
Smarter Blockchains
- from Transactions to Contracts
Blockchain Workshop, Dallund Slot, May 2018

Martin Elsman
Department of Computer Science
University of Copenhagen (DIKU)

The Speaker

Martin Elsman, Associate Professor at DIKU

Research activities:

- Certified management of financial contracts.
- Programming language design and implementation (functional

languages)
- Parallel programming languages - getting programs, such as

simulations, to run efficiently on GPUs.

Other activities:

- Manager, HIPERFIT Research Center, DIKU (2012-2018)
- CTO and partner in iAlpha - a London-, DK-, and Swiss-based

startup specialising in financial analytics.

Plain Blockchain Recap

Features:

- A distributed ledger with distributed authority

- Useful to store transactions securely and privately

- Plain Bitcoin blockchain allows only for storing Bitcoin
transactions

- Other blockchain systems allows for storing ad-hoc
user-defined transactions involving other types of digital
assets (anything with a hash-key).

Smarter Blockchain Systems

Modern blockchain systems, such as
Ethereum, allows for so-called smart
contracts to be executed on the blockchain
system.

A smart contract is a small program that runs
on the blockchain system (i.e., in principle by
every node).

The smart contract may hold assets (e.g.,
digital cash) and listen to events (i.e., react on
transactions by issuing other transactions).

Some smart blockchain systems:

- Bitcoin contracts
- Ethereum
- NEO (Chinese-Ethereum)
- EOS
- Ripple, ...

The Ethereum Blockchain System - I

Ethereum is specified openly (as the Bitcoin blockchain) in
the “yellow paper”.

Ether: Ethereum’s own cryptocurrency.

Ethereum Virtual Machine (EVM) code: Bytecode instructions
that execute on the system (i.e., by each node)

GAS: The cost associated with executing bytecode
instructions (Turing-completeness).

Data Feed: Access to the external world from within
Ethereum code.

http://gavwood.com/paper.pdf

The Ethereum Blockchain System - II

Smart Contracts (i.e., programs) may not be written in
low-level EVM code, but may be written languages that
compile to EVM code:

- Solidity: A JavaScript-like object-oriented language
- Vyper: A simple Python-like language
- LLL: Low-level Lisp-like code

Smart contracts are neither smart nor contracts:

- Not smart: Not declarative: describes how not what
- Not contracts: They don’t describe agreed-upon

obligations

http://gavwood.com/paper.pdf

Possible Uses of Ethereum

Financial contracts:

- Swaps, Options, OTC contracts, ...

Digital rentals:

- Car/hotel rental: A personal digital code for hotel room
or car is swapped with Ether (rental & deposit). Deposit
is returned when car/hotel room has been inspected.

Contracts on goods:

- Ether is transferred when merchandise is delivered.

Let’s look into
this possibility...
We can even
manage margin
accounts...

http://gavwood.com/paper.pdf

Existing Blockchain Implementations

Constructed to record mutual agreed-upon
transactions…

Each node has a copy of the blockchain. New
nodes get the chain from their peers.

A mutual consensus mechanism (proof-of-work)
ensures that nodes agree on transactions.

Classical ledgers, records only transactions that
has happened (facts), not transactions that are
meant to occur in the future!

transactions

Previous
hash

Nonce
(proof-of-work)

Block no: 23

transactions

Previous
hash

Nonce
(proof-of-work)

Block no: 24

transactions

Previous
hash

Nonce
(proof-of-work)

Block no: 25

node

nodenode
node

node
node

Party X transfers 2 bitcoins
to party Y

Today’s Financial System

A small group of large institutions
communicate bilaterally.

Regulatory authorities ensure consistency
through audits of institutions.

Individual, companies, and smaller
service providers access the system
by partnering with a large institution.

Tomorrow’s Financial System

Based on blockchain technology!

The overhead of bilateral communication is eliminated.

All parties enjoy direct access to the financial system.

The ledger manages contracts and automatically settles them in accordance with
participants’ strategies for doing so.

Access scales to an arbitrary number of participants as consensus protocols keep the
ledger consistent.

Financial Contracts on the Ethereum
Blockchain System

Constructed to record mutual agreed-upon future
transactions (e.g., financial contracts)…

The blockchain makes evident that all involved
parties have signed the contract.

When times passes, transfers and decisions
(events) occur and are recorded in the blockchain.

An Ethereum smart-contract can arrange for the
transfer to occur..

transactions
+contracts

Previous
hash

Nonce
(proof-of-work)

Block no: 23

transactions
+contracts

Previous
hash

Nonce
(proof-of-work)

Block no: 24

transactions
+contracts

Previous
hash

Nonce
(proof-of-work)

Block no: 25

node

nodenode
node

node
node

How do we Know that the Smart Contract
is Implemented Correctly?

