
Gate Fusion Is Map Fusion
Martin Elsman

DIKU
University of Copenhagen
Copenhagen, Denmark

mael@di.ku.dk

Troels Henriksen
DIKU

University of Copenhagen
Copenhagen, Denmark

athas@sigkill.dk

Abstract
Most efficient state-vector quantum simulation frameworks
are imperative. They work by having circuit gates operate
on the global state vector in sequence and with each gate
operation accessing and updating, in parallel, all (or large
subsets of) the elements of the state vector. The precise ac-
cess and update patterns used by a particular gate operation
depend on which qubits the individual gate operates on.
Imperative implementations of state-vector simulators,

however, often lack a more declarative specification, which
may hinder reasoning and optimisations. For instance, cor-
rectness is often argued for using reasoning that involves
bit-operations on state-vector indexes, which make it diffi-
cult for compilers to perform high-level index-optimisations.

In this work, we demonstrate how gate operations can be
understood as maps over index-transformed state-vectors.
We demonstrate correctness of the approach and imple-
ment a library for gate-operations in the data-parallel pro-
gramming language Futhark. We further demonstrate that
Futhark’s fusion-engine is sufficiently powerful that it will
ensure that consecutive gate operations on identical qubits
are fused using map-map fusion. Moreover, we demonstrate
that, using Futhark’s uniqueness type system, state vectors
may be updated in place. We evaluate the approach by com-
paring it with the state-of-the art state-vector simulators
qsim and QuEST.

CCS Concepts: • Computing methodologies → Parallel
programming languages; • Theory of computation →
Quantum computation theory; Denotational semantics; •
Software and its engineering → Functional languages.

Keywords: quantum simulation, parallel programming, func-
tional programming

ACM Reference Format:
Martin Elsman and Troels Henriksen. 2025. Gate Fusion Is Map
Fusion. In Proceedings of the 11th ACM SIGPLAN International Work-
shop on Libraries, Languages and Compilers for Array Programming

This work is licensed under a Creative Commons Attribution 4.0 Interna-
tional License.
ARRAY ’25, Seoul, Republic of Korea
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1927-1/25/06
https://doi.org/10.1145/3736112.3736143

(ARRAY ’25), June 17, 2025, Seoul, Republic of Korea. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3736112.3736143

1 Introduction
Fusion is a well-known concept in functional and parallel
programming domains, where fused code offers essential
performance gains over non-fused code [17, 24, 26]. A proto-
typical example of fusion is map-map fusion, which allows
consecutive maps over two pure functions 𝑓 and 𝑔 to be
fused into one map operations, as specified by the equation

map 𝑓 𝑜 map 𝑔 = map (𝑓 𝑜 𝑔)

The equation suggests that first mapping a function𝑔 over an
array and then mapping another function 𝑓 over the result of
the map is semantically equivalent to mapping the composed
function 𝑓 𝑜 𝑔 over the array.

In the realm of quantum computing, simulators are based
on the notion of applying gates (often represented as 2 × 2
complex matrices) to particular qubits, which are entities that
may be entangled (i.e., implicitly coupled to) other qubits
in the system. Due to entanglement, the state of the system
grows exponentially with the number of qubits 𝑛 in the
system and may be modeled as a 2𝑛 complex vector. As we
shall see, applying a gate to a set of qubits in such a complex
vector results in a complex access and update pattern, which
may potentially affect all entries in the state vector.

Existing state-vector simulators, such as QuEST [22] and
qsim [39], implement gate operations by operating impera-
tively on state vector entries identified by indices that are
established using bit-level operations. Traditionally, compil-
ers have difficulties analysing addresses established from
bit-level operations, which makes it difficult for compilers to
perform optimisations that, for instance, rely on the property
that a gate operation uses an accesses pattern following a
permutation of the state vector index space (e.g., parallelisa-
tion).

As an alternative to reasoning about gate access patterns
using bit-level operations, we demonstrate how gate opera-
tions can be understood as maps over index-permuted state
vectors in a data-parallel array language. The approach is
based on what it means to apply a gate to a state vector (i.e.,
applying a large unitary matrix established from a series of
tensor products to the state vector), from which efficient gate
implementations are derived. Moreover, we establish that

28

https://orcid.org/0000-0002-6061-5993
https://orcid.org/0000-0002-1195-9722
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3736112.3736143
https://doi.org/10.1145/3736112.3736143
https://creativecommons.org/licenses/by/4.0/

ARRAY ’25, June 17, 2025, Seoul, Republic of Korea Martin Elsman and Troels Henriksen

gate-fusion, a notion developed for boosting quantum simu-
lation performance, by merging consecutive gate operations
[11], can be implemented using map-map fusion.

The development is performed in the context of the data-
parallel array language Futhark [10, 18], which allows for
being precise about array sizes, using a simple notion of
dependent size types [3, 16]. The approach carries over, how-
ever, to any other functional array language.

The contributions are as follows:

1. We demonstrate how gate operations can be under-
stood as maps over index-permuted state-vectors.

2. We present a Futhark library dqfut for writing quan-
tum algorithms. The library may be used either as a
library for end-users towrite quantum algorithms or as
a target language for higher-level quantum languages.

3. We demonstrate that Futhark’s fusion-engine is suffi-
ciently powerful that it fuses consecutive gate opera-
tions on identical qubits using map-map fusion.

4. Using Futhark’s uniqueness type system, we demon-
strate that state vector transformations (i.e., gate oper-
ations) are implemented in-place.

5. We show that dqfut in some cases is competitive to
other quantum state-vector simulators and that sim-
ulation performance benefits from gate-fusion. More-
over, the experiments identify a set of weaknesses
in Futhark’s array indexing manipulations, which we
consider future work to resolve.

In the following section, we introduce a small statement
language for performing gate operations on a set of qubits.
The language may be used for expressing the semantic op-
erations of a quantum circuit but is more low-level and re-
sembles languages such as cQUASM [25], OpenQUASM [7],
the QuEST gate API [22], or the qsim gate language [39]. In
Section 3, we derive a data-parallel interpretation scheme for
gate statements by calculating how the semantics of state-
ments corresponds to data-parallel operations over a state
vector. Derivations are made for single-qubit gate operations,
two-qubit swap gates, and so-called multi-controlled gates.
The derivations lead to a set of Futhark functions to be used
either by an end programmer or to be used as a backend for
a higher-level quantum programming language. The section
also demonstrates the derivation of a general swap-operation
that serves to swap two arbitrary qubits. In Section 4, we
demonstrate how gate fusion can be understood as map-map
fusion, by showing the validity of the gate fusion rules using
the properties of map-map fusion, transposition, and array
flattening. In Section 5, we introduce the dqfut Futhark gate
library and in Section 6, we provide benchmarks by com-
paring the performance of dqfut against QuEST [22] and
qsim [39], under GPU execution, multi-core execution, and
single-core execution. In Section 7, we present related work
and in Section 8, we conclude and outline future work.

Z

s
s

×

×

X

T

Y

s

H

×

×

T

X

s
s

×

×

H0

1

2

3

Figure 1. A random circuit. The gates T, H, and X on qubit 3
are subject to gate fusion.

2 Gate Semantics and Circuits
Qubits are referenced using positive integers (i.e., greater
than or equal to 0) and are ranged over by 𝑞.

Gates and statements take the following form:

𝑔 ::= X | Y | Z | H | S | T
𝑠 ::= gate 𝑔 𝑞 | swap 𝑞 | cntrl 𝑛 𝑔 𝑞

| 𝑠 ; 𝑠 | nop

Executing a statement 𝑠 can have an effect on the entire
underlying state, whichmay be the case even if the statement
operates only on a single qubit. Whereas statements of the
form gate 𝑔 𝑞 have the effect of applying the gate 𝑔 on
qubit 𝑞, a statement swap 𝑞 has the effect of swapping the
two neighboring qubits 𝑞 and 𝑞 + 1. Statements of the form
cntrl 𝑛 𝑔 𝑞, where 𝑛 > 0, have the effect of operating with
the gate𝑔 on qubit𝑞+𝑛, provided the amplitudes of the qubits
𝑞, . . . , 𝑞 + 𝑛 − 1 are all 1. Finally, we support nop statements,
which have no effect on the underlying state and which are
useful for expressing various statement optimisations.
It is custom for quantum programmers to specify quan-

tum programs using so-called circuit diagrams. In diagram
notation, each qubit, in an 𝑛-qubit system, is represented
as a horizontal line, numbered from 0 to 𝑛 − 1, single-gate
operations are drawn as boxes, and swaps are drawn by con-
necting two lines with crosses. Multi-controlled gates are
also drawn as boxes, but they are connected to the qubits that
control the gates with vertical lines and bullets. An example
random circuit is shown in Figure 1. It may be expressed by
the following statement:

gate H 0 ; swap 2 ; cntrl 2 X 0 ; gate T 3 ;
swap 1 ; gate H 3 ; cntrl 1 Y 0 ; gate T 2 ; gate X 3 ;
swap 0 ; cntrl 2 Z 1

2.1 Qubits and Unitary Matrices
The basic building block of a quantum computer is a qubit,
which can be modeled as a two-dimensional complex vector

29

Gate Fusion Is Map Fusion ARRAY ’25, June 17, 2025, Seoul, Republic of Korea[
𝛼 𝛽

]T specifying a linear combination 𝛼 |0⟩ + 𝛽 |1⟩ of the
basis vectors |0⟩ and |1⟩ such that |𝛼 |2 + |𝛽 |2 = 1 (the ket |0⟩
is defined as

[
1 0

]T and |1⟩ is defined as
[
0 1

]T).
A single-qubit gate operates on a single qubit and can

be represented as a 2 × 2 unitary complex matrix 𝑈 , mean-
ing 𝑈 †𝑈 = 𝑈𝑈 † = 𝐼 (norm-preserving and reversible).1
Single-qubit gates include the Pauli-gates, 𝑋 , 𝑌 , and 𝑍 , the
Hadamard gate 𝐻 , the 𝑇 -gate, and the identity gate 𝐼 .

