

U N I V E R S I T Y O F C O P E N H A G E N

Bachelor thesis in Computer Science

Unikernels with Region Inference

Axel Prütz Kanne jqc157

Svante Geisshirt pcj655

Supervised by Martin Elsman

June 2024

Abstract

Unikernels are single-purpose operating systems designed to run on a hypervisor, fusing the
application and operating system code into one kernel, where only required layers are left,
improving security, performance, and size. Unikernels can be created entirely in higher-
order languages, which improves memory safety and developer productivity. However, using
a higher-order language will often include using a garbage collector, which relieves the de-
veloper of managing memory but can a!ect the application’s performance. An alternative is
region-based memory management with region inference, which can be used to manage and
infer how values should be stored inside regions. Using this alternative for developing uniker-
nels can potentially avoid the system-wide performance overhead associated with garbage
collection while keeping the same level of developer productivity. To explore whether this
is the case, a library for creating services as unikernels that use only region-based memory
management has been developed, which provides the essential functionality for answering
network requests. While the implementation of the library is somewhat unstable, it can
be used to create basic services running as unikernels, and thereby demonstrates that it is
feasible to use region-based memory management for unikernel development. Profiling of
the library shows that while region inference, in some cases, can manage memory e”ciently,
an application that is not optimized for region usage can result in memory consumption
that grows proportionally with the running time. To avoid this, one can either optimize the
application for region usage, be more explicit about the use of the regions, or use a garbage
collector in conjunction with region-based memory management.

Contents

1 Introduction 3
1.1 Reading guide . 4

2 Background 5
2.1 Unikernels and cloud computing . 5

2.1.1 Cloud computing and virtulization 5
2.1.2 The limitations of virtualization methods 6
2.1.3 Unikernels . 7
2.1.4 Unikernels in practice . 7

2.2 Region-based memory management . 8
2.2.1 Concept . 8
2.2.2 Benefits . 10

3 Design 11
3.1 Unikernel libraries . 11

3.1.1 Network protocols . 12
3.2 Architecture design . 14

3.2.1 Language runtime . 15
3.2.2 Platform support . 15
3.2.3 Network stack . 17
3.2.4 Di!erences between platforms . 17

4 Implementation 19
4.1 Network Library . 19

4.1.1 User layer . 19
4.1.2 Handling packets . 20
4.1.3 Sending packets . 23
4.1.4 Network profiling . 23

4.2 Network protocols . 24
4.3 Platform implementations . 28

4.3.1 Linux . 29
4.3.2 Xen . 31

4.4 Runtime minimization . 33
4.4.1 Platform related changes . 33
4.4.2 Runtime . 33

1

4.4.3 Basis library . 34

5 Evaluation 37
5.1 Testing the implementation . 37
5.2 Example services . 38
5.3 Running services on Xen . 41
5.4 Evaluating thesis . 42

5.4.1 Use of regions . 42
5.4.2 Developer productivity and memory safety 46
5.4.3 Significance for unikernels . 47

6 Future developments 48

7 Conclusion 49

A Running the services on Xen 53
A.1 facfib . 53
A.2 sort . 54
A.3 monteCarlo . 55

B Region-annotated code from profiling 56
B.1 listen function in network-library . 56

2

Chapter 1

Introduction

Today, cloud computing relies on virtualization to utilize servers in data centers to their
fullest by running multiple operating systems as virtual machines. Di!erent solutions for
virtualization exist, such as virtualizing the whole operating system or isolating processes
through containerization. This enables developers to rent resources from cloud providers
and run their web service inside a virtual machine without having to manage servers on
their own. However, running a general-purpose operating system for a single application
adds many layers that are not necessarily needed by the service, introducing performance
overhead and a larger attack surface.

Unikernels is the idea of combining the application and underlying operating system, to
create one single-purpose kernel that can be run inside a hypervisor. This removes the
unnecessary layers, and keeps the parts that are used by the service. Unikernels can be
developed almost entirely in higher-level languages, which can o!er type safety and memory
safety. Using a garbage collector relieves the developer of thinking about managing memory
e”ciently and correctly, thereby increasing developer productivity. However, garbage collec-
tion also introduces program halts and performance-hampering memory traversals, leading
to a decrease in performance, which in unikernel development will be system-wide.

Region-based memory management o!ers an alternative way to manage memory, which can
lead to fewer halts and memory traversals. Region-inference is a way to to infer regions in
the program for the developer, such that region-based memory management can be used
without changing the program. This project aims to explore whether this is a feasible way
to develop unikernels in a higher-order language with the following thesis statement:

Using region-based memory management with region inference is a feasible
approach for developing unikernels that do not rely on dynamic garbage col-
lectors, which may introduce interruptions and unnecessary memory traversals.
Subsequently, this approach does not compromise memory safety or developer
productivity and thus maintains the possibility of using higher-order program-
ming languages for programming unikernels in a cloud computing setting.

To ascertain whether the thesis statement holds, the project’s goal is to create a library
for developing unikernels that use region-based memory management with region inference.

3

The library should be able to support the development of services that can answer network
requests. To do this, a minimal networking stack will be implemented, which allows for
communication over a network. This aims to demonstrate the feasibility of using region-
based memory management in unikernels.

1.1 Reading guide

This report will include the following chapters, and what their focus will be:

• Background aims to give an understanding of the concepts used throughout this
project, from the unikernels in a cloud computing setting to region-based memory
management.

• Design will describe the design goals for the project implementation and a discussion
of why each module is necessary for the project.

• Implementation here the implementation details of the project will be described,
both for implementing networking protocols, but also implementation details regarding
the construction of the service on di!erent platforms.

• Evaluation will discuss the results of the project, both in terms of testing and to what
degree the thesis statement holds.

• Future developments will give suggestions for how the project could be improved
and what further additions could be made to the project.

• Conclusion will conclude the project findings as a reflection on the thesis statement

4

Chapter 2

Background

This chapter aims to give some background information about the technologies used in this
project. The first section will concentrate on what cloud computing and virtualization are
and what they aim to solve, the limitations of virtualization, and then the solution to some
of the limitations of unikernels. Furthermore, how and where unikernels are used in practice.
The second section will focus on what region-based memory management is, how it works
in broad strokes, and what benefits it has over an explicit method and a more traditional
memory management method such as a garbage collector.

2.1 Unikernels and cloud computing

This section presents an overview of cloud computing and virtualization and how these con-
cepts are related to unikernels. Additionally, the section includes how unikernels can improve
performance and reduce overhead in cloud computing. Furthermore, some existing projects
for developing unikernels are also mentioned, as their project goals and implementation
language.

2.1.1 Cloud computing and virtulization

When creating an application that needs to communicate through the internet, the applica-
tion needs to run and be managed on hardware such as a server. However, setting up and
managing a self-hosted server can be rather insecure and costly. Cloud Computing refers to
the idea that software and hardware resources can be rented out over the internet through
the cloud - a collection of hardware resources and software. These can either be rented out
to the public in a pay-as-you-go manner as a public cloud or used internally by a business
or organization as a private cloud [2]. This means that rather than hosting and managing
the resources for your application yourself, cloud providers like Google or Amazon can rent
out the resources as needed and manage them in a data center for you. Cloud computing
provides other benefits, such as low variable costs. Instead of potentially wasting resources,
hosting several servers in advance that might need to be used, either to set up for a future
project or for surges of requests, with Cloud Computing, you only pay for the resources you
currently use [5]. It is also easier for an application to scale smoothly since an application

5

can start out small and gradually pay for more resources if needed [2].

However, if a dedicated server was used for each application, or the applications were in-
stalled directly on the servers, the servers would end up being underutilized since running
di!erent applications would then, in some instances, require di!erent servers with di!erent
operating systems. Instead, virtualization is used to host virtual machines (VM), which is a
technique to replicate/emulate real hardware architectures, and where the code responsible
for managing virtual machines is called a hypervisor or virtual machine monitor [24]. This
enables cloud providers to host several services inside separate virtual machines, each run-
ning an instance of an operating system and thereby utilizing their servers better since more
applications can be packed into a single host without modifications to the application [6].
An example is the Xen hypervisor, which supports concurrent execution of up to a hundred
operating systems [3].

Another way to use virtualization is to use containers, which is a method for isolating
processes on a shared kernel [24]. A container consists of an isolated package that contains
the application and its dependencies, and multiple applications can then share the same
underlying kernel and common utilities isolated from each other [6].

2.1.2 The limitations of virtualization methods

However, there are some problems with using virtual machines. Normally, a general-purpose
operating system like Windows or Linux is used where the application is run, and this generic
software is initialized on each startup by using configuration files from storage [19]. Because
the OS running is for general purpose, it will contain many utilities and binaries that are nec-
essary for general use, for example, support for backward compatibility with other existing
applications [20], multi-user authentication, advanced math libraries, support for multiple
processes and virtual memory management [22].

One aspect that is negatively a!ected by this is boot time. To scale a service, one method
is spawning new VMs when the load is high and then using load balancing to balance the
requests out on several VMs. Once the load is low again, the VMs can be closed as they
are no longer in use. However, general-purpose operating systems are not optimized for this,
as all the generic software needs to be initialized each time by reading configuration files
from each the VM boots up, which means that a load balancer might need to keep idle VMs
running to deal with load spikes [19]. This means that the elasticity of using a cloud solution
is worsened since there might be idle VMs that are running in the background to prepare
for large increases and decreases in the number of requests.

Another concern is security. A general-purpose operating system will have wider attack sur-
face, since there are many libraries and utilities to exploit, one such utility is the shell [6].
This enables the attacker to have many possibilities to exploit libraries and utilities of the
VM, even though the components that might be exploited are not used or unnecessary for
the application running in the VM. Another part of this is that the configuration of the VM
might also be insecure, and it might also be di”cult to account for all the generic software

6

that is part of the VM [22].

Even though the use of containers can counteract the problem with boot-time, since a new
container with the application can be booted instead of an entire virtual machine, the prob-
lem of security is still an issue. First of all, it is still important to configure the container
correctly, just as with virtual machines, or else there can be utilities that could be exploited.
Second, exploits that are aimed at the kernel space will also be a bigger problem for Con-
tainers than VMs, as containers running on the same system will share the same kernel.
Therefore, all containers running on the same machine will be compromised if the kernel is
compromised through one of them; an example of such an exploit is the Meltdown exploit
[18]. Here, virtual machines o!er another layer of security.

2.1.3 Unikernels

To resolve this problem, another approach is the unikernel - a specialized single-purpose
library operating (libOS) system that runs directly on a hypervisor [20]. The idea is that
only the needed libraries and related configuration will be linked at compile-time, creating
immutable and lightweight VMs that only use what is necessary for the application to run
[6]. The library-operating system design consists of implementing libraries like device drivers
and the network stack, which can then be linked directly with the application [20]. With
this approach, the application and operating system are fused together to form a specialized
single-purpose VM that has a smaller attack surface, a faster boot time, smaller binary size,
and better runtime performance than other virtualization methods [19].

This concept is further supported by the fact that many services today are single-purpose,
e.g., a database, or serving a website, etc. [19]. This means that the unikernel solution is
a good fit in many cases since a general-purpose operating system’s generic functionality is
often unnecessary. Another way that this is made possible is that it is di”cult for a libOS to
support a wide range of real-world hardware. However, this is not a problem with unikernels
since device drivers need only be implemented for the targeted hypervisor [20]. Unikernels,
in that sense, take advantage of the fact that they are supposed to run inside of a hypervisor.

