsxs.e′
(77)

e �c e′ e1 �c e′1 e2 �c e′2
if e then e1 else e2 �c if e′ then e′1 else e′2

(78)

e1 �c e′1 e2 �c e′2
let xs = e1 in e2 �c let xs = e′1 in e′2

(79)

ei �c e′i i = 1..n

〈e1, · · · , en〉 �c 〈e′1, · · · , e′n〉
(80)

e1 �c e′1 e2 �c e′2
e1 opc′ e2 �c e′1 opc′ e′2

(81)

e1 �c e′1 e2 �c e′2 e3 �c e′3 e4 �c e′4
appe [e1, e2] e3 else e4 �c appe [e′1, e

′
2] e′3 else e′4

(82)

e1 �c e′1 e2 �c e′2
e1 e2 �c e′1 e′2

(83)

Notice that only rule (72) is particularly interesting. The remain-
ing rules specify that the relation is closed under pair-wise simple
induction on subexpressions.

When S and S′ are machine states, we write S � S′ to mean
that there exists c such that S �c S′. The relation S � S′ expresses
that S′ may differ from S “only on one color”. Intuitively, after
a transient fault, one of the colors have become faulty, but the
remaining two colors can still be trusted. Notice that the relation �
is reflexive and symmetric (we shall not make use of the property
that � is symmetric).

The following proposition states that translation, substitution,
and fault propagation interact in interesting ways:

PROPOSITION 15 (Fault Propagation Properties). Let ρ′ = ρ, x 7→
(x1, x2, x3) and xs = 〈〈x1, x2, x3〉〉.

1. [[e[v/x]]]ρ �r [[e]]ρ′[〈〈v′, v, v〉〉/xs]
2. [[e[v/x]]]ρ �g [[e]]ρ′[〈〈v, v′, v〉〉/xs]
3. [[e[v/x]]]ρ �b [[e]]ρ′[〈〈v, v, v′〉〉/xs]

PROOF By induction over the structure e. �

We shall make use of yet another proposition, which states that
once a color is considered faulty, more faults are allowed to be
introduced on that color via substitutions:

PROPOSITION 16 (Fault Propagation Substitution). Let ρ′ = ρ, x 7→
(x1, x2, x3) and xs = 〈〈x1, x2, x3〉〉.

1. [[e]]ρ′ �r e′ ⇒ [[e[v/x]]]ρ �r e′[〈〈v′, v, v〉〉/xs]
2. [[e]]ρ′ �g e′ ⇒ [[e[v/x]]]ρ �g e′[〈〈v, v′, v〉〉/xs]
3. [[e]]ρ′ �b e′ ⇒ [[e[v/x]]]ρ �b e′[〈〈v, v, v′〉〉/xs]

PROOF By induction over the structure e. �

The proposition can be motivated by the following example,
which shows that, due to substitutions, faults on a color may ac-
cumulate:

e = let 〈〈y1, y2, y3〉〉 = 〈〈v, v, v′〉〉
in let 〈〈x1, x2, x3〉〉 = 〈〈y1, y2, y3〉〉

in 〈〈x1 + y1, x2 + y2, x3 + y3〉〉
→0 let 〈〈x1, x2, x3〉〉 = 〈〈v, v, v′〉〉

in 〈〈x1 + v, x2 + v, x3 + v′〉〉
→0 〈〈v + v, v + v, v′ + v′〉〉

Here e is the initial expression in which a faulty value v′ is be-
ing bound to y3 and the non-faulty copies of the value v is being
bound to y1 and y2. By substitution, the single faulty-value is prop-
agated to two different places. However, the notion of substitution
disallows faults to propagate across colors.

The fault propagation relation is extended to evaluation contexts
according to the rules below.

Evaluation Context Fault Propagation E �c E′

[·] �c [·] (84)

E �c E′ e �c e′

E e �c E′ e′
(85)

9

w �c w′ E �c E′

w E �c w′ E′ (86)

E1 �c E2 e1 �c e2 e′1 �c e′2 e′′1 �c e′′2
appe [E1, e1] e′1 else e′′1 �c appe [E2, e2] e′2 else e′′2

(87)

w1 �c w2 E1 �c E2 e1 �c e2 e′1 �c e′2
appe [w1, E1] e1 else e′1 �c appe [w2, E2] e2 else e′2

(88)

w1 �c w2 w′
1 �c w′

2 E1 �c E2 e1 �c e2

appe [w1, w
′
1] E1 else e1 �c appe [w2, w

′
2] E2 else e2

(89)

E �c E′ e �c e′

let xs = E in e �c let xs = E′ in e′
(90)

