
Carillon�|a System to FindY2K Problems in C ProgramsMartin Elsman, Je�rey S. Foster, and Alexander AikenComputer S
ien
e Division, University of California, Berkeleybane-software�
s.berkeley.eduJuly 30, 1999\Any man's death diminishes me, be
ause I am involved in mankind;and therefore never send to know for whom the bell tolls;it tolls for thee."|John DonneAbstra
tCarillon is a simple, fast, and e�e
tive type-based system for �nding Y2K errorsin C programs. Carillon extends the standard C type system with a user-de�ned setof date-related type quali�ers. The user annotates date-related fun
tions with theappropriate quali�ers, and Carillon
he
ks the program for Y2K errors.Carillon displays the results of the Y2K analysis in an intera
tive Ema
s bu�er.Program variables are
olored a

ording to the kind of Y2K information they may
ontain, and the user
an
li
k on program variables to see the exa
t Y2K type inferredby the analysis.The system has been used su

essfully to verify Y2K readiness of programs and tolo
ate Y2K errors.Carillon is distributed without any warranty.The
opyright noti
e in Appendix B applies.1 Introdu
tionThe Y2K problem, or the millennium bug, happens when a program represents years usingonly two digits. If the year 2000 is represented by the string "00", then a program may notbe able to tell the di�eren
e between the year 2000 and the year 1900. As we enter the newmillennium, su
h bugs
an lead to system
rashes, or worse, a seemingly-working programthat
omputes the wrong results.Be
ause most of the world's lega
y
ode is written in COBOL, the
ommer
ial market-pla
e has fo
used on Y2K bugs in the business and �nan
ial appli
ations written in COBOL.But these appli
ations are not the only ones with potential damaging Y2K bugs. Control�Carillon is also the name of the bells of the Sather Tower at University of California, Berkeley.1

software for embedded systems and operating system software are examples of systems wheredates play a
riti
al rôle. Many su
h systems are written in the C programming language,and the
ommer
ial Y2K tools available for C are not as sophisti
ated as the COBOL tools.While the C Standard Library provides Y2K-safe date operations, it is
ommon that pro-grams manipulate dates dire
tly as strings of
hara
ters|for instan
e, to intera
t with otherprograms. It is essential to establish that su
h systems run as expe
ted when we enter thenew millennium.Carillon is an easy-to-use type-based system for �nding Y2K problems in C programs andfor showing that su
h problems do not exist. Carillon has the following important features:� Carillon points the user to Y2K related problems and makes her
on
entrate on theparts of the program that manipulate dates. The system
an analyze sour
e �lesindependently for qui
k and easy use. It also supports whole-program analysis forimproved pre
ision.� Y2K safety is guaranteed up to
asting; Carillon provides an overview of the Y2Kunsafe
asts in the analyzed program.� Analysis of industrial-sized programs is supported, even with whole-program analysis.Whole-program analysis of a 57,000 line program (132,000 lines prepro
essed) takes137 se
onds on a 300MHz Pentium II.� Annotations are ne
essary only where dates are manipulated. Be
ause Carillon pro-vides type inferen
e and quali�er polymorphism, relatively few annotations are needed.� Carillon is easily integrated with other tools, su
h as
ompilers. Analysis results arepresented to the user in an intera
tive Ema
s bu�er and
an be browsed through usingthe mouse or the keyboard.Carillon has been used to verify that RCS (Revision Control System) version 5.6.0.1 doesnot
ontain any Y2K errors. RCS is about 17,000 lines of C (41,000 lines of prepro
essed C.)The experiment took only two hours: This time was spent partly on instrumenting the RCSMake�le to output prepro
essed
ode, partly on annotating the main header �le of RCS, andpartly on solving type
on
i
ts that were not Y2K errors.Carillon has also been used to lo
ate a millennium bug in CVS (Con
urrent VersionSystem) version 1.9. CVS is about 57,000 lines of C (132,000 lines of prepro
essed C.) Themillennium bug is �xed in CVS version 1.10.There are three te
hni
al, resear
h-related
ontributions from the development of Caril-lon:� The system is a demonstration of how a program analysis
an be
omposed from
omponents of the Berkeley ANalysis Engine (BANE). BANE provides a
ompleteinfrastru
ture for developing program analysis appli
ations, in
luding language front-ends, eÆ
ient algorithms for solving di�erent kinds of
onstraints, and a
ustomizableuser-interfa
e
alled PAM (for Program Analysis Mode) for visualizing the results of aprogram analysis in Ema
s. Using BANE, Carillon was developed in one month.2

� The Carillon type system is a result of an ongoing e�ort at providing an open type-system, in whi
h the user (or analysis implementor)
an modify the typing rules forspe
i�
 needs. This open type-system is based on the notion of quali�ers [FFA99℄.� Carillon supports quali�er polymorphism, whi
h de
reases the number of required Y2Kannotations. Quali�er polymorphism is an enhan
ement over other type-based toolsfor �nding Y2K errors in COBOL programs [EHM+99℄.In the next se
tion, we give information about obtaining and installing Carillon. InSe
tion 3, we show a �rst example of �nding a Y2K bug in a C program. The type systemthat Carillon uses and various aspe
ts of how to use Carillon is des
ribed in Se
tions 4 and 5.In Se
tion 6, we give an example from the use of Carillon to verify Y2K readiness of RCS.Quali�er polymorphism and how Carillon
an analyze multiple �les at on
e is des
ribed inSe
tions 7 and 8. The PAM Ema
s interfa
e is do
umented in Se
tion 9. Information aboutthe authors and a
on
lusion is given in Se
tions 10 and 11.2 InstallationFor the installation, we assume some familiarity with Ema
s and UNIX. Carillon requiresGNU Ema
s 20.2.1 or later.Carillon is shipped as a gzipped tar-�le, whi
h
an be downloaded from the web pagehttp://bane.
s.berkeley.edu/
arillonThere are versions of Carillon for X86-Linux, Spar
-Solaris, and HPPA-HPUX. When youhave downloaded the gzipped tar �le, named Carillon_X.tar.gz, where X denotes theplatform you are using, exe
ute the
ommandsgunzip Carillon_X.tar.gztar xf Carillon_X.tarThese
ommands
reate a dire
tory
alled Carillon with the following �le and dire
tories:
opyright The
opyright noti
ebin/ Carillon exe
utableema
s/ Elisp
ode for displaying the analysis results in Ema
sexample/ Example dire
torydo
/ Do
umentationNow exe
ute the
ommands
d Carillon./setupThe setup s
ript generates a few lines of Ema
s
ode to put in your .ema
s �le (see Se
-tion 2.1). The s
ript also makes Carillon exe
utable from the dire
tory in whi
h it is installed.3