2.1.4 Unikernels in practice

An example of a unikernel project is MirageOS [21], which primarily uses the programming
language OCaml [20]. MirageOS enables the development of creating unikernels in a high-
level language, which enables programming in di!erent paradigms, especially functional,
and also provides type and memory safety, with a strong static type system and a garbage
collector [20]. Using a modern high-order language has several benefits [19]:

• It gives a higher level of security, as many memory errors like integer and bu!er overflow
can be avoided through static type checking.

• It has automatic memory management, such that the programmer is relieved of the
burden of managing memory correctly, which can lead to crashes and security issues.

7

• Functionality can be encapsulated into di!erent modules, allowing the codebase to
scale better, and the compiler can check the use of modules together.

This is very relevant when developing systems, such as unikernels with large code bases. In
general, it allows for a higher level of developer productivity and better safety guarantees.

There are also other notable projects for unikernel development:

• Unikraft [32], an open-source unikernel development kit that supports many di!erent
languages. It aims to provide a highly configurable unikernel codebase and supports
many languages and applications.

• IncludeOS [14] which uses C++ as the primary language for development.

• Hermit-rs [12] which uses Rust as the primary language. It is possible to develop
applications in Rust, C/C++, Go and Fortran

2.2 Region-based memory management

Memory management is necessary for any programming language since computers have lim-
ited memory and thus must be recycled. Memory is allocated and deallocated to ensure
that all the memory isn’t used up and values are kept for as long as needed but not much
longer. Typically, programming language memory will consist of a stack for statically sized
values, e.g., ints, booleans, etc. Having just a stack is rather restrictive, hence the use of
a dynamically sized memory management method. Such values include arrays, trees, etc.
These values are independently allocated and deallocated when needed. Some languages o!er
explicit memory allocation and deallocation, e.g., C where the programmer may use malloc
or calloc to allocate memory and free to deallocate it again. Such memory manage-
ment is known to be di”cult for the programmer and is error-prone. Other languages, e.g.,
Python, o!er automatic memory management by a garbage collector. A garbage collector
is a separate procedure from the application itself managed by the runtime to collect any
values in the memory that are not in use. However, this carries an additional performance
overhead.

2.2.1 Concept

An alternative to garbage collection is region-based memory management. In this memory
management method, the values in a given program whose size exceeds a machine word
(e.g., 8, 16, or 32 bits) are stored in regions. Each region is implemented as a linked list
of large blocks of memory known asregion pages [11]. Such a page should be large enough
to serve multiple allocations, and its values include but are not limited to function closures
and values of recursive types, such as lists and trees [29]. Regions are kept in a region stack,
as seen in figure 2.1, where the current region maintains a pointer to the next free position.
When a new region or expansion of an existing region is needed, a region page will be taken
from the global list of free regions pages known as the free list. If a new region is required
the region page will be put in a new region that is pushed onto the region stack, and if a

8

region should be expanded then the region page is appended to the list of region pages in
the region. Once a region stack is no longer in use, it may be popped o! the region stack
and returned to the free list; thus, the region is deallocated.

Figure 2.1: Overview of regions with pages in a region stack and the global free list

This greatly surpasses the e”ciency of a garbage collector because the deallocation in region-
based memory management only has to do simple pointer arithmetic to free an entire page
instead of the individual freeing of each value in a garbage collector [16].

This, however, poses a problem of unsafe behavior. Suppose a region, r0, contains a region
page with a pointer to a region page in the region r1, and now r1 is deallocated. This will
leave a dangling pointer in r0, and we risk dereferencing it and crashing. To solve this prob-
lem, each region will maintain a reference count, and it will only be possible to deallocate
the region if and only if no other regions have any pointers to the region itself.

Two di!erent types of regions exist to handle the allocation and lifetimes: finite regions and
infinite regions [30]. Finite regions are defined as regions that have a finite upper bound of
one value, and infinite regions are all other regions. Furthermore, the size and lifetime of
finite regions can be determined at compile time rather than at runtime of infinite regions.
An infinite region can grow dynamically, and an arbitrary number of regions can exist at
runtime [29].

In region-based memory management, some regions are known as global, a specific type of
region [28]. This region often lives for the entire lifetime of a program. It is typically used
for some data that is used throughout the entire program, e.g., global states. Since global
regions have just one allocation, they reduce the overhead with frequent allocation, thus
improving e”ciency some cases.

However, the allocation and deallocation of regions are determined at compile time by a
type-based analysis of the program known as region inference [28]. This works by first anno-

9

tating the program with region annotations. This could, for instance, be a variable of some
type, and that type should belong to a certain region. Secondly, a set of constraints on how
the regions are related to each other is constructed. This includes which regions should out-
live which. These constraints are then solved, meaning the assignment of regions is created
to satisfy all the constraints previously created. Finally, allocation and deallocation points
are created based on the solved constraints. This ensures that regions are correctly allocated
and released at the correct times.

It is worth noting that this project uses the MLKit compiler. This compiler is a compiler to
the Standard ML programming language (SML), including SML with region-based memory
management and region inference [31].

2.2.2 Benefits

Region-based memory management has multiple benefits over explicit and implicit garbage
collection memory management. These include:

• Region-based memory management is not explicit with the use of region-inference,
meaning simpler code that is easier to read and write and has fewer errors since it is
done automatically and not by a human programmer.

• Since regions use pointer arithmetic to expand and free an entire region, deallocation
can be made in constant time. This removes the overhead of freeing individual values
like in garbage collection. An example is if a program is to free a tree data structure.
Here garbage collection would have to traverse and free each node and leaf in the tree
individually but region-based memory management could just free the region the tree
is stored in.

• Garbage collection will have to pause the program to clean up each value, which could
lead to potential long halts, which greatly reduce execution speed. Region-based mem-
ory management, on the other hand, can avoid long halts since deallocation is moving
pointers such that the region returns to the free list.

• Region-based memory management is beneficial in concurrent programs because the
memory exists in di!erent regions, and the concurrent threads can access di!erent
regions without interfering with each other.

• Improved locality (spatial and temporal) due to values and objects in the same region
being allocated close to each other, thus fewer and shorter traversals of the heap than
with garbage collection.

10

Chapter 3

Design

This chapter describes the project’s design. The first section will explain how the network
library was designed in terms of structure and what protocols and parts of them have been
chosen for implementation. Next, the architecture design for the library’s underlying support
on each platform will be described, including which platforms will be supported and how,
both in terms of networking and porting the language runtime.

3.1 Unikernel libraries

The code for this project has been created in modules for several reasons.

• Modularity makes it easier to understand the code and/or swap parts. For instance,
if one wants to swap the implementation of a network protocol in the network stack,
it is easier to do so if each of the protocols has its own module.

• Abstraction, which hides some functionalities’ complexity. This helps make it eas-
ier for other developers to use the code without fully understanding a rather large
codebase.

• Reusability, which allows other developers to use code from the modules across the
project, i.e., minimizes the amount of duplicate code.

• Maintainability allows for having parts of the code encapsulated and abstracted away
from the application itself, which will ease the task of maintaining each library without
a!ecting the application itself (assuming no interface changes).

Each of the libraries has a signature of publicly accessible functions. However, it is likely the
unikernel developer will only ever use the functions declared in the network library as this
is where the port binding and listen functions are declared (these methods will be discussed
in detail in section 4.1). The network library is dependent on the other libraries to further
abstract away some of the complexity and make it easier for the unikernel developer. The
parts that are abstracted away are decoding, encoding, and sending packets, which are all
packaged into functions that are easy to call. Figure 3.1 is an overview of the libraries, and
here, arrows indicate which libraries depend on which. The arrow direction means that it

11

receives one or more functions from the library of where the arrow came from, e.g., IPv4
depends on Utilities.

Figure 3.1: Dependency graph of the network libraries

The modules are made with signature files (.sig) and ML basis files (.mlb), which allow
for some functions to be public and some to be private to only the module itself. To use the
public function declared in some module A’s signature file, one must include the .mlb file
of A in the .mlb file of B as a dependency.

3.1.1 Network protocols

A network stack is needed for the unikernel to handle incoming messages and reply to them
over the network. Figure 3.2 is an overview of the layers needed in an internet stack [1] as
well as some protocols that are commonly used to implement a layer. In this project, the
protocols filled in with solid green have been chosen to be used, and the protocols filled with
a cross-hatch pattern are other commonly used protocols that could be implemented in the
future (see section 6). The goal with this internet stack is for the unikernel to be able to
send and receive packets over a network. As mentioned in section 3.1 and seen in figure 3.1,
each protocol resides within its own module, and in this section, we will go over each of the
chosen protocols.

12

Figure 3.2: four layer network stack

Ethernet

The ethernet protocol is a link layer protocol, which means it can transport data on an
ethernet link with the frame itself being the payload, i.e., it ties the physical layers together
with the software. This protocol is necessary to communicate with the physical layer in the
network stack. Furthermore, IEEE ensures that devices from di!erent manufacturers can
communicate with each other, thus making it an immensely interoperable choice for the link
layer [13].

ARP

The Address Resolution Protocol (ARP) is also a link layer, although it is slightly above the
ethernet in the internet protocol stack (as seen in figure 3.2). The ARP protocol provides
mechanisms to connect the IP (internet protocol) addresses to the MAC (Medium Access
Control) address on a local network. This is necessary for a network stack as the IP addresses
are used in the network layer of the network stack, and the MAC address is used in the link
layer. The ARP then acts as the bridge between the two layers. The only notable alternative
to ARP is the Neighbor Discovery Protocol (NDP) [26], but since this project is primarily
going to be based on IPv4, there is no need for a more complicated protocol such as NDP;
hence, ARP was chosen.

IPv4

The Internet Protocol Version 4 (IPv4) implements the network layer in the network stack
[15]. The protocol is used to identify other machines on the internet using a 32-bit address
system. An address is made of 4 28 numbers often separated by a ’.’ when written down
by humans, e.g., 127.0.0.1. The protocol is made up of a 20-byte header divided into 12
fields and a 65536-byte payload [1]. The payload will often be a protocol that implements
the transport layer with a large payload, e.g., a file. If a payload size greater than 65536 is
needed, the protocol features a mechanism to break a packet up into the appropriate size and
send it with a legal size - this is known as fragmentation. In this project, the IPv4 protocol

13

has been chosen as the network layer on account of its widespread adoption throughout the
internet, meaning most machines support the protocol. Furthermore, it is fairly simple to
implement as opposed to its successor IPv6.

UDP

The User Datagram Protocol (UDP) is a widely used communications protocol that im-
plements the transport layer in the network stack. The protocol is made up of an 8-byte
header and divided into 4 fields and a payload size of 1500 bytes. This protocol allows for
one machine to send data to another. Here, the protocol can send packets that carry a wide
range of di!erent types of data, e.g., a DNS query, online music streaming data, etc. [10].
The header for the UDP is only 8 bytes and contains 4 fields. The rest of the packet is the
payload [23]. UDP implements a fire and forget strategy, which means the protocol forgets
all about it as soon as a packet has been sent. This could be fatal if a packet is lost in
transit. At the transport layer, TCP and UDP are the commonly used protocols, and TCP
is generally considered the safer option as it uses a three-way handshake to ensure no packets
get lost (in the event of a lost packet, a recovery packet will be sent with the missing data
- this is known as retransmission). However, UDP has been chosen for this project as it
provides a simpler design, meaning it is easier to implement. Furthermore, it has reduced
overhead as opposed to TCP since it does not require a three-way handshake to ensure every
packet gets delivered.