𝑋 =

[
0 1
1 0

]
𝑌 =

[
0 −𝑖
𝑖 0

]
𝑍 =

[
1 0
0 −1

]
𝐻 = 1√

2

[
1 1
1 −1

]
𝑇 =

[
1 0
0 𝑒𝑖𝜋/4

]
𝐼 =

[
1 0
0 1

]
The effect of “applying” the Hadamard gate𝐻 to a qubit in

the |0⟩ state puts the qubit in the superposition state 1√
2
(|0⟩ +

|1⟩), which is the result of applying thematrix𝐻 to the vector[
1 0

]T. Because 𝐻 is its own inverse (i.e., it is hermitian), it
follows that the effect of applying another 𝐻 gate to the
modified qubit puts the qubit back into the state |0⟩.
A state of more qubits is modeled as a tensor product of

the individual standard bases. Thus, a two-qubit state can
expressed as a four-element complex vector

[
𝛼 𝛽 𝛾 𝜃

]T that
denotes a linear combination 𝛼 |00⟩ + 𝛽 |01⟩ + 𝛾 |10⟩ + 𝜃 |11⟩
of all combinations of basis vectors for the individual qubits,
where |𝛼 |2 + |𝛽 |2 + |𝛾 |2 + |𝜃 |2 = 1 (we write |𝑎𝑏⟩ = |𝑎⟩ ⊗ |𝑏⟩,
for 𝑎, 𝑏 ∈ {0, 1}, where ⊗ denotes tensor-product). The state
space grows exponentially. For a three-qubit system, the
state is expressed as an 8-element complex vector.
Single-qubit gates may be applied to particular qubits in

sequence. To understand how an application of a single-qubit
gate to a qubit affects the state vector, we first observe that
the application happens through a series of tensor-products.
When 𝐴 is an𝑚 × 𝑛 complex matrix with elements 𝑎𝑖 𝑗 ,

where 𝑖 ∈ [1;𝑚] and 𝑗 ∈ [1;𝑛], and 𝐵 is a 𝑝 × 𝑞 complex
matrix, the tensor product of 𝐴 and 𝐵, written 𝐴 ⊗ 𝐵, is the
𝑚𝑝 × 𝑛𝑞 complex matrix

𝐴 ⊗ 𝐵 =


𝑎11𝐵 · · · 𝑎1𝑛𝐵
...

. . .
...

𝑎𝑚1𝐵 · · · 𝑎𝑚𝑛𝐵

 (1)

By treating a complex scalar as the 1 × 1 complex matrix
containing the scalar, we have 1 ⊗ 𝐴 = 𝐴 ⊗ 1 = 𝐴, for any
complex matrix 𝐴. We also note here that ⊗ is associative
and that if𝐴 and 𝐵 are unitary complex matrices then𝐴⊗𝐵 is
also a unitary complex matrix. We further write 𝐼𝑛 to denote
1 if 𝑛 = 0 or 𝐼 ⊗ 𝐼𝑛−1 if 𝑛 > 0.

Now, applying a single-qubit gate 𝑈 (i.e., a unitary com-
plex matrix) to qubit 𝑞 of a 𝑘-qubit state vector 𝑣 (of size
2𝑘), we are applying the unitary matrix 𝐼𝑞 ⊗ 𝑈 ⊗ 𝐼𝑘−𝑞−1 to
𝑣 . Similarly, applying a 2-qubit gate 𝑈 to a state vector 𝑣 (of
size 2𝑘), we are applying the unitary matrix 𝐼𝑞 ⊗ 𝑈 ⊗ 𝐼𝑘−𝑞−2

1Weuse the notation𝑈 † for the conjugated transpose of the unitary complex
matrix𝑈 .

to 𝑣 . An example 2-qubit gate is the 4 × 4 SW gate, which
swaps two neighboring qubits:

SW =


1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


Another 2-qubit gate is the controlled not gate CNOT, which
takes the following form:

CNOT =


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0


It turns out that it is possible to define a generalised control

operator, parameterised over an arbitrary 1-qubit gate 𝑈 ,
written 𝐶𝑛 𝑈 , which equals 𝑈 if 𝑛 = 0 and, provided 𝑛 > 0,
equals the block matrix on the form

𝐶𝑛 𝑈 =

[
𝐼𝑛 0
0 𝐶𝑛−1 𝑈

]
With the gates we support here (more can be added easily), it
is only the controlled gates that may introduce entanglement
between qubits. Also notice that𝐶1 𝑋 = CNOT and that𝐶2 𝑋

is the controlled CNOT gate, also called the Tofolli gate [4].

2.2 Semantics
Whereas a single-qubit gate 𝑔 is denoted, written [[𝑔]], by its
corresponding 2 × 2 unitary matrix, statements are denoted
by a function [[·]]𝑘 : C2𝑘×2𝑘 , where 𝑘 specifies the number
of qubits in the system:

[[gate 𝑔 𝑞]]𝑘 = 𝐼𝑞 ⊗ [[𝑔]] ⊗ 𝐼𝑘−𝑞−1 (𝑘 > 𝑞)
[[swap 𝑞]]𝑘 = 𝐼𝑞 ⊗ SW ⊗ 𝐼𝑘−𝑞−2 (𝑘 > 𝑞 + 1)
[[cntrl 𝑛 𝑔 𝑞]]𝑘 = 𝐼𝑞 ⊗ 𝐶𝑛 [[𝑔]] ⊗ 𝐼𝑘−𝑞−𝑛−1 (𝑘 > 𝑞 + 𝑛)
[[𝑠1; 𝑠2]]𝑘 = [[𝑠2]]𝑘 [[𝑠1]]𝑘
[[nop]]𝑘 = 𝐼𝑘

When 𝑠 is some statement, we say that 𝑠 is 𝑘-well-formed
if 𝑘 > 0 and [[𝑠]]𝑘 is defined (e.g., all side conditions in the
semantics derivation hold).
A series of properties hold. First, notice that for all gates

𝑔 and for all 𝑘 > 𝑞, we have [[cntrl 0 𝑔 𝑞]]𝑘 = [[gate 𝑔 𝑞]]𝑘 .
It is also straightforward to check that if [[𝑠]]𝑘 = 𝑈 then
𝑈 : C2𝑘×2𝑘 .

3 Data-Parallel Interpretation
We now present an interpretation scheme that turns gate
statements into data-parallel operations. The scheme can be
used either for offline compilation or for interpreting gate
operations directly as data-parallel operations.

30

ARRAY ’25, June 17, 2025, Seoul, Republic of Korea Martin Elsman and Troels Henriksen

3.1 MiniFut
The underlying language that we rely on is a data-parallel
array-language supporting regular-nested arrays, a set of
data-parallel operations such as transpose, flatten, and
unflatten, and a set of second-order array-combinators,
such as map. Concretely, we base the development on Mini-
Fut, a small subset of Futhark, a data-parallel language aimed
for specifying data-parallel computations that, for instance,
may be executed on GPUs. As Futhark, MiniFut supports the
notion of size-types [3], which allows for programmers to
express invariants about array sizes.
We assume denumerably sets of type variables, ranged

over by𝛼 , and (program) variables, ranged over by 𝑥 ,𝑛, and 𝑓 .
We use bop to range over traditional infix binary operations
such as +, −, ∗, and ∗∗. MiniFut types (𝜏), expressions (𝑒),
and programs (𝑝) take the following forms:

𝜏 ::= c | i | 𝛼 | [𝑒]𝜏 | (𝑥 : 𝜏1) → 𝜏2
𝑒 ::= 𝑐 | 𝑖 | 𝑥𝜏 | 𝑓𝜏 𝑒1 · · · 𝑒𝑛 | 𝑒 ⊲ 𝜏 | 𝑒1 bop 𝑒2

| let 𝑥 = 𝑒1 in 𝑒2 | let 𝑓 𝑥1 · · · 𝑥𝑛 = 𝑒1 in 𝑒2
𝑝 ::= def 𝑓 [𝑛1] · · · [𝑛𝑚] (𝑥1 : 𝜏1) · · · (𝑥𝑛 : 𝜏𝑛) : 𝜏 = 𝑒

| 𝑝1 𝑝2

A type 𝜏 is either the type of complex numbers c, the type
of integers i, a type variable 𝛼 , the type [𝑒]𝜏 of arrays of size
𝑒 containing elements of type 𝜏 , or the type (𝑥 : 𝜏1) → 𝜏2 of
(dependent) functions, where we consider 𝑥 bound in 𝜏2. We
often write 𝜏1 → 𝜏2 instead of (𝑥 : 𝜏1) → 𝜏2 when 𝑥 does
not occur free in 𝜏2 and we consider types identical up to
renaming of bound variables.

