Functional Programming for Trade Management and Valuation

Seminar on Functional High Performance Computing in Finance
December 14, 2010

Martin Elsman
SimCorp A/S

The Financial Contracts Market

Banks (and other financial institutions) use
financial contracts for both

: Increase risk
« Speculation

* Insurance (hedging))

Many contracts are "Over The Counter”
(OTC) contracts, which are negotiated
agreements between a bank and another
bank (its counter party).

The Term Sheet —the financial contract

« A financial contract is typically agreed upon on a so-called "Term Sheet”.

« The term sheet specifies the financial flows (amounts, dates, etc.) and under
which conditions a flow should happen.

* Flows can go in both directions.
v —_ N

B, $10,000 each month for »
- 12 months

\\%

Amortized Loan

Eﬂ
$100,000 up front 2

« A derivative is a contract that depends on an underlying entity (e.g., a stock)

@ SimCorp

Many Types of Financial Contracts are Traded

Catastrophy

FX Swaps STk Bermudan
Inflation Interest Rate Options
Swaps Swaps _
|
' ' . Certificates
Han \/amlla Indexed Linked
Options

Bonds

Credit Default I'\(’)algct))(;\;v ChO_Oser
Swaps (CDS) P Options

Himalyan

Options
Forward Rate Callable Range
Agreements Accrual Notes

@ SimCorp

How do the Banks Keep Track?

« Many Problems:
— Financial contracts need management
 fixings, decisions, corporate actions, ... properties
— Banks must report daily on their total value of assets
— Banks must control risk (counterparty risk, currency risk, ...)
— Banks need to know about future cash flows

Algebraic

« A Solution:
— Specify financial contracts in a domain specific language!
— Use a functional programming language (e.g., ML)

Simple reasoning

The SimCorp Xpressinstruments Solution Instrument specific input

Instruments are specified in an instrument modeling language

0 - Main window for XpressInstruments
o £

Once loaded, a portfolio | -
| e ——— o
. . - Autocallable Down and In - seour ty ID I:I 1IN l:l State of data ERROR :‘ a
manager may Instantiate | sessomeire | e | bl s [st :
- Autocallable Index :
- . autocallable Worst-of Security type I:I Security group l:l ¥pressInstrument |Chooser Option :I 5
an instrument to create - Bkt Crticate “FmoncalTnstrament Grarsctentos . h
- Bonus Certificate =
- Callble Path Dependent Foater| | | Contract Defniton | IR e Y e e Piidng 3
CO n traCtS . - Callable Range Accrual Note
- Chooser Option

—————————
Compound Option Underlying | IEqL.IitY 'l

G

Lf.l-- Discount Certificate CARLSBERGL -

(- Equity Basket Dispersion

o[Maturity date | [os-10-2010 o |
Bk Himalaya L

Underlying call | Fixing date [1#10-2010 |
- IR-CCY Swap
The instrument knows [e
- Libor Plus Strike | 45,00
. - MinMax VolBond
Curren DKK
what input to ask for —— :
" - Rainbow Option Automatic ITrue ;I
(- Snowball / TARM -
~SpresdExres S P | ==]
i Target Redemption Note Maturity date |24—10—201u |
- Variance Certificate
Strike |

Wall-to-wall (Front Office, | wmu™™
Middle Office, Back Office)
contract management

LexiFi
Technology
Inside!!

The SImCorp Xpressinstruments Solution

¢ XpressInstrument Editor = |I:I| X|

File Edit Printing Tools Help

EI'_?DEHF”NN”_IiIiI_I_I_I_I

[C..:III Jption

- Instruments are written by e ;
SimCorp consultants or by p;e_d”d + tname = "pCURMI:

strike : float:

banks themselves: © | Smesivins saemey

=]
10
11 (¥ Default wvalues for the instrument's parameter=s. *)
12 let default parameters today =
13 { currency = EUR:
. . 14 exercise_ date = today ~+yearsS 1
« Newly written instruments 15 zumaes - o000
16 underlying = {scd eguity="SimCorp"}
. 17 ¥
may be loaded into the
y 19 (¥ The instrument implementation. *)
. . 20 let call_option (X: t©) =
S Stem nstantan O Sl 21 let d — =x.exercise_date in
y I I u y 22 let strike = obs_of float x.strike in
23 let equity = xX.underlying.scd eqguity in
Z4 acoguire {[dl} |
25 simple flow d X.CUurrency
Za (fixed d
27 (max~ 0.0~
T . b' h 28 (market underlying eqguity —.~ strike)))})
* Notice: Arbitrary short

