
Dynamic Programming in Futhark

MARTIN ELSMAN, University of Copenhagen, Denmark

This note describes how the Futhark [1, 2] dynamic programming library dpsolve1 can be used to
find fix-points for functions from 𝑅𝑛 to 𝑅𝑛 and how solutions to multiple instances of a dynamic
programming problem can be computed in parallel on GPUs. We give both single-dimensional
and multi-dimensional examples and we show how the Futhark automatic differentiation feature
may relieve programmers from specifying explicitly the Jacobian matrices, which are necessary for
using dpsolve’s fast converging Newtonian functionality.

1 INTRODUCTION
A standard approach for finding fix-points for numerical functions from 𝑅𝑛 to 𝑅𝑛 is to use the
technique of successive approximations. Following Section 4 of Numerical Dynamic Programming
in Economics, by John Rust [3], the dynamic programming solver that we shall apply here first uses
a number of successive approximation steps before it applies a more efficient Newtonian method
for narrowing in on a fix-point. The latter method requires that the user specifies how to compute
the Jacobian matrix (of type 𝑅𝑛×𝑛) given an approximate fix-point. The Jacobian is then computed
for each Newtonian step.

2 EXAMPLE: INTERSECTION OF A CIRCLE AND A QUADRATIC EQUATION
Following the example in Jim Lambers’ MAT 461/561 lecture notes, we first set out to find the
intersection between the unit circle (𝑥21 + 𝑥22 = 1) and the quadratic equation 𝑥2 = 𝑥21 .
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We first define an operator for which we want to find a fix-point. To ensure that the natural matrix
norm of the Jacobian matrix for the function is less than 1 (0 ≤ 𝑥1 ≤ 1 and 0 ≤ 𝑥2 ≤ 1), we give the
following definition of the fix-point operator 𝐺 :

𝐺 (𝑥1, 𝑥2) = (√𝑥2,
√︃
1 − 𝑥21) (1)

Without having to define the Jacobian matrix for the function, we can find an approximation to the
fix-point using the successive approximation functionality of the dpsolve library.

We first import the library dpsolve and instantiate the parameterised module mk_dpsolve to the
f64 representation of floats:

import "dpsolve"
module dps = mk_dpsolve f64

The function dps.sa that we shall apply has the following type:

val sa [m] : (f:[m]t->[m]t) -> (v:[m]t) -> (p:param) -> (b:t) -> ([m]t,bool,i64,t,t)

1The Futhark library dpsolve is based on a Matlab library implemented by Bertel Schjerning, ECON, University of
Copenhagen.
2Analytically, the solution can easily be found by solving the quadratic equation 𝑥2

2 + 𝑥2 − 1 = 0, which leads to the solution
𝑥1 = 0.786151377757 and 𝑥2 = 0.61803398874989.

Technical Note, September 27, 2025.
Author’s address: Martin Elsman, Department of Computer Science, University of Copenhagen, Universitetsparken 5,
Copenhagen, Denmark, DK-2100, mael@di.ku.dk.

HTTPS://ORCID.ORG/0000-0002-6061-5993
https://editorialexpress.com/jrust/sdp/ndp.pdf
https://editorialexpress.com/jrust/sdp/ndp.pdf
https://www.scribd.com/document/685401140/Lecture-22
https://orcid.org/0000-0002-6061-5993


2 Martin Elsman

Here t is identical to f64 due to the f64 module instantiation of the mk_dpsolve parameterised
module.

We now define the bellman equation for which we want to find a fix-point:

def bellman (x:[2]f64) : [2]f64 =
[f64.sqrt x[1], f64.sqrt(1 - x[0] ** 2)]

Notice that we use projections from the argument vector to access the scalar values. The following
Futhark entry point makes a call to the dps.sa function with the above bellman function given as
a parameter:

entry test_sa (sa_max:i64) (sa_tol:f64) : ([2]f64, bool, i64, f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max

with sa_tol = sa_tol
let (res, b, i, tol, _) = dps.sa bellman v0 ap 0
in (res, b, i, tol)

The function dps.sa also takes an initial approximation as argument (v0) together with an ap
value that defines some slightly modified default parameter settings (max iterations, max tolerance,
etc.)

