
Extending MLKit with vector instructions

Christian Kjær Larsen

January 29, 2021

Contents
1 Introduction 2

1.1 Project statement . 2
1.2 Road-map . 2
1.3 Source code . 2

2 Background 2
2.1 Vector instructions in modern CPUs . 2
2.2 Programming model and higher level languages 3

3 Design of a vector signature 4
3.1 Generic interface . 4
3.2 Pure SML structure . 6
3.3 Writing programs . 6

4 Implementation in the MLKit 8
4.1 Types . 8
4.2 Primops . 8
4.3 Internal representation . 9
4.4 Implementing boxed operations . 9
4.5 Instruction selection . 10
4.6 Unboxing . 11
4.7 Signature using primops . 12

5 Data-parallel programming 13

6 Evaluation 14
6.1 Inspecting assembly code from example programs 15
6.2 Benchmarks . 16

7 Conclusion 18

8 Future work 18

A Included code 19
A.1 MLKit source code . 19
A.2 Example programs . 20

1

1 Introduction
In this section we will briefly describe the project, its purpose and the structure of this
report.

1.1 Project statement
The goal of this project is to add packed vector support to the MLKit[1] Standard ML
compiler using the AVX2 vector instructions present in modern Intel processors. The
motivation is to be able to use this support to optimize programs written in Standard
ML to exploit data parallelism.

1.2 Road-map
1. We start by investigating other approaches to SIMD (Single Instruction Multiple

Data) programming in higher level languages. This is in order to settle on a good
abstraction that is fairly easy to program with.

2. We then continue by designing a programming abstraction to be able to optimize
a program in a generic way that is not tied to a particular instruction set or set of
vector extensions. We also write some simple example programs that will work
as motivating examples and show that the abstraction is actually useful.

3. Finally we implement compiler support for Intel AVX in the MLKit Standard ML
compiler by providing a set of intrinsics that compile to efficient code that use
native vector instructions.

1.3 Source code
We have included two archives with source code. One is the source code of the forked
MLKit compiler, and the other is the libraries, example programs and benchmarks writ-
ten while completing this project. An overview of the source code and the changes can
be found in the appendix.

2 Background
In this section we will motivate the project by giving some background on vector exten-
sions in modern CPUs and how one would typically accelerate a program using vector
instructions is mainstream programming languages.

2.1 Vector instructions in modern CPUs
Ordinary instructions in a modern CPU typically work on one or more registers each
containing scalar values. For instance, the following X86-64 program will increment a
number, and store it to memory:

addq 0x1, %rax
movq %rax, (%r10)

During the 90s, the demand for doing signal and image processing on desktop comput-
ers increased, and CPUs designers began adding vector instructions to their processors.
Image processing typically requires the same operations to be performed, say, for each
pixel in an image. An efficient way to do this, is to add instructions that perform the

2

same instruction on wider registers containing for instance 4 single-precision floating
point numbers.

On modern Intel CPUs we typically have access to an number of vector extensions.
Popular ones include:

SSE2 (Streaming SIMD Extensions 2) gives us 128 bit registers that can contain 8
to 64 bit integers, single and double-precision floating point.

AVX2 (Advanced Vector eXtensions 2) that gives us 256 bit registers, and adds in-
structions that operate on 3 registers not overwriting one of the arguments. This allows
for more compact code. The following program will multiply two vectors of four 64-bit
integers and store them to memory in two instructions using AVX instructions:
vpaddq %ymm0, %ymm1, %ymm2
vmovdqa64 %ymm2, (%r10)

On ARM there are also vector extensions:
Neon allows up to 128 bit vectors of both integers and floating point.
SVE (Scalable Vector Extension) is a variable length vector extension designed for

high-performance computing, and it allows vector lengths from 128 to 2048 bits.
Other modern instruction sets like PowerPC, RISC-V and SPARC also include their

own vector extensions.

2.2 Programming model and higher level languages
Programmers do not usually write the assembly code directly, but rely on different high
level constructs.

2.2.1 Intrinsics

The primary way that people program with vector instructions is by using intrinsics.
Compilers include C-libraries with intrinsic functions that are guaranteed to compile
to vector instructions under the hood. For instance in the Intel C compiler, we can use
the function
#include <immintrin.h>
__m256d _mm256_add_pd (__m256d a, __m256d b)

to add together two vectors of 4 double-precision floating point numbers. In the library,
the type __m256d represents a packed vector register of 4 doubles. These abstractions
make it fairly easy to program with vectors, but a problem is that the implementations
are highly tied to the particular instruction set. To target for instance ARM, you would
have to rewrite the program entirely.

2.2.2 LLVM

LLVM1 is a popular intermediate language used in a lot of modern compilers. It na-
tively supports vector instructions, and has multiple back-ends that target different in-
struction sets. This means that if a high level language targets the LLVM, then making
a portable vector library is fairly easy.