2.1 Customizing Ema
sBefore you
an use Carillon, you need to add to your .ema
s �le the Ema
s
ode that thesetup s
ript writes to the �le ema
s/personal.el during setup. This �le
ontains (afterrunning the setup s
ript) the following lines, with the di�eren
e that the dire
tory path/home/mael is modi�ed for your environment:(setq load-path (append (list "/home/mael/Carillon/ema
s/pam""/home/mael/Carillon/ema
s/pam/elib")load-path))(autoload 'pam-analyze-file "pam-3" "Carillon Version 1.0" t)(setq pam-default-analysis '("/home/mael/Carillon/bin/
arillon""-
onfig""/home/mael/Carillon/examples/
onfig.d""-prelude""/home/mael/Carillon/examples/prelude.i"))(fset '
arillon 'pam-analyze-file)2.2 Changing the PAM ColorsCarillon
omes with a set of prede�ned
olors used to display analysis information. These
olors are designed to work well with a grey ba
kground, and you may need to
hange themto suit other
olor s
hemes. You
an
ustomize the PAM
olors by adding the following linesto your .ema
s �le and
hanging the
olors to whatever your prefer.(
ustom-set-fa
es'(pam-
olor-1 ((t (:foreground "Red" :underline t))) t)'(pam-
olor-2 ((t (:foreground "Blue" :underline t))) t)'(pam-
olor-3 ((t (:foreground "Turquoise" :underline t))) t)'(pam-
olor-4 ((t (:foreground "Green" :underline t))) t)'(pam-
olor-5 ((t (:foreground "Violet" :underline t))) t)'(pam-
olor-6 ((t (:foreground "GreenYellow" :underline t))) t)'(pam-
olor-7 ((t (:foreground "Magenta" :underline t))) t)'(pam-
olor-8 ((t (:foreground "Thistle" :underline t))) t)'(pam-
olor-mouse ((t (:foreground "White":ba
kground "Grey" :underline t))) t))The use of
olors 1-8 is determined by a
on�guration �le passed to Carillon (see Se
-tion 5.5). The last
olor, pam-
olor-mouse, is the
olor with whi
h hyperlinks are high-lighted when the mouse pointer is moved on top of them. A
opy of this
ode
an be foundin ema
s/pam_
olors.el.Another possibility is to
hange the Ema
s ba
kground
olor by typing M-x set-ba
kground-
olor. We re
ommend sele
ting \White" to make the default PAM
olors most readable.
4

3 First ExampleIn this se
tion, we demonstrate how Carillon
an be used to �nd a Y2K error in a C program.Consider the following program, found in examples/simple1.
:int printf(
onst
har * format, ...);void pr_year(
har * year) {printf("The year is 19%s", year);}int main() {pr_year("99");pr_year("2000"); /*1*/return 0;}Here the programmer's intention is that the fun
tion pr_year is applied to strings that
onsist of two digits, representing a year after the year 1900. As we
an see in line /*1*/,the fun
tion pr_year is not applied to only two-digit years, but also to the four-digit year"2000". The problem here is that years are represented di�erently in di�erent parts of theprogram.Our tool does not assume anything about the fun
tions or strings that appear in aprogram|after all, "99"
ould represent the year 1999, the programmer's age, or the ex-pe
ted temperature in degrees Fahrenheit.Instead of guessing whi
h strings represent dates, Carillon requires that the programmerprovides information about her intentions with quali�er annotations. In this
ase, we addannotations to mark two-digit years and four-digit years (see examples/simple2.
):int printf(
onst
har * format, ...);void pr_year(
har * $YY year) {printf("The year is 19%s", year);}int main() {pr_year((
har * $YY)"99");pr_year((
har * $YYYY)"2000"); /*2*/return 0;}The annotation on the parameter of the pr_year fun
tion indi
ates that it may take onlya two-digit year as an argument. Carillon assumes that the type of all string literals is
har *$NONYEAR, that is, strings by default do not
ontain dates. Be
ause the strings "99"and "2000" in this
ase do
ontain dates, we
ast their types to
har *$YY and
har *$YYYY,respe
tively.Noti
e that only those parts of a program that manipulate dates need be annotated. Forour small example that was most of the program, but in pra
ti
e, almost all of a program
an remain unannotated. 5

3.1 Finding the Y2K ErrorAssuming that Carillon is already installed, as des
ribed in Se
tion 2, you
an now runCarillon on the example program. From within Ema
s, type M-x
arillon and enter thestring "examples/simple2.
" (assuming you are in the dire
tory where Carillon is installed)when asked for the �le to analyze. The system analyzes a prelude �le examples/prelude.iand then the �le examples/simple2.
, whi
h uses the printf fun
tion de
lared both in the�le examples/simple2.
 and in the prelude �le. Carillon displays the result in an Ema
sbu�er.As we expe
t, Carillon
omplains with an error message:/home/mael/Carillon/examples/simple2.
:9.4-9.11Error during analysis of ``pr_year((
har *$YYYY) "2000")''.The qualifier $YY does not mat
h the qualifier $YYYY.If you
li
k the middle mouse-button on the highlighted portion of the error message (
alledan overlay), Carillon will move the
ursor to the lo
ation in the program where the erroro

