Carillon®*—a System to Find
Y2K Problems in C Programs

Martin Elsman, Jeffrey S. Foster, and Alexander Aiken
Computer Science Division, University of California, Berkeley

bane-software@cs.berkeley.edu
July 30, 1999

“Any man’s death diminishes me, because I am involved in mankind;
and therefore never send to know for whom the bell tolls;
it tolls for thee.”—John Donne

Abstract

Carillon is a simple, fast, and effective type-based system for finding Y2K errors
in C programs. Carillon extends the standard C type system with a user-defined set
of date-related type qualifiers. The user annotates date-related functions with the
appropriate qualifiers, and Carillon checks the program for Y2K errors.

Carillon displays the results of the Y2K analysis in an interactive Emacs buffer.
Program variables are colored according to the kind of Y2K information they may
contain, and the user can click on program variables to see the exact Y2K type inferred
by the analysis.

The system has been used successfully to verify Y2K readiness of programs and to
locate Y2K errors.

CARILLON IS DISTRIBUTED WITHOUT ANY WARRANTY.
THE COPYRIGHT NOTICE IN APPENDIX B APPLIES.

1 Introduction

The Y2K problem, or the millennium bug, happens when a program represents years using
only two digits. If the year 2000 is represented by the string "00", then a program may not
be able to tell the difference between the year 2000 and the year 1900. As we enter the new
millennium, such bugs can lead to system crashes, or worse, a seemingly-working program
that computes the wrong results.

Because most of the world’s legacy code is written in COBOL, the commercial market-
place has focused on Y2K bugs in the business and financial applications written in COBOL.
But these applications are not the only ones with potential damaging Y2K bugs. Control

*Carillon is also the name of the bells of the Sather Tower at University of California, Berkeley.

software for embedded systems and operating system software are examples of systems where
dates play a critical role. Many such systems are written in the C programming language,
and the commercial Y2K tools available for C are not as sophisticated as the COBOL tools.
While the C Standard Library provides Y2K-safe date operations, it is common that pro-
grams manipulate dates directly as strings of characters—for instance, to interact with other
programs. It is essential to establish that such systems run as expected when we enter the
new millennium.

Carillon is an easy-to-use type-based system for finding Y2K problems in C programs and
for showing that such problems do not exist. Carillon has the following important features:

e Carillon points the user to Y2K related problems and makes her concentrate on the
parts of the program that manipulate dates. The system can analyze source files
independently for quick and easy use. It also supports whole-program analysis for
improved precision.

e Y2K safety is guaranteed up to casting; Carillon provides an overview of the Y2K
unsafe casts in the analyzed program.

e Analysis of industrial-sized programs is supported, even with whole-program analysis.
Whole-program analysis of a 57,000 line program (132,000 lines preprocessed) takes
137 seconds on a 300MHz Pentium II.

e Annotations are necessary only where dates are manipulated. Because Carillon pro-
vides type inference and qualifier polymorphism, relatively few annotations are needed.

e Carillon is easily integrated with other tools, such as compilers. Analysis results are
presented to the user in an interactive Emacs buffer and can be browsed through using
the mouse or the keyboard.

Carillon has been used to verify that RCS (Revision Control System) version 5.6.0.1 does
not contain any Y2K errors. RCS is about 17,000 lines of C (41,000 lines of preprocessed C.)
The experiment took only two hours: This time was spent partly on instrumenting the RCS
Malkefile to output preprocessed code, partly on annotating the main header file of RCS, and
partly on solving type conflicts that were not Y2K errors.

Carillon has also been used to locate a millennium bug in CVS (Concurrent Version
System) version 1.9. CVS is about 57,000 lines of C (132,000 lines of preprocessed C.) The
millennium bug is fixed in CVS version 1.10.

There are three technical, research-related contributions from the development of Caril-
lon:

e The system is a demonstration of how a program analysis can be composed from
components of the Berkeley ANalysis Engine (BANE). BANE provides a complete
infrastructure for developing program analysis applications, including language front-
ends, efficient algorithms for solving different kinds of constraints, and a customizable
user-interface called PAM (for Program Analysis Mode) for visualizing the results of a
program analysis in Emacs. Using BANE, Carillon was developed in one month.

e The Carillon type system is a result of an ongoing effort at providing an open type-
system, in which the user (or analysis implementor) can modify the typing rules for
specific needs. This open type-system is based on the notion of qualifiers [FFA99].

e Carillon supports qualifier polymorphism, which decreases the number of required Y2K
annotations. Qualifier polymorphism is an enhancement over other type-based tools
for finding Y2K errors in COBOL programs [EHM99].

In the next section, we give information about obtaining and installing Carillon. In
Section 3, we show a first example of finding a Y2K bug in a C program. The type system
that Carillon uses and various aspects of how to use Carillon is described in Sections 4 and 5.
In Section 6, we give an example from the use of Carillon to verify Y2K readiness of RCS.
Qualifier polymorphism and how Carillon can analyze multiple files at once is described in
Sections 7 and 8. The PAM Emacs interface is documented in Section 9. Information about
the authors and a conclusion is given in Sections 10 and 11.

