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Preface

The ML Kit is a Standard ML compiler where memory management is based

on region inference. Region inference inserts, at compile time, allocation

and deallocation directives into the target program such that no dynamic

memory management is necessary (i.e., garbage collection). However, it is

not always possible to insert allocation and deallocation directives such that

all dead memory is reclaimed for reuse. It is therefore interesting to see if it

is possible to combine region inference with garbage collection. The bene�t

should be that most of the allocated memory is recycled e�ciently by region

inference and the garbage collector concentrates on the memory not recycled

by region inference. The goal is a system that recycles memory eagerly (i.e.,

uses less memory) and e�ciently (i.e., uses less time on recycling memory).

We present a new backend for the ML Kit which has been designed with

a garbage collector in mind. The backend in the ML Kit, as released in

version 3, mainly consists of one large module compiling the intermediate

lambda language into three address code. We have organized the new back-

end di�erently and split it into many smaller modules. Each module is then

simpler to comprehend and debug.

We also present a garbage collector that works with regions. Region

inference complicates the task of garbage collection in many ways. For

instance, the heap is split in many smaller heaps called region pages and

some of the heap allocated objects are actually allocated on the machine

stack.
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Chapter 1

From Manual to Automatic

Memory Management

The interaction between the programmer and the computer has gone through

a major development since the �rst computers in the early 1940's. At that

time, the programmers used mechanical switches to set the di�erent bits

and thereby program the machine.

Later on it was possible to use acronyms for the di�erent machine in-

structions but explicit addresses and the internal workings of the computer

still had to be considered when programming. With assembly languages it

was possible to work with a more abstract address space in that the assem-

bler was able to calculate explicit addresses from labeled addresses. It also

gradually became simpler to load and execute programs.

As time went on, the computer systems grew considerably in size and

they soon became di�cult to implement. Programmers had to consider

both the functionality of the large computer systems and all the low-level

workings of the computer. The solution was to make the computer more

abstract by reducing the number of non{application{related issues that the

programmer had to consider when implementing an application.

This led to the �rst programming languages being developed in the 1950's

with Algol and Fortran as prominent examples. The overall goal with de-

veloping programming languages has always been to make it easier for the

programmer to implement di�erent kinds of applications. Today we have a

broad range of programming languages:

� logical languages as Prolog.

� functional languages as Miranda, Haskell, Standard ML,

Scheme, Erlang and Lisp.

� imperative languages as Fortran, Algol, Pascal and C.

� object-oriented languages as Java, C++, and SmallTalk.

8



CHAPTER 1. FROMMANUAL TOAUTOMATICMEMORYMANAGEMENT9

� documentation languages as T

E

X, L

A

T

E

X, PostScript and

HTML.

� parallel languages (i.e., for parallel computers) as Occam

and pH.

The above list in not complete and more groups should be listed in order to

include commercial popular languages such as Visual Basic. Each language

has its own strenghts and weaknesses making it a good choice for a particular

application. For instance, we use Standard ML to implement the ML Kit

compiler, C for the runtime system and L

A

T

E

X for the documentation.

Even though languages are so di�erent, they all have to deal with the

problem of memory management which is a main topic of this dissertation.

There are three fundamental di�erent ways to deal with allocation and

deallocation of memory [30].

1. The simplest is static allocation where each variable is bound to a

�xed storage location during the evaluation of the program. This

policy is used by Fortran and Occam compilers. There is no di�erence

between a globally declared and a locally declared variable. At any

time during evaluation there will be only one instance of each variable

and the address of the variable does not change. It is a simple and

fast allocation strategy with two main limitations: it is not possible to

dynamically allocate data, that is, the size of all data has to be known

at compile time. Building dynamically sized lists or tree structures

is therefore not possible. The second limitation is recursion, which

in general is impossible when all activations of a procedure share the

same address space.