We can now call the function:

> test_sa 60i64 1e-3

([0.7855137639650378f64, 0.6177294754734614f64], true, 56i64, 8.769119278559945e-4f64)

We see that after 56 iterations, a fix-point is found with a tolerance below 1e-3, meaning that
the last iteration step contributed to a change in value of less than 1e-3 for both 𝑥1 and 𝑥2. For
improved precision, many more iterations are required:

> test_sa 200i64 1e-9

([0.7861513784203592f64, 0.6180339890667096f64], true, 186i64, 9.120002530949023e-10f64)

3 FASTER CONVERGENCEWITH NEWTON’S METHOD
The function 𝐺 , as defined in (1), has the following Jacobian matrix:

𝐽𝐺 (𝑥1, 𝑥2) =
[

0 1
2√𝑥2−𝑥1√

1−𝑥2
1

0

]
The following version of the bellman function takes its input as an array of size 2 and returns,
along with the function result, the Jacobian matrix, relative to the argument:

def bellman_j (a:[2]f64) : ([2]f64, [2][2]f64) =
let x1 = a[0]
let x2 = a[1]
let res = [f64.sqrt x2, f64.sqrt(1-x1**2)]
let j = [[0 , 1/(2*f64.sqrt x2) ],

[-x1/(f64.sqrt(1-x1**2)) , 0 ]]
in (res, j)

The function dps.poly that we shall apply has the following type:
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val poly [m]: (f: [m]t -> ([m]t,[m][m]t)) -> (v:[m]t) -> (p:param)
-> (b:t) -> ([m]t,[m][m]t,bool,i64,i64,i64,t)

Again, here t is identical to f64 due to the f64 module instantiation of the mk_dpsolve parame-
terised module. The function finds a fix-point for the function f using a combination of successive
approximation iterations and Newton-Kantorovich iterations. The initial guess is v and the parame-
ter p controls the iteration passes. The function f should return a pair of a new next approximation
and the Jacobian matrix for the function f relative to the argument given. The function returns a 7-
tuple containing an approximate fix-point, a Jacobian matrix for the fix-point, a boolean specifying
whether the algorithm converged (according to the values in p), the number of iterations used for
the total sa iterations, the total Newton-Kantoovich iterations, and the number of round-trips. The
7’th element of the result tuple is the tolerance of the last two fix-point approximations (maximum
of each dimension).

entry test_poly (sa_max:i64) : ([2]f64, bool, i64, i64, i64, f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max
let (res, _, b, i, j, k, tol) = dps.poly bellman_j v0 ap 0
in (res, b, i, j, k, tol)

> test_poly 5i64

([0.7861513777574233f64, 0.6180339887498949f64], true, 5i64, 4i64, 1i64,
1.1102230246251565e-16f64)

Notice that the programmer has manually provided code for computing the Jacobian matrix for the
function. The result is a fix-point with a tolerance below 1e-15, computed with an initial number of
5 successive approximation iterations followed by 4 Newtonian iterations (1 round-trip was used).

4 FUTHARK AD
We can relieve the programmer from manually providing the code for the Jacobian matrix by using
the automatic differentiation feature of Futhark, which provides a function jvp that performs
forward-mode automatic differentiation on arbitrary Futhark functions. An alternative is to encode
float computations using so-called dual-numbers, following the approach of AD with dual numbers,
but we shall not dive into this possibility here.

We first define a function wrapj that takes a function of type [n][m].[n]f64->[m]f64 and turns
it into a function of type [n][m].[n]f64->([m]f64,[m][n]f64) that, besides from the function
result, returns the Jacobian matrix of the function:

def idd n i = tabulate n (f64.bool <-< (==i))

def wrapj [n][m] (f: [n]f64->[m]f64) (x:[n]f64) : ([m]f64,[m][n]f64) =
(f x, tabulate n (jvp f x <-< idd n) |> transpose)

Functions wrapped with the wrapj function can now be used directly with the dps.poly function.
Let’s try it out in practice:

entry test_poly_jvp (sa_max:i64) : ([2]f64,bool,i64,i64,i64,f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max
let (res, _, b, i, j, k, tol) =

dps.poly (wrapj bellman) v0 ap 0
in (res, b, i, j, k, tol)

https://github.com/diku-dk/futhark/issues/1249
https://futhark-lang.org/examples/dual-numbers.html


4 Martin Elsman

> test_poly_jvp 5i64

([0.7861513777574233f64, 0.6180339887498949f64], true, 5i64, 4i64, 1i64,
1.1102230246251565e-16f64)

We see that we get the same results with test_poly_jvp as we get with test_poly.

To make it even easier for the programmer, the dps module includes a version of the poly function,
called polyad, that takes care of computing the Jacobian of the passed function:

entry test_polyad (sa_max:i64) : ([2]f64,bool,i64,i64,i64,f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max
in dps.polyad bellman v0 ap 0

> test_polyad 5i64

([0.7861513777574233f64, 0.6180339887498949f64], true, 5i64, 4i64, 1i64,
1.1102230246251565e-16f64)

5 GOING PARALLEL
The iterative approaches that the dpsolve functionality implements for finding fix-points are
inherently sequential, except from the matrix operations applied in the Newton-Kantorovich
iterations (assuming a high-number of dimensions). Instead of parallelising the actual fix-point
resolution, we shall see how we can find many fix-points in parallel, which is sometimes a useful
approach for speeding up an application.