urs. If you would rather use the keyboard to sele
t an overlay instead of using the mouse,you
an pla
e the
ursor over the overlay and type C-
 C-l. Identi�ers in the program arehighlighted with
olors that
lassify what quali�ers appear in the type of a given identi�er.If you
li
k on a highlighted identi�er, Carillon shows the type of the identi�er in the mini-bu�er. If the type does not �t in the mini-bu�er, the system shows the type in a dedi
atedbu�er. For instan
e, to understand the type error in the program, observe that the type ofpr_year is a fun
tion from ($YY ptr(num)) to void and that the type of the argument topr_year in line /*2*/ is $YYYY ptr(num).Carillon also
omplains with a warning, whi
h you
an see if you
li
k on the overlayUnsafe Var-Arg Apps in the Carillon Results bu�er:There was 1 instan
e of a variable-length argument fun
tionbeing unsafely applied to a year-involved argument:/home/mael/Carillon/examples/simple2.
:2.4-2.10Argument ``year'' to fun
tion ``printf''has type $YY ptr(num)The de
laration of printf in the prelude �le spe
i�es a type only for its �rst parameter.Hen
e, to be safe, Carillon gives warnings if quali�ers other than $NONYEAR o

ur in thetypes of arguments passed for ... in an appli
ation of a variable-length argument fun
tion.In this
ase, the argument to the printf fun
tion
an safely be
ast to
har *$NONYEAR,whi
h makes the warning disappear (�le examples/simple3.
).The prelude �le is used to give library fun
tions more re�ned types than those given in theprograms themselves. The di�erent types for the printf fun
tion given by the de
larationsin the prelude �le and in the �le examples/simple1.
 is one example.Carillon does not try to
orre
t the possible Y2K errors that it �nds. Instead, it is theresponsibility of the programmer to modify the program so that years are used
onsistently.6

4 The Type SystemCarillon is a type-based analysis tool. As des
ribed in the previous example, the programmerannotates her program by adding type quali�ers to the program. Carillon �nds Y2K bugsby performing type
he
king.Carillon extends the C type system in four ways:1. The programmer
an use an extensible set of user-de�ned type quali�ers (e.g., $YY and$YYYY) in addition to the C quali�ers
onst and volatile.2. Certain operations on data that
ontain years are disallowed. These restri
tions areenfor
ed by requiring
ertain types to be quali�ed as $NONYEAR.3. Quali�er polymorphism allows fun
tions to have di�erent types for ea
h use. SeeSe
tion 7.4. Multiple �les
an be type
he
ked together, thereby enfor
ing type
onsisten
y a
ross�les. See Se
tion 8.Carillon assumes that the input program is a type-
orre
t C program. While Carillonwill dete
t many C type errors, it does not display as mu
h useful information about C typeerrors as a C
ompiler.The remainder of this se
tion des
ribes the extensions noted above and dis
usses someof the limitations of Carillon.4.1 Quali�ers and Quali�ed TypesWe begin by introdu
ing the types that Carillon uses to perform its analysis.An identi�er is a C identi�er not starting with _. A type quali�er is a token $id, whereid is an identi�er. Thus, $NONYEAR, $YY, and $YYYY are examples of quali�ers. The quali�er$NONYEAR is built into Carillon, while other quali�ers must be des
ribed in a
on�guration�le that is read by Carillon. See Se
tion 5.5 for more information about the
on�guration�le and how
olors are asso
iated with the quali�ers.A quali�er variable is a token $_id, where id is an identi�er. Thus, $_1, $_q, and $_q1are examples of quali�er variables. Quali�er variables are used for introdu
ing fun
tionswith polymorphi
 fun
tion types. See Se
tion 7.Carillon allows type quali�ers and quali�er variables to appear in any position where Callows the quali�ers
onst and volatile. For example, (
har * $YYYY) is a type repre-senting strings
ontaining a four-digit year. Similarly, the de
laration
har * $YYYY f(
har * $YY a);de
lares f to be a fun
tion that takes as argument a string
ontaining a two-digit year andreturns a string
ontaining a four-digit year. Sometimes we di�erentiate between Carillontypes, whi
h may
ontain user-de�ned quali�ers and quali�er variables, and C types, whi
hmay not. 7

As the reader may have noti
ed in Se
tion 3, the types displayed by Carillon are slightlydi�erent from the usual C types. Carillon uses and displays types given by the followinggrammar: type ::= h qual i num any numeri
 typej void voidj h qual i ptr(type) pointers and arraysj (type�) -> type fun
tionsj h qual i f (label : type)� g stru
tures and unionsHere qual ranges over quali�ers and quali�er variables and label ranges over stru
ture �eld-names. There are several important things to noti
e. First, all numeri
 C types (e.g., int,
har, and float) are represented with the same Carillon type, num. Se
ond, both pointersand arrays are represented by ptr.1 Third, both stru
tures and unions are represented thesame way. This treatment of unions is
onsistent with C, in whi
h unions
an be used tomake unsafe
asts. Finally, num types, ptr types, and stru
ture types
an appear with aquali�er or a quali�er variable. For the purpose of �nding date errors in programs thatrepresent dates as strings, one
an ignore quali�ers that appear in other than string types.However, the ri
her syntax
an be useful for �nding other abstra
tion violations.4.2 Carillon Type RulesCarillon's type system for
es date strings to be used
onsistently. In an assignment a = b,Carillon requires the types of a and b to mat
h. In a
all f(x), x must mat
h the type off's formal parameter.Unlike C, Carillon assumes that unspe
i�ed type quali�ers may be anything. For example,
onsider the following
ode:
har * $YY s1;
har * s2;
har * s3;s2 = s1;s1 = s3;Be
ause s2 and s3's types
ontain no year-related quali�er, Carillon assumes that any qual-i�er
ould appear (more formally, Carillon automati
ally inserts a quali�er variable). Hen
ethe system infers that both s2 and s3 must have type
har * $YY.It is this type inferen
e pro
ess, in whi
h Carillon
omputes the ne
essary type annota-tions inferred by the program stru
ture, that makes the system easy to use by minimizingthe number of programmer-supplied annotations. As one might imagine, su
h a system
anbe useful for more than just date strings; see Se
tion 11 for a dis
ussion.In addition to enfor
ing
onsisten
y for assignments and fun
tion
alls, Carillon's typesystems for
es
ertain types to be quali�ed by $NONYEAR. Intuitively, the kind of errorswe are interested in for the Y2K problem are abstra
tion violations. Years are represented
on
retely by strings (type
har *), but they should be manipulated only by
ertain routines.1Internally Carillon uses the C types to
orre
tly handle multidimensional arrays and su
h.8