2. The most used strategy for block structured languages as C and Pascal

is the stack allocation strategy. At each procedure invocation a new

frame holding local variables for the called procedure is allocated on

the stack. This strategy makes recursion possible together with the

allocation of some data structures whose size is �rst known at run

time. For instance, a local array of unknown size at compile time may

be allocated at runtime on the stack where the size is passed as an

argument to the function. With some limitations it is also possible to

have procedures as values, see Chapter 3. The stack allocation strategy

provides good functionality and recycles memory eagerly (i.e., memory

is deallocated as soon as a procedure returns).

3. The indispensable but also error prone memory strategy is heap allo-

cation. It is an unrestricted memory strategy where the programmer

can create arbitrary sized data which outlives the procedure in which

it was created. With heap allocation it is possible to model a wide

range of data structures using for instance lists and trees. It is error
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prone because the programmer must allocate and deallocate objects

of dynamic data structures manually. For instance, in Pascal the pro-

grammer must use new and dispose (in C malloc and free) to al-

locate and deallocate objects. If the heap is not managed correctly,

then we may either get space leaks or dangling references. We have

a space leak if we have data that is allocated on the heap but there

exists no pointer pointing at the data and the data is never freed, that

is, the data will not be referenced for the rest of the computation.

A dangling reference is a reference pointing at a memory area whose

contents has been deallocated but is not dead yet. If the pointer is

dereferenced then the program will behave arbitrarily and will possi-

bly crash. We have all experienced the above kinds of behavior where

we for instance are told that the computer is out of system ressources

(i.e., the computer is �lled with garbage). The word garbage is used

for data that is still allocated but is dead, that is, never used by the

rest of the computation. An eager heap allocation strategy is one that

relaims garbage as fast as possible and an exhaustive heap allocation

strategy limits the amount of garbage as much as possible.

We postulate that many modern software projects su�er from bad mem-

ory behaviour and even unsafe memory systems. We believe that often the

reason for a computer to crash is due to a memory error in the software sys-

tem; either that the memory ressources are exhausted or that memory has

been deallocated too soon. Another, disastrous memory error comes from

the lack of array bound checking, that is, an array index accessing memory

outside the array bounds. However, this is not directly related to memory

management.

With the heap allocation strategy as in C++ and Pascal the programmer

has to explicitly allocate and deallocate all data that does not follow the

stack discipline (LIFO).

Large applications are normally split into smaller problems with local

characteristics and properties. The smaller problems are then implemented

by di�erent programmers and put together later in the implementation

phase. The manual heap allocation strategy makes the smaller parts less

local if they share global data. When implementing a \local" problem the

programmer has to �gure out how the global data may be allocated and

especially when it may be deallocated. Deallocating data in one sub sys-

tem, must not be done if another sub system depends on it. This may lead

to system failures that are hard to test for and may �rst be noticed after

several years of usage; the dependency between the two sub systems may

arise only in rare situations.

Likewise, it is important that data which is not going to be used by the

application again actually is deallocated. Again it may be hard or impossible

to justify in which sub system the data should be freed.
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In general we believe that the manual heap allocation strategy increases

the complexity of programs so much that it is worth looking at automatic

heap allocation strategies. With automatic heap allocation strategies the

programmer is not concerned about how to allocate and free data. The

programmer just create and use data and then the compiler and/or run-

time system automatically allocate and deallocate the data in an, hopefully,

exhaustive, eager and safe manner, (e.g., the stack allocation strategy).

Another drawback of manual heap allocation is that memory directives

are inserted before compile time. When the programmer inserts allocation

and deallocation statements in the program she cannot make any assump-

tions about how the program executes. In one evaluation a data object may

be dead at program point p and in another evaluation the same data object

may not be dead at program point p. It is then necessary to leave the object

allocated and this makes it, in practice, only possible for the programmer

to approximate the most eager use of the heap.

In this project we investigate two di�erent automatic allocation strate-

gies. The �rst is region inference [10, 51, 53, 52], which is a static memory

system. Region inference inserts explicit allocation and deallocation state-

ments in the program when it is compiled. It is an automation of what the

programmer does in a manual memory system. Because region inference is

automatic and proved to be safe we know that if an object is deallocated,

then the object will not be used by the rest of the computation.