E �c E′ e1 �c e′1 e2 �c e′2
if E then e1 else e2 �c if E′ then e′1 else e′2

(91)

E �c E′ e �c e′

E opc e �c E′ opc′ e′
(92)

w �c w′ E �c E′

w opc E �c w′ opc′ E′ (93)

wi �c w′
i, i = [1..n]

E �c E′ ej �c e′j , j = [1..m]

〈w1, .., wn, E, e1, .., em〉 �c 〈w′
1, .., w

′
n, E′, e′1, .., e

′
m〉

(94)

The following proposition expresses that the results of filling
contexts is related by the fault propagation relation, provided the
contexts and the filled-in objects are related:

PROPOSITION 17 (Fault Propagation Context Filling).
If E �c E′ and S �c S′ then E[S] �c E′[S′].

PROOF By induction on the derivation E �c E′. �

The following proposition states that evaluation contexts are
preserved by the fault propagation relation.

PROPOSITION 18 (Fault Propagation Context Preservation).
If E[S] �c S′ then there exists E′ and S′′ such that S �c S′′ and
E �c E′ and S′ = E′[S′′].

PROOF By induction on the structure of E. �

The following proposition states that the translation is compo-
sitional with respect to context filling.

PROPOSITION 19 (Translation is Contextual Compositional).
If S = [[E[Ss]]]ε and S′ = [[E[S′

s]]]ε then there exists E′ such that
S = E′[[[Ss]]ε] and S′ = E′[[[S′

s]]ε].

PROOF By induction on the structure of E. We give the proof for
one case below.

CASE E = let x = E0 in e0 Let S = (M ; e) and S′ =

(M ′; e′). From the definition of translation, we have

[[E[S]]]ε = ([[M]]; [[let x = E0[e] in e0]]ε)

= ([[M]]; let 〈〈x1, x2, x3〉〉 = [[E0[e]]]ε
in [[e0]](x 7→ (x1, x2, x3))

)

[[E[S′]]]ε = ([[M ′]]; [[let x = E0[e
′] in e0]]ε)

= ([[M ′]]; let 〈〈x1, x2, x3〉〉 = [[E0[e
′]]]ε

in [[e0]](x 7→ (x1, x2, x3))
)

Let S0 = E0[S] and S′
0 = E0[S

′]. By induction, there exists E′
0

such that

[[E0[S]]]ε = E′
0[[[S]]ε] (95)

[[E0[S
′]]]ε = E′

0[[[S
′]]ε] (96)

Let

E′ = let 〈〈x1, x2, x3〉〉 = E′
0

in [[e0]](x 7→ (x1, x2, x3))
(97)

Using (95) and (97), we have

[[E[S]]]ε = ([[M]]; [[let x = E0[e] in e0]]ε)

= ([[M]]; let 〈〈x1, x2, x3〉〉 = [[E0[e]]]ε
in [[e0]](x 7→ (x1, x2, x3))

)

= ([[M]]; let 〈〈x1, x2, x3〉〉 = E′
0[[[e]]ε]

in [[e0]](x 7→ (x1, x2, x3))
)

= ([[M]]; E′[[[e]]ε])

= E′[[[S]]ε]

as required. Similarly, using (96), we can also, as required, derive
[[E[S′]]]ε = E′[[[S′]]ε] �

4.3 Single Step Fault Tolerance
The following proposition states that whenever a transient fault
occurs during execution of an extended-language program, the
resulting machine state is related (via the fault propagation relation)
to the corresponding non-faulty machine state:

PROPOSITION 20 (Faults Are Captured by Fault Propagation).
If S →1 Sz

0 then S � Sz.

PROOF By straightforward induction over E, using (47). �

Now, consider again the diagram from Section 1:

S ↪→ S′

⇒ ⇒

S0 →∗
0 Si →∗

0 Sn

→
1

�

Sz →∗
0 Sz

n

We have already covered the upper part of this diagram with Propo-
sition 14, which states that a translated program simulates the
source language program. We are now in the position to express the
heart of the fault tolerance property, which allows the target-level
program to tolerate a single transient fault during execution.

The proposition expresses that the fault propagation relation on
machine states is closed under evaluation. In terms of the machine
states in the diagram, if a fault occurs at machine state Si, enforcing
the program into a machine state Sz, then, assuming no additional
faults, Sz may evaluate into a machine state Sz

n, which is related to
the source language machine state S′ via voting.

PROPOSITION 21 (Single Step Fault Tolerance). Assume S ↪→ S′

and [[S]]ε →∗
0 S0 →∗

0 [[S′]]ε.