Carillon has three new kinds of type rules to enfor
e this abstra
tion:� String literals are given the type (
har * $NONYEAR). This rule ensures that no stringliteral is mistakenly
onsidered a year. Thus, the programmer must
ast strings
on-taining years to the appropriate type, as in Se
tion 3.� Pointer dereferen
ing and stru
t �eld-a

ess require the type of the argument tobe quali�ed as $NONYEAR. For example, Carillon assumes that if the programmerdereferen
es a
har *, she is manipulating the string dire
tly rather than through anabstra
tion. It is the responsibility of the programmer to inspe
t the
ode to verify itis safe and to insert expli
it quali�er
asts to bypass the type system, if ne
essary.� The type of & expressions are quali�ed as $NONYEAR. Moreover, pointer types in-volved in arithmeti
 operations, su
h as addition and subtra
tion, are also quali�ed as$NONYEAR. Again, these quali�ers prevent expli
it manipulation of dates.Moreover, as we have seen in Se
tion 3, Carillon gives warnings if the types of argumentspassed for ... in an appli
ation of a variable-length argument fun
tion
ontain quali�ersother than $NONYEAR. Su
h appli
ations
ould potentially be unsafe.Finally, many programs use standard library fun
tions su
h as str
mp, str
py, andprintf to manipulate strings. Carillon needs to know the types of these fun
tions in orderto
orre
tly analyze the program|spe
i�
ally, Carillon needs to know what e�e
ts thesefun
tions have on strings. Thus, Carillon
omes with a �le of standard de
larations forlibrary fun
tions (�le examples/prelude.i). See Se
tion 8.1 for more dis
ussion.5 Using the SystemIn this se
tion, we des
ribe in more detail how to use Carillon for analyzing industrial-sizedprograms (i.e., programs larger than the example program of Se
tion 3.)5.1 Modifying a Make�leAs mentioned earlier, Carillon parses only prepro
essed C
ode. Large C programs are usu-ally maintained and
ompiled using the program make, whi
h reads a Makefile to determinewhat re
ompilations are ne
essary to
ompile and link the program. Here we des
ribe howto modify the Makefile to also generate prepro
essed C
ode.We make use of two programs remblanks and remquals, whi
h are in
luded with Carillon.The remblanks program removes super
uous blank lines from a program. The remqualsprogram removes all quali�ers and quali�er variables (i.e., tokens starting with $) from aprogram. Both programs read
hara
ters from stdin and output
hara
ters to stdout. Theprograms are lo
ated in the bin dire
tory.We use �le names of the form �le.i to denote prepro
essed �les. Here is a make rule for
ompiling a C �le �le.
 into an obje
t �le �le.o and in the pro
ess
reating a prepro
essed�le �le.i. 9

.
.o: $(CC) -E $< | remblanks > $*.iiremquals < $*.ii > $*.i$(CC) $(CFLAGS) -
 -o $*.o $*.imv -f $*.ii $*.iThe �rst line in this rule prepro
esses the C �le, removes super
uous blank lines using theremblanks program,2 and stores the result in a temporary �le �le.ii. The se
ond line usesremquals to remove all quali�ers and quali�er variables from the prepro
essed
ode. Thethird line performs the a
tual
ompilation. The last line moves the prepro
essed �le (withquali�er annotations) to �le.i.On
e a Makefile has been instrumented to
reate prepro
essed �les and prepro
essed�les have been generated for ea
h C �le in the program, Carillon
an be used to analyze theprogram. Instru
tions on how to analyze a program with multiple �les are given in Se
tion 8.5.2 Dealing with Error MessagesCarillon issues three kinds of error messages: parse errors, C type errors, and Y2K errors.Carillon issues parse errors in a bu�er in Ema
s. In the
ase that one or more parse errorsare found, Carillon does not try to type
he
k the program. The user must
orre
t possibleparse errors before the program
an be analyzed properly by Carillon.In traditional C
ompilers, C type
he
king is performed after parsing, thereby verifyingthat the program sour
e is indeed a valid C program. Carillon is not as good at �nding Ctype errors as a C
ompiler, mostly be
ause the stru
ture of the types that Carillon uses issimple (see Se
tion 4.1). In general, before analyzing a program with Carillon, the programshould be
he
ked for possible parse and type errors with a C
ompiler.The C type errors that Carillon does dete
t, in
lude those that
ause a mismat
h betweenCarillon types (e.g., between num and void). Carillon also dete
ts if a fun
tion is applied tofewer arguments than it spe
i�es.The most interesting kind of error messages are those
aused by type quali�er mismat
hes.These kinds of errors indi
ate a potential Y2K error as illustrated in Se
tion 3. To
orre
tthese kinds of errors it is essential that the programmer has a basi
 understanding of theCarillon type system (see Se
tion 4). In Se
tion 6, we shall see an example where a series oferror messages are safely eliminated by bypassing the Carillon type system, through the useof expli
it
asts.Carillon issues an error message if one of the following rules is violated:Rule 1. The set of fun
tion de�nitions for an identi�er in a program must haveidenti
al types.Rule 2. A type inferred for a fun
tion de�nition must be identi
al to the �rstde
laration of that fun
tion in ea
h �le that de
lares the fun
tion.2We assume here that the bin dire
tory is in
luded in the users PATH environment-variable for a

essingremblanks and remquals without spe
ifying the paths.10

The �rst rule allows for multiple de�nitions of fun
tions, whi
h provides support for theGNU __inline__ extension. Carillon prints a warning message when a fun
tion is de�nedmore than on
e.Ea
h of the rules
an be violated either be
ause of a type quali�er mismat
h or be
auseof a mismath in the stru
ture of the types involved (e.g., a num type is mat
hed against afun
tion type.)In Se
tion 8, we re�ne the two rules to allow for de
larations and de�nitions of polymor-phi
 fun
tions.Carillon does not issue a warning if an identi�er is de
lared more than on
e in a �le,even if the identi�er is de
lared with di�erent types. For ea
h �le, Carillon uses the �rstde
laration of an identi�er for all its su