Following up on the task of finding intersection points between a circle and a simple quadratic
equation, let us investigate how the x-dimension of the intersection points changes when the circle
radius increases.

We first parameterise the bellman equation over the radius of the circle:

def bellmanr (r:f64) (a:[2]f64) : ([2]f64, [2][2]f64) =
let f (a:[2]f64) = [f64.sqrt a[1], f64.sqrt(r**2-a[0]**2)]
let res = f a
let j = [[0 , 1/(2*f64.sqrt a[1]) ],

[-a[0]/f64.sqrt(r**2-a[0]**2) , 0 ]]
in (res, j)

We then create an entry point that implements an outer map over a call to dps.poly with varying
radius:

def linspace (n: i64) (start: f64) (end: f64) : [n]f64 =
tabulate n (\i -> start + f64.i64 i * ((end-start)/f64.i64 n))

entry test_polyr (n:i64) (sa_max:i64) : (bool, i64, [n]f64, [n]f64) =
let ap = dps.default with sa_max = sa_max
let rs = linspace n 1 20
let ress = map (\r -> let v0 = [0.5,0.5]

let (res, _, b, i, j, _k, _tol) =
dps.poly (bellmanr r) v0 ap 0

in (r,res[0],b,i+j)) rs
let converged = reduce (&&) true (map (.2) ress)
let xs = map (.1) ress
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let iterations = reduce (+) 0 (map (.3) ress)
in (converged, iterations, rs, xs)

Here is a call to test_polyr with 4 different radius values (between 1 and 20) and an sa_max value
of 3:

> test_polyr 4i64 3i64

(true, 25i64, [1.0f64, 5.75f64, 10.5f64, 15.25f64], [0.7861513777574233f64,
2.2960178985163853f64, 3.164158343195599f64, 3.841639561393954f64])

We can use the plot functionality of literate Futhark to plot 1000 points relating radius values with
associated found 𝑥-values (and compare it with a plot of the sqrt-function):

entry test_polyr_rxs (n:i64) (sa_max:i64) : ([n]f64, [n]f64) =
test_polyr n sa_max |> (\(_,_,rs,xs) -> (rs,xs))

def xys f n start end =
unzip (map (\x -> (x, f x)) (linspace n start end))

entry sqrt_coords = xys f64.sqrt

> :plot2d {rxs=test_polyr_rxs 1000i64 3i64,
sqrt=sqrt_coords 1000i64 1f64 21f64};

size:(1000, 400)

6 A FEW SINGLE-DIMENSIONAL EXAMPLES
We now consider a single-dimensional case, for which we want to find the 𝑥 for which 𝑓 (𝑥) = cos𝑥 .

entry test_poly1d (sa_max : i64) : ([1]f64, [1][1]f64, bool, i64, i64, i64, f64) =
let ap = dps.default with sa_max = sa_max
in dps.poly (\x -> ([f64.cos x[0]],

[[- f64.sin x[0]]]))
[0.7] ap 0

> test_poly1d 0i64

([0.7390851332151607f64], [[-0.6736120230211678f64]], true, 0i64, 3i64, 1i64, 0.0f64)

https://futhark-lang.org/examples/literate-basics.html
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For another example, we want to compute
√
2 by finding the fix-point to the equation 𝑓 (𝑥) =

1
2 (𝑥 + 2

𝑥
).

entry test_sqrt (sa_max : i64) : ([1]f64, [1][1]f64, bool, i64, i64, i64, f64) =
let ap = dps.default with sa_max = sa_max
in dps.poly (\x -> ( [ 0.5 * (x[0]+2/x[0]) ],

[[ 2*x[0] ]] )
) [1.4] ap 0

> test_sqrt 0i64

([1.414213562373095f64], [[2.828427124746191f64]], true, 0i64, 4i64, 1i64,
1.1102230246251565e-15f64)

Remarkably, in 4 steps we reach a fix-point of 1.41421356237. . . with a tolerance of 1.11e-15.