2 Installation

For the installation, we assume some familiarity with Emacs and UNIX. Carillon requires
GNU Emacs 20.2.1 or later.
Carillon is shipped as a gzipped tar-file, which can be downloaded from the web page

http://bane.cs.berkeley.edu/carillon

There are versions of Carillon for X86-Linux, Sparc-Solaris, and HPPA-HPUX. When you
have downloaded the gzipped tar file, named Carillon_X.tar.gz, where X denotes the
platform you are using, execute the commands

gunzip Carillon_X.tar.gz
tar xf Carillon_X.tar

These commands create a directory called Carillon with the following file and directories:

copyright The copyright notice

bin/ Carillon executable

emacs/ Elisp code for displaying the analysis results in Emacs
example/ Example directory

doc/ Documentation

Now execute the commands

cd Carillon
./setup

The setup script generates a few lines of Emacs code to put in your .emacs file (see Sec-
tion 2.1). The script also makes Carillon executable from the directory in which it is installed.

2.1 Customizing Emacs

Before you can use Carillon, you need to add to your .emacs file the Emacs code that the
setup script writes to the file emacs/personal.el during setup. This file contains (after
running the setup script) the following lines, with the difference that the directory path
/home/mael is modified for your environment:

(setq load-path (append (list "/home/mael/Carillon/emacs/pam"
"/home/mael/Carillon/emacs/pam/elib")
load-path))

(autoload ’pam-analyze-file "pam-3" "Carillon Version 1.0" t)

(setq pam-default-analysis ’("/home/mael/Carillon/bin/carillon"
"—config"
"/home/mael/Carillon/examples/config.d"
"—-prelude"
"/home/mael/Carillon/examples/prelude.i"))

(fset ’carillon ’pam-analyze-file)

2.2 Changing the PAM Colors

Carillon comes with a set of predefined colors used to display analysis information. These
colors are designed to work well with a grey background, and you may need to change them
to suit other color schemes. You can customize the PAM colors by adding the following lines
to your .emacs file and changing the colors to whatever your prefer.

(custom-set-faces
> (pam-color-1 ((t
’ (pam-color-2 ((t
> (pam-color-3 ((t
’ (pam-color-4 ((t
> (pam-color-5 ((t
> (pam-color-6 ((t
’ (pam-color-7 ((t
> (pam-color-8 ((t
> (pam-color-mouse

:foreground "Red" :underline t))) t)
:foreground "Blue" :underline t))) t)
:foreground "Turquoise" :underline t))) t)
:foreground "Green" :underline t))) t)
:foreground "Violet" :underline t))) t)
:foreground "GreenYellow" :underline t))) t)
:foreground "Magenta" :underline t))) t)
:foreground "Thistle" :underline t))) t)
(t (:foreground "White"

:background "Grey" :underline t))) t))

N SN AN NN NN NN

The use of colors 1-8 is determined by a configuration file passed to Carillon (see Sec-
tion 5.5). The last color, pam-color-mouse, is the color with which hyperlinks are high-
lighted when the mouse pointer is moved on top of them. A copy of this code can be found
in emacs/pam_colors.el.

Another possibility is to change the Emacs background color by typing M-x set-background-
color. We recommend selecting “White” to make the default PAM colors most readable.

3 First Example

In this section, we demonstrate how Carillon can be used to find a Y2K error in a C program.
Consider the following program, found in examples/simplel.c:

int printf(const char * format, ...);
void pr_year(char * year) {

printf ("The year is 19%s", year);
+
int main() {

pr_year("99");

pr_year("2000"); /x1%/

return O;

}

Here the programmer’s intention is that the function pr_year is applied to strings that
consist of two digits, representing a year after the year 1900. As we can see in line /*1%/,
the function pr_year is not applied to only two-digit years, but also to the four-digit year
"2000". The problem here is that years are represented differently in different parts of the
program.

Our tool does not assume anything about the functions or strings that appear in a
program—after all, "99" could represent the year 1999, the programmer’s age, or the ex-
pected temperature in degrees Fahrenheit.

Instead of guessing which strings represent dates, Carillon requires that the programmer
provides information about her intentions with qualifier annotations. In this case, we add
annotations to mark two-digit years and four-digit years (see examples/simple2.c):

int printf(const char * format, ...);
void pr_year(char * $YY year) {
printf ("The year is 19%s", year);
}
int main() {
pr_year((char * $YY)"99");
pr_year((char * $YYYY)"2000"); /*2%/
return O;

¥

The annotation on the parameter of the pr_year function indicates that it may take only
a two-digit year as an argument. Carillon assumes that the type of all string literals is
char *$NONYEAR, that is, strings by default do not contain dates. Because the strings "99"
and "2000" in this case do contain dates, we cast their types to char *$YY and char *$YYYY,
respectively.

Notice that only those parts of a program that manipulate dates need be annotated. For
our small example that was most of the program, but in practice, almost all of a program
can remain unannotated.

3.1 Finding the Y2K Error

Assuming that Carillon is already installed, as described in Section 2, you can now run
Carillon on the example program. From within Emacs, type M-x carillon and enter the
string "examples/simple2.c" (assuming you are in the directory where Carillon is installed)
when asked for the file to analyze. The system analyzes a prelude file examples/prelude.i
and then the file examples/simple2.c, which uses the printf function declared both in the
file examples/simple2.c and in the prelude file. Carillon displays the result in an Emacs
buffer.
As we expect, Carillon complains with an error message:

/home/mael/Carillon/examples/simple2.c:9.4-9.11
Error during analysis of ‘‘pr_year((char *$YYYY) "2000")°’’.
The qualifier $YY does not match the qualifier $YYYY.