(¥ Registration code *)
et () =
add_instrument

LG L L
Wn e o

time-to-market

~gui name: "MNN Ca11 Cption 5"
34 ~t: (ttype_of: c©)
35 ~defanlt_ parameters:default parameters

32a call option -
[<] [_>|_I

P I I _'I Ermors/Results IOutpl_rt I Tvpe I

Build Finished: 03-06-2009 19:33:08

@ SimCorp

Constructing Contract Management Software in Standard ML

Basics: In reality, there are, of
course, more currencies. ..

(* Currencies *)
datatype currency = EUR | DEKK

(* Observables *)
datatype obs =
Const of real
| Underlying of string * Date.date
| Mul of obs * obs
| Add of obs * obs
| Sub of obs * obs
| Max of obs * obs Observable: algebra over
measurable time-changing
entities (e.g., Carlsberg stock)

The Contract Language as a Standard ML Datatype

Flow of one unit
Acquire the underlying
contract at specific date

(* Contracts *)
datatype contract =
One of currency
Scale of obs * contract

All of contract 1list

Acquire of Date.date * contract
Give oL contract

(* Shorthand notation *)
fun flow(d,v,c) = Acquire (d,Scale(Const v,0One c))
val zero = All []

@ SimCorp

Example Financial Contracts

months

v

(* Simple amortized loan *) Amortized Loan
val exl =
let val coupon = 11000.0 30,000 up front A
val principal = 30000.0
in All [Give(flow (?"2011-01-01",principal,EUR)),
flow (?"2011-02-01", coupon, EUR) ,
flow(?2"2011-03-01", coupon, EUR) ,
flow (?2"2011-04-01", coupon, EUR)]

end Ehva Flow Flow Flow
11000 11000 11000
(* Cross currency swap *) l':

All

— Flow

All [Give (
All[flow(?"2011-01-01",7000.0,DKK),
flow(?"2011-02-01",7000.0, DKK),
flow(?"2011-03-01",7000.0,DKK) 1),
flow(?"2011-01-01",1000.0,EUR),
flow(?2"2011-02-01",1000.0,EUR), Notice: flows in
flow(?"2011-03-01",1000.0,EUR)] different currencies

A Somewhat more Complex Example

(* Call option on "Carlsberg" stock *)
val equity = "Carlsberg"
val maturity = ?"2012-01-01"
val exd =
let val strike = 50.0
val nominal = 1000.0
val obs =
Max (Const 0.0,
Sub (Underlying (equity,maturity),
Const strike))
in Scale (Const nominal,
Acgquire (maturity, Scale (obs,One EUR)))
end

Meaning: Acquire at maturity the amount (in EUR), calculated as
follows (P is price of Carlsberg stock at maturity):

nominal * max(0, P — strike)

@ SimCorp

Now What?

« We have now defined some contracts, but what can we do with the
definitions?

— Report on the expected future cash flows

— Perform management operations:
« Advancement (simplify contract when time evolves)
« Corporate action (stock splits, merges, catastrophic events, ...)
« Perform fixing (simplify contract when an underlying becomes known)

— Report on the value (price) of a contract

Expected Future Cash Flows

(* Future cash flows *)

fun noObs = raise Fail "noObs"
val = println "\nExl - Cash flows for simple amortized loan:"
val = println (cashflows noObs exl)

EXx1l - Cash flows for simple amortized loan:

2011-01-01 certain EUR ~30000.0000000 When a contract

EDII—DEFDI Certain EUR 11000.0000000 IS given away,
2011-03-01 Certain EUR 11000.0000000 flows are inverted
2011-04-01 Certain EUR 11000.0000000

val = println "\ngEx2 - Cash flows for crass—%urrency swap:"

val = println (cashflows noCbs ex2)

ExZ2 - Cash flows for cross-currency swap:

2011-01-01 Certain EUR 1000.00000000 Itis possible to define a
2011-01-01 Certain DKK ~7000.00000000 function cashflows that
2011-02-01 Certailn EUR 1000.00000000 collects information about
2011-02-01 Certain DKK ~7000.00000000 T

2011-03-01 Certain EUR 1000.00000000
2011-03-01 Certain DEE ~7000.00000000

contract.