For instance Rust targets the LLVM intermediate language which. It provides a
standard interface2 to generic functions on vectors that are lowered directly to LLVM
and compiled for specific architectures there. This means that you can write a function
that works for vectors of, say, 4 64-bit floats, and then it would be lowered to the LLVM
type <4 x double>. The problem of choosing good instruction for certain operations
are then delegated to the LLVM back-end.

1https://llvm.org/
2https://github.com/rust-lang/stdsimd

3

https://llvm.org/
https://github.com/rust-lang/stdsimd

2.2.3 .NET and Java

Lately also higher level languages like C# and Java have added support for vector
instructions.

Recently, Microsoft added the library System.Numerics.Vector3 such that C#
programmers could accelerate their programs the SIMD instructions of modern CPUs.

The library makes it possible to write programs that are generic in both vector types
and vector lengths. Then the JIT-compiler will use vector instructions if they are sup-
ported on the host, otherwise there will be a fallback to a slower implementation using
regular instructions.

A similar thing will be added to the JVM in version 164.
Both the .NET and the JVM implementations will have to be platform agnostic, since

both of them compile to intermediate code that has no knowledge of the architecture
on which it runs. This means that the run-time will JIT-compile intermediate code to
vector instructions only if they are supported on the host.

2.2.4 Challenges

One major challenge is not to tie the implementations to tightly to the specific instruc-
tion set. It should be fairly easy to change a program from say AVX2 to Neon. This then
gives the problem of instruction selection. Do you expose direct versions of the AVX2
instructions, and then make other instruction sets emulate those, or do you try to find a
common ground, that makes useful operations with good performance available on all
CPUs. This is some of the problems faced by the designers of the JVM and .NET vector
APIs, and we will try to consider some of the same issues.

Take for instance the sum of a vector with 4 elements,

sum [a1, . . . , a4] = a1 + · · ·+ a4.

The AVX2 instruction set has no direct support for such an operation, and the most
efficient implementation might depend on vector sizes and element types. The pro-
posed RISC-V vector extensions directly expose a vfredsum.vs that directly reduces
a vector. If we looked at the Intel instruction set, we would probably not include this
operation, since there is no simple efficient way to implement it. If we would focus on
the proposed RISC-V vector extensions, we would add it without hesitation.

Since we in this project only focus on MLKit’s 64-bit Intel back-end, we restrict
ourselves to vectors of 4 reals (64-bit floats). This is supported by AVX2 which is widely
supported now. We will of course keep in mind to design our library such that it is not
too tied to AVX2.

3 Design of a vector signature
In this section we will briefly describe a vector signature that can be used for SIMD
programming in SML. We will also show how to write simple programs that use it.

3.1 Generic interface
We have created a REAL4 signature that will operate on a packed vector of 4 reals.
An overview can be seen on listing 1.

3https://docs.microsoft.com/en-us/dotnet/api/system.numerics.vector
4https://openjdk.java.net/jeps/338

4

https://docs.microsoft.com/en-us/dotnet/api/system.numerics.vector
https://openjdk.java.net/jeps/338

signature REAL4 = sig

type element = real
type interface = real * real * real * real

type simd
type mask

val mk : interface -> simd
val read : simd -> interface

val broadcast : element -> simd

(* arithmetic operations (vectors and scalars) *)
val add : simd * simd -> simd
val adds : simd * element -> simd
(* and so on *)

(* comparisons (vectors and scalars) *)
val lt : simd * simd -> mask
val lts : simd * element -> mask
(* and so on *)

(* operations on masks *)
val and_ : mask * mask -> mask
val or_ : mask * mask -> mask
val not_ : mask -> mask

(* reductions *)
val all : mask -> boolean
val any : mask -> boolean
val sum : simd -> element
val product : simd -> element

(* conditional operations *)
val blend : simd * simd * mask -> simd

end

Listing 1: REAL4 vector signature

There are two opaque types. simd represents the actual vector and mask represents
a vector of booleans that can be the result of comparisons. We have chosen to fix the
number of elements in the signature, since this makes the signature much easier to use.
An alternative would be to make the mk and read functions work on lists, and then
we could reuse the signature to work on multiple vector lengths. This of course makes
the interface more fragile.

We include arithmetic operations both in vector-vector and vector-scalar form. The
comparisons will return masks where the individual elements correspond to the com-
parison between individual elements. We also include common boolean operations on
masks.

To collapse vectors into elements, we also include some reductions. sum and product
will collapse an entire vector into the sum or product of its elements. all and any will
return true if all or any of its elements are true. Other reductions could also be added
in the future like minimum and maximum.

A signature for packed integers INT4 could also be added, and an implementation
could also be made using AVX2 instructions, but we have chosen to focus on floating
point in this project.