If you click the middle mouse-button on the highlighted portion of the error message (called
an overlay), Carillon will move the cursor to the location in the program where the error
occurs. If you would rather use the keyboard to select an overlay instead of using the mouse,
you can place the cursor over the overlay and type C-c C-1. Identifiers in the program are
highlighted with colors that classify what qualifiers appear in the type of a given identifier.
If you click on a highlighted identifier, Carillon shows the type of the identifier in the mini-
buffer. If the type does not fit in the mini-buffer, the system shows the type in a dedicated
buffer. For instance, to understand the type error in the program, observe that the type of
pr_year is a function from ($YY ptr(num)) to void and that the type of the argument to
pr_year in line /*2x/ is $YYYY ptr(num).

Carillon also complains with a warning, which you can see if you click on the overlay
Unsafe Var-Arg Apps in the Carillon Results buffer:

There was 1 instance of a variable-length argument function
being unsafely applied to a year-involved argument:

/home/mael/Carillon/examples/simple2.c:2.4-2.10
Argument ‘‘year’’ to function ‘‘printf’’
has type $YY ptr(num)

The declaration of printf in the prelude file specifies a type only for its first parameter.
Hence, to be safe, Carillon gives warnings if qualifiers other than $NONYEAR occur in the
types of arguments passed for ... in an application of a variable-length argument function.
In this case, the argument to the printf function can safely be cast to char *$NONYEAR,
which makes the warning disappear (file examples/simple3.c).

The prelude file is used to give library functions more refined types than those given in the
programs themselves. The different types for the printf function given by the declarations
in the prelude file and in the file examples/simplel.c is one example.

Carillon does not try to correct the possible Y2K errors that it finds. Instead, it is the
responsibility of the programmer to modify the program so that years are used consistently.

4 The Type System

Carillon is a type-based analysis tool. As described in the previous example, the programmer
annotates her program by adding type qualifiers to the program. Carillon finds Y2K bugs
by performing type checking.

Carillon extends the C type system in four ways:

1. The programmer can use an extensible set of user-defined type qualifiers (e.g., $YY and
$YYYY) in addition to the C qualifiers const and volatile.

2. Certain operations on data that contain years are disallowed. These restrictions are
enforced by requiring certain types to be qualified as $NONYEAR.

3. Qualifier polymorphism allows functions to have different types for each use. See
Section 7.

4. Multiple files can be type checked together, thereby enforcing type consistency across
files. See Section 8.

Carillon assumes that the input program is a type-correct C program. While Carillon
will detect many C type errors, it does not display as much useful information about C type
errors as a C compiler.

The remainder of this section describes the extensions noted above and discusses some
of the limitations of Carillon.

4.1 Qualifiers and Qualified Types

We begin by introducing the types that Carillon uses to perform its analysis.

An identifier is a C identifier not starting with _. A type qualifier is a token $id, where
id is an identifier. Thus, $NONYEAR, $YY, and $YYYY are examples of qualifiers. The qualifier
$NONYEAR is built into Carillon, while other qualifiers must be described in a configuration
file that is read by Carillon. See Section 5.5 for more information about the configuration
file and how colors are associated with the qualifiers.

A qualifier variable is a token $_id, where id is an identifier. Thus, $_1, $_q, and $_q1
are examples of qualifier variables. Qualifier variables are used for introducing functions
with polymorphic function types. See Section 7.

Carillon allows type qualifiers and qualifier variables to appear in any position where C
allows the qualifiers const and volatile. For example, (char * $YYYY) is a type repre-
senting strings containing a four-digit year. Similarly, the declaration

char * $YYYY f(char * $YY a);

declares f to be a function that takes as argument a string containing a two-digit year and
returns a string containing a four-digit year. Sometimes we differentiate between Carillon
types, which may contain user-defined qualifiers and qualifier variables, and C types, which
may not.

As the reader may have noticed in Section 3, the types displayed by Carillon are slightly
different from the usual C types. Carillon uses and displays types given by the following
grammar:

type == (qual) num any numeric type
| void void
| (qual) ptr(type) pointers and arrays
| (type*) => type functions
|

(qual) { (label : type)* } structures and unions

Here qual ranges over qualifiers and qualifier variables and label ranges over structure field-
names. There are several important things to notice. First, all numeric C types (e.g., int,
char, and float) are represented with the same Carillon type, num. Second, both pointers
and arrays are represented by ptr.! Third, both structures and unions are represented the
same way. This treatment of unions is consistent with C, in which unions can be used to
make unsafe casts. Finally, num types, ptr types, and structure types can appear with a
qualifier or a qualifier variable. For the purpose of finding date errors in programs that
represent dates as strings, one can ignore qualifiers that appear in other than string types.
However, the richer syntax can be useful for finding other abstraction violations.

4.2 Carillon Type Rules

Carillon’s type system forces date strings to be used consistently. In an assignment a = b,
Carillon requires the types of a and b to match. In a call £(x), x must match the type of
f’s formal parameter.

Unlike C, Carillon assumes that unspecified type qualifiers may be anything. For example,
consider the following code:

char * $YY si;
char * s2;
char * s3;

s2 = si;

sl = s83;

Because s2 and s3’s types contain no year-related qualifier, Carillon assumes that any qual-
ifier could appear (more formally, Carillon automatically inserts a qualifier variable). Hence
the system infers that both s2 and s3 must have type char * $YV.

It is this type inference process, in which Carillon computes the necessary type annota-
tions inferred by the program structure, that makes the system easy to use by minimizing
the number of programmer-supplied annotations. As one might imagine, such a system can
be useful for more than just date strings; see Section 11 for a discussion.