3.2 Architecture design

This section will go through how the network library will be supported and built for di!erent
platforms, and describe how it will be supported on a local Linux machine for testing the
application, and for building it as a unikernel to run on the Xen hypervisor.

The overall goal for this design is to support the network library so that it can be compiled
into a unikernel and run on a target hypervisor. The design has the following goals:

1. Minimal platform-dependent codebase: The platform dependent code should
be minimal. This means that, if possible, functionality will be implemented platform-
independently. This will mean it will be easier to reason about and debug the platform-
specific code.

2. Simple and portable: It should be easy to support di!erent platforms by only
supporting the essential functionality needed for creating the services. This means
that functionality might be restricted.

3. Consistent across platforms: The behavior on di!erent platforms should be as
similar as possible, such that the application can be developed in a development envi-
ronment without running into problems when it is eventually compiled to a unikernel
and run on the target hypervisor.

14

4. Local development: Although the aim is for the services to run on a target hypervisor
as a unikernel, the service should be able to be run in a local development environment
as well, such that it is possible to test the functionality of the service without the need
to run it on the target hypervisor for each iteration.

3.2.1 Language runtime

The chosen language for this project is Standard ML (SML), and the compiler that will be
used is the MLKit compiler. The MLKit compiler supports the development of SML appli-
cations using region-memory management and region inference [31]. The MLKit compiler-
backend currently supports the x86 architecture, and this project will also target x86.

MLKit supports both tools for profiling the use of the regions and also o!ers support for
incremental garbage collection. However, the runtime will be minimized, so these and other
parts of MLKit will not be supported in the minimized version. While support for garbage
collection could be a nice addition, the project will use region inference as the only memory-
management method to better illustrate the viability of using regions in unikernels. Thus,
garbage collection will not be supported by the minimized runtime. Many other parts of the
runtime that will not be supported will be related to OS-specific functionality, like reading
files.

Besides minimizing the runtime, each platform will also have separate versions of the min-
imized runtime. The intention is that these versions of the runtime should be very similar
in behaviour to follow the goal of consistency. However, it might be di”cult to translate
directly in some cases.

Because of the minimization of the runtime, some parts of the SML basis library will also
not be supported. However, the minimization should support the parts of the library that
are essential for creating services.

3.2.2 Platform support

Overview

To make it easier to develop unikernels, the design provides support for developing the
service in a local development environment, which can be done on a Linux machine, and
then compile it to a unikernel for the target hypervisor, in this case, Xen (see section 3.2.2).
This design enables the developer to quickly debug and test the unikernel on their local
Linux machine without the need to set up a target environment. The unikernel can then
be created and transferred to Xen when the service is ready. This is similar to Mirage-OS’
developing environment, where the application is tested and developed on a local machine,
and it can then be compiled to a standalone unikernel to run on a hypervisor [19].

15

Figure 3.3: The service at the top uses the network library to establish connections. The
Network library can then either use the code for running on Linux or to create a unikernel
for running on the Xen hypervisor.

As shown in figure 3.3, the network library as well as the application will stay the same. This
will include the code for the service and all the code for the network protocols. Then, the
platform-dependent code for Linux and Xen will contain the functionality for receiving and
sending ethernet frames on that platform, as well as a platform-specific language-runtime.

Linux

The chosen development platform is Linux. Linux supports many network-related devel-
opment tools and runs on x86 architecture. However, the main choice for using Linux is
that the kernel module TUN/TAP could be used for the project, which provides support
for receiving and transmitting IP packets with tun or ethernet frames with tap to userspace
programs on Linux, working like a virtual ethernet device [17]. In this case, it is used in the
project to read ethernet frames with tap. Using TUN/TAP instead of unix sockets gives the
library code more control over the network stack. The network stack, which will be written
entirely in SML, will behave the same on both platforms, assuming that the runtimes for
the platforms behave similarly, such that there are fewer inconsistencies when moving the
application from Linux to Xen.

Xen

The Xen hypervisor is the target for this project, as it supports x86 and many other uniker-
nel projects, for example MirageOS. It also provides the Mini-OS kernel as a starting point
for unikernel development [36].

16

Mini-OS is a tiny OS kernel for Xen distributed with the Xen hypervisor sources that can be
used to develop unikernels [34]. Mini-OS, among other things, provides networking support,
a memory and page allocator, and minimal libc support [35]. The kernel is linked together
with the application code to compile a unikernel that can be run on Xen. This is done by
changing the MLKit runtime, such that it includes code from Mini-OS, instead of relying
on shared libraries like libc and libm. When Mini-OS is run, it will call the main function
defined in the runtime, and the SML code is then executed.

3.2.3 Network stack

The networking protocol implementations are entirely developed with standard ML. The
application can use the code to listen and respond to connections. As explained in section
3.1, it provides implementations of the Ethernet, ARP, IPv4, and UDP protocols. The ap-
plication code can freely use these implementations and they are entirely independent of
the underlying code on each platform that reads ethernet frames, which will have di!erent
implementations depending on the platforms. Implementing the network stack with SML,
instead of using either sockets or an external implementation of the network stack, will make
it easier to port to di!erent systems and minimize the amount of the code that is platform-
dependent. In this way, the only part that needs to be implemented for a platform is how
to receive and send ethernet frames.

An underlying network interface, which is the code that will be used to receive and send
ethernet frames, will be designed to support this, and its implementation will depend on
the platform. This will mean that the service can call SML functions to receive and send
ethernet frames, but the di!erent implementations of the networking interfacing code can be
changed, depending on the platform. These implementations will utilize the C-interop that is
available in MLKit, such that implementations of the network interface will be implemented
in C but can be called from SML.

3.2.4 Di!erences between platforms

While the intention is that the behavior on di!erent platforms should mostly be identical
and consistent, there are some unavoidable di!erences.

Firstly, the way that ethernet frames are received and sent will be di!erent. This will mean
that the underlying networking C-code receiving and sending ethernet frames will not have
the same behavior on the two platforms. However, the intention is that a developer can
be fairly certain that if it works in their local Linux machine, then if anything unexpected
happens while running on Xen, there is a high probability that it is because of the target-
dependent networking code since this is where the di!erences are most visible.

The runtimes for the two environments will also be somewhat di!erent. The two mini-
runtimes for Linux and Xen are di!erent since when compiling to Linux, it will use shared
libraries like libc and libm, while the build for Xen will use equivalent calls from Mini-OS,
and in this case also an external implementation libm. The external implementation of libm

17

is from [33], which implements static version of libc and libm. There might be deviations in
the implementations, but replaced calls are expected to behave similarly, such that there is
a lower likelihood of inconsistencies between the two platforms regarding the runtime.

18

Chapter 4

Implementation

Thi chapter outlines the implementation of the project, and it aims to explain how the main
areas intend to function. The first section covers the network library and how the network
protocols are utilized to implement an entire network stack. Next, the network protocols in
the project’s network stack are covered at each layer. Next, the di!erences of the supported
platforms (Unix and Xen) are covered. Finally, the minimization of the runtime system will
be explained in greater detail. Throughout the entire implementation, functional design has
been kept in mind to streamline all processes. This includes consistency in the libraries,
clarity in their purposes, and a simple pipe operator to streamline the code by chaining
operations together. The syntax for the pipe operator is |> . The code is publicly available
on GitHub here.

4.1 Network Library

To create a unikernel, one can write regular functions and combine them with the libraries
in this project to communicate over a network. This will be referred to as a service. To
create such a service, one must bind a callback function to a port on the IP address and
call a function that will listen to incoming messages. In this section, these functions will be
discussed.

4.1.1 User layer

A user in this context is not the end user who makes requests to the unikernels but rather
the developer who implements the unikernel service.

Binding

A function called bindUDP binds a port to a callback function using UDP on the transport
layer. Figure 4.1 is a simple echo service, and here, the port 8080 is bound to the identity
function, i.e., it returns what it is given as input (see section 5.2 for other service examples).
Here, the service is the identity function.
This function is in the network library, and it prepends a tuple of the port with the callback
function to a global list, which the listen function (see below) will use appropriately. It is

19

https://github.com/svante2001/Unikernel-with-region-inference

val _ = (
bindUDP 8080 (fn data => data);
listen ()

)

Figure 4.1: Example echo service

possible to call the bind function on an arbitrary number of ports, thus serving many ports
with many services (NB only one call to listen is su”cient for any number of port-to-function
bindings).

Callback

The callback function (as seen in line two of figure 4.1) is the service of the unikernel itself.
It receives a string as input extracted from a UDP packet sent to the port to which the
callback function is bound. The function will also return a string; hence the type annotation
for bindUDP is:

int → (string → string) → unit

Listen

The network library also includes a listen function, which continuously reads and handles
internet packets from the netif interface. This is done in the following order:

1. Read the raw ethernet frame from the netif interface using the netif library and
convert it to a string.

2. Decode the ethernet frame into a tuple of the ethernet header and the ethernet payload.

3. Determine the ethertype. The incoming packet may either be an ARP packet or
an IPv4 packet, and the appropriate handle function for the ethertype is called (see
sections below)

4. Recursively calls itself, allowing for more packets to be handled.

5. Should an error occur, it is handled by printing an error message and the listen
function is recursively called regardless to continue the handling of more packets.

4.1.2 Handling packets

This section describes the functionality of handling incoming packets at the layers of the
network stack.

20

Handling ARP

To handle the incoming ARP packets appropriately, the handleArp function is used within
the network library. This function takes an ethernet frame as well as a header. Firstly, it
decodes the ARP packet within the ethernet frame using the decode function defined in the
ARP module. Secondly, it pattern matches the decoded ARP packet to see if it was decoded
successfully, i.e., the received data was an ARP packet. Thirdly, it creates a new ARP packet
to use as the reply packet. This packet has some hardcoded fields, e.g., the hardware type,
hardware length, etc. The rest of the fields are extracted from the header, which was the
argument for the function. Finally, it sends the ARP reply packet back to the sender using
the ethSend function, which is also defined in the network module (see below).

Handling IPv4

To handle the incoming IPv4 packets appropriately, the handleIPv4 function is used within
the network library, and this function also takes an ethernet payload as well as a header
as its arguments. Much like the handleARP function above, it starts by decoding the IPv4
packet into the header, and here, it constructs a tuple containing the header and the payload
of the IPv4 packet. As mentioned in 3.1.1 the IPv4 protocol allows for fragmentation and
this has to be handled properly. One of the fields, flags, in the IPv4 header is responsible
for representing if the packet is fragmented, and another, fragment offset, is responsible
for representing the o!set, i.e., where the packet belongs. The flags are made of 3 bits, and
the meanings them are as follows [15]:

bit 0: is a reserved bit and must always be zero

bit 1: represents not fragmented (DF)

bit 2: represents more fragments (MF)

If the flags field is equal to 2 and the fragment offset is equal to 0, it is trivial that
the packet is not fragmented and the payload is handed over to the handleUDP (see below)
function along with the destination MAC address and IPv4 header. If the flags field, on the
other hand, indicates that the message is fragmented, this is handled by inserting the payload
into the fragmentBuffer . This is done by calling the addFragment function (see below) on
the header and payload. If the flags of that header is 0, i.e., there are no more fragments, and
the initAssembling function can be called followed by the assemblePacket function. If
the flags indicate more fragments are coming, it can return none and wait for the remaining
fragments. Some fields are hardcoded and never checked to simplify the implementation, e.g.,
IP address.
The utilized data structures and variables are the following:

1. packetID is a datatype consisting of the IP address, the identity field of the IPv4
header and the protocol e.g. ICMP.

2. fragment is a datatype consisting of the payload as a string and the o!set of the
particular fragment.