Expressions are either immediate constants (complex num-
bers or integers), variables𝑥𝜏 , function applications 𝑓𝜏 𝑒1 · · · 𝑒𝑛 ,
size-type casts 𝑒 ⊲𝜏 , binary operations 𝑒1 bop 𝑒2, let-bindings,
and local function bindings. We sometimes leave out the an-
notated types on expressions of the form 𝑥𝜏 and 𝑓𝜏 𝑒1 · · · 𝑒𝑛 ,
when the variable type instantiations are clear from the
context. Types, which may contain size-expressions, are
considered equal only up to renaming of bound variables,
which means, for instance, that the two types [n ∗ m]f64 and
[m ∗ n]f64 are not considered equal. A size-type cast may
be used, for instance, to type cast an expression 𝑒 of type
[n]f64 into an expression of type [m]f64, which involves a
runtime check to ensure that the runtime value of m equals
the runtime value of n.
We assume a library of utility functions equipped with

the following types:

flatten : ∀𝑚𝑛𝛼.[𝑚] [𝑛]𝛼 → [𝑚 ∗ 𝑛]𝛼
unflatten : ∀𝑚𝑛𝛼.[𝑚 ∗ 𝑛]𝛼 → [𝑚] [𝑛]𝛼
transpose : ∀𝑚𝑛𝛼.[𝑚] [𝑛]𝛼 → [𝑛] [𝑚]𝛼

map : ∀𝑛𝛼𝛽.(𝛼 → 𝛽) → [𝑛]𝛼 → [𝑛]𝛽

We see that map returns an array of the same size as the
array it takes as argument. We also see that transpose in-
terchanges the two outer dimensions of an argument array

and that flatten and unflatten operations are guided by
the types of the arguments.
Programs 𝑝 allow for defining top-level functions that

are polymorphic both in types (implicitly abstracting over
free type variables) and in sizes (explicitly abstracting over
program variables).

We define MiniFut variations of flatten and unflatten
that operate on columns instead of rows, which eases some
of the reasoning in the next section:

def vec [m][n] (x:[m][n]𝛼) : [n*m]𝛼 =

flatten(transpose x)

def unvec [m][n] (x:[m*n]𝛼) : [n][m]𝛼 =

transpose(unflatten x)

We note here that in Futhark, index operations such as
flatten, unflatten, and transposemost often do not lead
to allocation of new arrays as the operations are fused into
operations, such as map, that consume values and return
fresh values in recently consumed memory. Using properties
of map, transpose, flatten, and unflatten, Futhark may
effectively update such arrays in-place.

3.2 Deriving an Interpreter
We derive the functional data-parallel interpretation directly
from the semantics by building on a relation between the
mathematical definition of matrix multiplication and a func-
tional implementation. In particular, from the definition of
matrix multiplication, we observe the following equality, if
we allow for𝐴 to be treated both as a matrix and as a function
taking a column vector and returning a column vector:

𝐴𝐵 = (map 𝐴 𝐵T)T (2)

We shall further base the derivation on the well-known
vectorisation trick [27], which establishes a relationship be-
tween the Kronecker tensor-product and matrix multiplica-
tion. Assuming𝑉 = unvec 𝑣 and assuming𝑉 is appropriately
compatible with 𝐴 and 𝐵, we have

(𝐴 ⊗ 𝐵) 𝑣 = vec(𝐵𝑉𝐴T) (3)

By combining Equations 3 and 2 and by utilising the prop-
erty that (𝐴𝐵)T = 𝐵T𝐴T, we obtain the following properties:

(𝐼𝑛 ⊗ 𝐵) 𝑣 = vec(𝐵𝑉) (4)
= vec((map 𝐵 𝑉 T)T)

(𝐴 ⊗ 𝐼𝑛) 𝑣 = vec(𝑉𝐴T) (5)
= vec((𝐴𝑉 T)T)
= vec(map 𝐴 𝑉)

By specialising to tensor products of square matrices we
get the following more precise propositions:

Proposition 3.1 (Tensor-Id-Left). For any positive 𝑛 and𝑚
and for any 𝐵, 𝑣 , and 𝜏 such that 𝐵 : C2𝑚×2𝑚 and 𝑣 : [2𝑛 ∗2𝑚]c

31

Gate Fusion Is Map Fusion ARRAY ’25, June 17, 2025, Seoul, Republic of Korea

and 𝜏 = [2𝑛] [2𝑚]c, we have

(𝐼𝑛 ⊗ 𝐵) 𝑣 = flatten(map 𝐵 (unflatten𝜏 𝑣))

Proposition 3.2 (Tensor-Id-Right). For any positive 𝑛 and𝑚
and for any𝐴, 𝑣 , and 𝜏 such that𝐴 : C2𝑚×2𝑚 and 𝑣 : [2𝑚 ∗2𝑛]c
and 𝜏 = [2𝑛] [2𝑚]c, we have

(𝐴 ⊗ 𝐼𝑛) 𝑣 = vec(map 𝐴 (unvec𝜏 𝑣))

For a system of 𝑘 qubits, the interpreter that we derive
takes further a statement 𝑠 and a complex state vector of size
2𝑘 . We shall derive the interpreter I[𝑠]𝑘 𝑣 inductively, by
utilising the following connection between the interpreter
and the semantics, which says that for any statement 𝑠 , inte-
ger 𝑘 > 0, and state vector 𝑣 of size 2𝑘 , we have

I[𝑠]𝑘 𝑣 = [[𝑠]]𝑘 𝑣 (6)

Here the juxtaposition of [[𝑠]]𝑘 and 𝑣 to the right denotes
matrix-vector multiplication.

We now derive the interpreter inductively over the struc-
ture of statements.

For gate statements, we have

I[gate 𝑔 𝑞]𝑘 𝑣
= ((𝐼𝑞 ⊗ 𝑔) ⊗ 𝐼𝑘−𝑞−1) 𝑣
= vec(map (𝐼𝑞 ⊗ 𝑔) (unvec 𝑣))
= let 𝐹 𝑢 = flatten(map 𝑔 (unflatten 𝑢))

in vec(map 𝐹 (unvec 𝑣))
The last two steps utilise Proposition 3.2 and Proposition 3.1,
respectively. Adding size types, we get the following:

I[gate 𝑔 𝑞]𝑘 (𝑣 : [2𝑘]c)
= let 𝑣 = 𝑣 ⊲ [(2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1]c

let 𝐹 𝑢 = flatten(map 𝑔 (unflatten 𝑢))
in vec(map 𝐹 (unvec 𝑣)) ⊲ [2𝑘]c

Much similar to gate statements, for swap statements, we
have

I[swap 𝑞]𝑘 𝑣
= ((𝐼𝑞 ⊗ SW) ⊗ 𝐼𝑘−𝑞−2) 𝑣
= vec(map (𝐼𝑞 ⊗ SW) (unvec 𝑣))
= let 𝐹 𝑢 = flatten(map SW (unflatten 𝑢))

in vec(map 𝐹 (unvec 𝑣))
Again, adding size types, we get:

I[swap 𝑞]𝑘 (𝑣 : [2𝑘]c)
= let 𝑣 = 𝑣 ⊲ [(2𝑞 ∗ 4) ∗ 2𝑘−𝑞−2]c

let 𝐹 𝑢 = flatten(map SW (unflatten 𝑢))
in vec(map 𝐹 (unvec 𝑣)) ⊲ [2𝑘]c

For controlled gates, we have

I[cntrl 𝑛 𝑔 𝑞]𝑘 𝑣
= ((𝐼𝑞 ⊗ 𝐶𝑛 𝑔) ⊗ 𝐼𝑘−𝑞−𝑛−1) 𝑣
= vec(map (𝐼𝑞 ⊗ 𝐶𝑛 𝑔) (unvec 𝑣))
= let 𝐹 𝑢 = flatten(map (𝐶𝑛 𝑔) (unflatten 𝑢))

in vec(map 𝐹 (unvec 𝑣))

Adding size types, we get:

I[cntrl 𝑛 𝑔 𝑞]𝑘 (𝑣 : [2𝑘]c)
= let 𝑣 = 𝑣 ⊲ [(2𝑞 ∗ 2𝑛+1) ∗ 2𝑘−𝑞−𝑛−1]c

let 𝐹 𝑢 = flatten(map (𝐶𝑛 𝑔) (unflatten 𝑢))
in vec(map 𝐹 (unvec 𝑣)) ⊲ [2𝑘]c

For sequential composition, using induction, we derive
the following:

I[𝑠1; 𝑠2]𝑘 𝑣 = ([[𝑠2]]𝑘 [[𝑠1]]𝑘) 𝑣
= [[𝑠2]]𝑘 ([[𝑠1]]𝑘 𝑣)
= [[𝑠2]]𝑘 (I[𝑠1]𝑘 𝑣)
= I[𝑠2]𝑘 (I[𝑠1]𝑘 𝑣)

Directly based on the above calculations, Figure 2 lists gate
functions written as a Futhark library. Whereas Futhark syn-
tax is close to MiniFut syntax, we see that Futhark supports
(size-parameterised) type abbreviations and the possibility
that function argument types and return types are anno-
tated with uniqueness information (i.e., a star *). When an
argument type is annotated with uniqueness information,
a caller will ensure that the argument does not alias other
values. Further, when a return type is annotated with unique-
ness information, a caller will know that the result can alias
only arguments that are marked as unique (and Futhark will
check, for each function, that this property holds or a static
error is signaled). Uniqueness annotations allow for Futhark
to implement array updates in-place [18], using the construct
𝑒 with [𝑖] = 𝑒′, which evaluates to the array resulting from
evaluating 𝑒 with the 𝑖’th index updated to hold the result
of evaluating 𝑒′; in principle, the type of this function is
*[n]𝛼 → i64 → 𝛼 → *[n]𝛼 .