For any Sz
0 and color c such that S0 �c Sz

0 there exists Sz

such that Sz
0 →∗

0 Sz and [[S′]]ε �c Sz.

PROOF By induction over the derivation S ↪→ S′, where S =
(M ; e0).

CASE S = (M ; true) For this case we know (7) is applied.
We have [[S]]ε = ([[M]]; e), where e = 〈〈true, true, true〉〉

10

and S′ = (M ; true*) and [[S′]]ε = ([[M]]; e′), where e′ =
〈〈true*, true*, true*〉〉. We also have

[[S]]ε →0 S1 →0 S2 →0 [[S′]]ε

where

S1 = (M ; e1) and e1 = 〈〈true*, true, true〉〉
S2 = (M ; e2) and e2 = 〈〈true*, true*, true〉〉

There are now four subcases to consider:

SUBCASE S0 = [[S]]ε : From the definition of �c, we have Sz
0 =

(Mz; e) — there are no values to zap in e. Let Sz
1 = (Mz; e′). We

then have from repeated use of (46), (41), and (48) that Sz
0 →∗

0 Sz
1.

Moreover, from the definition of � it follows trivially that [[S′]]ε �
Sz

1, as required.

SUBCASE S0 = S1 : From the definition of �c, we have [[M]] �c

Mz
0 and e1 �c ez

0, where Sz
0 = (Mz

0 ; ez
0). We now proceed by case

analysis of c.
First consider the case where c = r. From the definition of �c,

we have ez
0 = 〈〈v, true, true〉〉 for some v. It follows that we have

Sz
0 →∗

0 Sz
1, where Sz

1 = (Mz
0 ; ez

1) and ez
1 = 〈〈v, true*, true〉〉.

Moreover, [[S′]]ε �c Sz
1, as required.

Alternatively, we have c = g or c = b. From the definition
of �c, we then have ez

0 = e1. It follows that Sz
0 →∗

0 Sz
1, where

Sz
1 = (Mz

0 ; e′). Moreover, from the definition of �c, we have
[[S′]]ε �c Sz

1, as required.

SUBCASE S0 = S2 : From the definition of �c, we have [[M]] �c

Mz
0 and e2 �c ez

0, where Sz
0 = (Mz

0 ; ez
0). We now proceed by case

analysis of c.
First assume c = r. From the definition of �c, we have ez

0 =
〈〈v, true*, true〉〉 for some v. It follows that we have Sz

0 →∗
0 Sz

1,
where Sz

1 = (Mz
0 ; ez

1) and ez
1 = 〈〈v, true*, true*〉〉. Moreover,

[[S′]]ε �c Sz
1 holds, as required.

Second, assume c = g. The result follows similarly as for the
case c = r, but with ez

0 = 〈〈true*, v, true*〉〉 for some v and
ez
1 = 〈〈true*, v, true*〉〉.

Finally, assume c = b. From the definition of �c, we have
ez
0 = e2. It follows that Sz

0 →∗
0 Sz

1, where Sz
1 = (Mz

0 ; e′).
Moreover, from the definition of �c, we have [[S′]]ε �c Sz

1, as
required.

SUBCASE S0 = [[S′]]ε : Trivially true with Sz
1 = Sz

0.

CASE S = (M ; let x = v in es) For this case we know (9) is
applied. Let xs = 〈〈x1, x2, x3〉〉 and vs = 〈〈v, v, v〉〉. We have
[[S]]ε = ([[M]]; e), where

e = let xs = vs in [[es]](x 7→ (x1, x2, x3))

S′ = (M ; es[v/x])

[[S′]]ε = ([[M]]; e′) (98)
e′ = [[es[v/x]]]ε (99)

Using Proposition 12, we also have

[[S]]ε →0 ([[M]]; [[es]](x 7→ (x1, x2, x3))[vs/xs]
= ([[M]]; e′) = [[S′]]ε

Thus there are two subcases to consider.

SUBCASE S0 = [[S]]ε : From the definition of �c, we have

[[M]] �c Mz
0 (100)

and e �c ez
0 and S0 = (Mz

0 ; ez
0). We now proceed by case analysis

of c.