5

3.2 Pure SML structure
It is pretty easy to implement a pure SML structure that we can use to test our hard-
ware accelerated version against. We just use tuples of reals for vectors and tuples of
booleans for masks. A part of such an implementation can be seen on listing 2. The

structure Tup4 : REAL4 = struct
type simd = real * real * real * real
type mask = bool * bool * bool * bool

fun mk a = a
fun read a = a

fun broadcast v = (v, v, v, v)
fun all (m1, m2, m3, m4) = m1 andalso m2 andalso m3 andalso m4

(* And so on *)
end

Listing 2: Implementation of REAL4 using tuples

entire implementation is included in the source code.

3.3 Writing programs
Writing a simple numeric program using this structure is very easy, since the simd
values are almost interchangeable with reals.
fun foo (x: real, y: real) = x*x + y*y

fun foo_simd (x: simd, y: simd) = add (mul (x, x), mul (y, y))

We can write programs with conditionals by using the blend operation. It gives us the
possibility to select from one of two vectors based on a mask. We can use it to write a
vectorized version of a maximum function:
fun max (v1: real, v2: real) = if v1 < v2 then v2 else v1

fun max_simd (v1: simd, v2: simd): simd =
blend (v1, v2, lt (v1, v2))

blend will select elements from the first vector when the element in the mask is true,
and otherwise take the element from the second vector.

If we want to write a loop that terminates based on some condition about elements
of the vector, we can use the boolean reductions to make a predicate about the entire
vector. We can for instance make a tail recursive function that adds 1.0 to each element
until all elements are above 9000.
fun loop (x: simd): simd =

if all (gts (x, 9000.0))
then x
else loop (adds (x, 1.0))

3.3.1 Vectorizing Mandelbrot

Using these building blocks, we can try to rewrite a larger program to use the vec-
torized operations. We will take a look at a simple implementation of a function that
calculates whether a complex number belongs to the Mandelbrot set5.

5OK. Formally we calculate how many iterations it takes to converge, and then we assume it diverges is
it requires more than 1000 iterations. We typically only use this algorithm to color pixels in a nice image.

6

fun mandelbrot (re: real, im: real): int =
let
fun go iter x y =

if (re*re + im*im <= 4.0 andalso iter < 1000)
then go (iter + 1) (re*re - im*im + x0) (2.0*re*im + y0)
else iter

in
go 0 0.0 0.0

end

A way to approach vectorizing it is to consider 4 values at a time (x1, y), . . . , (x4, y).
The problem is that for 4 pixels it might be the case that some diverge and some con-
verge. We can use masks to essentially block the updates for pixels that have converged
already.

functor Mandelbrot(Real4 : REAL4) = struct
open Real4
fun mandelbrot_simd (re: simd, im: real): simd =

let
val zero = broadcast 0.0
fun square x = mul (x, x)
fun go (iter, iters, re', im') =

let
val re2 = square re'
val im2 = square im'
val mask = les (add (re2, im2), 4.0)

in
if (any mask andalso iter < 1000)
then
let
val re'' = add (sub (re2, im2), re)
val im'' = adds (muls (mul (re', im'), 2.0), im)

in
go (iter + 1

, blend (iters, adds (iters, 1.0), mask)
, blend (re', re'', mask)
, blend (im', im'', mask)
)

end
else iters

end
in
go (0, zero, zero, zero)

end
end

We start by computing the mask that corresponds to the condition in the original if-
statement. If all values are false, we stop iterating, since all values in the vector has
either converged or diverged. We then use the blend operation to conditionally up-
date only the iteration count and the temporary values for those elements where the
if-condition in the original program would have been true.

Rewriting a program like this is a bit mechanical, and could maybe be done auto-
matically for these kinds of functions with some meta-programming or complicated
array library.

Running this code now with our mock implementation of vectors using tuples is a
bit silly, so we will now implement AVX2 support in the MLKit to hopefully get this
code running fast.

7

Category Primop Type

Arithmetic __m256d_plus string * string -> string
__m256d_minus string * string -> string
etc.

Logic __m256d_and string * string -> string
__m256d_not string -> string
etc.

Conditional __m256d_le string * string -> string
__m256d_blend string * string * string -> string
etc.

Reductions __m256d_all string -> bool
__m256d_sum string -> real
etc.

Load and store __m256d_broadcast real -> string
__m256d_true unit -> string
__blockf64_update_m256d string * int * string -> unit
__blockf64_sub_m256d string * int -> string
etc.

Table 1: Overview of added primops

4 Implementation in the MLKit
In this section we will describe the changes made to the MLKit compiler in order to
support the vector operations described in the previous section using AVX2 instruc-
tions. The internals of the MLKit is not super documented, so there will be a lot of
mentions of concepts in the compiler that has no references, and is simply understood
by reading through the code base.

4.1 Types
We will represent vectors and vector masks in MLKit as strings. This means that the
default representation of vectors will be boxed, and we can therefore easily use vectors
in generic functions and have them garbage collected and so forth. This will make
operations on vectors fairly inefficient though, since will will have to load and store
them every time we do a vector operation. We will solve some of these inefficiencies
later in this section.