3.3 Swapping Arbitrary Qubits
Amore general swap statement swap 𝑞 𝑟 swaps two arbitrary
qubits 𝑞 and 𝑟 . Assuming 𝑟 > 𝑞, such a statement can be
implemented by a recursive V-shaped sequence (of length
2(𝑟 − 𝑞) − 1) of binary swap gates. We first define the pa-
rameterised swap-layer operator 𝐿𝑘𝑛 , which creates a unitary
matrix, of size 2𝑛+1 × 2𝑛+1, for transforming 𝑛 > 1 qubits by
swapping qubits 𝑘 − 1 and 𝑘 , where 0 < 𝑘 ≤ 𝑛:

𝐿𝑘𝑛 = 𝐼𝑘−1 ⊗ SW ⊗ 𝐼𝑛−𝑘 (7)

For example, the layer 𝐿22 equals 𝐼 ⊗ SW and the layer 𝐿23
equals 𝐼 ⊗ SW ⊗ 𝐼 .

We further define two parameterised swap-sequence oper-
ators Up𝑘𝑛 and Down𝑘𝑛 , for creating sequences of layers that
either starts swapping qubits from the bottom, going up, or
starts swapping from the top, going down:

32

ARRAY ’25, June 17, 2025, Seoul, Republic of Korea Martin Elsman and Troels Henriksen

type st[n] = [2**n]c

type gate = c → c → (c,c)

type q = i64

def gate [n] (g:gate) (q:q)

(v:*st[n]) : *st[n] =

let v = v :> *[(2**q*2)*2**(n-q-1)]c

let g p = let (x,y) = g p[0] p[1] in [x,y]

let f u = flatten (map g (unflatten u))

in vec(map f (unvec v)) :> *st[n]

def swap [n] (q:q) (v:*st[n]) : *st[n] =

let v = v :> *[(2**q*4)*2**(n-q-2)]c

let g p = [p[0],p[2],p[1],p[3]]

let f u = flatten (map g (unflatten u))

in vec(map f (unvec v)) :> *st[n]

def cntrl [n] (c:i64) (g:gate) (q:q)

(v:*st[n]) : *st[n] =

let v = v :> *[(2**q*2**(c+1))*2**(n-q-c-1)]c

let g p = let i = 2**(c+1)-2

let (x,y) = g p[i] p[i+1]

in p with [i] = x with [i+1] = y

let f u = flatten (map g (unflatten u))

in vec(map f (unvec v)) :> *st[n]

Figure 2. Implementations of the basic Futhark gate func-
tions.

Down𝑘𝑛 =

{
𝐼𝑛+1 if 𝑘 = 0
𝐿𝑘𝑛Down

𝑘−1
𝑛 otherwise (8)

Up𝑘𝑛 =

{
𝐼𝑛+1 if 𝑘 = 0
𝐿𝑛−𝑘+1𝑛 Up𝑘−1𝑛 otherwise (9)

We note here that sequence composition is opposite than
matrix-multiplication, which means that the first layer in a
down-sequence, for instance, is a layer of the form 𝐿1𝑛 for
some 𝑛.

Similarly as for layers, down-sequences and up-sequences
of the forms Down𝑘𝑛 and Up𝑘𝑛 denote unitary matrices of size
2𝑛+1 × 2𝑛+1.

We can now define a parameterised swap operator Sw𝑛 for
swapping qubits that are 𝑛 ≥ 1 qubits apart by combining an
up-sequence with a down-sequence, as illustrated in Figure 3:

Sw𝑛 = Down𝑛𝑛Up
𝑛−1
𝑛 (10)

The following propositions hold:

Proposition 3.3 (Down-layer). For any 𝑛 ≥ 1 and 𝑘 such
that 0 ≤ 𝑘 < 𝑛, we have Down𝑘𝑛 = Down𝑘

𝑘
⊗ 𝐼𝑛−𝑘 .

×
××

××
××

×

0
1
2
3
4
5

(a)

×
×

×
×

×
×

×
×

×
×

0
1
2
3
4
5

(b)

×
×

×
×

×
×

×
×

×
××

××
××

××
×

0
1
2
3
4
5

(c)

Figure 3. Swap circuits for (a) an Up45 sequence, (b) a Down
5
5

sequence, and (c) a Sw5 sequence.

Proposition 3.4 (Up-layer). For any 𝑛 ≥ 1 and 𝑘 such that
0 ≤ 𝑘 < 𝑛, we have Up𝑘𝑛 = 𝐼𝑛−𝑘 ⊗ Up𝑘

𝑘
.

Proposition 3.5 (Down-seq). For any 𝑛 ≥ 1 and state vector
𝑣 of type [2𝑛+1]c, we have Down𝑛𝑛 𝑣 = flatten(unvec𝜏 𝑣),
where 𝜏 = [2𝑛] [2]c.

Proposition 3.6 (Up-seq). For any 𝑛 ≥ 1 and state vector 𝑣
of type [2𝑛+1]c, we have Up𝑛𝑛 𝑣 = flatten(unvec𝜏 𝑣), where
𝜏 = [2] [2𝑛]c.

Based on the above properties and Proposition 3.1, we
have

Sw𝑛 𝑣 = Down𝑛𝑛 (𝐼 ⊗ Up𝑛−1𝑛−1) 𝑣 (11)
= let up 𝑢 = flatten (unvec𝜏 ′ 𝑢)

let dn 𝑢 = flatten (unvec𝜏 𝑢)
in dn(flatten(map up (unflatten𝜏 𝑣)))

where 𝜏 = [2𝑛] [2]c and 𝜏 ′ = [2] [2𝑛−1]c.
We can calculate a map-nest for an operator that swaps

two arbitrary qubits 𝑞 and 𝑟 , provided that 𝑛 = 𝑟 −𝑞 > 0 and
𝜏 = [2𝑘−𝑟−1] [2𝑟+1]c and 𝜏 ′ = [2𝑞] [2𝑛+1]c and 𝜏1 = [2𝑛] [2]c
and 𝜏2 = [2] [2𝑛−1]c:

I[swap2 𝑞 𝑟]𝑘 (𝑣 : [2𝑘]c)
= ((𝐼𝑞 ⊗ Sw𝑟−𝑞) ⊗ 𝐼𝑘−𝑞−(𝑟−𝑞)−1) 𝑣
= ((𝐼𝑞 ⊗ Sw𝑟−𝑞) ⊗ 𝐼𝑘−𝑟−1) 𝑣
= let 𝑛 = 𝑟 − 𝑞

in vec(map (𝐼𝑞 ⊗ Sw𝑛) (unvec𝜏 𝑣))
= let 𝑛 = 𝑟 − 𝑞

let 𝑓 𝑢 = (𝐼𝑞 ⊗ Sw𝑛) 𝑢
in vec(map 𝑓 (unvec𝜏 𝑣))

= let 𝑛 = 𝑟 − 𝑞

let 𝑓 𝑢 = flatten(map Sw𝑛 (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

= let 𝑛 = 𝑟 − 𝑞

let sw 𝑢 = SW𝑛 𝑢

let 𝑓 𝑢 = flatten(map sw (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

33

Gate Fusion Is Map Fusion ARRAY ’25, June 17, 2025, Seoul, Republic of Korea

def swap2 [k] (q:q)(r:q)(v:*st[k]) : *st[k] =

let n = r-q

let v = v :> *[(2**q*2**(n+1))*2**(k-r-1)]c

let up (u:*[2**(n -1)*2]c) : *[2*2**(n-1)]c =

flatten (unvec u)

let dn (u:*[2*2**n]c) : *[2**n*2]c =

flatten (unvec u)

let sw (u:*[2**(n+1)]c) =

let u :> *[2*(2**(n -1)*2)]c = u

let w : *[2*(2*2**(n-1))]c =

flatten(umap up (unflatten u))

let w :> *[2*2**n]c = w

in dn w :> *[2**(n+1)]c

let f (u:*[2**q*2**(n+1)]c) =

flatten (umap sw (unflatten u))

in vec(umap f (unvec v)) :> *st[k]

Figure 4. Futhark code for a generalised swap function.

= let 𝑛 = 𝑟 − 𝑞

let up 𝑢 = flatten (unvec𝜏2 𝑢)
let dn 𝑢 = flatten (unvec𝜏1 𝑢)
let sw 𝑢 = dn(flatten(map up (unflatten𝜏1 𝑢)))
let 𝑓 𝑢 = flatten(map sw (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

Futhark code for the generalised swap operator is given
in Figure 4.