In addition to enforcing consistency for assignments and function calls, Carillon’s type
systems forces certain types to be qualified by $NONYEAR. Intuitively, the kind of errors
we are interested in for the Y2K problem are abstraction violations. Years are represented
concretely by strings (type char *), but they should be manipulated only by certain routines.

!Internally Carillon uses the C types to correctly handle multidimensional arrays and such.

Carillon has three new kinds of type rules to enforce this abstraction:

e String literals are given the type (char * $NONYEAR). This rule ensures that no string
literal is mistakenly considered a year. Thus, the programmer must cast strings con-
taining years to the appropriate type, as in Section 3.

e Pointer dereferencing and struct field-access require the type of the argument to
be qualified as $NONYEAR. For example, Carillon assumes that if the programmer
dereferences a char *, she is manipulating the string directly rather than through an
abstraction. It is the responsibility of the programmer to inspect the code to verify it
is safe and to insert explicit qualifier casts to bypass the type system, if necessary.

e The type of & expressions are qualified as $NONYEAR. Moreover, pointer types in-
volved in arithmetic operations, such as addition and subtraction, are also qualified as
$NONYEAR. Again, these qualifiers prevent explicit manipulation of dates.

Moreover, as we have seen in Section 3, Carillon gives warnings if the types of arguments
passed for ... in an application of a variable-length argument function contain qualifiers
other than $NONYEAR. Such applications could potentially be unsafe.

Finally, many programs use standard library functions such as strcmp, strcpy, and
printf to manipulate strings. Carillon needs to know the types of these functions in order
to correctly analyze the program-—specifically, Carillon needs to know what effects these
functions have on strings. Thus, Carillon comes with a file of standard declarations for
library functions (file examples/prelude.i). See Section 8.1 for more discussion.

5 Using the System

In this section, we describe in more detail how to use Carillon for analyzing industrial-sized
programs (i.e., programs larger than the example program of Section 3.)

5.1 Modifying a Makefile

As mentioned earlier, Carillon parses only preprocessed C code. Large C programs are usu-
ally maintained and compiled using the program make, which reads a Makefile to determine
what recompilations are necessary to compile and link the program. Here we describe how
to modify the Makefile to also generate preprocessed C code.

We make use of two programs remblanks and remquals, which are included with Carillon.
The remblanks program removes superfluous blank lines from a program. The remquals
program removes all qualifiers and qualifier variables (i.e., tokens starting with $) from a
program. Both programs read characters from stdin and output characters to stdout. The
programs are located in the bin directory.

We use file names of the form file.i to denote preprocessed files. Here is a make rule for
compiling a C file file.c into an object file file.o and in the process creating a preprocessed
file file.1.

$(CC) -E $< | remblanks > $*.ii
remquals < $x.ii > $x*.i

$(CC) $(CFLAGS) -c -0 $*x.0 $*.1i
mv -f $x.ii $*.1i

The first line in this rule preprocesses the C file, removes superfluous blank lines using the
remblanks program,? and stores the result in a temporary file file.ii. The second line uses
remquals to remove all qualifiers and qualifier variables from the preprocessed code. The
third line performs the actual compilation. The last line moves the preprocessed file (with
qualifier annotations) to file. 1.

Once a Makefile has been instrumented to create preprocessed files and preprocessed
files have been generated for each C file in the program, Carillon can be used to analyze the
program. Instructions on how to analyze a program with multiple files are given in Section 8.

5.2 Dealing with Error Messages

Carillon issues three kinds of error messages: parse errors, C type errors, and Y2K errors.
Carillon issues parse errors in a buffer in Emacs. In the case that one or more parse errors
are found, Carillon does not try to type check the program. The user must correct possible
parse errors before the program can be analyzed properly by Carillon.

In traditional C compilers, C type checking is performed after parsing, thereby verifying
that the program source is indeed a valid C program. Carillon is not as good at finding C
type errors as a C compiler, mostly because the structure of the types that Carillon uses is
simple (see Section 4.1). In general, before analyzing a program with Carillon, the program
should be checked for possible parse and type errors with a C compiler.

The C type errors that Carillon does detect, include those that cause a mismatch between
Carillon types (e.g., between num and void). Carillon also detects if a function is applied to
fewer arguments than it specifies.

The most interesting kind of error messages are those caused by type qualifier mismatches.
These kinds of errors indicate a potential Y2K error as illustrated in Section 3. To correct
these kinds of errors it is essential that the programmer has a basic understanding of the
Carillon type system (see Section 4). In Section 6, we shall see an example where a series of
error messages are safely eliminated by bypassing the Carillon type system, through the use
of explicit casts.

Carillon issues an error message if one of the following rules is violated:

Rule 1. The set of function definitions for an identifier in a program must have
identical types.

Rule 2. A type inferred for a function definition must be identical to the first
declaration of that function in each file that declares the function.

2We assume here that the bin directory is included in the users PATH environment-variable for accessing
remblanks and remquals without specifying the paths.

10

The first rule allows for multiple definitions of functions, which provides support for the
GNU __inline__ extension. Carillon prints a warning message when a function is defined
more than once.

Each of the rules can be violated either because of a type qualifier mismatch or because
of a mismath in the structure of the types involved (e.g., a num type is matched against a
function type.)

In Section 8, we refine the two rules to allow for declarations and definitions of polymor-
phic functions.