21

3. fragmentBuffer is a list of type (packetID * (fragment list ref)) list ref

and this is used to bu!er/hold the incoming IPv4 fragments.

4. assemblingList is a list of type (packetID * (char array)) list ref and this
is used to assemble the packets. Since fragments won’t necessarily arrive in order, the
payloads are kept in a list until the last fragment is received and the payload size is
known. Once the last fragment is received the assembling can begin.

And the helper functions behave as follows:

1. pktIDCmp is a function which compares the IP address, identity, and protocol
fields within the IPv4 header. This function returns an appropriate boolean value.

2. addFragment adds the IP fragment to the fragmentBuffer , which is used to as-

semble the fragments at a later time. This is done via pktIDCmp function, and if

the fragments of the same identity already exist in fragmentBuffer and if so, the
fragment is appended to the list that contains the other related fragments as it belongs
there. If it doesn’t exist in the fragment bu!er list, it moves on to check if it exists in
assemblingList , and if it does, the updatePacketArray function is called on the
incoming packet. If the identity of the fragment hasn’t been seen before, a new entry
for fragments is created in the fragmentBuffer .

3. initAssembling initializes the assembly of a fragmented IP packet by first initializing
a packet’s identity from the header. Second, it creates an array with an appropriate
size to fit all the fragments and checks if the fragmentBuffer contains any fragments
of the same packet. If fragments of the same packet are found, it copies the fragments
to the new array and removes them from the fragmentBuffer list. Finally, the new

list is added to the assemblingList .

4. updatePacketArray recursively updates an array containing the fragmented payloads
of a message.

5. assemblePacket assembles a whole packet from its fragmented pieces, which is done
by first initializing a packetID from its given argument, which is an IPv4 header.

Then, it searches through the assemblingList for the array containing the frag-
ments of the same packet ID. If such an array is found, it is removed from the
assemblingList , and the char array is converted into a string, which is now the
entire packet payload made of the fragmented payloads.

Handling UDP

The handleUDP function is used within the network module to handle the UDP packets
appropriately. This function takes a destination MAC address, an IPv4 header, and a payload
as its arguments. The payload of the UDP packet is what the callback function in the
bindUDP will receive. This is extracted by decoding the IPv4 payload with the decode
function in the UDP module. If the port in the UDP header is mapped to a callback function,

22

that function is executed with the UDP payload as its argument, and the result is encoded
as a UDP packet using the encode function in the UDP module. If the port is not mapped
to a callback function, a UDP packet is still encoded, but the payload is ”Port is not mapped
to a function.” to ensure the request gets an appropriate reply. Once encoded, the packet is
sent via the ipv4Send function (see below).

4.1.3 Sending packets

This section will describe the functionality that handles outgoing packets at the IPv4 and
ethernet levels.

Sending IPv4 packets

To send IPv4 packets, the ipv4Send function is used. Much like the handleIPv4 function,
packets may be fragmented. It must fragment if the payload is greater than the Maximum
Transmission Unit (MTU) of 1500 bytes. If the payload is less than the MTU, there is no
need to fragment, and the IPv4 packet can be encoded using the encode function in the
IPv4 module and sent with the ethSend function as previously mentioned. If it is, how-
ever, greater than the MTU, it must be fragmented by recursively calling a helper function
sendFragments by creating an IPv4 header for the current fragment (with appropriate
id, o!set, flags, and payload), extracting a substring of the payload that’s 1500 bytes and
sending the fragments with ethSend . Some of the fields in the IPv4 header can be inferred
from the received packet, e.g., source address, and other fields can be calculated with the
payload, e.g., total length. The rest of the fields are hard coded, e.g. time to live,
which is set at 128 seconds.

Sending ethernet packets

The ethSend function constructs and sends an ethernet frame. This is done by firstly
encoding the header using the encode function in the ethernet module, then converting the
header into a byte list, and finally calling netif’s send function to send the packet on its
way. The header is converted using the toByteList function in the utility library.

4.1.4 Network profiling

A separate implementation of the network library called networkProflib replaces networklib,
which has also been made for use with region profiling. This implementation introduces
functions to set variables for generating data that can be used to simulate networking. This
includes the following functions:

1. setProfData is used to set what data should be used for profiling.

2. setRuns is used to set how many times the listen function should run.

3. setPort is used to set which port should be used.

23

4. generateProfData after the relevant variables have been set, this function can be
called to generate the data to use. It will function similarly to when a request is
handled in networklib; instead of sending the encoded data to a network interface,
the fragments generated from the packet will be placed inside the simPktArr array.

The normal receive call from netiflib is replaced, such that the fragments from the
simPktArr array are read instead, by taking one element at a time from the array, and
when the end is reached, it wraps around and reads the array again.

For region profiling, the minimized version of the runtime is not used. Instead, the normal
MLKit runtime is used, which contains the runtime for profiling, and the flag -no gc is used
to ensure that garbage collection is not used, just like in the minimized runtime. This means
that it will not be the same runtime that is used for profiling, however if the service works on
the minimized version, then the behavior should be similar to the one with profiling, since
the functionality has not been changed, but rather some functionality has been stripped away.

One can then import networkProflib instead of networklib in the .mlb-file of the service
and then set up profiling inside the main file of the service. The implementation here is
a copy of the current version of networklib with additional changes and, therefore, is a
temporary solution.

4.2 Network protocols

To promote the use of functional design, the protocols in the network stack are implemented
with similar interfaces and implementations, thus creating uniformity across them. This
uniformity is possible because the protocols all need to be decoded (to separate header into
fields and payload) and encoded (combine header fields and payload) in a similar fashion
to comply with how the tap reads and writes to the network. Below is an overview of how
similar functions are implemented for the ARP, ethernet, IPv4, and UDP protocols and then
how the protocols are implemented besides the similar functions.

Header

Each protocol has a header with fields, and these fields are kept in a user-defined SML
datatype. Some of the fields are non-conventional datatype, e.g., the ethernet frame ether
type is IPv4, which is another user-defined datatype to ease matching on such fields. Some
of the protocols have implemented helper functions to convert between strings, ints, and the
custom datatype, e.g., in the IPv4 protocol, the protocol UDP has the integer value of 17
and the string value of ”UDP”. Figure 4.2 is the header datatype for the UDP (see section
4.2 for header details).

24

datatype header = Header of {
source_port: int,
dest_port: int,
length : int,
checksum: int

}

Figure 4.2: Header datatype for the UDP

Decode

When the tap reads an incoming message, it will be received as a string in SML. The string
is passed to the appropriate protocol library where a decode function is residing, and this
function will put the appropriate fields and datatype into the header datatype of the specific
protocol. The three implemented protocols that carry a payload, Ethernet, IPv4, and UDP,
will return a tuple consisting of the header and the payload as a string. Figure 4.3 is the
decode function for the UDP.

fun decode s = (Header {
source_port = String.substring (s, 0, 2) |> convertRawBytes,
dest_port = String.substring (s, 2, 2) |> convertRawBytes,
length = String.substring (s, 4, 2) |> convertRawBytes,
checksum = String.substring (s, 6, 2) |> convertRawBytes

}, String.extract (s, 8, NONE))

Figure 4.3: decode function for the UDP

Encode

When the tap writes an outgoing message, it must be a string of raw bytes. Each protocol
then receives the appropriate header datatype and uses one or more helper functions from
the utility library, which can convert ints, int lists, strings, etc, into a raw byte string. In
the IPv4 module, the encode function also calculates the checksum with the ipv4Checksum

function defined in its module (see section 4.2). Figure 4.4 is the encode function for the
UDP.

fun encode (Header{length,source_port,dest_port,checksum}) data =
(intToRawbyteString source_port 2) ^
(intToRawbyteString dest_port 2) ^
(intToRawbyteString (String.size data + 8) 2) ^
(intToRawbyteString 0 2) ^
data

Figure 4.4: encode function for the UDP

25

toString

Each of the protocols has a function to convert the fields within the header to a string
with the name of the field so it is easy to print for debugging purposes. When making an
application, one can turn on the printing of the incoming and outgoing messages by calling
the function logOn() . Figure 4.5 is the toString function for the UDP.

fun toString (Header {
source_port,
dest_port,
length,
checksum

}) =
"\n-- UDP INFO --\n" ^
"Source port: " ^ Int.toString source_port ^ "\n" ^
"Destination port: " ^ Int.toString dest_port ^ "\n" ^
"UDP length: " ^ Int.toString length ^ "\n" ^
"Checksum: " ^ Int.toString checksum ^ "\n"

Figure 4.5: toString function for the UDP

Ethernet

The header of the ethernet frame is seen in table 4.1. Its header consists of three fields and
a total size of 8 bytes. Besides the functions described in section 4.2, the ethernet frame
module contains functions to convert the ether type to strings and integers, as well as integers
to ether types, e.g., 2054 is ARP.

Field Data type Size
Ether type ARP ↑ IPv4 ↑ IPv6 2 bytes

Destination MAC address int list 6 bytes
Source MAC address int list 6 bytes

Table 4.1: Ethernet frame header

ARP

The ARP header is seen in table 4.2, and it consists of nine fields and has a size of 28
bytes. Besides the functions described in section 4.2 the ARP module contains functions to
convert the ARP operation to strings and integers, as well as integers to ether types e.g. 1
is Request.

26

Field Data type Size
Hardware type int 2 bytes
Protocol type int 2 bytes

Hardware address length int 1 byte
Protocol address length int 1 byte

Opcode Request ↑ Reply 2 bytes
Sender IP address int list 6 bytes

Sender MAC address int list 4 bytes
Target IP address int list 6 bytes

Target MAC address int list 4 bytes

Table 4.2: ARP header

IPv4

The IPv4 header is seen in table 4.3, and it consists of 13 fields 23 bytes. Besides the functions
described in section 4.2, the IPv4 module contains functions to convert the protocol type
(e.g. ICMP) to strings and integers, as well as integers to protocols, e.g. 1 is ICMP.

Field Data type size
Version int 1 byte

Internet header length int 1 byte
Di!erentiated services code point int 1 byte
Explicit congestion notification int 1 byte

Total length int 2 bytes
Identification int 2 bytes

Flags int 1 byte
Fragment o!set int 2 bytes
Time to live int 1 byte
Protocol ICMP ↑ TCP ↑ UDP 1 byte

Header checksum int 2 bytes
Source address int list 4 bytes

Destination address int list 4 bytes

Table 4.3: IPv4 header

Furthermore, it contains a function, ipv4Checksum , to calculate the checksum by summing
over all the fields and adding the carry (overflow from sum) and then bitwise inverting the
result to the final checksum.

To detect if a packet is fragmented, a helper function, isFragmented , is defined. Here,
the flags field in the IPv4 header is inspected and returns a boolean value appropriate to
whether the packet is fragmented.

27

UDP

The header of the UDP is seen in table 4.4, consisting of four fields of eight bytes. This
module contains no additional functionality besides the functions described in section 4.2.

Field Data type Size
Source port int 2 bytes

Destination port int 2 bytes
Length int 2 bytes

Checksum int 2 bytes

Table 4.4: UDP header

4.3 Platform implementations

Each platform (Unix and Xen) has its own version of the minimized runtime, and besides
this, they also have di!erent netifs, as discussed in section 3.2. In figure 4.6, the dependencies
can be seen between the di!erent components of the library. The reason the runtime for local
development is named the Unix runtime, is that there is potential for it to work on other
Unix systems, however in this project it has only been tested on Linux. The runtimes and
the implementations of netif will be a!ected since these will need to replace calls to libc and
libm with calls to either Mini-OS’ libc implementation or the newlib libm implementation.
The SML basis library will be a!ected by the change of runtime, and the parts that can be
implemented here depend on what can be implemented using Mini-OS. The network library
will then depend on the SML basis library and the netif implementation. The intention is
that the application itself is then only dependent on the network library.