First, consider the case c = r. From the definition of �r, we
have

ez
0 = let xs = vs′ in ez

s

where

[[es]](x 7→ (x1, x2, x3)) �r ez
s (101)

and vs′ = 〈〈v′, v, v〉〉 for arbitrary v′. From (43), there exists Sz
1

such that

Sz
0 →0 Sz

1 (102)

where Sz
1 = (Mz

0 ; ez
1) and ez

1 = ez
s [vs′/xs]. From Proposi-

tion 16(1) and (101), we have [[es[v/x]]]ε �r ez
1. Thus, from (99),

we have

e′ �r ez
1 (103)

From the definition of �c and from (103), (98), and (100), we
have [[S′]]ε �c Sz

1. Moreover, from (102) and (48), we also have
Sz

0 →∗
0 Sz

1, as required.
The cases for c = g and c = b are similar to the case for c = r.

SUBCASE S0 = [[S′]]ε : Follows trivially with Sz
1 = Sz

0 using
(49).

CASE S = (M ; l v) For this case, we know (3) is applied. Let
xs = 〈〈x1, x2, x3〉〉. We have [[S]]ε = ([[M]]; e), where

e = let xs = [[l]]ε
in appe [x1 . r, x2 . g] ([[v]]ε)

else appe [x1 . r, x3 . b] ([[v]]ε)
else (x2 . g) ([[v]]ε)

and M(l) = λx.e0. From (43), we have ([[M]]; e) →0 S1, where

S1 = ([[M]]; e1) (104)

and
e1 = appe [l . r, l . g] ([[v]]ε)

else appe [l . r, l . b] ([[v]]ε)
else (l . g) ([[v]]ε)

Moreover, from (44), we have S1 →0 S2, where S2 = ([[M]]; e2)
and

e2 = [[e0]](x 7→ (x1, x2, x3))[vs/xs] (105)

[[M]](l) = λxs.[[e0]](x 7→ (x1, x2, x3)) (106)
vs = 〈〈v, v, v〉〉

We also have from (3) that

S′ = (M ; e0[v/x]) (107)

Using Proposition 16(1), we have [[S′]]ε = S2. Thus, we have

[[S]]ε →0 S1 →0 [[S′]]ε

which leads to three subcases to consider for S0, namely S0 =
[[S]]ε or S0 = S1 or S0 = [[S′]]ε.

SUBCASE S0 = [[S]]ε : From the definition of �c, we have Sz
0 =

(Mz
0 ; ez

0), where

[[M]] �c Mz
0 (108)

e �c ez
0 (109)

We proceed by case analysis of c.

[SUBSUBCASE c = r :] From the definition of�r and from (109),
we have

ez
0 = let xs = 〈〈v1, l, l〉〉

in appe [x1 . r, x2 . g] 〈〈v2, v, v〉〉
else appe [x1 . r, x3 . b] 〈〈v3, v, v〉〉

else (x2 . g) 〈〈v4, v, v〉〉

11

for arbitrary v1, v2, v3, and v4. Now, from (43), we have

Sz
0 →0 Sz

1 (110)
Sz

1 = (Mz
0 ; ez

1) (111)

and

ez
1 = appe [v1 . r, l . g] 〈〈v2, v, v〉〉

else appe [v1 . r, l . b] 〈〈v3, v, v〉〉
else (l . g) 〈〈v4, v, v〉〉

(112)

From (106), (108), and from the definition of �c, we have there
exists e0

z such that

Mz
0 (l) = λxs.e0

z (113)

[[e0]](x 7→ (x1, x2, x3)) �r e0
z (114)

There are now two cases; either v1 = l or v1 6= l.
We first consider the case for v1 = l. From (111), (112), (113),
and (44), we have

Sz
1 →0 Sz

2 (115)
Sz

2 = (Mz
0 ; ez

2) (116)

ez
2 = e0

z [〈〈v2, v, v〉〉/xs] (117)

Now, from Proposition 16, (114), and (117), we have

[[e0[v/x]]]ε �r ez
2 (118)

From (107), (118), (115), (116), (110), (108), and (48), we have
there exists Sz = Sz

2 such that Sz
0 →∗

0 Sz and [[S′]]ε �c Sz, as
required.
We now consider the case for v1 6= l. From (112), (111), and
from using (45) twice, we have

Sz
1 →0 Sz

2 →0 Sz
3 (119)

Sz
3 = (Mz

0 ; ez
3) (120)

ez
3 = (l . g) 〈〈v4, v, v〉〉 (121)

From (120), (121), (113), and from (37), we have

Sz
3 →0 Sz

4 (122)
Sz

4 = (Mz
0 ; ez

4)

ez
4 = e0

z[〈〈v4, v, v〉〉/xs] (123)

Now, from Proposition 16, (114), and (123), we have

[[e0[v/x]]]ε �r ez
4 (124)

From (107), (124), (110), (119), (122), (108), and (48), we have
there exists Sz = Sz

4 such that Sz
0 →∗

0 Sz and [[S′]]ε �c Sz, as
required.

[SUBSUBCASE c = g or c = b :] These cases are similar to the
case for c = r.