7 SOLVING SYSTEMS OF LINEAR EQUATIONS
It is common to use iterative methods to solve also systems of linear equations. Such methods
include the Jacobi method and the Gauss-Seidel method [4]. In general, a system of linear equations
can be written on the form 𝐴x = b, where 𝐴 is a known square matrix, b is a known vector,
and x is the vector we seek to find. Provided we split up 𝐴 into a lower-triangular matrix 𝐿, an
upper-triangular matrix𝑈 , and a diagonal matrix 𝐷 , such that 𝐴 = 𝐿 +𝑈 + 𝐷 , it turns out that we
can write a recurrence equation for the linear system on the form

x𝑘+1 = 𝐺x𝑘 + f (2)

where, for the Jacobi method, we further have 𝐺 = 𝐼 − 𝐷−1𝐴 and f = 𝐷−1b. Here is Futhark code
that implements the Jacobi method:

def dotprod [n] (u:[n]f64) (v:[n]f64) : f64 =
reduce (+) 0.0 (map2 (*) u v)

def matvecmul [n][m] (A: [n][m]f64) (v: [m]f64) : [n]f64 =
map (dotprod v) A

def matmul [n][p][m] (us: [n][p]f64) (vs: [p][m]f64) : [n][m]f64 =
map (matvecmul (transpose vs)) us

def binop [n] (f:f64->f64->f64) (a:[n][n]f64) (b:[n][n]f64) : [n][n]f64 =
map2 (map2 f) a b

def diag_ex [n] (A:[n][n]f64) : [n]f64 =
map (\i -> A[i][i]) (iota n)

def diag [n] (a:[n]f64) : [n][n]f64 =
tabulate_2d n n (\i j -> if i == j then a[i] else 0.0)

def jacobi [n] (A:[n][n]f64) (b:[n]f64) : [n]f64 -> [n]f64 =
let D' = diag_ex A |> map (1.0/) |> diag -- Dˆ{-1}
let I = diag (tabulate n (\_ -> 1.0))
let G = binop (-) I (matmul D' A)
let f = map (\i -> D'[i][i]*b[i]) (iota n)
in \x -> map2 (+) (matvecmul G x) f
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We can try out the Jacoby method by attempting to find a solution to the following system of linear
equations:

3𝑥0 + 𝑥1 − 𝑥2 = 1 (3)
𝑥0 − 𝑥1 + 2𝑥2 = 8

−𝑥0 + 𝑥1 − 3𝑥2 = −1
Here is an entry point that iterates the Jacobi method a number of times starting with an initial
constant vector:

entry test_jacobi [n] (A:[n][n]f64) (b:[n]f64) (k:i64) : [n]f64 =
let pow f k x = loop x for _i < k do f x
let f = jacobi A b
in pow f k (replicate n 1f64)

def A = [[3f64,1,-1],[1.0,-1,2],[-1.0,1,-3]]
def b = [1f64,8,-1]

> test_jacobi A b 5

[2.9670781893004112f64, -12.283950617283951f64, -4.193415637860082f64]

With a few more iterations, we converge towards a desired solution:

> test_jacobi A b 50

[3.9999505346577218f64, -17.999761149159962f64, -6.9998797896203735f64]

> test_jacobi A b 51

[3.9999604531798627f64, -17.999809044583024f64, -6.999903894605894f64]

We can test that the found solution is close to be correct:

entry test_jacobi_ok : [3]f64 = matvecmul A (test_jacobi A b 51)

> test_jacobi_ok

[0.9999762095624574f64, 7.9999617085510994f64, -1.0000578139452045f64]

Now, let’s try instead to use the function polyad to find a solution:

entry test_jacobi_polyad (sa_max: i64) : ([3]f64,bool,i64,i64,i64,f64) =
let f = jacobi (copy A) (copy b)
let x0 = replicate 3 1f64
let ap = dps.default with sa_max = sa_max
in dps.polyad f x0 ap 0

> test_jacobi_polyad 2i64

([4.000000000000001f64, -18.0f64, -7.000000000000001f64], true, 2i64, 1i64, 1i64,
3.552713678800501e-15f64)

In two steps we reach a fix-point with a tolerance of 3.5e-15. We shall not here go into details
about under what conditions the recurrence converges to a fix-point. For a proper analysis of these
aspects, we refer the reader to [4], which also presents improvements to the Jacobi method in terms
of the Gauss-Seidel variation and the successive over relaxation (SOR) method. An interesting
aspect of these methods is that they may work well also for very large but sparse matrices. In
particular, we notice that, for the Jacobi method, the matrix 𝐺 has similar sparsity structure as 𝐴,
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provided 𝐴 is non-singular (i.e., have non-zero diagonal elements). However, as fun as this exercise
may be, notice that, for each Newton-Kantorovich iteration, the polyad function will solve a linear
equation system (using the ols function from the linalg module), which is as big as the equation
system that we aim at solving, thus, not much is gained in the case of solving linear equation
systems. It is really for the case of solving non-linear systems of equations that the technique is
valuable.

8 CONCLUSION
We have seen how we can use the dpsolve library to solve multi-dimensional fix-point equations.
We have also seen how we can solve multiple problems in parallel using Futhark’s second-order
array combinators.
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