eeding uses.5.3 Cast Control and WarningsCarillon propagates type information
orre
tly only up to
asting. Thus, it is important thatall the
asts in a program are safe. When a program has been analyzed, Carillon shows alist of
asts involving quali�ers other than $NONYEAR;
li
k on the Cast Control overlay inthe Carillon Results bu�er to see a list of overlays, ea
h of whi
h is linked to an unsafe
ast in the program.Carillon issues warnings if there are any impli
it
asts to or from a type
ontainingquali�ers other than $NONYEAR (e.g., $YY, $YYYY). There are two pla
es su
h impli
it
asts
an o

ur. The �rst is when an argument is passed for ... in the appli
ation of a variable-length argument fun
tion. The se
ond is when using union's with types
ontaining quali�ersother than $NONYEAR. In both
ases, Carillon produ
es a list of warning messages. After aprogram has been analyzed, one
an
li
k on the overlays Unsafe Var-Arg Apps and UnsafeUnions|in the Carillon Results bu�er|to see the warnings.5.4 Year-Involved Fun
tionsAnother way to view where years are propagated in an analyzed program is to
li
k onthe Year-Involved Fun
tions overlay in the Carillon Results bu�er. Carillon then listsoverlays pointing to the de�nitions of fun
tions for whi
h quali�ers other than $NONYEARo

ur in their types.5.5 The Con�guration FileThe Carillon type system uses a
on�guration �le to de�ne user spe
i�ed type quali�ers.For the examples shown in this do
ument, the following
on�guration �le suÆ
es (�leexamples/
onfig.d):$YYYY
olor "pam-
olor-4";$YY
olor "pam-
olor-5";$RCSYEAR
olor "pam-
olor-6"; 11

This
on�guration �le introdu
es the quali�ers $YYYY, $YY, and $RCSYEAR, and binds them tothe
olors "pam-
olor-4", "pam-
olor-5", and "pam-
olor-6", respe
tively. The quali�er$NONYEAR is built-in and asso
iated with the
olor "pam-
olor-3". The
olors are usedfor visualizing the identi�ers in an analyzed program. An identi�er whose type
ontainsonly one kind of quali�er is
olored with its asso
iated
olor. When two or more di�erentquali�ers o

ur in the type of an identi�er, then the
olor "pam-
olor-2" is used for theoverlay. Finally, when no quali�er o

urs in the type of an identi�er then "pam-
olor-1"is used for the overlay. See Se
tion 2.2 for information about modifying the mapping of thenames "pam-
olor-1" thorough "pam-
olor-8" into a
tual
olors in Ema
s.The possibility of extending the set of quali�ers is useful for analyzing programs that usemany di�erent representations of years, su
h as four digit years and windowing years (i.e.,years represented by two digits, but o�set by a number so that a �xed set of years beforeand after year 2000 are representable.)6 A Se
ond Example|RCS YearsWe now present a more elaborate example extra
ted from the C sour
es of the RevisionControl System (RCS) software pa
kage. RCS was originally written to work with onlytwo-digit years but was then modi�ed so that �les
reated with RCS before year 2000 work
orre
tly when used with RCS after year 2000. This new version of RCS (version 5.5 orlater) has been su

essfully
he
ked for Y2K errors with Carillon.RCS uses several di�erent internal representations of dates. Y2K errors may o

ur wher-ever string representations of dates are manipulated or transformed into other date repre-sentations. Be
ause RCS initially worked with strings
ontaining only two-digit years andbe
ause it is
ru
ial that new versions of RCS are ba
kward
ompatible, RCS gives meaningto strings with two- and four-digit years as follows:� Years before 2000
an be represented using two digits or four digits.� Years after 2000 must be represented using four digits.So for example, the year 1999
an be represented both as the string "99" and as the string"1999", whereas the year 2000 must be represented as the string "2000". We asso
iate thismeaning of strings
ontaining years with a new quali�er $RCSYEAR (this quali�er is alreadypresent in the
on�guration �le examples/
onfig.d.) For
onvenien
e, we extend the notionof $RCSYEAR strings and $YYYY strings to denote also strings
ontaining dates, where the yearpart of the date is an $RCSYEAR string or a $YYYY string, respe
tively.Consider the following example
ode (�le examples/r
s1.
), whi
h is extra
ted fromthe RCS sour
es and annotated with quali�ers (the
ode is also modi�ed slightly for thepresentation):int printf(
onst
har * $NONYEAR format, ...);int sprintf(
har * str,
onst
har * format, ...);
har * $YYYY date2str(
har * $RCSYEAR date,
har * $NONYEAR datebuf) {12

har *p = date;while (*p++ != '.');sprintf(datebuf,"19%.*s/%.2s/%.2s" + (date[2℄=='.' ? 0 : 2),(int)(p-date-1), date, p, p+3);return datebuf;}int main(void) {
har *today = (
har * $RCSYEAR)"99.05.12";
har *nextyear = (
har * $RCSYEAR)"2000.05.12";
har *datebuf = "\0 ";printf("today is %s\n", date2str(today,datebuf));printf("nextyear is %s\n", date2str(nextyear,datebuf));return 1;}Here main formats and prints the dates 1999.05.12 and 2000.05.12, but internally, the date1999.05.12 is represented as the string "99.05.12". The date2str uses a bu�er to reformatan $RCSYEAR date as a $YYYY date.Although the
ode behaves as intended, it imposes several
hallenges to the Carillon typesystem. Carillon issues the following error messages when the program is analyzed:/home/mael/Carillon/examples/r
s1.
:3.13-3.24Error during analysis of ``*p++!='.'''.The qualifier $NONYEAR does not mat
h the qualifier $RCSYEAR./home/mael/Carillon/examples/r
s1.
:5.6-5.13Error during analysis of ``sprintf(datebuf, "19%.*s/%.2s/%.2s"+date[2℄=='.' ? 0 : 2, (int) p-date-1, date, p, p+3)''.The qualifier $NONYEAR does not mat
h the qualifier $RCSYEAR./home/mael/Carillon/examples/r
s1.
:9.6-9.21Error during analysis of ``return datebuf;''.The qualifier $YYYY does not mat
h the qualifier $NONYEAR.The �rst two error messages are
aused by the Carillon pointer-dereferen
ing type rule,whi
h requires the type of the argument to a pointer-dereferen
ing
onstru
t to be quali�edas $NONYEAR. Carillon issues the �rst error message be
ause p has type (
har * $RCSYEAR)be
ause it is assigned to date, but p is dereferen
ed in line 3. Similarly, Carillon issuesthe se
ond error message be
ause date is dereferen
ed in line 5. The third error messageis issued be
ause datebuf, whi
h has type
har * $NONYEAR, is asso
iated with the returntype
har * $YYYY of date2str in line 9.Now, before we
an safely bypass the type system and
ast datebuf to type
har * $YYYYin line 9, we must be sure that the body of date2str behaves as intended. It is up to the13