SUBCASE S0 = S1 : From the definition of �c and from (104),
we have Sz

0 = (Mz
0 ; ez

0), where

[[M]] �c Mz
0 (125)

e1 �c ez
0 (126)

We now proceed by case analysis of c.

[SUBSUBCASE c = r :] From the definition of �r, we have

ez
0 = appe [v1 . r, l . g] 〈〈v2, v, v〉〉

else appe [v3 . r, l . b] 〈〈v4, v, v〉〉
else (l . g) 〈〈v5, v, v〉〉

for arbitrary v1, v2, v3, v4, and v5. The remainder of this case
follows the lines of the subcase S0 = [[S]]ε with independent
treatment of cases for whether v1 = l and whether v3 = l.

[SUBSUBCASE c = g or c = b :] These cases are similar to the
case for c = r.

SUBCASE S0 = [[S′]]ε : The proof for this case follows immedi-
ately from reflexivity of →∗

0 and �c.

CASE S = (M ; λx.e0) For this case we know (2) is applied. We
have [[S]]ε = ([[M]]; e), where

e = λ〈r,g,b〉xs.[[e0]](x 7→ (x1, x2, x3))

and xs = 〈〈x1, x2, x3〉〉. From (36), we have [[S]]ε →0 (M ′; 〈〈l, l, l〉〉),
where

M ′ = [[M]], l 7→ λxs.[[e0]](x 7→ (x1, x2, x3)) (127)

From assumptions and (2), we have S′ = (M, l 7→ λx.e0; l). It
follows from the definition of translation of memory maps that

[[S′]]ε = (M ′; 〈〈l, l, l〉〉) (128)

thus, we have [[S]]ε →0 [[S′]]ε, which means that there are two
cases to consider for S0, namely S0 = [[S]]ε and S0 = [[S′]]ε.

SUBCASE S0 = [[S]]ε : From the definition of �c, we have S0 �c

Sz, where

Sz
0 = (Mz

0 ; ez
0) (129)

[[M]] �c Mz
0 (130)

ez
0 = λ〈r,g,b〉xs.e0

z (131)
[[e0]](x 7→ (x1, x2, x3)) �c e0

z (132)

From (36), (129), and (131), we have

Sz
0 →0 (Mz

1 ; ez
1) (133)

where

Mz
1 = Mz

0 , l 7→ λxs.e0
z (134)

ez
1 = 〈〈l, l, l〉〉 (135)

From the definition of �c and from the definition of translation and
from (130), (134), (127), and (132), we have

M ′ �c Mz
1 (136)

Moreover, from reflexivity of �c, from (48), and from (136) and
(128), there exists Sz = (Mz

1 ; ez
1) such that Sz

0 →∗
0 Sz and

[[S′]]ε �c Sz, as required.

SUBCASE S0 = [[S′]]ε : The proof for this subcase follows imme-
diately from reflexivity of →∗

0 and �c.

CASE S = (M ; if e then e1 else e2) The proof for this case
is similar to, but simpler than, the case for application.

CASE S = (M ; n1* + n2*) For this case, we know that (10) is
applied, thus, we have

S′ = (M ′; n*) (137)
n = n1 + n2 (138)

From the definition of translation, we have

[[S]]ε = ([[M]]; e) (139)
e = let xs = 〈〈n1*, n1*, n1*〉〉

in let ys = 〈〈n2*, n2*, n2*〉〉
in 〈 (x1 . r) +r (y1 . r),

(x2 . g) +g (y2 . g),
(x3 . b) +b (y3 . b) 〉

(140)

xs = 〈〈x1, x2, x3〉〉
ys = 〈〈y1, y2, y3〉〉

12

for distinct choices of x1, x2, x3, y1, y2, and y3.
From (43), (46), (31), and from (139), (140), (137), and (138),

we have

[[S]]ε →0 S1 →0 S2 →0 S3 →0 S4 →0 [[S′]]ε (141)

where S1 = ([[M]]; e1) and S2 = ([[M]]; e2) and S3 = ([[M]]; e3)
and S4 = ([[M]]; e4) and [[S′]]ε = ([[M]]; [[n*]]ε) and

e1 = let ys = 〈〈n2*, n2*, n2*〉〉
in 〈 (n1* . r) +r (y1 . r),

(n1* . g) +g (y2 . g),
(n1* . b) +b (y3 . b) 〉

(142)

e2 = 〈 (n1* . r) +r (n2* . r),
(n1* . g) +g (n2* . g),
(n1* . b) +b (n2* . b) 〉

(143)

e3 = 〈 n*,
(n1* . g) +g (n2* . g),
(n1* . b) +b (n2* . b) 〉

(144)

e4 = 〈 n*,
n*,
(n1* . b) +b (n2* . b) 〉

(145)

Thus, there are six subcases to check, namely S0 = [[S]]ε,
S0 = S1, S0 = S2, S0 = S3, S0 = S4, and S0 = [[S′]]ε. The
case for S0 = [[S′]]ε follows trivially due to reflexivity of �c. We
show one of the remaining proof cases.