An alternative specification of the swap2 statement speci-
fies the statement in terms of two other statements, one that
does an up-sweep and one that does a down-sweep:

swap2 𝑞 𝑟 = up 𝑞 𝑟 ; down (𝑞 + 1) 𝑟 (12)

We can derive an implementation for up as follows, where 𝜏 =

[2𝑘−𝑟−1] [2𝑟+1]c and 𝜏 ′ = [2𝑞] [2𝑛+1]c and 𝜏 ′′ = [2] [2𝑛]c:

I[up 𝑞 𝑟]𝑘 (𝑣 : [2𝑘]c)
= ((𝐼𝑞 ⊗ Up𝑟−𝑞𝑟−𝑞) ⊗ 𝐼𝑘−𝑞−(𝑟−𝑞)−1) 𝑣
= ((𝐼𝑞 ⊗ Up𝑟−𝑞𝑟−𝑞) ⊗ 𝐼𝑘−𝑟−1) 𝑣
= let 𝑛 = 𝑟 − 𝑞

in vec(map (𝐼𝑞 ⊗ Up𝑛𝑛) (unvec𝜏 𝑣))
= let 𝑛 = 𝑟 − 𝑞

let 𝑓 𝑢 = (𝐼𝑞 ⊗ Up𝑛𝑛) 𝑢
in vec(map 𝑓 (unvec𝜏 𝑣))

= let 𝑛 = 𝑟 − 𝑞

let 𝑓 𝑢 = flatten(map Up𝑛𝑛 (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

= let 𝑛 = 𝑟 − 𝑞

let up 𝑢 = flatten(unvec𝜏 ′′ 𝑢)
let 𝑓 𝑢 = flatten(map up (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

def up [k] (q:q)(r:q)(v:*st[k]) : *st[k] =

let n = r-q

let v = v :> *[2**(r+1)*2**(k-r-1)]c

let up (u:*[2**(n+1)]c) : *[2*2**n]c =

let u = u :> *[2**n*2]c

in flatten(unvec u)

let f (u:*[2**(r+1)]c): *[2**q*(2*2**n)]c =

let u = u :> *[2**q*2**(n+1)]c

in flatten(umap up (unflatten u))

in vec(umap f (unvec v)) :> *st[k]

def down [k] (q:q)(r:q)(v:*st[k]) : *st[k] =

let n = r-q

let v = v :> *[2**(r+1)*2**(k-r-1)]c

let dn (u:*[2**(n+1)]c) : *[2**n*2]c =

let u = u :> *[2*2**n]c

in flatten(unvec u)

let f (u:*[2**(r+1)]c): *[2**q*(2**n*2)]c =

let u = u :> *[2**q*2**(n+1)]c

in flatten(umap dn (unflatten u))

in vec(umap f (unvec v)) :> *st[k]

def swap2 [k] (q:q)(r:q)(v:*st[k]) : *st[k] =

down (q+1) r (up q r v)

Figure 5. Futhark implementation of the swap2 statement,
including the definitions of up and down statements.

Similarly, we can derive an implementation for down as
follows, where 𝜏 = [2𝑘−𝑟−1] [2𝑟+1]c and 𝜏 ′ = [2𝑞] [2𝑛+1]c
and 𝜏 ′′ = [2𝑛] [2]c:

I[down 𝑞 𝑟]𝑘 (𝑣 : [2𝑘]c)
= ((𝐼𝑞 ⊗ Down𝑟−𝑞𝑟−𝑞) ⊗ 𝐼𝑘−𝑞−(𝑟−𝑞)−1) 𝑣
= ((𝐼𝑞 ⊗ Down𝑟−𝑞𝑟−𝑞) ⊗ 𝐼𝑘−𝑟−1) 𝑣
= let 𝑛 = 𝑟 − 𝑞

in vec(map (𝐼𝑞 ⊗ Down𝑛𝑛) (unvec𝜏 𝑣))
= let 𝑛 = 𝑟 − 𝑞

let 𝑓 𝑢 = (𝐼𝑞 ⊗ Down𝑛𝑛) 𝑢
in vec(map 𝑓 (unvec𝜏 𝑣))

= let 𝑛 = 𝑟 − 𝑞

let 𝑓 𝑢 = flatten(map Down𝑛𝑛 (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

= let 𝑛 = 𝑟 − 𝑞

let dn 𝑢 = flatten(unvec𝜏 ′′ 𝑢)
let 𝑓 𝑢 = flatten(map dn (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 (unvec𝜏 𝑣))

Notice here that the main difference between the imple-
mentations of up and down is the definition of 𝜏 ′′ in the
two instances. Futhark versions of up and down appear in
Figure 5.

34

ARRAY ’25, June 17, 2025, Seoul, Republic of Korea Martin Elsman and Troels Henriksen

4 Fusion
Gate fusion for statements can be specified by the following
equations:

gate 𝑔 𝑞; gate 𝑔′ 𝑞 = gate (𝑔′ ◦ 𝑔) 𝑞 (13)
cntrl 𝑛 𝑔 𝑞; cntrl 𝑛 𝑔′ 𝑞 = cntrl 𝑛 (𝑔′ ◦ 𝑔) 𝑞 (14)

swap 𝑞; swap 𝑞 = nop (15)
gate H 𝑞; gate H 𝑞 = nop (16)

Where as we can implement an explicit optimisation pass
that takes statements as input and outputs an optimised set
of statements, we shall see that map-fusion in MiniFut (and in
Futhark), will take care of gate fusion. Futhark uses a fairly
rich fusion scheme which allows for fusion of many oper-
ations, in order to reduce the amount of allocation needed.
Here, we shall rely only on map-map fusion, which in MiniFut
amounts to implementing the rule

map 𝑓 ′ (map 𝑓 𝑒) = map (𝑓 ′ ◦ 𝑓) 𝑒 (17)

The fusion engine also utilises the properties that, for any
type 𝜏 = [𝑚] [𝑛]𝜏 ′ and for any expression 𝑒 of type 𝜏 , we have
transpose (transpose 𝑒) = 𝑒 and unflatten𝜏 (flatten 𝑒) =
𝑒 . It follows that we have the following properties, provided
𝑓 and 𝑔 are type preserving:

(flatten 𝑜 𝑓 𝑜 unflatten𝜏) 𝑜 (18)
(flatten 𝑜 𝑔 𝑜 unflatten𝜏) =

flatten 𝑜 (𝑓 𝑜 𝑔) 𝑜 unflatten𝜏

(transpose 𝑜 𝑓 𝑜 transpose) 𝑜 (19)
(transpose 𝑜 𝑔 𝑜 transpose) =

transpose 𝑜 (𝑓 𝑜 𝑔) 𝑜 transpose

Further, from the definitions of unvec and vec and from 18
and 19, we have

(vec 𝑜 𝑓 𝑜 unvec𝜏) 𝑜 (vec 𝑜 𝑔 𝑜 unvec𝜏) = (20)
vec 𝑜 (𝑓 𝑜 𝑔) 𝑜 unvec𝜏

To show that Equation 13 is closed under interpretation,
we calculate I[gate 𝑔 𝑞; gate 𝑔′ 𝑞]𝑘 𝑣 as follows, where
𝜏 = [(2𝑞 ∗ 2)] [2𝑘−𝑞−1]c and 𝜏 ′ = [2𝑞] [2]c:

I[gate 𝑔 𝑞; gate 𝑔′ 𝑞]𝑘 (𝑣 : [2𝑘]c)
= let 𝑣 = 𝑣 ⊲ [(2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1]c

let 𝑓 𝑢 = flatten(map 𝑔 (unflatten𝜏 ′ 𝑢))
let 𝑣 ′ = vec(map 𝑓 (unvec𝜏 𝑣)) ⊲ [2𝑘]c
let 𝑣 ′ = 𝑣 ′ ⊲ [(2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1]c
let 𝑓 ′ 𝑢 = flatten(map 𝑔′ (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 ′ (unvec𝜏 𝑣 ′)) ⊲ [2𝑘]c

By observing that 2𝑘 = (2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1 and by rearranging
bindings, we have

I[gate 𝑔 𝑞; gate 𝑔′ 𝑞]𝑘 (𝑣 : (2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1)
= let 𝑓 𝑢 = flatten(map 𝑔 (unflatten𝜏 ′ 𝑢))

let 𝑓 ′ 𝑢 = flatten(map 𝑔′ (unflatten𝜏 ′ 𝑢))
let 𝑣 ′ = vec(map 𝑓 (unvec𝜏 𝑣))
in vec(map 𝑓 ′ (unvec𝜏 𝑣 ′)) ⊲ [2𝑘]c

Now, because map 𝑓 and map 𝑓 ′ are type preserving, it follows
from 20 that we have

I[gate 𝑔 𝑞; gate 𝑔′ 𝑞]𝑘 (𝑣 : (2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1)
= let 𝑓 𝑢 = flatten(map 𝑔 (unflatten𝜏 ′ 𝑢))

let 𝑓 ′ 𝑢 = flatten(map 𝑔′ (unflatten𝜏 ′ 𝑢))
in vec(map 𝑓 ′ (map 𝑓 (unvec𝜏 𝑣))) ⊲ [2𝑘]c

Finally, because map 𝑔 and map 𝑔′ are type preserving, we
can apply 18 and Equation 17 to get

I[gate 𝑔 𝑞; gate 𝑔′ 𝑞]𝑘 (𝑣 : (2𝑞 ∗ 2) ∗ 2𝑘−𝑞−1)
= let 𝑓 𝑢 = flatten(map (𝑔′ ◦ 𝑔) (unflatten𝜏 ′ 𝑢))

in vec(map 𝑓 (unvec𝜏 𝑣)) ⊲ [2𝑘]c
= I[gate (𝑔′ ◦ 𝑔) 𝑞]𝑘 𝑣

Similar reasoning can be used to demonstrate equations
14, 15, and 16.