programmer to
onvin
e herself that the
ode is
orre
t. Here is a version of date2str with
asts inserted to bypass the Carillon type system (�le examples/r
s2.
):
har * $YYYY date2str(
har * $RCSYEAR date,
har * $NONYEAR datebuf) {
har *p = (
har * $NONYEAR)date;while (*p++ != '.');sprintf(datebuf,"19%.*s/%.2s/%.2s" + (((
har * $NONYEAR)date)[2℄=='.' ? 0 : 2),(int)(p-date-1), date, p, p+3);return (
har * $YYYY)datebuf;}With these annotations, Carillon now issues three warnings, be
ause arguments with qual-i�ers other than $NONYEAR in their types are passed for ... in the appli
ation of sprintf.It is left as an exer
ise to the reader to eliminate these warnings (a solution is given inexamples/r
s3.
), but do not forget to
onvin
e yourself that the
asts you insert aresafe. After eliminating the warnings, the inserted
asts turn up in the Cast Overview (seeSe
tion 5.3).7 Quali�er PolymorphismCarillon makes it possible to avoid a range of annotations by allowing fun
tion identi�ers tobe asso
iated with so-
alled polymorphi
 types. Polymorphism in Carillon makes it possibleto give di�erent quali�ed types to di�erent uses of a fun
tion, in su
h a way that typeinformation is still propagated safely.The bene�t provided by polymorphism is best illustrated with an example. Consider thefollowing annotated de
laration of the str
py fun
tion from the C Standard Library:
har * $NONYEAR str
py(
har * $NONYEAR s1,
har * $NONYEAR s2);Re
all that str
py
opies the string s2 to the string s1 and returns s2 as a result. Thequali�er annotations ensure that no year-quali�ed string is
opied to a $NONYEAR-quali�edstring (or vi
e versa) without notifying the user of the problemati

opying. Now,
onsidera program
ontaining the two statementsstr
py(text, "The year is ");str
py(year, (
har * $YYYY)"1999");where text and year are de
lared with type
har *. Although the �rst appli
ation ofstr
py leads to no type error|provided the type of text is
har * $NONYEAR|the se
ondappli
ation of str
py does lead to a type error. The type error requires the user to �rstre�ne the de
laration of year to be of type
har * $YYYY, and se
ond, to
ast the �rst andse
ond arguments to str
py to be of type
har * $NONYEAR.14

We
an avoid this problem by introdu
ing quali�er polymorphism into the Carillon typesystem. Intuitively, we want to allow s1, s2, and the result of str
py to have any quali�ersin their types as long as all three have the same quali�ers. We a
hieve this with the followingde
laration (in prelude.i):
har * $_a str
py(
har * $_a s1,
har * $_a s2);Here str
py is de
lared to be polymorphi
 in the quali�er variable $_a, meaning that if werepla
e $_a
onsistently with any quali�er, then we will have a valid type for str
py. Forexample, we
an repla
e $_a by the quali�er $YYYY to see that str
py
an have the type
har * $YYYY,
har * $YYYY ->
har * $YYYYWe
an repla
e $_aby $YY to see that str
py also has the type
har * $YY,
har * $YY ->
har * $YYThus, with this de
laration it is possible to apply str
py in di�erent
ontexts with argumentsof di�erent quali�ed types. Consider again a program with the two statementsstr
py(text, "The year is ");str
py(year, (
har * $YYYY)"1999");where text and year are de
lared with type
har *, but now in the
ontext of the polymor-phi
 de
laration of str
py. Although str
py is applied to arguments of di�erent quali�edtypes, this time, the statements do not lead to a type error. The �rst appli
ation
onstrainstext to be quali�ed as $NONYEAR, be
ause Carillon gives the type
har * $NONYEAR to thestring literal in the �rst appli
ation of str
py. Moreover, the se
ond appli
ation of str
py
onstrains year to be quali�ed as $YYYY. Noti
e that the type of str
py is not polymorphi
in the underlying C type; Carillon allows types to be polymorphi
 only in quali�ers.In the following, we use qv to range over quali�er variables. Polymorphi
 types in Carillon,whi
h are also
alled type s
hemes, are given by the following grammar:s
heme ::= All(qv�).type Polymorphi
 type s
hemej type Non-polymorphi
 type s
hemeIn a type s
heme s
heme of the form All(qv1; � � � ; qvn).type, the quali�er variables qv1; � � � ; qvnare
alled the generalized quali�er variables of the type s
heme, and type is
alled the body ofthe type s
heme. We require that all the quali�er variables that appear in the body of a types
heme are generalized. Thus, in the de
laration of str
py above the quali�er variable $_ais impli
itly generalized. We say that a type type0 is an instan
e of the type s
heme s
hemeif there exists a mapping S (
alled a substitution) from the quali�er variables qv1; � � � ; qvn totypes type1; � � � ; typen, su
h that type0 = S(type). Here the notation S(type) means the typetype, with ea
h quali�er variable qv in the domain of S being substituted with S(qv). Theinstan
e relation extends to type s
hemes as follows. A type s
heme All(qv1; � � � ; qvn).typeis an instan
e of another type s
heme s
heme i� type is an instan
e of s
heme. Two types
hemes are equal if they
an be made identi
al by systemati
 renaming of generalized qual-i�er variables.Carillon allows fun
tions to be both de�ned and de
lared with polymorphi
 types. To
ontinue our example, here is an implementation of str
py (�le examples/str
py.
):15