SUBCASE S0 = S3 : From the definition of �c, we have

Sz
0 = (Mz

0 ; ez
0) (146)

[[M]] �c Mz
0 (147)

e3 �c ez
0 (148)

We now proceed by case analysis of c and show the case for c = g
below; the remaining cases are similar.

[SUBSUBCASE c = g :] It follows that

ez
0 = 〈 n* . r,

(v2 . g) +g (v2 . g),
(n1* . b) +b (n2* . b) 〉

(149)

for arbitrary v1 and v2. There are now two cases; either v1 and
v2 are both numbers or one of v1 and v2 is not a number.

Case v1 = n′
1* and v2 = n′

2* for some n′
1 and n′

2 : It follows
from (31), (46), (149), and (146) that

Sz
0 →0 Sz

1 (150)
Sz

1 = (Mz
0 ; ez

1) (151)
ez
0 = 〈 n* . r,

n′* . g,
(n1* . b) +b (n2* . b) 〉

(152)

n′ = n′
1 + n′

2 (153)

Applying (31) and (46) again, we get

Sz
1 →0 Sz

2 (154)
Sz

2 = (Mz
0 ; ez

2) (155)
ez
2 = 〈〈n*, n′

, n〉〉 (156)

From (147), (156), (155), (137), (154), (150), and (48), there
exists Sz = Sz

2 such that S0 →∗
0 Sz and [[S′]]ε �c Sz, as

required.

Case v1 6= n′
1* or v2 6= n′

2* for some n′
1 and n′

2 : It follows
from (32) and from (46) and from (149) and (146) that

Sz
0 →0 Sz

1 (157)

Sz
1 = (Mz

0 ; ez
1) (158)

ez
1 = 〈 n*,

v,
(n1* . b) +b (n2* . b) 〉

(159)

for some v. Applying (31) and (46) using (159) and (158)
yields

Sz
1 →0 Sz

2 (160)
Sz

2 = (Mz
0 ; ez

2) (161)
ez
2 = 〈〈n*, v, n*〉〉 (162)

Now, from (147), (162), (161), (137), (160), (157), and (48),
there exists Sz = Sz

2 such that S0 →∗
0 Sz and [[S′]]ε �c Sz,

as required.

CASE S = (M ; E[es]); rule (46) From assumptions, we have

Ss ↪→ S′
s (163)

S = E[Ss] (164)
S′ = E[S′

s] (165)

where S′ = (M ′; E[e′s]) and Ss = (M ; es) and S′
s = (M ; e′s).

From assumptions, (164), (165), and Proposition 19, we have there
exists E′ such that

E′[[[Ss]]ε] = [[E[Ss]]]ε = [[S]]ε (166)
E′[[[S′

s]]ε] = [[E[S′
s]]]ε = [[S′]]ε (167)

Now, because [[Ss]]ε and [[S′
s]]ε exist, we can apply Proposition 14,

using (163), to get

[[Ss]]ε →∗
0 [[S′

s]]ε (168)

From (166), (167), and assumptions, we have

E′[[[Ss]]ε] →∗
0 S0 →∗

0 E′[[[S′
s]]ε] (169)

From (168) and repeated use of Proposition 11, we have

E′[[[Ss]]ε] →0 E′[S1] →0 . . . →0 E′[Sn] →0 E′[[[S′
s]]ε](170)

[[Ss]]ε →0 S1 →0 . . . →0 Sn →0 [[S′
s]]ε (171)

Now, because evaluation is deterministic (Proposition 9) and by
comparing (169) and (170), we have, using (171), there exists S′

0

such that

S0 = E′[S′
0] (172)

[[Ss]]ε →∗
0 S′

0 →∗
0 [[S′

s]]ε (173)

Now, let Sz
0 be any machine state and c any color r, g, or b such

that

S0 �c Sz
0 (174)

From (174), (172), and Proposition 18, we have there exist E′′ and
Su

0 such that

Sz
0 = E′′[Su

0] (175)
S′

0 �c Su
0 (176)

E′ �c E′′ (177)

From (163) and (173), it follows by induction, using (176), that
there exists Su such that

Su
0 →∗

0 Su (178)
[[S′

s]]ε �c Su (179)

Let

Sz = E′′[Su] (180)

13

From Proposition 11, (178), (175), and (180), we have Sz
0 →∗

0

Sz, as required. Moreover, from (177), (167), (179), (180), and
Proposition 17, we also have [[S′]]ε �c Sz, as required.