4.2 Primops
The way that the programmer will have access to native vector instructions is through
the prim feature of MLKit. In a library we can call a primop, and then we can generate
native code in the code generator for that particular primop, and get efficient machine
code for particular operations.

On table 1 an overview of the added user facing primops can be seen.
We steal the naming convention from Intel that m256d is a 256 bit vector of double-

precision floating point numbers. The user facing type of vectors is string which is
chosen, since in the compiler it is a type that roughly corresponds to an array of bytes.
We can hide this type in a structure which implements the REAL4 signature by using
opaque signature matching, so that the user does not accidentally concatenate it with a
string.

8

Most of these operations correspond directly to the functions in the REAL4 signa-
ture. Additionally we have added primops for dealing with unboxed arrays of reals.
The __blockf64_update_m256d primop will update 4 values at the specified index
in a block of memory containing unboxed reals. The __blockf64_sub_m256d will
get the 4-element vector from the specified index. We have not added read and write
masks to deal with conditional loads and stores, and we leave this as future work.

4.3 Internal representation
The MLKit has a boxed floating point representation accessible to the programmer as
the real type in Standard ML. Internally in the optimizer, unnecessary boxing op-
erations are avoided by using unboxed operations directly on floating point registers
thereby avoiding expensive memory operations in basic blocks. Due to the uniform
memory representation, these unboxed floats can not be passed to generic functions
and should therefore not be exposed to the programmer.

We will do something similar for our vectors. For the programmer all the vector
operations work on strings since we did not extend Standard ML with new types. We
add a new internal type, F256 to the compiler. This is not visible to the programmer,
and is only used when optimizing programs in the same way as the F64 type is used
for reals. Values of the type F256 are stored in ymm registers just like F64 values are
stored in xmm registers.

ymm registers completely overlap with xmm registers, which means that we cannot
just allocate vector registers independently from regular floating point registers. We
have chosen to deal with this in a rather simple way. When using a vector instruction,
we just request a regular floating point register from the register allocator, and have the
compiler change the register to a ymm register when the instruction is written. This also
gives us the flexibility to look at a 4 element vector register as having only one or two
elements.

4.4 Implementing boxed operations
To implement the primops in table 1 we take a pretty simple approach. We make un-
boxed versions of the primops that work on vector and floating point registers using
the F64 and F256 types. We then insert explicit boxing operations around the result,
and explicit unboxing operations around the arguments. In other words we can imple-
ment a boxed version of a function by rewriting it using a unboxed version

fboxed ⌘ box (funboxed(unbox x)).

Then we only have to implement support for unboxed operations, and the complexity
of dealing with memory allocation, loading and storing vector values to memory will
be handled in the implementation of the the primops __f256_box and __f256_unbox.
There are already primops for boxing and unboxing reals that we can reuse.

For instance we will implement __m256d_broadcast x by rewriting it to

__f256_box (__f256_broadcast (__f64_unbox x))

Also we will not generate code for the boxing operation for vectors. What we will do
instead is to rewrite the boxing operation to the following code in the last step of the
optimizer:

let
val box = SCRATCHMEM 32
val () = __f256_store (value, box)

in box

9

Where SCRATCHMEM 32 is a primop that will allocate 32 bytes of uninitialized mem-
ory. Then the __f256_store primop will do a single vmovupd to store the content of
the vector register in memory.

The reason why we have boxing as a distinct primops is, that we rely on elimina-
tion of boxing operations in the compiler to get decent performance. Manipulating
intermediate code with explicit boxing operations is much simpler than manipulating
stores and allocs as well.

4.5 Instruction selection
We now have one job to do before we can actually compile some code. We will select
instruction sequences to generate for the unboxed primops.

Arithmetic and logic All the arithmetic primops and f256_or and f256_and can be
implemented by a single instruction, and are very simple and efficient. Implementing
not_f256 requires an xor with a mask with all 1s. We can generate a mask with all
1s with the vpcmpeqd instruction. It compares vectors for equality, and we can just
compare any vector with itself.

Reductions The vector reductions are a bit more interesting. There is not great sup-
port in AVX2 for vector reductions, since the entire point of vector instructions is to
operate on independent data.

We will implement support for __f256_any and __f256_all by using the vmovmskpd
instruction. It will move a mask register with the value

b0 . . . b255

into a general purpose register with by extracting the last bit of each of each element

b63b127b191b2550 . . . 0.

We can then implement any by checking whether this bit string is different from 0 and
we can implement all by checking whether this bit string is equal to 1111.

The reductions __f256_sum and __f256_product requires a few more instruc-
tions.