Lots of trusted components, incl:

transactions
+contracts

Previous
hash

Nonce
(proof-of-work)

Block no: 23

transactions
+contracts

Previous
hash

Nonce
(proof-of-work)

Block no: 24

transactions
+contracts

Previous
hash

Nonce
(proof-of-work)

Block no: 25

node

nodenode
node

node
node

Financial
Contract

Solidity Smart
Contract

EVM BytecodeEVR Execution

A Certified Contract Management Engine

Contract combinators for specifying
financial derivatives [2].

Contract kernel written in Coq, a
functional language and proof
assistant for establishing program
correctness (wrt a cash-flow
semantics).

Certified management code
extracted from the Coq
implementation (fixings, decisions). [2] Patrick Bahr, Jost Berthold, and Martin Elsman. Certified Symbolic

Management of Financial Multi-Party Contracts. In Proceedings of the
ACM SIGPLAN International Conference on Functional Programming
(ICFP’15). September, 2015.

13

American Option contract in natural language:
At any time within the next 90 days, party X may
decide to buy USD 100 from party Y, for a fixed rate
6.65 of Danish Kroner.

Specified in the contract language:
if obs(X exercises option) within 90 then
 100 × (USD(Y→X) & 6.65 × DKK(X→Y))
else ∅

A Financial Contract Language

Features:

 Compositionality
Contracts are time-relative ⇒ compositionality

 Multi-party
Possibility for specifying portfolios

 Contract management
Contracts can be managed (fixings, splits, …)
Contracts gradually reduce to the empty contract

 Contract utilities (symbolic)
Contracts can be analysed in a variety of ways
(find horizon, potential cash-flows, …)

Assumptions
d integer (specifies a number of days)
p ranges over parties (e.g., YOU, ME, X, Y)
a assets (e.g., USD, DKK)

Expressions (extended expressions for reals and booleans)
obs(l,d) observe the value of l (a label) at time d
acc(f,d,e) accumulate function f over the previous d days

Contracts (c)
∅ empty contract with no obligations
a(p1 → p2) p1 has to transfer one unit of a to p2

c1 & c2 both c1 and c2

e × c multiply all obligations in c by e
d↑c shift c into the future by d days
let x = e in c bind today’s value of e to x in c

if e within d then c1 else c2 behave as c1 when e becomes true
if e does not become true within d
days, behave as c2

14

Expressibility: More Contract Examples

Asian Option

90 ↑ if obs(X exercises option) within 0 then
 100 × (USD(Y→X) & (rate × DKK(X→Y)))

else ∅

where

 rate = 1/30 · acc(λr.r + obs(FX USD/DKK), 30, 0)

Notice: the special acc-construct is used to
compute an average rate.

Simple Credit Default Swap (CDS)

The bond:
 cbond = if obs(X defaults, 0) within 30 then ∅

 else 1000 × DKK(X→Y)

Insurance:
 ccds = (10 × DKK(Y→Z)) &

 if obs(X defaults, 0) within 30 then
 900×DKK(Z→Y)

 else ∅

Entire Contract:
 C = Cbond & Ccds

15

Z

Y X

Benefits of the Formal Framework

Some contract equivalences (algebra)

e1 × (e2 × c) ≃ (e1 · e2) × c
d1 ↑ (d2 ↑ c) ≃ (d1 + d2) ↑ c
d ↑ (c1 & c2) ≃ (d ↑ c1) & (d ↑ c2)
e × (c1 & c2) ≃ (e × c1) & (e × c2)

16

d ↑ ∅ ≃ ∅
r × ∅ ≃ ∅
0 × c ≃ ∅
c & ∅ ≃ c
c1 & c2 ≃ c2 & c1

With a netting semantics:

(e1 × a(p1→p2)) & (e2 × a(p1→p2)) ≃ (e1 + e2) × a(p1→p2)

 Other benefits:
- Type system for causality
- Correctness of contract evolution

One cannot pay today an
amount that depends on a
value tomorrow.

Consequences - I Bye-bye
Banks

Consequences - II

No need for classic banks to interpret
paper contracts.

No need for central players, such as
clearing houses.

Even margin accounts can be
implemented using smart-contracts that
themselves can hold digital assets.

Needs and opportunities:

- Secure (i.e., certified) and transparent
blockchain implementations.

- Solutions to orchestrate new
blockchain variations.

- Possibility for linking with real world
assets (e.g., mortgages, car loans).

Other applications:

- Software contracts…
- Other contracts...

Bye-bye
Banks

Thanks!