�

4.4 Multi-Step Fault Tolerance
We can now use the fault-tolerance proposition from Section 4.3 to
yield the following “multi-step” fault-tolerance property:

PROPOSITION 22 (Multi-Step Fault-Tolerance). Assume S ↪→∗

S′ and [[S]]ε →∗
0 S0 →∗

0 [[S′]]ε.

For any Sz
0 such that S0 � Sz

0 there exists Sz such that
Sz

0 →∗
0 Sz and [[S′]]ε � Sz.

PROOF By induction on the length of the derivation S ↪→∗ S′,
using Proposition 21. �

Intuitively, this proposition is obtained by composing diagrams of
the form shown in Section 4.3.

4.5 Putting it All Together
An important feature of the fault propagation relation is that it sup-
ports voting when used together with the faulty translation. We de-
fine voting as a binary relation ≈vote between source language ter-
minal machine states and target language terminal machine states.

(M ; v) ≈vote (M ′; 〈〈v′, v, v〉〉) if[[M]] �r M ′

(M ; v) ≈vote (M ′; 〈〈v, v′, v〉〉) if[[M]] �g M ′

(M ; v) ≈vote (M ′; 〈〈v, v, v′〉〉) if[[M]] �b M ′

The following property holds:

PROPOSITION 23 (Fault Propagation Supports Voting). If [[Sv]]ε �
Sz

v then Sv ≈vote Sz
v

PROOF Follows immediately from the definition of translation of
values. �

We can now tie all the previous properties together in the fol-
lowing top-level fault-tolerance property:

THEOREM 1 (Top-level Fault Tolerance). Assume `s S : τ and
k ≤ 1.

1. Either there exists Sv such that S ↪→∗ Sv in which case there
exists Sz

v such that [[S]]ε →∗
k Sz

v and for all such Sz
v it holds

that Sv ≈vote Sz
v.

2. Otherwise S↑ in which case [[S]]ε↑k.

PROOF From Proposition 4, it follows that either there exists Sv

such that S ↪→∗ Sv or S↑.
We now consider part one of the proposition, with k = 1. From

assumptions and from Proposition 10, we have [[S]]ε exists. From
assumptions and repeated use of Proposition 6, we have `s Sv : τ ,
thus, from Proposition 10, we have [[S′]]ε exists. Now, let Sz

v be any
terminal machine state such that

[[S]]ε →∗
k Sz

v (181)

From (181) and due to the property that non-faulty evaluation is
deterministic (Proposition 9), there exist S0 and Sz

0 such that

[[S]]ε →∗
0 S0 →∗

0 [[Sv]]ε (182)
S0 →1 Sz

0 (183)
Sz

0 →∗
0 Sz

v

From (183) and Proposition 20, we have

S0 � Sz
0 (184)

Now, from assumptions, (182), (184), and Proposition 22, there
exists Sz such that

[[Sv]]ε � Sz
v (185)

From (185) and Proposition 23, we have Sv ≈vote Sz
v, as required.

For k = 0, part one of the proposition is similar but simpler
than the case for k = 1.

For k = 0, part two of the proposition follows immediately
from Proposition 14. For k = 1, part two follows from Proposi-
tion 14 and from Proposition 21. �

Notice that in the proof of Proposition 1, we make essential use
of the property that non-faulty evaluation is deterministic (Propo-
sition 9). It is thus important that machine states are considered
identical up-to consistent renaming of labels.

5. Conclusion and Future Work
We have presented a simply typed lambda calculus extended with
two simple atomic operations that allows the calculus to be the tar-
get of a fault-tolerant translation that allows single-transient faults
to appear at runtime, without effecting the overall result of evalua-
tion.

There are plenty of possibilities for future work. First, the
scheme does not support full fault recovery in the sense that af-
ter a fault, the system can recover to a state where it is ready for a
new arbitrary fault. This problem is also present in previous work
[18]. A weaker partial recovery property may be easier to establish.
Let two function invocations be unrelated if none of the function
invocations makes a function call that directly results in the other
function invocation. A partial fault recovery property may state
that as long as two transient faults occur during execution of unre-
lated function invocations then execution can proceed safely. Such
a partial fault recovery property may be implemented by majority
voting on function arguments and results and on storing closure
environments (i.e., on substitutions under lambda-bindings in our
formulation).