5 The Gate Library Interface
The interface for the Futhark gate library appears in Figure 6.
The library is implemented as a module (called mk_gates)
parameterised over another module representing floating-
point numbers, which, for instance, is used for the internal
representation of complex numbers. Futhark has modules
for representing different sizes of floating point values in-
cluding f16, f32, and f64. Besides gate operations, the library
features functionality for creating initial state vectors and
functionality for reporting the probability distribution of
result states. The library also includes a series of utility func-
tions for composing gate operations, including functionality
for repeatedly executing a statement.
As an example of how dqfut may be used, we present a

version of Grover’s algorithm written in Futhark using the
dqfut library. Grover’s algorithm can find the index of an
element among 𝑛 unsorted elements using only 𝑂 (

√
𝑛) gate

operations [13]. A Futhark implementation of a version of
Grover’s algorithm that searches for the number 12 (and
finds its index) is listed in Figure 7. In practice, when the
number of qubits used is 19, the search space is 219 and the
number of basic gates applied for the particular instance of
the search is 85.369.
Grover’s algorithm works by first putting all qubits in

a superposition state and then, repeatedly, applying an or-
acle and a diffusion operation. As a result, the solution is
established after approximately 𝜋

4
√
𝑛 iterations.

35

Gate Fusion Is Map Fusion ARRAY ’25, June 17, 2025, Seoul, Republic of Korea

module type gates = {

type c -- complex numbers

type q = i64 -- qubits

type st[n] = [2**n]c -- state vectors

type^ stT[n] = *st[n] → *st[n] -- transform

val gateX [n] : q → stT[n]

val gateY [n] : q → stT[n]

val gateZ [n] : q → stT[n]

val gateH [n] : q → stT[n]

val gateT [n] : q → stT[n]

val cntrlX[n] : (m:i64) → q → stT[n]

val swap [n] : q → stT[n]

val swap2 [n] : (q:q) → (r:q) → stT[n]

...

-- Ket vectors

type ket[n] = [n]i64

val fromKet[n] : ket[n] → *st[n]

val toKet : (n:i64) → (i:i64) → ket[n]

-- Distributions

type dist[n] = [2**n](ket[n],f64)

val dist [n] : st[n] → dist[n]

val distmax [n] : dist[n] → (ket[n],f64)

-- Some utility functions

val >*> 'a : (q → *a → *a) → (q → *a → *a)

→ (q → *a → *a)

val |*> 'a 'b : *a → (*a → *b) → *b

val >* 'a 'b 'c : (*a → *b) → (*b → *c)

→ (*a → *c)

val repeat 'a : i64 → (i64 → *a → *a)

→ *a → *a

}

Figure 6. Futhark gate-function interface.

We report on the running time of Grover’s algorithm in
the next section.

6 Benchmarks
In this section we report the performance of dqfut against the
established quantum simulators qsim [39] and QuEST [22].
We implement the same benchmarks in all three simulators:
ghz, grover, and qft. Here grover is Grover’s algorithm,
which is described in Section 5. The ghz benchmark estab-
lishes the Greenberger–Horne–Zeilinger quantum state and
is ported from the SupermarQ benchmark suite [40]. The qft
benchmark is an implementation of the Quantum Fourier
Transform [41].

import "dqfut"

open mk_gates(f64)

def grover_diff [n] : stT[n] =

repeat n (gateH >*> gateX)

>* gateH (n-1)

>* cntrlX (n-1) 0

>* gateH (n-1)

>* repeat n (gateX >*> gateH)

def encNum [n] (i:i64) (s:*st[n]) : *st[n] =

(loop (s,i) = (s,i) for n in n..>0 do

if i % 2 == 0

then (gateX (n-1) s, i/2)

else (s,i/2)

).0

def oracle [n] i : stT[n] =

encNum i >* cntrlZ (n-1) 0 >* encNum i

def grover (n:i64) (i:i64) : (ket[n], f64) =

let k = 2**n |> f64.i64 |> f64.sqrt

|> (*(f64.pi/4)) |> f64.ceil

|> i64.f64

let s = fromKet (replicate n 0)

|*> repeat n gateH

|*> repeat k (𝜆_ → oracle i

>* grover_diff)

in dist s |> distmax

Figure 7. Implementation of Grover’s algorithm.

6.1 Experimental Setup
We perform our experiments on a system with a pair of
24-core EPYC 7352 processors, where we run with both
1 and 48 threads. For multi-threaded qsim, we use a non-
vectorised (but still parallel) simulator, which is implemented
via OpenMP. The system is also equipped with an NVIDIA
A100 GPU, which is supported by all used simulators. All
floating-point arithmetic is done in double precision. We use
version 0.29.29 of the Futhark compiler to compile dqfut.

6.2 Results
The raw runtime results are shown in Table 1, and the corre-
sponding speedups in Figure 8.

While dqfut generally performswell for the simplest bench-
mark, ghz, performance is lacking for grover and qft. The
reason is unrelated to gate fusion itself, but rather due to
an unfortunate interaction with the Futhark compilers’ ar-
ray layout representation, which requires that the mem-
ory layout of a 𝑑-dimensional array is described with a 𝑑-
dimensional linear memory access descriptor (LMAD) [29].

36

ARRAY ’25, June 17, 2025, Seoul, Republic of Korea Martin Elsman and Troels Henriksen

This can be used to allow certain index transformations with-
out actually moving array values, by instead adjusting the
LMAD. However, some of the compositions of reshapes and
transposes used by dqfut result in layouts that cannot be
represented as LMADs, and hence must be physically man-
ifested in a representable memory layout. This is not an
issue for gates that are syntactically adjacent, as fusion is in
most cases able to remove the interspersed flatten/unflatten
operations, but it is an issue when using the repeat oper-
ation, implemented via a sequential loop carrying a single-
dimensional array, where the Futhark compiler insists that
the loop state be representable with a single-dimensional
LMAD. The majority of the run-time is thus spent perform-
ing such semantically redundant transpositions. Gate fusion
is still important: on grover it provides roughly a 1.5 ×
speedup, and the impact would be larger were it not for
the redundant transpositions. It is likely that future improve-
ments to the Futhark compiler will allow it to eliminate many
of the redundant manifestations.

Futhark’s parallel CPU performance is also lacking relative
to the GPU performance. This is largely due to Futhark’s
CPU scheduler being rather naive, especially on a NUMA
system such as the one used for benchmarking, compared to
the mature OpenMP scheduler used by qsim and QuEST.

7 Related Work
Many quantum computing text books, including [23, 30, 41],
present the basics of quantum computing through the no-
tions of qubits, gates, and diagrammatic circuits. Text books
often give semantics to basic gates and composed circuits
through the unitary matrices that the circuits denote and
because simulators can be implemented by applying uni-
tary complex matrices to state vectors, a naive simulator
can be implemented in just a few lines of code [36]. Sur-
prisingly, however, no previous work go the step further
and demonstrate, as we do, the relationship between a state
vector simulator and the semantics of circuits specified as
unitary matrices. Related to (and in parallel to) the work pre-
sented here, we have also used the relationship to derive a
purely functional interpreter for a circuit language declared
as a recursive algebraic data type [9]. Whereas such an inter-
preter also avoids constructing explicit Kronecker products,
it suffers from excessive state vector manipulations and data
copying compared to the state-vector gate-operations de-
rived here.

Some simulators keep the state space for a group of qubits
separate as long as it is known that the group is ensured
to be separable. Examples of simulators that follow such
an approach are the Qiskit Aer state vector simulator [21],
the Q# simulator [38], and the simulators for the Python-
embedded domain-specific languages Qrisp [34] and Pro-
jectQ [14, 19, 37]. Other examples include the simulators

 0

 1

 2

 3

 4

 5

 6

 7

 21 22 23 24 25 26 27

qsim GPU
QuEST GPU

qsim CPU(1)
QuEST CPU(1)
qsim CPU(48)

QuEST CPU(48)

S
p
e
e
d
u
p

n

ghz

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 8 10 12 14 16 18

qsim GPU
QuEST GPU

qsim CPU(1)
QuEST CPU(1)
qsim CPU(48)

QuEST CPU(48)

S
p
e
e
d
u
p

n

grover

 0

 20

 40

 60

 80

 100

 120

 14 15 16 17 18 19 20

qsim GPU
QuEST GPU

qsim CPU(1)
QuEST CPU(1)
qsim CPU(48)

QuEST CPU(48)

S
p
e
e
d
u
p

n

qft

Figure 8. Plots showing the speedup of qsim andQuEST com-
pared to our library on the three benchmarks ghz, grover,
and qft. Points greater than one indicate that these tools are
faster than our library.

available in QCL [31] and in the Haskell-embedded frame-
work Quipper [12]. Many of these frameworks uses static
or dynamic techniques for implementing gate fusion [41,
Section 2.5.5], [5, 11, 22, 35].
For non-general quantum computing there are ways to

represent quantum states in less than 𝑂 (2ℎ) space. A well-
known example includes the possibility for implementing

37

Gate Fusion Is Map Fusion ARRAY ’25, June 17, 2025, Seoul, Republic of Korea

Table 1. Run-times in milliseconds for our three benchmarks ghz, grover, and qft, where 𝑛 is the number of qubits, using
our library and the simulators qsim and QuEST. The speedups relative to our library is shown in Figure 8.