28

Figure 4.6: This figure shows that the SML basis library and the network library will be the
same for both platforms but will use di!erent runtimes and networking functions.

4.3.1 Linux

Building

When building for Linux, the end result is an executable that can be run directly on a local
Linux machine. To build an application for Linux, the command

$ make t=unix application name -app

can be used. This will first build the Unix runtime, then build the object file libtuntaplib.o
that contains the netif code, and then finally compile the application to an executable using
the MLKit compiler.

Running

Before running the application on a local unix machine, the network must be configured
correctly. To do this, the $ make setup command can be used. This will add the tun
kernel module and then set up a tap device that can be interacted with using the IP-address
10.0.0.2 . The executable can now be run, and communicated with using a networking
utility such as netcat.

Network interface

When reading for the first time with the receive call from the application, if the global
tapfd file descriptor has not been set yet, as can be seen on line 4 of figure 4.7, then it

29

https://netcat.sourceforge.net/

will call function to set up the file descriptor. First, the tun alloc function opens a tap-
device, and a file descriptor is returned that will be used for communicating through the tap
device. Second, the setup function is run to ensure that the interface is configured correctly

1 int tapfd = -1;
2 String Receive(int addr, Region str_r, Context ctx) {
3

4 if (tapfd == -1) {
5 char tap_name[IFNAMSIZ];
6

7 strcpy(tap_name, "tap0");
8 tapfd = tun_alloc(tap_name, IFF_TAP); /* tap interface */

9

10 if (tapfd == -1) return NULL;
11

12 setup(tap_name);
13 }
14

15 char buf[MTU]; // MTU + 18 (the 18 bytes are header and frame check

sequence)ω→

16 ssize_t bytesRead = read(tapfd, buf, MTU);
17

18 // Null-terminate the buffer

19 buf[bytesRead] = '\0';
20

21 return toMLString(str_r, buf+4, bytesRead-4);
22 }

Figure 4.7: The code for receiving ethernet frames with tuntap.

When the tap device is set up, and tapfd has been configured, the application is ready

to read and write ethernet frames. To read from the tap device, the system-call read is
used on tapfd , with a maximum of the Maximum Transmission Unit (MTU), and the out-

put is placed into buf . To return the bu!ers content to SML, the toMLString function

is called, which allocates a StringDesc struct, copies the contents of the bu!er into the

data member of the StringDesc struct, which can now be returned to the original call to

receive from SML. One note is that reading the etherframe includes 4 bytes at the start
of the frame, which are bytes added by tuntap. These include 2 bytes for flags, and 2 bytes
for the protocol (the ethertype) [17]. These bytes are not used, and to make the interface
more simple these are skipped, as can be seen on line 21 of figure 4.7, it adds 4 to the buf
pointer when calling toStringML , so only the raw frame data is returned.

30

However, for writing frames back to the device, the implementation is di!erent, since there
were di”culties converting an ML string to a char array in C, the function for writing send
instead accepts a list of integers, that represents the bytes of the string. Functions from the
runtime like isCons are then used to go through the list, convert the SML-integers into
c integers, and then copy them over to a bu!er starting from the fifth index, as the first 4
bytes are reserved for tuntap related fields. Then, after the raw frame data has been copied
over, the first two bytes of the bu!er are left to be zero for the flag field in tuntap, and the
ethertype bytes are copied over for the protocol field in tuntap. Then, the bu!er is ready to
be written to the tuntap device with a write call on tapfd .

4.3.2 Xen

Building

For Xen, the goal is to create one file that contains the kernel code, with the SML application
statically linked inside, such that the kernel will call the runtime and begin execution of the
SML application.

To compile the application that will later be statically linked to the Mini-OS kernel, the
command

$ make t=xen application name -app

First, the runtime that is aimed at Mini-OS is compiled. Next, the Mini-OS C-code is
compiled, containing the code that will set up networking and call the runtime main function.
The last step is then to compile the specific application. In this step, the MLKit compiler is
called with the flags -objs and -no delete target files , which will produce a file that
contains paths to all the object files that are used in the SML application, including object
files for each of the libraries, the minimized SML basis library and the runtime archive file.
All related object files are then placed inside a build directory, and all related archive
files are also extracted into the build directory, this includes runtime.a and libm.a .
The last step is to create an archive containing all the relevant object files, which is named
app.a .
The next is to build the Mini-OS, and linking in the app.a archive. The Mini-OS sources
need to be installed, and the make variable needs to be set to the path to the Mini-OS
directory. To make it easier to ensure that the linking is done correctly, the command
make configure can be used, which will change the relevant parts of the Mini-OS files
such that app.a is linked correctly. If all prerequisites are fulfilled, this will be the kernel,

which is mini-os.o , which is the final unikernel with the SML application linked into it
that can be run on the Xen hypervisor.

Running

Two files are needed to run the unikernel. The first is the unikernel itself, and then a
domain-config file will be used to give the correct configurations when running it inside

31

Xen.

The domain that is used to control instances on Xen is called the control domain or Domain0
[38]. From the control domain, the xl tool can be used to start and stop guest domains
[39]. First, the network needs to be configured in the control domain. This entails creating a
network bridge xenbr0 , which can then connect the physical ethernet device eth0 to the
virtual network device of the guest domain, which will be called vifDOMID.DEVID , where
DOMID is the id, and DEVID is the index of the guest domain [37].

To run the unikernel the command $ xl start -c domain config can be used, which will

use the previously mentioned domain config to configure, among other things, resources

and the name of the guest domain. The -c flag will open a terminal where the console
output from the guest domain can be seen. The guest domain created can then be shut
down with xl shutdown DOMAIN NAME .

Implementation of netif

The code for starting the SML application and reading ethernet frames with Mini-OS reside
in the same file Libs/netiflib/netif-miniOS.c . Mini-OS will call the function app main

which will be the entry point for an application. In this case app main creates two threads,

netfront in which the networking code is run, and the second sml calling the main
function from the MLKit runtime, which will start the SML application.

When the netfront thread is run, it will initialize the network properly by calling init netfront .
Here there is some ambiguity of how the internals of netfront works, but the second thread
sml will need to wait on the netfront code to be initialized, so, therefore, it starts out
by using a semaphore to wait for the network to be initialized. Then when the network is
setup, the SML application will begin, and ethernet frames will be read using the netif rx
function, which will be called every time a packet is received.

The netif rx function will continuously receive ethernet frames, so the pointer to the data
of the packet is written to a dataPtrs array, and the length is written to a dataLengths
array. When it reaches the end of the array it will wrap around to the start. This data
can then later be retrieved when receive is called. To stop receive from reading data
from the array that is currently used, it will run in an endless loop if it sees that the index
it needs to read from is used by netif rx . This is not an ideal solution, since netif rx
can overwrite ethernet frames, however, due to the ambiguity of how scheduling and thread-
management works in Mini-OS, this solution seems to work as expected.

Both reading and writing will use a similar method as with tuntap, as described in section
4.3.1. The only notable di!erence is that reading is done through the bu!ers that netif rx
will write to, and writing is done with netfront xmit function from Mini-OS.

32

4.4 Runtime minimization

In this section, the minimized runtime will be explained. First, what changes were needed
for running on each platform, and how they might di!er? Next, it will explain what parts
of the original MLKit runtime have been excluded and the reason. The last section will go
through what parts of the basis library of Standard ML that is supported.

4.4.1 Platform related changes

There are two minimized runtimes, one that uses Mini-OS for running on Xen and one to
use with Unix. Although they both have had the same parts of the runtime removed, calls to
libc and libm on Unix have been replaced with equivalent calls from Mini-OS. For example,
all printf calls have been replaced with Mini-OS’ printk calls. printf is used through-
out the MLKit runtime to communicate what errors happened while running the program,
which would normally be printed to stderr on Unix platforms; however, this distinction is
not made in Mini-OS. Other relevant replacements are malloc , type definitions, and string
functions like strlen .

One place where the runtimes di!er is when setting an unlimited stack size. This could not
be supported with Mini-OS, however it has been left in for the Unix runtime, as it did not
seem to make a di!erence, so to ensure that behavior was similar on other machines when
testing the service locally, this was not removed from Unix.

Because Mini-OS provides only limited libc supported, it is not entirely clear what is not
supported. One such example is that formatting floats with formatting directives such as
%f is not supported with Mini-OS, which did not give an error but printed out the literal
formatting directive. In this case, a temporary solution was made to support formatting
floats. However, other functions might also lack functionality in this way.

The math functions in the runtime were not fully supported by Mini-OS, therefore an external
libm implementation is needed such that math functionality is supported. In this case, newlib
was used as a static libm [33], since libm is normally linked dynamically as a shared library,
but it needed to be linked statically into the kernel. This is where there are some problems
with the Xen runtime, as the floatSetRoundingMode and floatGetRoundingMode in the
MLKit use functions that are not supported in newlib.

One other important change is that the runtime on Xen will never exit but instead continue
running in an endless loop. This is for debugging purposes since it will lead to an error for
Mini-OS if the runtime is exited, which overwrites the output just before exiting. This also
allows it to check the guest domain to see what happens if it crashes.

4.4.2 Runtime

The parts of the runtime that are left after minimization are:

33

• Runtime.c: this is the entry point for the runtime, which contains the main function
that runs the external code function that will be run the actual SML application. It
also contains the code for exiting the runtime, and for catching exceptions.

• Region.c: this contains the functionality that manages regions, including allocating
and deallocating regions and getting new pages to the free-list.

• String.c: this contains functions related to ML-strings, for example converting be-
tween C and ML-strings, concatenating strings and printing strings. This is especially
useful in the projects, since the raw packet is worked with as strings, and it is also
helpful for printing to the console and debug.

• Math.c: this contains essential math functions for integers and floats, for example
division, modulo and rounding functions. Many of the services that were designed
used functions that were math related.

• Other: there were also header files that were left in, both those related to the source
files, but also List.h, that contained macro definitions for working with lists and Ex-
ception.h that contained definitions for working with exceptions.

The parts of the runtime that were left out were partly because they were not useful to the
project or because it was not immediately obvious how easy they would be to support on
Xen. These are some of the parts that were left out of the minimized runtime:

• Time.c: this contains functions for working with time. Mini-OS already contains
functionality for this, so it should be possible to implement, however, for this project, it
was left out. This could be useful for logging utilities, ands pseudo-number generators.

• GC.c: this contains functions and definitions for using the garbage collector. This
project’s focus is mainly on using region inference in unikernel, so garbage collection is
not part of the runtime. However, this could be useful for handling cases where region
inference is not su”cient.

• Socket.c: this provides support for sockets. This was left out, since it is not guar-
anteed that sockets were supported on the target platform, and also there would be
a higher level of consistency moving from the development environment to the target
environment since all parts of the network stack would be implemented in SML.

• Spawn.c: this provides functionality for working with threads. This was not essential
to the project, as the application could be implemented single-threaded. However, this
could be useful to answer multiple requests at a time.

4.4.3 Basis library

There were also parts of the SML basis library that were left out. Table 4.5 shows what
required signatures of and structures of the SML standard library [25], which can still be
used after the minimization of the runtime. Most of the missing parts are either OS-related,
such as the OS signature and implementation, or the IO-related signatures. There are also

34

signatures related to time like Time and Date that is not supported, as discussed in section
4.4.2 because it is not part of the runtime.