Carillon does not issue a warning if an identifier is declared more than once in a file,
even if the identifier is declared with different types. For each file, Carillon uses the first
declaration of an identifier for all its succeeding uses.

5.3 Cast Control and Warnings

Carillon propagates type information correctly only up to casting. Thus, it is important that
all the casts in a program are safe. When a program has been analyzed, Carillon shows a
list of casts involving qualifiers other than $NONYEAR; click on the Cast Control overlay in
the Carillon Results buffer to see a list of overlays, each of which is linked to an unsafe
cast in the program.

Carillon issues warnings if there are any implicit casts to or from a type containing
qualifiers other than $NONYEAR (e.g., $YY, $YYYY). There are two places such implicit casts
can occur. The first is when an argument is passed for ... in the application of a variable-
length argument function. The second is when using union’s with types containing qualifiers
other than $NONYEAR. In both cases, Carillon produces a list of warning messages. After a
program has been analyzed, one can click on the overlays Unsafe Var-Arg Apps and Unsafe
Unions—in the Carillon Results buffer—to see the warnings.

5.4 Year-Involved Functions

Another way to view where years are propagated in an analyzed program is to click on
the Year-Involved Functions overlay in the Carillon Results buffer. Carillon then lists
overlays pointing to the definitions of functions for which qualifiers other than $NONYEAR
occur in their types.

5.5 The Configuration File

The Carillon type system uses a configuration file to define user specified type qualifiers.
For the examples shown in this document, the following configuration file suffices (file
examples/config.d):

$YYYY color "pam-color-4";
$YY color "pam-color-5";
$RCSYEAR color "pam-color-6";

11

This configuration file introduces the qualifiers $YYYY, $YY, and $RCSYEAR, and binds them to
the colors "pam-color-4", "pam-color-5", and "pam-color-6", respectively. The qualifier
$NONYEAR is built-in and associated with the color "pam-color-3". The colors are used
for visualizing the identifiers in an analyzed program. An identifier whose type contains
only one kind of qualifier is colored with its associated color. When two or more different
qualifiers occur in the type of an identifier, then the color "pam-color-2" is used for the
overlay. Finally, when no qualifier occurs in the type of an identifier then "pam-color-1"
is used for the overlay. See Section 2.2 for information about modifying the mapping of the
names "pam-color-1" thorough "pam-color-8" into actual colors in Emacs.

The possibility of extending the set of qualifiers is useful for analyzing programs that use
many different representations of years, such as four digit years and windowing years (i.e.,
years represented by two digits, but offset by a number so that a fixed set of years before
and after year 2000 are representable.)

6 A Second Example—RCS Years

We now present a more elaborate example extracted from the C sources of the Revision
Control System (RCS) software package. RCS was originally written to work with only
two-digit years but was then modified so that files created with RCS before year 2000 work
correctly when used with RCS after year 2000. This new version of RCS (version 5.5 or
later) has been successfully checked for Y2K errors with Carillon.

RCS uses several different internal representations of dates. Y2K errors may occur wher-
ever string representations of dates are manipulated or transformed into other date repre-
sentations. Because RCS initially worked with strings containing only two-digit years and
because it is crucial that new versions of RCS are backward compatible, RCS gives meaning
to strings with two- and four-digit years as follows:

e Years before 2000 can be represented using two digits or four digits.
e Years after 2000 must be represented using four digits.

So for example, the year 1999 can be represented both as the string "99" and as the string
"1999", whereas the year 2000 must be represented as the string "2000". We associate this
meaning of strings containing years with a new qualifier $RCSYEAR (this qualifier is already
present in the configuration file examples/config.d.) For convenience, we extend the notion
of $RCSYEAR strings and $YYYY strings to denote also strings containing dates, where the year
part of the date is an $RCSYEAR string or a $YYYY string, respectively.

Consider the following example code (file examples/rcsi.c), which is extracted from
the RCS sources and annotated with qualifiers (the code is also modified slightly for the
presentation):

int printf(const char * $NONYEAR format, ...);
int sprintf(char * str, const char * format, ...);

char * $YYYY date2str(char * $RCSYEAR date, char * $NONYEAR datebuf) {

12

char *p = date;

while (kp++ != ’.7)

sprintf (datebuf,
"19%.xs/%.2s/%.2s" + (date[2]=="." 7 O : 2),
(int) (p-date-1), date, p, p+3
)3

return datebuf;
}
int main(void) {
char *today = (char * $RCSYEAR)"99.05.12";
char #*nextyear = (char * $RCSYEAR)'"2000.05.12";
char *datebuf = "\0 "
printf("today is %s\n", date2str(today,datebuf));
printf ("nextyear is %s\n", date2str(nextyear,datebuf));
return 1;

}

Here main formats and prints the dates 1999.05.12 and 2000.05.12, but internally, the date
1999.05.12 is represented as the string "99.05.12". The date2str uses a buffer to reformat
an $RCSYEAR date as a $YYYY date.

Although the code behaves as intended, it imposes several challenges to the Carillon type
system. Carillon issues the following error messages when the program is analyzed:

/home/mael/Carillon/examples/rcsl.c:3.13-3.24
Error during analysis of ‘‘xp++!=’>,77",
The qualifier $NONYEAR does not match the qualifier $RCSYEAR.

/home/mael/Carillon/examples/rcsl.c:5.6-5.13

Error during analysis of ‘‘sprintf(datebuf, "19%.xs/%.2s/%.2s"+
date[2]=="." 7 0 : 2, (int) p-date-1, date, p, p+3)’’.