GPU CPU (1) CPU (48)
𝑛 dqfut qsim QuEST dqfut qsim QuEST dqfut qsim QuEST

ghz
21 1.2 1.5 3.0 163 296 219 49.5 8.6 9.2
22 2.9 2.6 4.0 257 441 394 85.0 15.9 18.9
23 5.9 5.1 7.2 520 969 744 154 23.3 41.2
24 12.0 9.8 12.3 1489 2046 1645 295 66.8 75.4
25 24.0 19.6 20.8 2920 4150 3284 550 125 110
26 50.0 40.0 37.3 5850 10024 6936 910 258 233
27 103 83.4 73.6 11967 21184 14265 1761 543 539

grover
8 7.5 1.7 12.5 1.2 0.6 1.2 2.2 0.6 15.6
10 16.3 4.1 39.3 11.9 3.0 8.1 32.9 3.3 42.7
12 39.3 9.3 120 65.2 20.6 70.3 283 35.0 125
14 93.9 21.1 447 684 184 430 2542 81.0 389
16 246 47.5 1298 10088 1058 3485 7759 192 666
18 786 114 5589 108478 8530 32092 39449 1099 2758

qft
14 11.8 1.7 3.8 81.7 25.8 7.3 418 7.4 8.4
15 13.6 1.8 3.5 123 60.0 17.2 617 12.3 11.8
16 15.7 2.2 3.3 313 138 39.1 704 11.4 13.7
17 17.8 3.2 3.6 2640 197 86.8 1139 13.0 12.8
18 22.5 4.2 4.1 8672 569 180 1523 26.5 15.6
19 34.3 6.0 5.0 17205 1005 310 2867 47.9 28.8
20 64.9 9.2 6.9 53023 2381 717 6247 91.3 52.9

efficient simulators for circuits composed from only Clifford-
gates (Pauli-gates, 𝐻 -gate, and 𝐶 𝑋 gate) [1]. Other possi-
bilities for obtaining faster simulation algorithms for non-
general quantum computing include restrictions of possible
structures of circuits [28] and to use static analyses for iden-
tifying sets of qubits that can be simulated independently
[2, 32]. Yet a possibility for optimisation is to use sparse
representations of state vectors as implemented in the Q#
simulator [15, 20].

Although many of these simulation frameworks are more
elaborate than the simple framework we present here, none
of the frameworks are demonstrated to be derived directly
from a specification of the semantics of the operations.
Some tiling and memory considerations are treated in

some related work that distribute the state vector on several
devices [8]; it would be interesting to speculate on possible
approaches to handling better these "skewed" access and
update patterns.

8 Conclusions and Future Work
We have demonstrated that it is possible to implement a
general simulator framework for quantum circuits in a func-
tional data-parallel array language directly from the semantic
specification of the state-vector gate operations.

There are plenty of possibilities for future work, includ-
ing the possibility for improving the performance of the
derived simulator both by improving the inner workings of
the Futhark array-indexing representation and by using the
framework as a backend for a higher-level quantum program-
ming language that may benefit from circuit optimisations
that are identified and exploited outside of the framework
[6, 33, 42].

References
[1] Scott Aaronson and Daniel Gottesman. 2004. Improved simulation

of stabilizer circuits. Phys. Rev. A 70 (Nov 2004), 052328. Issue 5.
doi:10.1103/PhysRevA.70.052328

[2] Nicola Assolini, Alessandra Di Pierro, and Isabella Mastroeni. 2024.
Abstracting Entanglement. In Proceedings of the 10th ACM SIGPLAN
International Workshop on Numerical and Symbolic Abstract Domains
(Pasadena, CA, USA) (NSAD ’24). Association for Computing Machin-
ery, New York, NY, USA, 34–41. doi:10.1145/3689609.3689998

[3] Lubin Bailly, Troels Henriksen, and Martin Elsman. 2023. Shape-
Constrained Array Programming with Size-Dependent Types. In Pro-
ceedings of the 11th ACM SIGPLAN International Workshop on Func-
tional High-Performance and Numerical Computing (Seattle, WA, USA)
(FHPNC 2023). Association for Computing Machinery, New York, NY,
USA, 29–41. doi:10.1145/3609024.3609412

[4] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. Di-
Vincenzo, Norman Margolus, Peter Shor, Tycho Sleator, John A.

38

https://doi.org/10.1103/PhysRevA.70.052328
https://doi.org/10.1145/3689609.3689998
https://doi.org/10.1145/3609024.3609412

ARRAY ’25, June 17, 2025, Seoul, Republic of Korea Martin Elsman and Troels Henriksen

Smolin, and Harald Weinfurter. 1995. Elementary gates for quan-
tum computation. Physical Review A 52, 5 (Nov. 1995), 3457–3467.
doi:10.1103/physreva.52.3457

[5] Srikar Chundury, Jiajia Li, In-Saeng Suh, and FrankMueller. 2024. DiaQ:
Efficient State-Vector Quantum Simulation. arXiv:2405.01250 [quant-
ph] https://arxiv.org/abs/2405.01250

[6] Gavin E. Crooks. 2024. Quantum Gates - Gates, States, and Circuits.
https://threeplusone.com/gates Tech. Note 014 v0.11.0 beta.

[7] AndrewW. Cross, Lev S. Bishop, John A. Smolin, and Jay M. Gambetta.
2017. Open Quantum Assembly Language. arXiv:1707.03429 [quant-
ph] https://arxiv.org/abs/1707.03429

[8] Jun Doi and Hiroshi Horii. 2020. Cache Blocking Technique to Large
Scale Quantum Computing Simulation on Supercomputers. In 2020
IEEE International Conference on Quantum Computing and Engineering
(QCE). IEEE, 212–222. doi:10.1109/qce49297.2020.00035

[9] Martin Elsman. 2025. Deriving a Kronecker-Free Functional Quantum
Simulator. In Proceedings of the 2nd Workshop on Quantum Software
(Seoul, South Korea) (WQS 2025).

[10] Martin Elsman, Troels Henriksen, and Cosmin E. Oancea. 2018. Parallel
Programming in Futhark. https://futhark-book.readthedocs.io

[11] Jennifer Faj, Ivy Peng, Jacob Wahlgren, and Stefano Markidis. 2023.
Quantum Computer Simulations at Warp Speed: Assessing the Impact
of GPU Acceleration. arXiv:2307.14860 [cs.PF] https://arxiv.org/abs/
2307.14860

[12] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter
Selinger, and Benoît Valiron. 2013. Quipper: a scalable quantum pro-
gramming language. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (Seattle,
Washington, USA) (PLDI ’13). Association for Computing Machinery,
New York, NY, USA, 333–342. doi:10.1145/2491956.2462177

[13] Lov K. Grover. 1996. A fast quantummechanical algorithm for database
search. In Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing (Philadelphia, Pennsylvania, USA) (STOC ’96).
Association for Computing Machinery, New York, NY, USA, 212–219.
doi:10.1145/237814.237866

[14] Thomas Haner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias
Troyer. 2016. High Performance Emulation of Quantum Circuits.
In SC16: International Conference for High Performance Computing,
Networking, Storage and Analysis. IEEE, 866–874. doi:10.1109/sc.2016.
73

[15] Thomas Häner, Damian S. Steiger, Mikhail Smelyanskiy, and Matthias
Troyer. 2016. High performance emulation of quantum circuits. In
Proceedings of the International Conference for High Performance Com-
puting, Networking, Storage and Analysis (Salt Lake City, Utah) (SC ’16).
IEEE Press, Article 74, 9 pages.

[16] Troels Henriksen and Martin Elsman. 2021. Towards size-dependent
types for array programming. In Proceedings of the 7th ACM SIGPLAN
International Workshop on Libraries, Languages and Compilers for Array
Programming (Virtual, Canada) (ARRAY 2021). Association for Comput-
ingMachinery, NewYork, NY, USA, 1–14. doi:10.1145/3460944.3464310

[17] Troels Henriksen and Cosmin Eugen Oancea. 2013. A T2 graph-
reduction approach to fusion. In Proceedings of the 2nd ACM SIGPLAN
Workshop on Functional High-Performance Computing (Boston, Mas-
sachusetts, USA) (FHPC ’13). Association for Computing Machinery,
New York, NY, USA, 47–58. doi:10.1145/2502323.2502328

[18] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,
and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-
programming with Nested Parallelism and In-place Array Updates.
In Proceedings of the 38th ACM SIGPLAN Conference on Programming
Language Design and Implementation (Barcelona, Spain) (PLDI 2017).
ACM, New York, NY, USA, 556–571. doi:10.1145/3062341.3062354

[19] Thomas Häner, Damian S Steiger, Krysta Svore, and Matthias Troyer.
2018. A software methodology for compiling quantum programs.
Quantum Science and Technology 3, 2 (Feb. 2018), 020501. doi:10.1088/

2058-9565/aaa5cc
[20] Samuel Jaques and Thomas Häner. 2022. Leveraging State Sparsity for

More Efficient Quantum Simulations. ACM Transactions on Quantum
Computing 3, 3, Article 15 (June 2022), 17 pages. doi:10.1145/3491248

[21] Ali Javadi-Abhari, Matthew Treinish, Kevin Krsulich, Christopher J.
Wood, Jake Lishman, Julien Gacon, Simon Martiel, Paul D. Nation,
Lev S. Bishop, Andrew W. Cross, Blake R. Johnson, and Jay M. Gam-
betta. 2024. Quantum computing with Qiskit. doi:10.48550/arXiv.2405.
08810 arXiv:2405.08810 [quant-ph]

[22] T Jones, A Brown, I Bush, and S Benjamin. 2019. QuEST and high
performance simulation of quantum computers. Scientific Reports 9,
2019 (2019).