As also discussed before, one of the parts where it was not clear what was supported, was
regarding the formatting of floats and reals. The temporary implementation does work, how-
ever it is unclear whether other parts of the runtime might seem to have been implemented,
but does not work correctly as a result of the limitation of the libc Mini-OS implementation.
Therefore figure 4.5 shows what seems to be supported, but it is not fully known if the
replaced function call might lead to other behavior that is not correct.

Some optional signatures and structures also are available. For instance, INT INF , for
working with arbitrarily large integers, and PACK REAL and PACK WORD for packing and
unpacking floating point numbers and words into Word8 vectors and arrays [25].

35

Signature Implementation(s) of signature Is covered
ARRAY Array Yes

ARRAY SLICE ArraySlice Yes
BIN IO BinIO No
BOOL Bool Yes
BYTE Byte Yes
CHAR Char Yes

COMMAND LINE CommandLine Yes
DATE Date No

GENERAL General Yes
IEEE REAL IEEEReal Yes

IMPERATIVE IO No
INTEGER Int, LargeInt, Position Yes

IO IO Yes
LIST List Yes

LIST PAIR ListPair Yes
MATH Math Yes

MONO ARRAY CharArray, Word8Array Yes
MONO ARRAY SLICE CharArraySlice, Word8ArraySlice Yes

MONO VECTOR Word8Vector Yes
MONO VECTOR SLICE Word8VectorSlice Yes

OPTION Option Yes
OS OS No

OS FILE SYS No
OS IO No

OS PATH Yes
OS PROCESS No

PRIM IO BinPrimIO, TextPrimIO No
REAL LargeReal Yes

STREAM IO No
STRING String Yes

STRING CVT StrintCvt Yes
SUBSTRING Substring Yes

TEXT Text Yes
TEXT IO TextIO No

TEXT STREAM IO No
TIME Time No
TIMER Timer No
VECTOR Vector No

VECTOR SLICE VectorSlice No
WORD LargeWord Yes

Table 4.5: The required signatures and implementation of the signature for SML [25]. The
COMMAND LINE line signature is marked yellow since it is part of the runtime, but there are
no arguments passed to it when running it on Xen.

36

Chapter 5

Evaluation

This chapter includes an evaluation of the project. First, it includes a section on how the
project has been tested continuously through the development process. Second, it includes
some example unikernels that showcase the project’s potential. Third, a section will include
the results of running the project on Xen. Finally, an evaluation of the regions within the
unikernels will be included.

5.1 Testing the implementation

To test the implementation of the project, several unit tests and an integration test has been
implemented. Furthermore, a Github workflow has been setup and these will be discussed
in this section.

Unit tests

The project includes 67 unit tests to test the implementation of the code. The unit tests have
been made as black box tests, meaning the public functions in each module have been given a
specific input where a specific output is expected. A small test module has been implemented
with a function to assert another function, assert (name, f, expected, toString) , and
its type is:

string * (unit → ω) * ω * (ω → string) → unit

Here name is the name of the function to test, f is the function to be tested on some input,
expected is the expected output, and toString is a function that converts the result
type, ω, to a string such that it can be printed. Figure 5.1 is an example of the definition
of a unit test. The particular unit test tests the encode function in the IPv4 module (NB:
testRaw is a hard-coded tests header defined in the test file. Both rawBytesString and

toByteList are functions defined in the Utilities module).

Integration testing

To ensure that packets are properly fragmented, the project includes an integration test that
sends the first 60000 digits of ε to the echo service. The echo service is ideal for testing

37

assert ("encode",
(fn () => IPv4.encode (IPv4.Header header) payload),
testRaw,
(rawBytesString o toByteList)

);

Figure 5.1: Example of unit test

fragmentation as it replies to any message with the exact message it received. Since 60000
digits are larger than the MTU for UDP, the payload must be fragmented on both receiving
and sending.

Github actions (CI)

To automatically test the code in every commit pushed to the project’s GitHub, a GitHub
actions workflow has been set up to

1. Build a service (echo)

2. Run unit tests

3. Run integration test

This ensures that the functionality is as intended and that no subtle bugs sneak into the
code base upon every commit to any branch.

5.2 Example services

Four example services are included in this project to showcase some potential use cases of
the project.

• Echo is the classic hello world example, which simply returns the string it was given
untouched.

• Fibonacci and factorial includes two services on two di!erent ports, showcasing that
the unikernel can serve multiple services and how to define such. The functions here
are the factorial function bound to port 8080 defined as:

n! = n↓ (n↔ 1)↓ (n↔ 2)↓ · · ·↓ 3↓ 2 (5.1)

and the Fibonacci function bound to port 8081 is defined as:

fn = fn→1 + fn→2 for n > 1 (5.2)

• Merge sort utilizes an implementation of mergesort in SML to sort a string of space-
separated numbers e.g. 2 7 1 8 2 8 will result in 1 2 2 7 8 8 . This example

38

service has been chosen to show the capabilities of the region inference as the imple-
mentation of merge sort will generate many temporary arrays through its recursion
steps. The mergesort implementation code is seen in figure 5.2.

1 fun merge ([], l) = l
2 | merge (l, []) = l
3 | merge ((h1::t1), (h2::t2)) = if h1 < h2 then h1 :: merge (t1, (h2::t2))
4 else h2 :: merge ((h1::t1), t2)
5

6 fun split l =
7 let fun split [] xs ys = (xs, ys)
8 | split (x::[]) xs ys = (x::xs, ys)
9 | split (x::y::t) xs ys = split t (x::xs) (y::ys)

10 in split l [] [] end
11

12 fun mergesort [] = []
13 | mergesort [x] = [x]
14 | mergesort l = split l |> (fn (x, y) => (mergesort x, mergesort y)) |>

mergeω→

Figure 5.2: Merge sort in SML

• Monte Carlo estimation of ε utilizes a Sobol sequence of repeated quasi-random
sampling to obtain the estimation of ε. The Sobol sequence is generated by a Standard
ML package for generating Sobol sequences [8] thus showing via this example that it
is possible to include external packages in the services. The estimation works by
generating 2D points within a square with a length size of 2r. If we then imagine a
circle inside the square with a radius r we can calculate the number of points inside
the circle and the number of points outside the circle in the square. Since the area of
the square is 4r2 and the area of the circle is εr2, the ratio of the points is:

circle area

square area
=

εr2

4r2
=

ε

4
(5.3)

With a large amount of randomly generated numbers, we can estimate ε with:

ε

4
=

points inside the circle

total points
(5.4a)

↗ ε = 4↓ points inside the circle

total points
(5.4b)

where the points inside the circle are determined by:

x2 + y2 ↘ 1 (5.5)

39

Figure 5.3 is the code for the service that serves port 8080 with the Monte Carlo
estimation of ε. Its input is how many data points to use.

1 open Network
2

3 structure Sobol = Sobol(val D = 2
4 structure SobolDir = SobolDir50)
5

6 (* UC is short for unit circle. *)

7 fun monteCarlo n =
8 let
9 fun loop 0 UC = UC

10 | loop i UC =
11 let
12 val v = Sobol.independent i
13 val x = Sobol.frac(Array.sub(v,0))
14 val y = Sobol.frac(Array.sub(v,1))
15 val new_UC =
16 if (x * x + y * y <= 1.0) then
17 UC + 1
18 else
19 UC
20 in
21 loop (i - 1) new_UC
22 end
23 val UC = loop n 0
24 in
25 4.0 * (Real.fromInt UC) / (Real.fromInt n)
26 end
27

28 val _ = (
29 bindUDP 8080 (
30 fn data =>
31 case Int.fromString data of
32 SOME n => monteCarlo n |> Real.toString
33 | NONE => "Invalid input"
34);
35

36 listen ()
37)

Figure 5.3: Example service with a Monte Carlo estimation of ε

40

5.3 Running services on Xen

In this section the results of running the services as unikernels on Xen will be discussed.
Each service mentioned in section 5.2 has been tried on Xen. This was done by running Xen
inside virtualbox, with the control domain running Ubuntu.

An example of running the echo service on Xen can be seen in figure 5.4. Here the netcat
tool is used to send a request over an UDP connection, containing the first 60.000 digits of
pi. This ran successfully on Xen and it can also be seen in figure 5.4 in the bottom-right
corner that the package is fragmented, splitting up the response in multiple fragments.

Figure 5.4: An example of running the echo service as a unikernel on Xen. 3 terminal
windows are visible. The right terminal window is where the unikernel is started with the
xl command-line tool. The upper-right window shows sending a request to the echo service
through netcat with pi as the input. Finally in the bottom-right window the package going
through the network interface used by the unikernel is shown.

All the other services also worked for the most part on Xen, the runs of the other services
can be seen in the appendix A. However crashes occurred during some requests. This was
especially the case with services, that used a considerable amount of memory, like the facfib
service. In figure 5.5 shows an example where fibonnaci of 2000 is requested on port 8081,
but this fails with the error ”Page fault and linear address” followed by ”GPF rip”. When
requesting on 8081, the service saves all intermediate fibonacci results, but also uses interme-
diate vectors, which is not optimal. However it also successfully answered the same request
other times.

41

Figure 5.5: The facfib service runnning on Xen. The right terminal window shows a request
to calculate fibonnaci of 2000, however nothing is returned. In the right window where the
unikernel is run, it shows that that the unikernel crashes with an error.

5.4 Evaluating thesis

This section will discuss the validity of the thesis statement. It will include how well the
project uses regions and how it could be improved. The sort service will be used as an
illustrative example. Next, the e!ect on memory safety and the developer’s productivity
using region inference will be discussed, and lastly, the significance of using region memory
management for unikernel development will be discussed.

5.4.1 Use of regions

As described in section 2.2.2, using regions can have benefits such as fewer memory traversals
and avoiding garbage collection from halting the program. The minimized runtimes in this
project use region-memory management without any garbage collection. While this demon-
strates that unikernels can be created with only region-based memory management, they also
have potential drawbacks if they are not optimized for the use of regions. Programs that
have not been optimized for region usage can end up using much more space since these pro-
grams can end up containing space leaks that make memory usage linear in running time [30].

The profiling version of the network library was used to explore the region usage in services
and the underlying network library use regions, as described in section 4.1.4. For this, the
sort (merge sort example) service was chosen, as the service itself uses memory for sorting

42

lists and region inference would, therefore, come into e!ect. A string of 10000 numbers was
used as input for this example with a size of 29202 bytes, which should result roughly in
29202
1480 ≃ 20 fragments. The listen function was run 1000 times and therefore completed
processing 1000 fragments. This will mean that since the data will be read in a loop, and
the list results in 20 fragments, the list will be processed 1000

20 = 50 times. Since the data
is more than one fragment long, the IPv4 fragmentation implementation of the networking
library will be activated. The result of this can be seen in figure 5.6 (note there are 50 spikes):

Figure 5.6: This figure shows how the sort service uses regions by using the region-profiling
tool in MLKit.

As can be seen in figure 5.6, it seems that some regions, more specifically the regions r3inf,
r312417inf and r312427inf, are growing over time. The region r3 is a global region that
holds string values [31], while the other two are used in the listen function in the call to
String.extract and Eth.decode . The region annotated code for the listen function
can be seen in appendix B.1. This seems to suggest that there are strings that are never
freed, possibly because the fragmentBuffer and assemblingList lists are in a global
scope. The values, which include the payload strings of the fragments, are available during
the entire run of the service, and there is no mechanism to free the resources used for these
strings since they are contained within a global region. Without a garbage collector present,
these values will not be collected, resulting in a linear increase in memory usage of the run-
ning time.