Fixing also

Contract Management and Contract Simplification advances

contract

(* Stock option c ows assuming underlying stock price of 7%.0 *)
val = print "\nEx4 - Cash flows on stock option (Strike:50,Price:79):"
val = println (cashflows (fn _ => Const 7%.0) ex4)

(* Contract management *)
val ex5 = fixing(equity,maturity,83.0) exd

val = println "\nEx5 - Call option with fixing 83"

val : = println ("ex5 = " ~ pp ex5) Observgble

val ex6 = fixing(eguity,maturity,46.0) exd underlyings

val = println "\nExé - Call option with fixing 4&" rnayinUoduce
val = println ("exé = " "~ pp ex6) uncertainties
Output:

Ex4 - Cash flows|on stock option (Strike:50,Price:79):
2012-01-01 Uncertain EUR 25%000.0000000

Ex5 — Call option with fixing 83 COHUadSEUeSanﬁEd
ex5 = Scale(33000.0000000,0One (EUR)) due to calls to the fixing

function

Ex6 — Call option with fixing 46
ext = zero <€

Valuation (pricing)

(* Valuation (Pricing) *) Notice: This model is
structure FlatRate = struct a bit too Simple —we
fun discount d0 d amount rate = .
let val time = real (Date.diff d do) / 360.0 assume the FX-rate is
in amount * Math.exp(~ rate * time) constant...
end
fun price d0 (R : currency —-> real)

(F¥: currency * real -> real) t
let wal flows = cashflows(noE t©
in List.foldl (fn ((d,cur,v,),acc) =>
acc + F¥(cur,discount d0 d v (R cur)))

0.0 flows
end
end
fun FX(EURE,v) = 7.0 * w
| FX(DEE,v) = W
fun E EUR = (0.04
| R DEE = 0.05

Output:

val pl = FlatRate.price (?"2011-01-01") R F¥ exl

{
val pZ = FlatRate.price (?2"2011-01-01") R F¥ exZ
val = println("'nPrice(exl) : DEE " © Real.toString pl) Price (exl) : DEK 19465.9718165
val = println("'nPrice(exZ) : DEE " © Real.toString pZI)

Price (exZ) : DEE 17.3908947790

What is Missing?

* Proper date handling (holidays, business conventions; Act/30, Act/Act, ...)

« Easy GUI specification

 More combinators (e.g., american optionality, dynamic dates, ...)
« More functionality (e.g., accrual interest)

« Support for corporate actions and catastrophic events

 Well-formedness of contracts... Disallow acquire of flow in the past

* Proper stochastic models and underlying machinery (Sobol sequences
for monte-carlo simulations) for pricing and calibration

— Support for linking with external models (e.g., FINCAD) F- :
INCAD

@ SimCorp

Conclusions

 Functional programming
— Is declarative: Focus on what instead of how
— Is value oriented (functional, persistent data structures)
— Eases reasoning (formal as well as informal)
— Eases concurrent processing (e.g., for improved parallelism)

« SimCorp not the only company (or bank) that has recognized the value of
functional programming for the financial industry

— LexiFi (See ICFP’00 paper by Peyton-Jones, Eber, Seward)
 Engineis used by SimCorp!

— Jane Street Capital (focus on electronic trading)

— Societe Generale, Credit Suisse, Standard Chartered, ...