The qualifier $NONYEAR does not match the qualifier $RCSYEAR.

/home/mael/Carillon/examples/rcsl.c:9.6-9.21
Error during analysis of ‘‘return datebuf;’’.
The qualifier $YYYY does not match the qualifier $NONYEAR.

The first two error messages are caused by the Carillon pointer-dereferencing type rule,
which requires the type of the argument to a pointer-dereferencing construct to be qualified
as $NONYEAR. Carillon issues the first error message because p has type (char * $RCSYEAR)
because it is assigned to date, but p is dereferenced in line 3. Similarly, Carillon issues
the second error message because date is dereferenced in line 5. The third error message
is issued because datebuf, which has type char * $NONYEAR, is associated with the return
type char * $YYYY of date2str in line 9.

Now, before we can safely bypass the type system and cast datebuf to type char * $YYYY
in line 9, we must be sure that the body of date2str behaves as intended. It is up to the

13

programmer to convince herself that the code is correct. Here is a version of date2str with
casts inserted to bypass the Carillon type system (file examples/rcs2.c):

char * $YYYY date2str(char * $RCSYEAR date, char * $NONYEAR datebuf) {
char *p = (char * $NONYEAR)date;

while (xp++ 1= ’.7)

sprintf (datebuf,
"19%.*s/%.2s/%.2s8" + (((char * $NONYEAR)date)[2]==’." 7 0 : 2),
(int) (p-date-1), date, p, p+3
)3

return (char * $YYYY)datebuf;
}

With these annotations, Carillon now issues three warnings, because arguments with qual-
ifiers other than $NONYEAR in their types are passed for ... in the application of sprintf.
It is left as an exercise to the reader to eliminate these warnings (a solution is given in
examples/rcs3.c), but do not forget to convince yourself that the casts you insert are
safe. After eliminating the warnings, the inserted casts turn up in the Cast Overview (see
Section 5.3).

7 Qualifier Polymorphism

Carillon makes it possible to avoid a range of annotations by allowing function identifiers to
be associated with so-called polymorphic types. Polymorphism in Carillon makes it possible
to give different qualified types to different uses of a function, in such a way that type
information is still propagated safely.

The benefit provided by polymorphism is best illustrated with an example. Consider the
following annotated declaration of the strcpy function from the C Standard Library:

char * $NONYEAR strcpy(char * $NONYEAR s1, char * $NONYEAR s2);

Recall that strcpy copies the string s2 to the string s1 and returns s2 as a result. The
qualifier annotations ensure that no year-qualified string is copied to a $NONYEAR-qualified
string (or vice versa) without notifying the user of the problematic copying. Now, consider
a program containing the two statements

strcpy(text, "The year is ");
strcpy(year, (char * $YYYY)"1999");

where text and year are declared with type char *. Although the first application of
strcpy leads to no type error—provided the type of text is char * $NONYEAR—the second
application of strcpy does lead to a type error. The type error requires the user to first
refine the declaration of year to be of type char * $YYYY, and second, to cast the first and
second arguments to strcpy to be of type char * $NONYEAR.

14

We can avoid this problem by introducing qualifier polymorphism into the Carillon type
system. Intuitively, we want to allow s1, s2, and the result of strcpy to have any qualifiers
in their types as long as all three have the same qualifiers. We achieve this with the following
declaration (in prelude.i):

char * $_a strcpy(char * $_a s1, char * $_a s2);

Here strcpy is declared to be polymorphic in the qualifier variable $_a, meaning that if we
replace $_a consistently with any qualifier, then we will have a valid type for strcpy. For
example, we can replace $_a by the qualifier $YYYY to see that strcpy can have the type

char * $YYYY, char * $YYYY -> char * $YYYY
We can replace $_aby $YY to see that strcpy also has the type
char * $YY, char *x $YY -> char * $YY

Thus, with this declaration it is possible to apply strcpy in different contexts with arguments
of different qualified types. Consider again a program with the two statements

strcpy(text, "The year is ");
strcpy(year, (char * $YYYY)"1999");

where text and year are declared with type char *, but now in the context of the polymor-
phic declaration of strcpy. Although strcpy is applied to arguments of different qualified
types, this time, the statements do not lead to a type error. The first application constrains
text to be qualified as $NONYEAR, because Carillon gives the type char * $NONYEAR to the
string literal in the first application of strcpy. Moreover, the second application of strcpy
constrains year to be qualified as $YYYY. Notice that the type of strcpy is not polymorphic
in the underlying C type; Carillon allows types to be polymorphic only in qualifiers.

In the following, we use qu to range over qualifier variables. Polymorphic types in Carillon,
which are also called type schemes, are given by the following grammar:

scheme = Al11(qu*) .type Polymorphic type scheme
| type Non-polymorphic type scheme

In a type scheme scheme of the form A11(qu;,- -+, qu,) . type, the qualifier variables quv,, - - -, qu,,
are called the generalized qualifier variables of the type scheme, and type is called the body of
the type scheme. We require that all the qualifier variables that appear in the body of a type
scheme are generalized. Thus, in the declaration of strcpy above the qualifier variable $_a
is implicitly generalized. We say that a type type' is an instance of the type scheme scheme
if there exists a mapping S (called a substitution) from the qualifier variables quy, - -, qu, to
types type,, - - -, type,, such that type’ = S(type). Here the notation S(type) means the type
type, with each qualifier variable qv in the domain of S being substituted with S(quv). The
instance relation extends to type schemes as follows. A type scheme A11(quv,,---, qu,) . type
is an instance of another type scheme scheme iff type is an instance of scheme. Two type
schemes are equal if they can be made identical by systematic renaming of generalized qual-
ifier variables.