For the sum of a vector register ymm0 there is a few different ways to implement the
reduction. We either have to use a horizontal add which will add together the top two
elements and the bottom two elements. We then have to shuffle the elements around
and do a scalar addition at the end. AVX2 has no horizontal multiplication though, so
we have chosen another approach just so that the implementations for addition and
multiplication are similar. The following instruction sequence will do a reduction with
plus, and a reduction with multiplication can be achieved by replacing add with mul.

vextractf128 0x1, %ymm0, %xmm1 # (1)
vaddpd %xmm0, %xmm1, %xmm0 # (2)
vunpckhpd %xmm0, %xmm0, %xmm1 # (3)
vaddsd %xmm1, %xmm0, %xmm1 # (4)

We have tried to visualize the shuffling around of elements on figure 1. The first in-
struction will extract the top two elements. The second instruction will add the bottom
and the top together. The third instruction will extract the top element and the last
instruction will do the sum in the bottom element. Here we also see an advantage of
the overlapping vectors. We can use the same registers for scalars, two element vectors
and four element vectors.

10

Figure 1: Implementation of sum

Comparisons and conditionals The usual comparison operations on x86 will set flags,
and will not place a result in a register. For AVX, a comparison of two vectors will
place the resulting mask in a vector register. This means that in order to implement
the comparison primops, we only have to return the mask register, which makes them
very simple to implement. They are all just a single instruction. We then have to use
boolean reductions in order to put them inside an if-expression in SML.

Implementing __f256_blend is just a single instruction. It takes to vectors and a
mask, and writes to a result using the mask.

Loads and stores Implementing __f256_broadcast is also only a single instruc-
tion. We can use the unboxing of reals already present in the MLKit for the argument.

We generate true and false constants using xor or vpcmpeqd with the same
register to generate masks of 0s and 1s.

All memory accesses are just using a single vmovupd instruction.
Since we did not want to modify the memory allocation in MLKit too much, we

have made the decision to rely on the unaligned memory operations that are possible
in AVX2. They might be a little slower than making sure that all accesses are properly
aligned though.

Now we are actually able to generate functioning code, but the generated code will
contain a very large number of boxing operations. We will try to optimize for those
now.

4.6 Unboxing
Since our representation of vectors is boxed, then we will have quite a large overhead
doing any operations on them. Every time we want to operate on a vector we have to
unbox it, do the operation and box the result. That is quite costly. In order to generate
efficient machine code, we want to get rid of unnecessary boxing operations. We will
do two fairly simple optimizations for now.

11

Elimination of box-unbox and unbox-box If we do a series of vector operations in a
row, we will have box and unbox operations in between. These can be easily eliminated
by considering the equivalences

box(unbox x) ⌘ x

and
unbox(box x) ⌘ x

that we assume to hold for our boxing operations. The explicit unboxing and boxing
of, say, compiling (x+ y) ⇤ (a+ b) might give us the program

box (mul (unbox (box (add (unbox x, unbox y)))
, unbox (box (add (unbox a, unbox b)))
))

We can then safely rewrite this to

box (mul (add (unbox x, unbox y)
, add (unbox a, unbox b)
))

Eliminating 4 boxing and unboxing operations.

Unbox let-binding of vectors The explicit boxing and unboxing might leave us with
a program like

let
val a = box (add (unbox x, unbox y))
val b = box (mul (unbox x, unbox y))

in box (sub (unbox a, div (unbox b, unbox a)))
end

This has a lot of unnecessary boxing operations that the previous optimization did not
get rid of. If we know that a boxed let-binding is always used in an unbox operation in
its scope, then we can safely eliminate those operations. We can rewrite the previous
program to

let
val a = add (unbox x, unbox y)
val b = mul (unbox x, unbox y)

in box (sub (a, div (b, a)))
end

which eliminates 5 boxing and unboxing operations and will give us fairly efficient
straight-line machine code. These two optimizations are implemented in the optimizer
for MLKit’s intermediate language.

We can now go ahead and implement the REAL4 signature, and start to write Stan-
dard ML code that is optimized with AVX2 instructions.

4.7 Signature using primops
Since our boxed representation is the same as for unboxed arrays of reals, we can use
the __blockf64 primop for making vector from tuples. Similarly we can index into
the vector using the __blockf64_sub_real primop.

All the scalar operations can be implemented using the vector version combined
with broadcast.

12

structure M256d :> REAL4 = struct
type m256d = string
type simd = m256d
type mask = m256d
type interface = real * real * real * real

fun mk (v: interface): m256d = prim("__blockf64", v)
fun index (v: m256d, i: int): real = prim("__blockf64_sub_real", (v, i))
fun read (v: m256d): interface =

(index (v,0), index (v,1), index (v,2), index (v,3))

fun broadcast (v: real): m256d = prim("__m256d_broadcast", v)
fun add (a: m256d, b: m256d): m256d = prim("__m256d_plus", (a,b))
fun adds (a: m256d, b: real): m256d = add(a, broadcast b)

(* And so on *)
end

Which should all that is needed to do some hardware accelerated SIMD-programming
in Standard ML.