har * $_a str
py(
har * $_a s1,
onst
har * $_a s2) {
har * p = (
har * $NONYEAR)s1;for (; *p++ = *((
har * $NONYEAR)s2)++ ;) ;return s1;}Noti
e that we have
ast the uses of s2 and the �rst use of s1 to be quali�ed as $NONYEAR,whi
h allows the type of s1 and s2 to be
har * $_a.Carillon �nds that the de�nition we have given for str
py is
onsistent with the poly-morphi
 de
laration of str
py. In fa
t, Carillon will
omplain if the type s
heme given bya previous de
laration of a fun
tion is not an instan
e of the type s
heme inferred for thede�nition of the fun
tion.Moreover, when a type s
heme is formed for a fun
tion de�nition, Carillon requires thatthe type s
heme is
losed, meaning that all quali�er variables appearing in the types of thearguments and result of a fun
tion de�nition are generalized. For the system to be sound,Carillon requires that none of the quali�er variables o

urs in the type of any identi�er in as
ope outside of the fun
tion de�nition. This restri
tion makes the following
ode erroneous(�le examples/wrong.
):
har * s;void wrong(
har * $_q a) {s = a;return;}s = (
har * $YYYY) "1999";Carillon
omplains with the error message/home/mael/Carillon/examples/wrong.
:2.7-2.12Failed to
lose fun
tion type for `wrong'. Type variable `$_q'
ouldnot be generalized.In the example, the identi�er s is
onstrained by the assignment in wrong to be of type
har * $_q, be
ause s is given this type, and
learly we
annot generalize s's type afteranalyzing wrong be
ause we have not yet dis
overed that s must be of type
har * $YYYY.8 Multiple FilesCarillon
an analyze one �le at a time or multiple �les at on
e. To make Carillon analyzemultiple �les at on
e, enter a dire
tory path when asked for a �le to analyze. Carillon thenanalyzes all .i �les in the dire
tory (or .
 �les, if no .i �les are present.) By analyzingmultiple �les at on
e, Carillon has a better
han
e of �nding type in
onsisten
ies in theprogram. In parti
ular, the types (or type s
hemes) that Carillon infers for the de�nitionsin one �le are used for the uses of these identi�ers in other �les (instead of the perhaps lessdes
riptive de
larations of these identi�ers.) 16

The two basi
 type-
onsisten
y rules that are enfor
ed a
ross �les were given in Se
-tion 5.2. Here we re�ne the rules so as to allow de
larations and de�nitions of fun
tions withpolymorphi
 types. The �rst rule is re�ned to hold for type s
hemes:Rule 10 The set of fun
tion de�nitions for an identi�er in a program must haveidenti
al type s
hemes.Noti
e that this rule holds a
ross �les: It is an error if a fun
tion is de�ned in di�erent �lesin a program with di�erent type s
hemes. Re
all, that for ea
h �le, all de
larations for anidenti�er ex
ept the �rst are dis
arded. The se
ond rule is re�ned to the following:Rule 20 If an identi�er id is de�ned in some �le with type s
heme s
heme, thenfor ea
h �le that de
lares id, the type s
heme provided by the �rst de
laration ofid in the �le must be an instan
e of s
heme.We illustrate the se
ond rule with an example. Assume a program with the two �lesde
.
 and def.
 (dire
tory examples/defde
/):de
.

har * $_q1 first(
har * $_q1 a,
har * $_q2 b);def.

har * $_q1 first(
har * $_q1 a,
har * $NONYEAR b) {return a;}Here the se
ond rule is violated be
ause the type s
heme provided by the de
laration inde
.
 is not an instan
e of the type s
heme provided by the de�nition in def.
. Carillonissues the following error message:Error o

urred in de
laration of `first'. Identifier `first' isdefined with typeAll($_q1).($_q1 ptr(num), $NONYEAR ptr(num)) -> $_q1 ptr(num)whi
h is in
onsistent with the typeAll($_q2,$_q1).($_q1 ptr(num), $_q2 ptr(num)) -> $_q1 ptr(num)with whi
h it was de
lared.The two rules have the important property that whether the analysis su

eeds is inde-pendent of the order in whi
h the �les in a program are analyzed.With Carillon, types
ontaining stru
ts must mat
h a
ross �les. This property is essen-tial for the safety of the type system. Consider the following example
onsisting of the two�les stru
t1.
 and stru
t2.
 (dire
tory examples/stru
t/):stru
t1.
 stru
t date {
har * y;};stru
t date d = {(
har * $YY)"99"};stru
t2.
 int printf(
onst
har * $NONYEAR format, ...);stru
t d {
har * y;};extern stru
t d d; 17

int main(void) {printf(d.y);return 0;}Be
ause printf requires a $NONYEAR quali�ed string to be passed for its �rst argument andbe
ause the identi�er d is de�ned with a $YY quali�ed string element, Carillon issues thefollowing error message:/home/mael/BANE/CQual/examples/stru
t/stru
t2.
:4.3-4.9Error during analysis of ``printf(d.y)''.The qualifier $NONYEAR does not mat
h the qualifier $YY.Thus, Carillon dete
ts that the program is in danger of printing a two digit year.8.1 Libraries and the Prelude FileBe
ause Carillon works only on prepro
essed C
ode, de
larations for all library fun
tionsthat are used in a �le are already present in the �le that uses the identi�ers. However,be
ause the
ode for su
h library fun
tions is often not available, it is sometimes ne
essary toprovide de
larations that annotate the types of library fun
tions with appropriate quali�ers.In parti
ular, string manipulation fun
tions, su
h as those found in string.h, must berestri
ted so their arguments have $NONYEAR quali�ed types. One example of su
h a fun
tionis the atoi fun
tion from the C Standard Library, whi
h in Carillon is de
lared byint atoi(
onst
har $NONYEAR s);This de
laration is given in the default prelude �le examples/prelude.i, whi
h is analyzedbefore any other program �le. The de
laration of atoi in the prelude �le does not
on
i
twith the de
laration of atoi in the library, whi
h is de
lared identi
ally but without the$NONYEAR quali�er. (Re
all that any missing quali�ers are assumed to be quali�er variables.)Another
lass of identi�ers that are de
lared in the prelude �le are those library fun
tionsthat are polymorphi
 in their type quali�ers. One example of su
h a fun
tion is str
py fromSe
tion 7.For ea
h identi�er de
lared in the prelude �le with type s
heme s
heme, Carillon requiresthat the �rst de
laration of this identi�er in a �le provides a type s
heme that is an instan
eof s
heme. The identi�ers de
lared in the prelude �le
annot immediately be used by another�le without �rst being de
lared in this �le, but when de
lared, the type s
heme provided bythe de
laration in the prelude �le is used. See Se
tion 3 for an example involving the printffun
tion.For a parti
ular appli
ation, it may be ne
essary to extend the prelude �le to des
ribemore library fun
tions. It is also possible to
hoose between di�erent prelude �les by modi-fying the settings in your personal .ema
s �le (see Se
tion 2.1.)
18