[23] Phillip Kaye, Raymond Laflamme, and Michele Mosca. 2007. An Intro-
duction to Quantum Computing. Oxford University Press, Inc., USA.

[24] Ken Kennedy and Kathryn S. McKinley. 1993. Maximizing Loop Paral-
lelism and Improving Data Locality via Loop Fusion and Distribution.
In Proceedings of the 6th International Workshop on Languages and
Compilers for Parallel Computing. Springer-Verlag, Berlin, Heidelberg,
301–320.

[25] N. Khammassi, G. G. Guerreschi, I. Ashraf, J. W. Hogaboam, C. G.
Almudever, and K. Bertels. 2018. cQASM v1.0: Towards a Common
Quantum Assembly Language. arXiv:1805.09607 [quant-ph] https:
//arxiv.org/abs/1805.09607

[26] Oleg Kiselyov, Aggelos Biboudis, Nick Palladinos, and Yannis Smarag-
dakis. 2017. Stream fusion, to completeness. In Proceedings of the 44th
ACM SIGPLAN Symposium on Principles of Programming Languages
(Paris, France) (POPL ’17). Association for Computing Machinery, New
York, NY, USA, 285–299. doi:10.1145/3009837.3009880

[27] Hugo Daniel Macedo and José Nuno Oliveira. 2013. Typing linear
algebra: A biproduct-oriented approach. Science of Computer Program-
ming 78, 11 (2013), 2160–2191. doi:10.1016/j.scico.2012.07.012 Special
section on Mathematics of Program Construction (MPC 2010) and
Special section on methodological development of interactive systems
from Interaccion 2011.

[28] Igor L. Markov and Yaoyun Shi. 2008. Simulating Quantum Compu-
tation by Contracting Tensor Networks. SIAM J. Comput. 38, 3 (Jan.
2008), 963–981. doi:10.1137/050644756

[29] Philip Munksgaard, Cosmin Oancea, and Troels Henriksen. 2023. Com-
piling a Functional Array Language with Non-Semantic Memory Infor-
mation. In Proceedings of the 34th Symposium on Implementation and
Application of Functional Languages (Copenhagen, Denmark) (IFL ’22).
Association for Computing Machinery, New York, NY, USA, Article 2,
13 pages. doi:10.1145/3587216.3587218

[30] Michael A. Nielsen and Isaac L. Chuang. 2011. Quantum Computa-
tion and Quantum Information: 10th Anniversary Edition (10th ed.).
Cambridge University Press, USA.

[31] Bernhard Omer. 2009. Structured Quantum Programming. Institute
for Theoretical Physics Vienna University of Technology. http://
tph.tuwien.ac.at/~oemer/doc/structquprog.pdf first version 26th May
2003.

[32] Simon Perdrix. 2008. Quantum Entanglement Analysis Based on
Abstract Interpretation. In Static Analysis, María Alpuente and Germán
Vidal (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 270–282.

[33] Jessica Pointing, Oded Padon, Zhihao Jia, Henry Ma, Auguste Hirth,
Jens Palsberg, and Alex Aiken. 2024. Quanto: optimizing quantum
circuits with automatic generation of circuit identities. Quantum
Science and Technology 9, 4 (jul 2024), 045009. doi:10.1088/2058-9565/
ad5b16

[34] Raphael Seidel, Sebastian Bock, René Zander, Matic Petrič, Niklas
Steinmann, Nikolay Tcholtchev, and Manfred Hauswirth. 2024. Qrisp:
A Framework for Compilable High-Level Programming of Gate-Based
Quantum Computers. arXiv:2406.14792 [quant-ph] https://arxiv.org/
abs/2406.14792

39

https://doi.org/10.1103/physreva.52.3457
https://arxiv.org/abs/2405.01250
https://arxiv.org/abs/2405.01250
https://threeplusone.com/gates
https://arxiv.org/abs/1707.03429
https://arxiv.org/abs/1707.03429
https://doi.org/10.1109/qce49297.2020.00035
https://futhark-book.readthedocs.io
https://arxiv.org/abs/2307.14860
https://arxiv.org/abs/2307.14860
https://arxiv.org/abs/2307.14860
https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/237814.237866
https://doi.org/10.1109/sc.2016.73
https://doi.org/10.1109/sc.2016.73
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/2502323.2502328
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1088/2058-9565/aaa5cc
https://doi.org/10.1145/3491248
https://doi.org/10.48550/arXiv.2405.08810
https://doi.org/10.48550/arXiv.2405.08810
https://arxiv.org/abs/2405.08810
https://arxiv.org/abs/1805.09607
https://arxiv.org/abs/1805.09607
https://arxiv.org/abs/1805.09607
https://doi.org/10.1145/3009837.3009880
https://doi.org/10.1016/j.scico.2012.07.012
https://doi.org/10.1137/050644756
https://doi.org/10.1145/3587216.3587218
http://tph.tuwien.ac.at/~oemer/doc/structquprog.pdf
http://tph.tuwien.ac.at/~oemer/doc/structquprog.pdf
https://doi.org/10.1088/2058-9565/ad5b16
https://doi.org/10.1088/2058-9565/ad5b16
https://arxiv.org/abs/2406.14792
https://arxiv.org/abs/2406.14792
https://arxiv.org/abs/2406.14792

Gate Fusion Is Map Fusion ARRAY ’25, June 17, 2025, Seoul, Republic of Korea

[35] Mikhail Smelyanskiy, Nicolas P. D. Sawaya, and Alán Aspuru-Guzik.
2016. qHiPSTER: The Quantum High Performance Software Testing
Environment. arXiv:1601.07195 [quant-ph] https://arxiv.org/abs/1601.
07195

[36] Robert Smith. 2023. A tutorial quantum interpreter in 150 lines of
Lisp. https://www.stylewarning.com/posts/quantum-interpreter/
Blog post..

[37] Damian S. Steiger, Thomas Häner, andMatthias Troyer. 2018. ProjectQ:
an open source software framework for quantum computing. Quantum
2 (January 2018), 13. doi:10.22331/q-2018-01-31-49

[38] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher
Granade, Bettina Heim, Vadym Kliuchnikov, Mariia Mykhailova, An-
dres Paz, and Martin Roetteler. 2018. Q#: Enabling Scalable Quantum
Computing and Development with a High-level DSL. In Proceedings
of the Real World Domain Specific Languages Workshop 2018 (RWDSL
’18). ACM, 1–10. doi:10.1145/3183895.3183901

[39] Quantum AI team and collaborators. 2020. qsim. doi:10.5281/zenodo.
4023103

[40] Teague Tomesh, Pranav Gokhale, Victory Omole, Gokul Subramanian
Ravi, Kaitlin N. Smith, Joshua Viszlai, Xin-Chuan Wu, Nikos Hardavel-
las, Margaret R. Martonosi, and Frederic T. Chong. 2022. SupermarQ:
A Scalable Quantum Benchmark Suite. arXiv:2202.11045 [quant-ph]
https://arxiv.org/abs/2202.11045

[41] Colin P. Williams. 2011. Explorations in Quantum Computing. Springer-
Verlag London. doi:10.1007/978-1-84628-887-6

[42] Mingkuan Xu, Zikun Li, Oded Padon, Sina Lin, Jessica Pointing, Au-
guste Hirth, Henry Ma, Jens Palsberg, Alex Aiken, Umut A. Acar, and
Zhihao Jia. 2022. Quartz: superoptimization of Quantum circuits. In
Proceedings of the 43rd ACM SIGPLAN International Conference on Pro-
gramming Language Design and Implementation (San Diego, CA, USA)
(PLDI 2022). Association for Computing Machinery, New York, NY,
USA, 625–640. doi:10.1145/3519939.3523433

Received 2025-04-01; accepted 2025-04-19

40

https://arxiv.org/abs/1601.07195
https://arxiv.org/abs/1601.07195
https://arxiv.org/abs/1601.07195
https://www.stylewarning.com/posts/quantum-interpreter/
https://doi.org/10.22331/q-2018-01-31-49
https://doi.org/10.1145/3183895.3183901
https://doi.org/10.5281/zenodo.4023103
https://doi.org/10.5281/zenodo.4023103
https://arxiv.org/abs/2202.11045
https://arxiv.org/abs/2202.11045
https://doi.org/10.1007/978-1-84628-887-6
https://doi.org/10.1145/3519939.3523433

	Abstract
	1 Introduction
	2 Gate Semantics and Circuits
	2.1 Qubits and Unitary Matrices
	2.2 Semantics

	3 Data-Parallel Interpretation
	3.1 MiniFut
	3.2 Deriving an Interpreter
	3.3 Swapping Arbitrary Qubits

	4 Fusion
	5 The Gate Library Interface
	6 Benchmarks
	6.1 Experimental Setup
	6.2 Results

	7 Related Work
	8 Conclusions and Future Work
	References