5 Data-parallel programming
In this section we will explore data-parallel programming in Standard ML using our
hardware-accelerated vector library.

We modify RealTable6 from the standard library to have support for vectorized
traversals. This basically just dropping in our primops for vectorized updates and
indexing for unboxed arrays of reals.

type t = chararray
fun update_m256d (t: t, i: int, v: simd): unit =

prim("__blockf64_update_m256d", (t,i,v))

fun sub_m256d (t: t, i: int): simd =
prim("__blockf64_sub_m256d", (t,i))

Assuming that we have an array where the length is a multiple of 4, we can for instance
implement a vectorized map pretty easily which if we are lucky will be fully unboxed

fun map_simd (f : simd -> simd) (a : t) : t =
let val n = length a

val b: t = alloc n
fun lr j =

if j < n then
(update_m256d (b, j, f (sub_m256d (a, j))); lr (j+4))

else b
in lr 0
end

Similarly we can implement tabulations, folds etc. using vector instructions giving us
vectorized versions. These are included in the file simd_table.sml in the accompa-
nying code.

With tabulate_simd and our previous Mandelbrot implementation, we can cal-
culate and entire image with 4 pixels at a time:

6https://github.com/melsman/mlkit/blob/master/basis/RealTable.sml

13

https://github.com/melsman/mlkit/blob/master/basis/RealTable.sml

Figure 2: Mandelbrot with AVX2 instructions

structure V = M256d
structure M = Mandelbrot(V)
fun mandel (width, heigth, left, right, bottom, top) =
let

val stepX = (right - left) / (Real.fromInt width)
val stepY = (top - bottom) / (Real.fromInt height)
fun f i =
let
val xstart = i mod width
val x1 = left + (Real.fromInt xstart * stepX)
val x2 = left + (Real.fromInt (xstart + 1) * stepX)
val x3 = left + (Real.fromInt (xstart + 2) * stepX)
val x4 = left + (Real.fromInt (xstart + 3) * stepX)
val y = bottom + (Real.fromInt (i div width) * stepY)

in M.mandelbrot_simd (V.mk (x1, x2, x3, x4), y) end
in

RealTable.tabulate_simd (width * height, f)
end

)

giving is the nice picture on figure 5.

6 Evaluation
In this section we will evaluate our changes to the MLKit compiler. First we will in-
spect the output of the compiler to see if we generate assembly code that is adequately
unboxed. Finally we will benchmark some simple programs that we have optimized
using our vector library.

14

6.1 Inspecting assembly code from example programs
We will first look at a simple example program only consisting of arithmetic operations.
val x: m256d =

let val x = mk (1.0, 2.0, 3.0, 4.0)
in add (mul (x, broadcast 5.0), sub (broadcast 10.0, x))
end

with x stored in ymm4 and the box for the result in rax, the instructions for this program
is
movq $DLab.FloatLab2191test1.auto.mlbtest1.sml1,%r10
movsd (%r10),%xmm8
vbroadcastsd %xmm8,%ymm8
vmulpd %ymm8,%ymm4,%ymm12
movq $DLab.FloatLab1190test1.auto.mlbtest1.sml1,%r10
movsd (%r10),%xmm8
vbroadcastsd %xmm8,%ymm8
vsubpd %ymm4,%ymm8,%ymm8
vaddpd %ymm8,%ymm12,%ymm8
vmovupd %ymm8,8(%rax)

Which has all the vector instructions fully unboxed, and we just have vector operations
directly on registers. This means that our optimizations work in this simple case.

We also take a look at a simple tail-recursive function:
val g: m256d =

let
fun loop (acc: m256d): m256d =

if (all (le (acc, broadcast 0.0)))
then acc
else loop (subs (acc, 1.0))

in loop (broadcast 100.0) end

We will not include the assembly code here, but we can see that only the parts inside
the if-condition and the else branches are unboxed. Everything that crosses a function
call is boxed since we do not support arguments to functions in vector registers.

Finally we will take a look at the generated code for a simple update function on an
array.
val x =

let
val t = RealTable.tabulate (10, (fn x => intToReal x))
val _ = RealTable.modify_simd (fn x => mul (add (x, x), x)) t

in t end

The body of the loop actually just compiles to the following code:
FLab.lr4779test3.auto.mlbtest3.sml1:

leaq -8(%rsp),%rsp
movq (%rax),%rsi
cmpq %rsi,%rbx
jge .LLab.k9F790test3.auto.mlbtest3.sml1
movq 8(%rax),%rsi
vmovupd 8(%rsi,%rbx,8),%ymm12
vaddpd %ymm12,%ymm12,%ymm8
vmulpd %ymm12,%ymm8,%ymm8
movq 8(%rax),%rsi
movq %rbx,%r11
movq %rsi,%r10
vmovupd %ymm8,8(%r10,%r11,8)
addq $4,%rbx
jo __raise_overflow
leaq 8(%rsp),%rsp
jmp FLab.lr4779test3.auto.mlbtest3.sml1

15

Which is as good as we can expect. There is no boxing. We load 4 elements from the
array directly into a vector register. Perform the operations and store it directly again.