43

The following is parts of the mergesort function from figure 5.2, with region-annotations:

1 fun mergesort attop r1 [r314049 :inf] (var5) =
2 (* . . . F u n c t i o n p a t t e r n m a t c h i n g *)

3 let region r314133:2;
4 val v324 =
5 let region r314115:inf, r314117:inf, r314119:2;
6 val v326 =
7 let region r314059:0;
8 fun split atbot r314059 [r314079:2, r314077:inf,

r314075:inf] (var2, var3, var4) =ω→

9 (* . . . *)

10 in funcall split[atbot r314119,atbot r314117,atbot
r314115] <var5, nil, nil>ω→

11 end;
12 val v228 = #0 v326; (* F i r s t l i s t *)

13 val v229 = #1 v326 (* S e c o n d l i s t *)

14 in (funcall mergesort[sat r314049] v228,
15 funcall mergesort[attop r314049] v229)atbot r314133
16 end
17 in funcall merge[sat r314049] <#0 v324, #1 v324>
18 end
19 (* . . . *)

Figure 5.7: Merge sort with region annotations. The formal region parameter that
mergesort is given to store the result is highlighted, and some parts of the code have
been left out to simplify.

As shown in figure 5.7, many local regions are used throughout the function. The region
that has been highlighted is a formal region parameter [31], and this will be used to store
the sorted version of the list given to mergesort (throughout this section, the region high-
light colors will match the color region seen on figure 5.6). atbot, attop, and sat refer to
which storage mode should be used when storing values inside regions. atbot is for resetting
the region and then storing the value, attop is for storing the value without destroying the
region, and sat is when the storage mode should be determined at runtime [31].

In the region-annotated program for mergesort , the formal region parameter r314049 is
used to store the final sorted list. This region is also used to store intermediate results;
for example, when sorting each half on lines 14-15, the lists are stored inside the r314049
region. For the call to mergesort on line 14, the storage mode for the first half of the list
is sat, while the last half uses attop. For the last half, it makes sense that attop is used,
as there are two intermediate results that need to be stored simultaneously, and therefore,
storage of this list should not reset the region, or else the first half of the list will not be
available. However, the reason for using storage mode sat for the first half might be because

44

it depends on which call to mergesort it is.

To demonstrate this, suppose we are sorting 100 numbers; at some point, we need to sort the
first sublist of 25 numbers from the original list. In this case, if atbot was used on line 14,
then the region that holds the entire list, including the other 75 numbers, would be reset, and
the other 75 numbers would be lost. Therefore, using attop would make sense. However,
if we have returned to the top-level mergesort call, then all numbers are contained in the
two halves, and the r314049 region can be reset, since the intermediate results of splitting
the lists are stored in the local regions on line 5. A similar situation arises on line 17, if it
is the last merge . Here it also makes sense that the region parameter is reset when given
to merge . This demonstrates how region-inference e!ectively and safely can transform a

function, such as mergesort , into using region-based memory management.

1 (* . . . *)

2 let val _ =
3 funcall bindUDP[]
4 <8080,
5 fn attop r1 data =>
6 (* . . . *)

7 let (* . . . *)

8 region r314231 :inf;
9 (* v 2 4 1 c o n t a i n s t h e l i s t o f i n t e g e r s *)

10 val v330 = funcall mergesort[atbot r314231] v241;
11 region r314267:inf, r314269:inf;
12 val strL =
13 let region r314233:1;
14 fun map atbot r314233 [r314245:inf, r314243:inf] (var20)

=ω→

15 (* . . . *)

16 in funcall map[atbot r314269,atbot r314267] v330
17 end
18 in (* c o n c a t t h e l i s t o f s t r i n g s *)

19 funcall concatWith[attop r3] <" "attop r314267, strL>
20 end
21 (* . . . *)

22 >
23 in funcall listen[] ()
24 end
25 (* . . . *)

Figure 5.8: Binding callback function using mergesort to port 8080 with region annota-
tions.

As seen in figure 5.8, the highlighted local region r314231 is given as an actual region pa-

45

rameter to mergesort . Looking back at the region-profiling figure 5.6, we can see that
this region is the grey-colored region that continuously spikes and then is freed immediately
after, which means that the sorted list is freed after it not longer in use. This suggests that
region inference is very e!ective for the mergesort service, which also makes sense since it
primarily uses local regions instead of global regions.

This poses the question of how the benefits of using region inference can be retained, as
seen with the mergesort function, while still ensuring that the memory usage does not
grow proportionally to the running time, as seen with networking library. One method
would be to try to write more region-optimized code. This might include avoiding the use of
global regions, as well as analyzing the region-annotated version together with the use of re-
gion profiling. Another related method would be to use regions explicitly, for example, using
ReML, a Standard ML extension implemented in MLKit, that allows programs to be explicit
about using regions [7]. This could help give better control over the usage of regions. Minor
changes might a!ect the output of using region inference to a considerable degree, and by us-
ing ReML, such changes to the properties of the program could be avoided to a larger extent.

Another way would be to integrate a garbage collector that could take care of allocations
that are not reclaimed well with region inference, like with global regions. The use of region
inference can then minimize the number of times the garbage collector is run [30]. This would
allow the developer to use only region inference or a combination with garbage collection,
depending on what fits the program best. In the case of the sort service, this could collect
the values stored inside the global regions, as these are often the regions that need to be
collected with garbage collection [9].

5.4.2 Developer productivity and memory safety

Since region-based memory management o!ers automatic memory management via region
inference, it greatly benefits the developer’s productivity. Because this system automatically
determines when and what to allocate and deallocate, the developer does not have to think
about memory management as much as with garbage collection. Furthermore, region infer-
ence is likely better than most developers at figuring out the lifespan of objects and when it
would be best to clean up the memory.

Although this lowers the burden of thinking about regions, as discussed beforehand, if the
developer is not thinking about the use of regions, it can end up becoming a potential prob-
lem since the program might end up being poorly optimized, as described in section 5.4.1.
However, it still gives the developer the opportunity to design and implement libraries and
services that work without the need to think deliberately about regions and then afterward
have the opportunity to optimize for region usage.

The project is an example of this, as the focus has not been on optimizing region usage but
rather on implementing the essential parts for communicating through a network. By using
region inference, the project has not explicitly used regions, and in this way, the focus can
be entirely on getting the implementation to work. Therefore, by using region inference, the

46

usage of region memory management has not hampered the developer productivity of this
project.

Moreover, region inference o!ers memory safety, just like garbage collection. Like with Mira-
geOS, services can be developed reliably without worrying about potential memory leaks or
premature deallocations. This is in contrast to languages like C, where you need to explicitly
allocate and deallocate memory, leading to the aforementioned issues.

Other languages exist that could fulfill the same need of memory safety while also having
performance closer to that of languages that use explicit memory management. One such
language is Rust, which does not use a garbage collector but instead also uses region-based
memory management among other methods [4]. However, in Rust, there is a high mental load
where the developer needs to think actively about the introduced concepts, which results in a
language that is harder to learn and use [4]. Region inference, therefore, o!ers an alternative
way where the developer is not required to actively think about the underlying memory
management methods but still has the potential to manage memory in a more e”cient and
safe way.

5.4.3 Significance for unikernels

For the MirageOS project, using OCaml as the language for almost all of the code of the
unikernel provides type safety and memory safety and improves developer productivity. In
this case, developing the project with SML and MLKit, region-based memory management
with region inference can o!er the same benefits, but the developer is provided with a way
to manage memory in a more optimal way.

If the libraries and operating system functionality of the unikernel are all developed in the
same high-order language, like with MirageOS, then nearly all parts of the system will benefit
if memory management costs of the language can be minimized. This is were one might argue
that it would be better to use a language like Rust, however developing new libraries and
operating system functionality in Rust would be a more time consuming task as discussed
in the previous section. Having region-inference as an alternative to garbage-collection is
therefore a viable option when developing unikernels in higher-level languages, and further
maintains the viability of using higher-level languages for unikernel development, without
the need to turn to lower-level languages like C or Rust for performance gains.

47

Chapter 6

Future developments

Possible implementations to further develop this project may include the following:

• Further evaluations. To further evaluate the project various benchmarks could be
implemented. An example of this is to compare the di!erences with only garbage
collection compared to using only region-based memory management.

• Network protocols. To ensure every packet gets received and delivered a sensible
future development is to implement the Transmission Control Protocol (TCP) which
ensures every packet is delivered even in the event of a packet loss on the network
anywhere. To further complete the network stack IPv6 should be implemented to
succeed the project’s current network layer, IPv4.

• Multithreading. As mentioned in section 4.4.2 spawn.c has been left out in this
project. However, in the future, it could be useful to include it to be able to work with
threads. A neat implementation would be each binding of a callback function to a port
would be its own thread.

• Combine miniruntimes. Currently, the project includes two di!erent runtimes as
mentioned in section 4.3. In the future, this should be combined into one combined
runtime perhaps using ifdef to include the appropriate parts of the runtime.

• Xen port. The current implementation of porting the code to Xen is unstable. This
could be improved in the future by either understanding the Mini-OS codebase better
and improving that or finding a di!erent way to support Xen.

• Add support for other platforms. Other platforms could include the Kernel-based
Virtual Machine (KVM) that is built into Linux and allows Linux to be turned into a
hypervisor. This could be done via the solo5 project [27].

• Expand basis support. These expansions could include using time within the ser-
vices, allowing for reading and writing to files, etc., and in general have better libc
support.

48

Chapter 7

Conclusion

The goal of creating a unikernel library that supports the development of services that can
answer requests from a network was successful. While some parts of the implementation
for the Xen platform have issues with crashing, in general, the developed services work as
unikernels on Xen and do not use garbage collection.

While this demonstrates that region-based memory management with region inference is
feasible for the development of unikernels, services developed without optimizing for region
usage can lead to space leaks and a large amount of memory usage. As seen with the merge
sort service, while the sorting itself works well with the use of regions, the underlying net-
working implementation used global regions, resulting in memory growing over time. Several
methods could be used to counteract this. One way is to analyze the result of region infer-
ence and thereby try to write a more region-friendly program. Another way is to be explicit
about how the regions should be used with extensions like ReML. The final way would be
to integrate garbage collection, which could take care of parts, including the use of global
regions, that are not optimized for region usage.

For the development of unikernels, region-based memory management with region inference
o!ers a way for high-order languages to gain performance benefits without the need to turn
to lower-order languages, which either compromise developer productivity or memory safety.
This allows for system-wide performance gains in unikernels and a high degree of developer
productivity when implementing new libraries and operating system functionality.

49

Bibliography

[1] James F. Kurose et. al. Computer Networking, A Top-Down Approach. 8th edition.
Pearson education, 2022.

[2] Michael Armbrust et al. “A view of cloud computing”. In: Commun. ACM 53.4 (Apr.
2010), pp. 50–58. issn: 0001-0782. doi: 10.1145/1721654.1721672. url: https:
//doi.org/10.1145/1721654.1721672.

[3] Paul Barham et al. “Xen and the art of virtualization”. In: SIGOPS Oper. Syst. Rev.
37.5 (Oct. 2003), pp. 164–177. issn: 0163-5980. doi: 10.1145/1165389.945462. url:
https://doi.org/10.1145/1165389.945462.