Second, another interesting direction for future work would
be to investigate techniques for supporting fault-tolerant control
registers, perhaps through bootstrapping [3] a faulty-translated
interpreter written in an appropriately extended version of the
source language. Similarly, by writing a garbage collector in such a
source language, the faulty translation may result in a fault-tolerant
garbage collector for use by the system.

Third, another interesting direction for future work is to inves-
tigate type systems for capturing the soundness of the embedded
voting instructions, which could be a first step towards a lower-
level type safe language for full transient-fault tolerant computing
[8].

Also identified in [18] as possible future work is to investigate
the possibilities for optimizations of generated fault-tolerant code.
Whereas simple in-lining, constant propagation, and constant fold-
ing appear to be sound optimizations, common subexpression elim-
ination across colors is not sound in general.

References
[1] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti.

Control-flow integrity: Principles, implementations, and applications.
November 2005. Alexandria, VA.

[2] Martı́n Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. A
theory of secure control flow. November 2005. Manchester, U.K.

[3] Ravi Sethi Alfred V. Aho and Jeffrey D. Ullman. Compilers
Principles, Techniques and Tools. Addison Wesley, 1986.

[4] Robert C. Baumann. Soft errors in advanced semiconductor devices—
part I: The three radiation sources. IEEE Transactions on Device and
Materials Reliability, 1(1):17–22, March 2001.

14

[5] Jonathan Chang, George A. Reis, and David I. August. Automatic
instruction-level software-only recovery. In International Conference
on Dependable Systems and Networks (DSN’06), pages 83–92, 2006.

[6] Stephen McCamant and Greg Morrisett. Evaluating SFI for a CISC
architecture. August 2006. Vancouver, BC, Canada.

[7] Greg Morrisett. Compiling with Types. PhD thesis, School of
Computer Science, Carnegie Mellon University, Pittsburgh, PA
15213, December 1995.

[8] Frances Perry, Lester Mackey, George Reis, Jay Ligatti, David
August, and David Walker. Fault-tolerant typed assembly language.
In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), June 2007. San Diego, California, USA.

[9] M. Rebaudengo, M. Reorda, M. Torchiano, and M. Violante. A
source-to-source compiler for generating dependable software.
In IEEE International Workshop on Source Code Analysis and
Manipulation, pages 33–42, 2001.

[10] M. Rebaudengo, M. Reorda, and M. Violante. A new software-based
technique for low-cost fault-tolerant application. In IEEE Reliability
and Maintainability Symposium, pages 25–28, 2003.

[11] George A. Reis, David I. August, Robert Cohn, and Shubhendu S.
Mukherjee. Software fault detection using dynamic instrumentation.
In Proceedings of the Fourth Annual Boston Area Architecture
Workshop (BARC), February 2006.

[12] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan,
and David I. August. SWIFT: Software implemented fault tolerance.
In Proceedings of the 3rd International Symposium on Code
Generation and Optimization, March 2005.

[13] George A. Reis, Jonathan Chang, Neil Vachharajani, Ram Rangan,
David I. August, and Shubhendu S. Mukherjee. Software-controlled
fault tolerance. ACM Transactions on Architecture and Code
Optimization, 2(4):366–396, 2005.

[14] Goutam Kumar Saha. Software based fault tolerance—a survey.
Ubiquity, 7(25), July 2006. www.acm.org/ubiquity.

[15] Úlfar Erlingsson, Martn Abadi, Michael Vrable, Mihai Budiu, and
George C. Necula. Xfi: Software guards for system address spaces.
November 2006. Seattle, Washington.

[16] Úlfar Erlingsson and Fred B. Schneider. SASI enforcement of security
policies: A retrospective. July 1999. Revised version.

[17] Robert Wahbe, Steven Lucco, Thomas E. Anderson, and Susan L.
Graham. Efficient software-based fault isolation. ACM SIGOPS
Operating Systems Review, 27(5):203–216, December 1993.

[18] David Walker, Lester Mackey, Jay Ligatti, George Reis, and David
August. Static typing for a faulty lambda calculus. In ACM
SIGPLAN International Conference on Functional Programming
(ICFP), September 2006.

[19] Nobuko Yoshida, Kohei Honda, and Martin Berger. Logical reasoning
for higher-order functions with local state. pages 361–377, March
2007. Braga, Portugal.

15