6.2 Benchmarks
In this section we will benchmark small example programs and see how they compare
to unoptimized versions. All of the examples will use the modified version of the
RealTable7 from the standard library.

We are benchmarking on two different computers. One is a older laptop with an
Intel Core i5-6300U with 16GB of memory. The other is a newer desktop with an AMD
Ryzen 5 3600 and 32GB of memory. This means that we are not only testing Intel’s
implementation of AVX2, but also AMD’s.

All measurements are in milliseconds.

6.2.1 Arithmetic

For the first case we will consider modifying an array [x1, . . . , xn] to [x1(x1+2), . . . , xn(xn+
2)]. The code to beat is:

RealTable.modify (fun x => x * (x + 2.0)) t

We consider two versions. One that will make a scalar addition, which will do a broad-
cast with 2.0 for each iteration:

RealTable.modify_simd (fun x => mul (x, adds (x, 2.0))) t

The second one will store a vector {2.0, 2.0, 2.0, 2.0}, and do vector addition for each
iteration. This will require a memory operation instead of a broadcast for loading the
right argument to add

let val two = broadcast 2.0
in RealTable.modify_simd (fun x => mul (x, add (x, two))) t end

Intel AMD
Elements Scalar Vector 1 Vector 2 Scalar Vector 1 Vector 2

104 0.14 0.04 0.02 0.02 0.32 0.1
105 0.70 0.14 0.07 0.14 1.71 0.03
106 3.87 1.25 0.97 1.00 18.52 0.47
107 38.19 13.32 10.91 16.96 213.69 7.27

The version with the let-binding has a very significant speedup. The AMD version
with the in-line broadcast is very slow and we find that quite surprising.

6.2.2 Conditionals

Of of the features that we added is the possibility to do a conditional move instruction
based on a mask value. This means that we can take the following code with an if-
expression:

RealTable.modify (fun x => if x > 4096.0 then x else x * x) t

And rewrite it to the following vectorized code:
7https://github.com/melsman/mlkit/blob/master/basis/RealTable.sml

16

https://github.com/melsman/mlkit/blob/master/basis/RealTable.sml

let val y = broadcast 4096.0
in RealTable.modify_simd

(fun x => blend (mul (x, x), x, gt (x, y)))
t

end

Giving us the following results

Intel AMD
Elements Scalar (ms) Vector (ms) Scalar (ms) Vector (ms)

104 0.16 0.01 0.22 0.01
105 1.49 0.12 1.12 0.03
106 13.78 1.41 10.90 0.47
107 141.91 12.45 108.52 7.35

But this benchmark is a little misleading, since it uses a conditional move instruction
instead of jumps, and therefore is highly efficient on modern hardware. The speed is of
the vectorized version is comparable to the arithmetic program from before and about
10-20 times faster than the scalar code.

6.2.3 Reductions

We will benchmark a function that sums an array. We will have two approaches for
optimizing this. One accumulates a real and one accumulates a vector.
(* Scalar version *)
RealTable.foldli (fn (_, x, y) => y + x) 0.0 t
(* Vectorized with scalar accumulation *)
RealTable.foldli_simd (fn (_, x, y) => (sum x) + y) 0.0 t
(* Vectorized with vector accumulation *)
RealTable.foldli_simd (fn (_, x, y) => add (x, y)) (broadcast 0.0) t

Intel AMD
Elements Scalar Vector 1 Vector 2 Scalar Vector 1 Vector 2

104 0.06 0.01 0.02 0.05 0.32 0.02
105 0.67 0.25 0.48 0.29 1.96 0.13
106 4.86 1.73 2.87 4.65 21.17 1.55
107 51.67 13.82 26.41 59.53 235.07 19.91

We get a nice speedup on Intel, but again we see that the some of the instructions are
causing a significant slowdown on AMD which warrants further investigation. Some-
thing in our reductions are the AMD code to run even slower than the scalar code on a
significantly slower CPU.

6.2.4 Mandelbrot

Finally we try to benchmark the vectorized implementation of the Mandelbrot image.
We compare it directly to the simple tail-recursive version that works on a single pixel
at a time. The final implementation can be found in the accompanying code.

Intel AMD
Size Scalar (ms) Vector (ms) Scalar (ms) Vector (ms)

400⇥ 280 470.30 251.97 160.36 151.65
800⇥ 600 2057.10 974.03 720.62 626.34
1200⇥ 800 4121.12 2082.91 1377.51 1205.36

We achieve about a 2x speedup on i5, but we see no improvements on AMD.