9 The Ema
s Interfa
eThe bulk of Carillon is a program, written in Standard ML, whi
h analyzes C �les and
ommuni
ates the results to Ema
s. Ema
s then displays the result of the analysis to the uservia Program Analysis Mode (PAM). PAM is also the name of the software that implementsthe
ommuni
ation layer between the Standard ML program and Ema
s.On
e Carillon has analyzed the �les of a program, the user
an browse the analysis resultsusing the mouse or the keyboard. Here is a list of
ommands that are supported by PAM:C-
 C-l sele
ts the overlay pointed at by the
ursor (same as sele
ting the overlay with themiddle mouse-button.)C-
 C-f analyzes a �le or a dire
tory.C-
 C-r exits PAM and kills all PAM bu�ers.10 The AuthorsIf you have any questions or
omments related to Carillon, please do not hesitate to
onta
tthe authors. You
an use the email address bane-software�
s.berkeley.edu.We would like to thank Henning Niss and Chris Harrelson for providing the
urrentversion of the Program Analysis Mode (PAM).11 Con
lusionSeveral other tools are available for �nding Y2K problems in COBOL programs. One exampleis Hafnium's
ommer
ial produ
t AnnoDomini, whi
h is a tool for �nding Y2K errors inIBM OS/VS COBOL programs. Like Carillon, AnnoDomini is based on a type system fordete
ting in
onsistent uses of years [EHM+99℄. We know of no systems other than Carillonfor �nding Y2K problems in C programs.Two related tools are La
kwit [OJ97℄ and LCLint [EGHT94, Eva96℄. Based on ML typeinferen
e, La
kwit
an be used to dete
t abstra
tion violations in C programs. LCLint isa tool that uses, among other te
hniques, an extended set of C type quali�ers to �nd bugsin C programs. Carillon integrates the use of quali�ers and polymorphism to a degree thatmakes it useful to analyze even very large programs for Y2K readiness. Carillon has beenused e�e
tively to lo
ate a Y2K bug in CVS (Con
urrent Version System) version 1.9, whi
his about 57,000 lines of C (132,000 lines prepro
essed).In this do
ument, we have presented Carillon, a system to �nd Y2K problems in C pro-grams. The diÆ
ulties of establishing the Y2K readiness of software are largely
aused byprograms that break type abstra
tion barriers. An automati
 tool,
ombined with appropri-ate information from a programmer (in form of quali�er annotations), is highly desirable for�nding Y2K errors in programs and for establishing that su
h errors do not o

ur. Carillonprovides just su
h a tool. 19

There are other examples of
onversion problems where Carillon
an help to dete
t ab-stra
tion violations, in
luding
onversion of programs to the use of uni
ode
hara
ters and
onversion of programs to use the new Euro
urren
y instead of native European
urren
ies.Referen
es[EGHT94℄ David Evans, John Guttag, Jim Horning, and Yang Meng Tan. L
lint: A toolfor using spe
i�
ations to
he
k
ode. In ACM SIGSOFT Symposium on theFoundations of Software Engineering (SFSE'94), De
ember 1994.[EHM+99℄ Peter Harry Eidor�, Fritz Henglein, Christian Mossin, Henning Niss, MortenHeine S�rensen, and Mads Tofte. Annodomini: From type theory to year 2000
onversion tool. In 26th Symposium on the Prin
iples of Programming Languages(POPL'99), January 1999.[Eva96℄ David Evans. Stati
 dete
tion of dynami
 memory errors. In ACM SIGPLANConferen
e on Programming Language Design and Implementation (PLDI'96),Philadelphia, PA, May 1996.[FFA99℄ Je�rey S. Foster, Manuel F�ahndri
h, and Alexander Aiken. A theory of typequali�ers. In ACM SIGPLAN Conferen
e on Programming Language Designand Implementation (PLDI'99), pages 192{203, May 1999.[OJ97℄ Robert O'Callahan and Daniel Ja
kson. La
kwit: A program understanding toolbased on type inferen
e. In International Conferen
e on Software Engineering(ICSE'97), May 1997.A LimitationsIn this appendix, we list some of the limitations of Carillon:� Initializers are required to mat
h the stru
ture of the type of the variable being ini-tialized. In most
ases it is straightforward to modify the program text to meet thisrequirement. For example, the following
odestru
t {
har *s; int x } foo f = {"ab
", 3, "def", 4};should be rewritten asstru
t {
har *s; int x } foo f = {{"ab
", 3}, {"def", 4}};� Some GNU C extensions are supported, but not all; for instan
e, the __typeof operatoris not supported.� Carillon
annot parse fun
tions returning fun
tion pointers. To get around this prob-lem, one
an use a typedef to de�ne an identi�er for the return type. This identi�er
an then be used for the return type of the fun
tion.20

B Copyright Noti
eCopyright (
) 1999 The Regents of the University of California. All rights reserved.Permission to use,
opy, modify, and distribute this software for any purpose, withoutfee, and without written agreement is hereby granted, provided that the above
opyrightnoti
e and the following two paragraphs appear in all
opies of this software.In no event shall the University of California be liable to any party fordire
t, indire
t, spe
ial, in
idental, or
onsequential damages arising outof the use of this software and its do
umentation, even if the Universityof California has been advised of the possibility of su
h damage.The University of California spe
ifi
ally dis
laims any warranties, in-
luding, but not limited to, the implied warranties of mer
hantability andfitness for a parti
ular purpose. The software provided hereunder is on an"as is" basis, and the University of California has no obligation to providemaintenan
e, support, updates, enhan
ements, or modifi
ations.

21