— Contract "Pay-off” specifications are often written in a functional style

LexiFi

@ SimCorp

Appendix: Observable evaluation function

(* Evaluation utility function on observables *)
exception Eval
fun eval E obs =
let fun max rl r2 = 1f rl > r2 then rl else r2
in case obs of
Const r => ¢
| Underlvying arg =>
let val obs = E arg
in case obs of
Underlying argl =>
if arg = argl then raise Eval
else eval E obs
. => eval E obs
aend
Mul{cbsl,cbsﬁ] =» eval E obsl * eval E obs?2
d(obsl,obs2) => eval E obsl + eval E obs?Z
ubk (cbhsl,obsd) => eval E obsl - eval E obs?i
Max{ahsl,ahszj => max (eval E obsl) (eval E obsZ)

end

Appendix: Observable Simplification
— preparing for Contract Management

(* Try to simplify an observable expression *)
fun simplify E ohs =
let fun simpl opr ol ol =
opr (simplify E ol,simplify E ol)
in (Const (eval E obs))
handle =>
case obs of
Const => obs
| Underlying _ => obs
| Mul(ol, o) => simpl Mul ol ol
| Addiocl,o0l) =>» simpl Add ol ol
| Subiol,o0l) => simpl Sub ol ol
| Max(ol,o02) =>» simpl Max ol ol

end

Appendix: Future Cash Flows Propagate scale factor to
resolve amount

(* Future Cash Flows *)

fun cashflowsl E £t =

let fun flows s7d o t
case t of

One cur ==

[(d,cur,=s,1f ¢ then Certaln else Uncertain)]

| Bcale (obs,t) => Observable
flows (8 * Ohs.ewval E ohs) d underlyings
(¢ andalsc Oks.certainty ohs) t .
| All ts => List.concat (map (flows s d <) ts) rnaylrnnaduce
| Acquire (d,t) => flows s d < t uncertainties
| Give(t) => flows (~s) d c t
val res = flows 1.0 (todayi()) true t

in Listsort.sort
(fn (rl,rZ) => Date.compare (#1 rl,#1 r2))

res
end When a contract
. IS gliven away,
fun cashflows E £t : string = .
let fun pp (d,cur,r,c) = flows are inverted
Date.toString 4 ©~ " " © pp _certainty < ~ " "
pp_cur cur ©~ " " © Real.toString r
val res = cashflows0 E t
in 8tring.concatWith "'n" (List.map pp res)

end

Appendix: Contract Simplification

fun simpaify d0 Bt b Complete contract simplifier.
case of
Blltts ==
let val ts = map (simplify 40 E) ts
in case List.filter (fn AL1[] => false | _ => true) ts of
s TN e Scale and Give constructors
| Givell() = all() are propagated downwards
| cale (obs,RB11[]) = 11[]
| give (211 ti] => si;pilify dd E (A1l (map Give ts)) and merged
|

Scale (obs,2ll ts) =>

simplify d0 E (11 (map (fn t => Scale(cbs,t)) ts))
| Scale(ocbs,t) ==

(case Scale (simplify obs E cbs,simplify d0 E t) of

scale (o1, Scale (02, £)) => Acquire constructors are
simplify d0 E (Scale(Mul({cl,o02),t)) .
| scals(obs,ALLI1) => ALLI] resolved, given the argument
| if_iei_]l.==l[r,0.ﬂj tHen zero =lse t date to Slmpllfy (dO)

| Rcguire(d,t) =>
if Date.diff d0 d >= 0 then simplify 40 E t
else Acquire(d,simplify 40 E t)

| Give t => . .
(case Give(simplify 40 E t) of The enVII'Onment (E) IS
Give (Give t) => simplify 40 E t
R o propagated to the observable
| One => t

simplifier.

@ SimCorp

Appendix: Contract Management Using ”simplify”

(* Apply a fixing to a contract *)
fun fixing (name, date,value) t =

let fun E arg =
1f arg = (name,date) then 0Obs.Const wvalue

else Obs.Underlying arg
in simplify date E t
end

(* Femove the past from a contract *)
fun advance d t =
let val t = simplify d noE t
fun adv t =
case t of
One => Zero
| Scale(obhs,t) => Scale (obhs, adv t)
| Acquire => t
| Glve t => Give (adv t)
| All ts => All (map adv ts)
in simplify d noE (adv t)

end