[4] Michael Coblenz, Michelle L. Mazurek, and Michael Hicks. “Garbage collection makes
rust easier to use: a randomized controlled trial of the bronze garbage collector”. In:
Proceedings of the 44th International Conference on Software Engineering. ICSE ’22.
Pittsburgh, Pennsylvania: Association for Computing Machinery, 2022, pp. 1021–1032.
isbn: 9781450392211. doi: 10.1145/3510003.3510107. url: https://doi.org/10.
1145/3510003.3510107.

[5] Mache Creeger. “Cloud Computing: An Overview: A summary of important cloud-
computing issues distilled from ACM CTO Roundtables”. In: Queue 7.5 (June 2009),
pp. 3–4. issn: 1542-7730. doi: 10.1145/1551644.1554608. url: https://doi.org/
10.1145/1551644.1554608.

[6] Nabil El Ioini et al. “Unikernels Motivations, Benefits and Issues: A Multivocal Liter-
ature Review”. In: Proceedings of the 3rd Eclipse Security, AI, Architecture and Mod-
elling Conference on Cloud to Edge Continuum. ESAAM ’23. , Ludwigsburg, Germany,
Association for Computing Machinery, 2023, pp. 39–48. isbn: 9798400708350. doi:
10.1145/3624486.3624492. url: https://doi.org/10.1145/3624486.3624492.

[7] Martin Elsman. “Explicit E!ects and E!ect Constraints in ReML”. In: Proc. ACM
Program. Lang. 8.POPL (Jan. 2024). doi: 10.1145/3632921. url: https://doi.
org/10.1145/3632921.

[8] Martin Elsman. Standard ML package for generating Sobol sequences. url: https:
//github.com/diku-dk/sml-sobol.

[9] MARTIN ELSMAN and NIELS HALLENBERG. “Integrating region memory man-
agement and tag-free generational garbage collection”. In: Journal of Functional Pro-
gramming 31 (2021), e4. doi: 10.1017/S0956796821000010.

50

https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1721654.1721672
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/1165389.945462
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/3510003.3510107
https://doi.org/10.1145/1551644.1554608
https://doi.org/10.1145/1551644.1554608
https://doi.org/10.1145/1551644.1554608
https://doi.org/10.1145/3624486.3624492
https://doi.org/10.1145/3624486.3624492
https://doi.org/10.1145/3632921
https://doi.org/10.1145/3632921
https://doi.org/10.1145/3632921
https://github.com/diku-dk/sml-sobol
https://github.com/diku-dk/sml-sobol
https://doi.org/10.1017/S0956796821000010

[10] Fortinet. What is Transmission Control Protocol TCP/IP? url: https : / / www .
fortinet.com/resources/cyberglossary/user- datagram- protocol- udp#:~:
text = User % 20Datagram % 20Protocol % 20(UDP) %20is , destination % 20before %
20transferring%20the%20data.

[11] David R. Hanson. “Fast allocation and deallocation of memory based on object life-
times”. In: (1990). doi: https://doi.org/10.1002/spe.4380200104.

[12] Hermit-rs. url: https://github.com/hermit-os/hermit-rs.

[13] “IEEE Standard for Ethernet”. In: IEEE Std 802.3-2022 (Revision of IEEE Std 802.3-
2018) (2022), pp. 1–7025. doi: 10.1109/IEEESTD.2022.9844436.

[14] IncludeOS. url: https://github.com/includeos/IncludeOS.

[15] Internet Protocol. RFC 791. Sept. 1981. doi: 10.17487/RFC0791. url: https://www.
rfc-editor.org/info/rfc791.

[16] Nicholas Jacek et al. “Optimal Choice of When to Garbage Collect”. In: ACM Trans.
Program. Lang. Syst. 41.1 (Jan. 2019). issn: 0164-0925. doi: 10.1145/3282438. url:
https://doi.org/10.1145/3282438.

[17] Maxim Krasnyansky, Maksim Yevmenkin, and Florian Thiel. Universal TUN/TAP
device driver. 2002. url: https://git.kernel.org/pub/scm/linux/kernel/git/
torvalds/linux.git/tree/Documentation/networking/tuntap.rst?id=HEAD.

[18] Moritz Lipp et al. Meltdown. 2018. arXiv: 1801.01207 [cs.CR].

[19] Anil Madhavapeddy and David J. Scott. “Unikernels: Rise of the Virtual Library
Operating System: What if all the software layers in a virtual appliance were com-
piled within the same safe, high-level language framework?” In: Queue 11.11 (Dec.
2013), pp. 30–44. issn: 1542-7730. doi: 10.1145/2557963.2566628. url: https:
//doi.org/10.1145/2557963.2566628.

[20] Anil Madhavapeddy et al. “Unikernels: library operating systems for the cloud”. In:
Proceedings of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS ’13. Houston, Texas, USA:
Association for Computing Machinery, 2013, pp. 461–472. isbn: 9781450318709. doi:
10.1145/2451116.2451167. url: https://doi.org/10.1145/2451116.2451167.

[21] MirageOS. url: https://github.com/mirage/mirage.

[22] R. Pavlicek. Unikernels: Beyond Containers to the Next Generation of Cloud. O’Reilly
Media, 2016. isbn: 9781491959244. url: https://books.google.dk/books?id=
qfDXuQEACAAJ.

[23] J. Postel. User Datagram Protocol. 1980. url: https://datatracker.ietf.org/doc/
html/rfc768.

[24] Allison Randal. “The Ideal Versus the Real: Revisiting the History of Virtual Machines
and Containers”. In: ACM Comput. Surv. 53.1 (Feb. 2020). issn: 0360-0300. doi:
10.1145/3365199. url: https://doi.org/10.1145/3365199.

[25] John Reppy. The Standard ML Basis Library. 2004. url: https : / / smlfamily .
github.io/Basis/overview.html.

51

https://www.fortinet.com/resources/cyberglossary/user-datagram-protocol-udp#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,destination%20before%20transferring%20the%20data
https://www.fortinet.com/resources/cyberglossary/user-datagram-protocol-udp#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,destination%20before%20transferring%20the%20data
https://www.fortinet.com/resources/cyberglossary/user-datagram-protocol-udp#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,destination%20before%20transferring%20the%20data
https://www.fortinet.com/resources/cyberglossary/user-datagram-protocol-udp#:~:text=User%20Datagram%20Protocol%20(UDP)%20is,destination%20before%20transferring%20the%20data
https://doi.org/https://doi.org/10.1002/spe.4380200104
https://github.com/hermit-os/hermit-rs
https://doi.org/10.1109/IEEESTD.2022.9844436
https://github.com/includeos/IncludeOS
https://doi.org/10.17487/RFC0791
https://www.rfc-editor.org/info/rfc791
https://www.rfc-editor.org/info/rfc791
https://doi.org/10.1145/3282438
https://doi.org/10.1145/3282438
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/tuntap.rst?id=HEAD
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/Documentation/networking/tuntap.rst?id=HEAD
https://arxiv.org/abs/1801.01207
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2557963.2566628
https://doi.org/10.1145/2451116.2451167
https://doi.org/10.1145/2451116.2451167
https://github.com/mirage/mirage
https://books.google.dk/books?id=qfDXuQEACAAJ
https://books.google.dk/books?id=qfDXuQEACAAJ
https://datatracker.ietf.org/doc/html/rfc768
https://datatracker.ietf.org/doc/html/rfc768
https://doi.org/10.1145/3365199
https://doi.org/10.1145/3365199
https://smlfamily.github.io/Basis/overview.html
https://smlfamily.github.io/Basis/overview.html

[26] William A. Simpson et al. Neighbor Discovery for IP version 6 (IPv6). RFC 4861. Sept.
2007. doi: 10.17487/RFC4861. url: https://www.rfc-editor.org/info/rfc4861.

[27] Solo5. url: https://github.com/Solo5/solo5.

[28] M. Tofte and L. Birkedal. A Region Inference Algorithm. 1998. url: https://elsman.
com/mlkit/pdf/toplas98.pdf.

[29] Mads Tofte. “A brief introduction to regions”. In: (1998), pp. 186–195.

[30] Mads Tofte et al. “A Retrospective on Region-Based Memory Management”. In: Higher
Order Symbolic Computation 17.3 (2004), pp. 245–265.

[31] Mads Tofte et al. “Programming with Regions in the MLKit”. In: (2022).

[32] Unikraft. url: https://github.com/unikraft/unikraft.

[33] Corinna Vinsche and Je! Johnston. info. url: https://sourceware.org/newlib/.

[34] Xenproject. Mini-OS. 2018. url: https://wiki.xenproject.org/wiki/Mini-OS.

[35] Xenproject. README. Version http://xenbits.xenproject.org/gitweb/?p=mini-os.git;a=blob;
f=README;hb=HEAD. 2024. url: http://xenbits.xenproject.org/gitweb/?p=
mini-os.git;a=tree;hb=HEAD.

[36] Xenproject. Unikernels. 2021. url: https://wiki.xenproject.org/wiki/Unikernels.

[37] Xenproject. Xen Networking. 2016. url: https://wiki.xenproject.org/wiki/Xen_
Networking.

[38] Xenproject. Xen Project Beginners Guide. 2020. url: https://wiki.xenproject.
org/wiki/Xen_Project_Beginners_Guide.

[39] Xenproject. XL. 2020. url: https://wiki.xenproject.org/wiki/XL.

52

https://doi.org/10.17487/RFC4861
https://www.rfc-editor.org/info/rfc4861
https://github.com/Solo5/solo5
https://elsman.com/mlkit/pdf/toplas98.pdf
https://elsman.com/mlkit/pdf/toplas98.pdf
https://github.com/unikraft/unikraft
https://sourceware.org/newlib/
https://wiki.xenproject.org/wiki/Mini-OS
http://xenbits.xenproject.org/gitweb/?p=mini-os.git;a=tree;hb=HEAD
http://xenbits.xenproject.org/gitweb/?p=mini-os.git;a=tree;hb=HEAD
https://wiki.xenproject.org/wiki/Unikernels
https://wiki.xenproject.org/wiki/Xen_Networking
https://wiki.xenproject.org/wiki/Xen_Networking
https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide
https://wiki.xenproject.org/wiki/Xen_Project_Beginners_Guide
https://wiki.xenproject.org/wiki/XL

Appendix A

Running the services on Xen

On all screenshot, the terminal window to the left shows the output from starting the uniker-
nel, while the right terminal window is where the requests are run.

A.1 facfib

Figure A.1: The facfib service runnning on Xen. Here factorial 200 is requested on port
8080, and then fibonnaci for 20000 is requested on port 8082.

53

A.2 sort

Figure A.2: The sorting service, where it can be seen that a list of numbers is requested,
and the sorted version is returned.

54

A.3 monteCarlo

Figure A.3: The monteCarlo service, where a request with 3650 is sent, resulting in an
estimation of pi of 3.1408219.

55

Appendix B

Region-annotated code from profiling

B.1 listen function in network-library

1 fun listen attop r1 [] (v774) =
2 (* . . *)

3 let (* . . . *)

4 region r312417 :inf;
5 val ethFrame =
6 let region r312415:1 in funcall extract[atbot r312417] <rawTap,

0, NONE atbot r312415> end;ω→

7 region r312425:3, r312427 :inf, r312429:2;
8 val v809 = funcall decode[atbot r312429,atbot r312427 ,atbot

r312425,attop r4] ethFrame;ω→

9 (* . . . *)

Figure B.1: Here the listen function is shown, simplified to show only the part where regions
referenced in figure 5.6 is used. These regions, r312417 and r312427 has been highlighted
and match the color on figure 5.6.

56