Carillon allows functions to be both defined and declared with polymorphic types. To
continue our example, here is an implementation of strcpy (file examples/strcpy.c):

15

char * $_a strcpy(char * $_a s1, const char x $_a s2) {
char * p = (char * $NONYEAR)s1;
for (; *p++ = *x((char * $NONYEAR)s2)++ ;) ;
return sli;

¥

Notice that we have cast the uses of s2 and the first use of s1 to be qualified as $NONYEAR,
which allows the type of s1 and s2 to be char * $_a.

Carillon finds that the definition we have given for strcpy is consistent with the poly-
morphic declaration of strcpy. In fact, Carillon will complain if the type scheme given by
a previous declaration of a function is not an instance of the type scheme inferred for the
definition of the function.

Moreover, when a type scheme is formed for a function definition, Carillon requires that
the type scheme is closed, meaning that all qualifier variables appearing in the types of the
arguments and result of a function definition are generalized. For the system to be sound,
Carillon requires that none of the qualifier variables occurs in the type of any identifier in a
scope outside of the function definition. This restriction makes the following code erroneous
(file examples/wrong.c):

char * s;

void wrong(char * $_q a) {
s = a;
return;

+

s = (char * $YYYY) "1999";

Carillon complains with the error message

/home/mael/Carillon/examples/wrong.c:2.7-2.12
Failed to close function type for ‘wrong’. Type variable ‘$_q’ could
not be generalized.

In the example, the identifier s is constrained by the assignment in wrong to be of type
char * $_q, because s is given this type, and clearly we cannot generalize s’s type after
analyzing wrong because we have not yet discovered that s must be of type char * $YYYY.

8 Multiple Files

Carillon can analyze one file at a time or multiple files at once. To make Carillon analyze
multiple files at once, enter a directory path when asked for a file to analyze. Carillon then
analyzes all .1i files in the directory (or .c files, if no .1i files are present.) By analyzing
multiple files at once, Carillon has a better chance of finding type inconsistencies in the
program. In particular, the types (or type schemes) that Carillon infers for the definitions
in one file are used for the uses of these identifiers in other files (instead of the perhaps less
descriptive declarations of these identifiers.)

16

The two basic type-consistency rules that are enforced across files were given in Sec-
tion 5.2. Here we refine the rules so as to allow declarations and definitions of functions with
polymorphic types. The first rule is refined to hold for type schemes:

Rule 1’ The set of function definitions for an identifier in a program must have
identical type schemes.

Notice that this rule holds across files: It is an error if a function is defined in different files
in a program with different type schemes. Recall, that for each file, all declarations for an
identifier except the first are discarded. The second rule is refined to the following:

Rule 2' If an identifier id is defined in some file with type scheme scheme, then
for each file that declares id, the type scheme provided by the first declaration of
¢d in the file must be an instance of scheme.

We illustrate the second rule with an example. Assume a program with the two files
dec.c and def.c (directory examples/defdec/):

dec.c char * $_ql first(char * $_ql a, char * $_qg2 b);
def.c char * $_ql first(char * $_ql a, char * $NONYEAR b) {
return a;
}

Here the second rule is violated because the type scheme provided by the declaration in
dec.c is not an instance of the type scheme provided by the definition in def.c. Carillon
issues the following error message:

Error occurred in declaration of ‘first’. Identifier ‘first’ is
defined with type

A11($_q1).($_ql ptr(num), $NONYEAR ptr(num)) -> $_ql ptr(num)
which is inconsistent with the type

A11($_q92,%_q1).($_ql ptr(num), $_qg2 ptr(num)) -> $_ql ptr(num)
with which it was declared.

The two rules have the important property that whether the analysis succeeds is inde-
pendent of the order in which the files in a program are analyzed.

With Carillon, types containing structs must match across files. This property is essen-
tial for the safety of the type system. Consider the following example consisting of the two
files structl.c and struct2.c (directory examples/struct/):

structl.c struct date {char * y;};
struct date d = {(char * $YY)"99"};

struct2.c int printf(const char * $NONYEAR format, ...);

struct d {char * y;};
extern struct d d;

17

int main(void) {
printf(d.y);
return O;

¥

Because printf requires a $NONYEAR qualified string to be passed for its first argument and
because the identifier d is defined with a $YY qualified string element, Carillon issues the
following error message:

/home/mael/BANE/CQual/examples/struct/struct2.c:4.3-4.9
Error during analysis of ‘‘printf(d.y)’’.
The qualifier $NONYEAR does not match the qualifier $YY.

Thus, Carillon detects that the program is in danger of printing a two digit year.

8.1 Libraries and the Prelude File

Because Carillon works only on preprocessed C code, declarations for all library functions
that are used in a file are already present in the file that uses the identifiers. However,
because the code for such library functions is often not available, it is sometimes necessary to
provide declarations that annotate the types of library functions with appropriate qualifiers.
In particular, string manipulation functions, such as those found in string.h, must be
restricted so their arguments have $NONYEAR qualified types. One example of such a function
is the atoi function from the C Standard Library, which in Carillon is declared by

int atoi(const char $NONYEAR s);

This declaration is given in the default prelude file examples/prelude.i, which is analyzed
before any other program file. The declaration of atoi in the prelude file does not conflict
with the declaration of atoi in the library, which is declared identically but without the
$NONYEAR qualifier. (Recall that any missing qualifiers are assumed to be qualifier variables.)
Another class of identifiers that are declared in the prelude file are those library functions
that are polymorphic in their type qualifiers. One example of such a function is strcpy from
Section 7.