17

7 Conclusion
In this project we achieved what we set out to do. We added vector support for MLKit
and we actually achieved performance improvements for all the programs that we op-
timized. This was done with about 800 lines of additional code to the compiler. Much
of the time was spent getting to know the architecture of the compiler and figuring out
where to make the changes. Actually adding the new instruction sequences was fairly
straight forward and did not cause many difficulties.

We find the vector library that we designed fairly easy to program with, but there
are still some problems with performance where scalars are broadcast to vector regis-
ters, especially on AMD. We suspect that instructions on AMD that operate across lanes
are particularly slow, because we also see poor performance with reduction operations.

The vector signature is fairly small, and we think that implementing support for it
with a different instruction set will be fairly easy since many of the vector extensions
keep the concepts of mask registers, conditional moves and broadcasts.

8 Future work
In this section we will discuss some possible future improvements that will improve
the performance of vector code compiled with the MLKit.

Unboxed tail recursion If we consider the sum function

fun sum (arr: RealTable.t) =
M256d.sum (RealTable.foldl_simd M256d.plus (M256d.broadcast 0.0) arr)

where the fold is implemented tail-recursively, then the inner loop will involve an un-
boxing and a boxing for each iteration. If we can eliminate this and keep the accumu-
lator in a vector register across iterations, then it should be possible to achieve much
higher performance for certain classes of functions. This also include our Mandelbrot
implementation.

Keeping unboxed values in registers Consider the function foo

fun foo (x: m256d) =
let
val y = add (x, broadcast 2.0)
val z = bar x

in mul (z, x) end

foo will have an unboxing operation for each occurrence of x in arithmetic operations.
It would be better to make val x’ = unbox x available in the scope, and then re-
place occurrences of unbox x with x’ when the boxed versions are expanded. This
will require a bit more complicated analysis of the program. It might be combined with
common sub-expression elimination.

Expose SIMD type to SML The optimizer cannot really recognize the boxed vectors,
since they just are represented using a string type. Therefore there are cases where
spurious unboxes are put in the program. It is also possible to use string operations
directly on a boxed vector, which is not desirable. This can be solved by exposing a
SIMD type directly in the at the user level instead of using string everywhere.

18

References
[1] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld, and

Olesen Peter Sestoft. Programming with regions in the mlkit revised for version
4.3.0, 2006.

A Included code

A.1 MLKit source code
The changes to the compiler can also be found on SIMD branch on urlhttps://github.com/christiankjaer/mlkit.

There are changes to the following files related to adding the F256 type:

• Common/TYCON.sig

• Common/TYNAME.sig

• Common/TyCon.sml

• Common/TyName.sml

• Compiler/CompBasis.sml

• Compiler/CompBasisToLamb.sml

• Compiler/Lambda/EliminateEq.sml

• Compiler/Lambda/LAMBDA_EXP.sml

• Compiler/Lambda/LambdaBasics.sml

• Compiler/Lambda/LambdaExp.sml

• Compiler/Lambda/LambdaStatSem.sml

• Compiler/Lambda/Lvars.sml

• Compiler/Regions/MulExp.sml

• Compiler/Regions/RTYPE.sig

• Compiler/Regions/RType.sml

• Compiler/Regions/RegionStatEnv.sml

• Manager/ManagerObjects0.sml

There are changes to the following files related to adding new primops and their
generated code:

• Compiler/Backend/PrimName.sml

• Compiler/Backend/X64/CodeGen.sml

• Compiler/Backend/X64/CodeGenUtil.sml

There are changes to the following files related to adding new instructions:

• Compiler/Backend/X64/INSTS_X64.sml

• Compiler/Backend/X64/InstsX64.sml

There are changes to the following file Compiler/Lambda/LambdaOpt.sml re-
lated to unboxing of vector instructions.

19

A.2 Example programs
• REAL4.sig includes the vector signature.

• tup4.sml contains the implementation of of the signature using tuples.

• m256d.sml contains an implementation using vector intrinsics.

• simd_table.sml contains an extension of the RealTable with vectorized im-
plementations.

• vector_utils.sml contains some helper function for vectors.

• mandelbrot_lib.sml contains a vectorized version of the mandelbrot func-
tion.

• mandelbrot_table.sml contains a program that writes a ppm-image of the
mandelbrot set to the standard output.

Benchmarks All the benchmarks are included in the benchmarks folder of the ac-
companying code.

20

	Introduction
	Project statement
	Road-map
	Source code

	Background
	Vector instructions in modern CPUs
	Programming model and higher level languages

	Design of a vector signature
	Generic interface
	Pure SML structure
	Writing programs

	Implementation in the MLKit
	Types
	Primops
	Internal representation
	Implementing boxed operations
	Instruction selection
	Unboxing
	Signature using primops

	Data-parallel programming
	Evaluation
	Inspecting assembly code from example programs
	Benchmarks

	Conclusion
	Future work
	Included code
	MLKit source code
	Example programs