For each identifier declared in the prelude file with type scheme scheme, Carillon requires
that the first declaration of this identifier in a file provides a type scheme that is an instance
of scheme. The identifiers declared in the prelude file cannot immediately be used by another
file without first being declared in this file, but when declared, the type scheme provided by
the declaration in the prelude file is used. See Section 3 for an example involving the printf
function.

For a particular application, it may be necessary to extend the prelude file to describe
more library functions. It is also possible to choose between different prelude files by modi-
fying the settings in your personal .emacs file (see Section 2.1.)

18

9 The Emacs Interface

The bulk of Carillon is a program, written in Standard ML, which analyzes C files and
communicates the results to Emacs. Emacs then displays the result of the analysis to the user
via Program Analysis Mode (PAM). PAM is also the name of the software that implements
the communication layer between the Standard ML program and Emacs.

Once Carillon has analyzed the files of a program, the user can browse the analysis results
using the mouse or the keyboard. Here is a list of commands that are supported by PAM:

C-c C-1 selects the overlay pointed at by the cursor (same as selecting the overlay with the
middle mouse-button.)

C-c C-f analyzes a file or a directory.

C-c C-r exits PAM and kills all PAM buffers.

10 The Authors

If you have any questions or comments related to Carillon, please do not hesitate to contact
the authors. You can use the email address bane-software@cs.berkeley.edu.

We would like to thank Henning Niss and Chris Harrelson for providing the current
version of the Program Analysis Mode (PAM).

11 Conclusion

Several other tools are available for finding Y2K problems in COBOL programs. One example
is Hafnium’s commercial product AnnoDomini, which is a tool for finding Y2K errors in
IBM OS/VS COBOL programs. Like Carillon, AnnoDomini is based on a type system for
detecting inconsistent uses of years [EHMT99]. We know of no systems other than Carillon
for finding Y2K problems in C programs.

Two related tools are Lackwit [0J97] and LCLint [EGHT94, Eva96]. Based on ML type
inference, Lackwit can be used to detect abstraction violations in C programs. LCLint is
a tool that uses, among other techniques, an extended set of C type qualifiers to find bugs
in C programs. Carillon integrates the use of qualifiers and polymorphism to a degree that
makes it useful to analyze even very large programs for Y2K readiness. Carillon has been
used effectively to locate a Y2K bug in CVS (Concurrent Version System) version 1.9, which
is about 57,000 lines of C (132,000 lines preprocessed).

In this document, we have presented Carillon, a system to find Y2K problems in C pro-
grams. The difficulties of establishing the Y2K readiness of software are largely caused by
programs that break type abstraction barriers. An automatic tool, combined with appropri-
ate information from a programmer (in form of qualifier annotations), is highly desirable for
finding Y2K errors in programs and for establishing that such errors do not occur. Carillon
provides just such a tool.

19

There are other examples of conversion problems where Carillon can help to detect ab-
straction violations, including conversion of programs to the use of unicode characters and
conversion of programs to use the new Euro currency instead of native European currencies.

References

[EGHT94]

[EHMT99]

[Eva96]

[FFA9Y]

(0797]

David Evans, John Guttag, Jim Horning, and Yang Meng Tan. Lclint: A tool
for using specifications to check code. In ACM SIGSOFT Symposium on the
Foundations of Software Engineering (SFSE’94), December 1994.

Peter Harry Eidorff, Fritz Henglein, Christian Mossin, Henning Niss, Morten
Heine Sgrensen, and Mads Tofte. Annodomini: From type theory to year 2000
conversion tool. In 26th Symposium on the Principles of Programming Languages
(POPL’99), January 1999.

David Evans. Static detection of dynamic memory errors. In ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI’96),
Philadelphia, PA, May 1996.

Jeffrey S. Foster, Manuel Fahndrich, and Alexander Aiken. A theory of type
qualifiers. In ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI’99), pages 192-203, May 1999.

Robert O’Callahan and Daniel Jackson. Lackwit: A program understanding tool
based on type inference. In International Conference on Software Engineering

(ICSE’97), May 1997.

A Limitations

In this appendix, we list some of the limitations of Carillon:

e Initializers are required to match the structure of the type of the variable being ini-
tialized. In most cases it is straightforward to modify the program text to meet this
requirement. For example, the following code

struct { char *s; int x } foo f = {"abc", 3, "def", 4};

should be rewritten as

struct { char *s; int x } foo f = {{"abc", 3}, {"def", 4}};

e Some GNU C extensions are supported, but not all; for instance, the __typeof operator
is not supported.

e Carillon cannot parse functions returning function pointers. To get around this prob-

lem,

one can use a typedef to define an identifier for the return type. This identifier

can then be used for the return type of the function.

20

B Copyright Notice

Copyright (c¢) 1999 The Regents of the University of California. All rights reserved.

Permission to use, copy, modify, and distribute this software for any purpose, without
fee, and without written agreement is hereby granted, provided that the above copyright
notice and the following two paragraphs appear in all copies of this software.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY
OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, IN-
CLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN
7 AS 1S” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO PROVIDE
MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

21