Because region inference is resolved at compile time it has the same

drawback as manual memory management, (i.e., that the set of allocated

objects at a program point is only an approximation to the set of objects

needed by the rest of the computation). The amount of garbage may be

larger than what we appreciate.

Region inference is already implemented and used in the ML Kit com-

piler [49, 50]. Measurements show that the memory is in general used eagerly

but for some programs the approximation is not good enough to get a satis-

factory memory usage. We have a region pro�ler [49, 27], that identi�es the

space leaks and for the programs we have tried, the space leaks can be re-

moved by changing the source program. Region inference is often su�cient

to make memory e�cient programs. However, there will not always be time

to tune a program with respect to memory usage and we therefore need an

optional tool to remove the extra garbage.

What we aim at is an automatic allocation strategy that is dynamic, that

is, a strategy that decides what to deallocate when the program executes.

The problem with dynamic allocation strategies (i.e., garbage collectors)

is that they interrupt program execution and traverse the allocated data

structures to �nd the set of objects that may be reclaimed. This interrup-

tion may be annoying for the user, and in some situations disastrous. For

example, a monitor program for a nuclear power station may likely not be

interrupted.
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In this project we combine region inference with garbage collection to

achieve an automatic, exhaustive and eager allocation strategy. Region infer-

ence gives us a time e�cient strategy without interruptions, and the garbage

collector makes (hopefully) only small interruptions to reclaim the garbage

that region inference does not free.

It is important that the garbage collector is optional and can be enabled

and disabled at will. It is then possible for the programmer to tune a

program to be memory e�cient without the garbage collector. The program

may then be used as a real{time application. On the other hand, it is

seldom that a program may not be interrupted for small periods of time and

then the garbage collector can remove the extra garbage. We believe that

programs compiled with the combination of region inference and garbage

collection has the potential to be faster than programs compiled for garbage

collection only and this project is a step in that direction. This is reasonable

because region inference deallocates most of the dead data e�ciently and

only a fraction of the data must be freed by the garbage collector, (i.e.,

the garbage collector has to be activated less often). However, it is not

obvious that the combination is faster because region inference gives some

limitations that garbage collectors normally do not have. For instance, we

do not have one large heap but many, maybe 1000 smaller heaps. As we will

see later it is not feasible to combine several garbage collection strategies as

for instance generational and mark{sweep collectors which in practive gives

excellent results when you have only a few heaps.

The ultimate goal of all memory systems is to have the following invari-

ant:

At any time in the execution of program p, the set of objects

allocated in memory is exatly the set of objects needed to �nish

the execution of program p.

Although one cannot reach the ultimate goal, we can, at least, try to get as

close as possible.

1.1 Overview of The Compiler

The backend compiler that we have implemented compiles a region anno-

tated lambda language, presented in Chapter 2, into HP PA-RISC machine

code. The task of compiling a lambda language into machine code is com-

plicated and we have chosen to simplify the task by dividing the backend

into several separate phases. Each phase adds or re�nes information to the

compiled program such that we end up with an intermediate representation

of the compiled program on which we can generate machine code directly.

We use two intermediate languages: ClosExp presented in Chapter 3 and

LineStmt presented in Chapter 4. The LineStmt language is used in most of
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Conversion

Calculate
Offsets

Register
Allocation

Substitution &
Simplify

Closure

LineStmt

Linearization
LineStmtClosExpRegExp

Fetch & Flush
LineStmtLineStmt

Code Generation
HP PA-RISC

LineStmt

Figure 1.1: Overview of the backend compiler.

the phases. Some phases modify the LineStmt language such that new infor-

mation can be added. However, the changes are minimal and we believe it

would clutter the presentation if we invented a new language for each phase.

The implementation also uses ClosExp and LineStmt modi�ed to include all

constructs necessary to compile Standard ML. The implementation follows

the presentation closely.

Figure 1.1 shows the phases in the compiler and the intermediate lan-

guage they work on.

The closure conversion phase lifts all functions to top level and rewrites

the term such that no function has free variables. The linearization phase

converts the expression like language ClosExp into the language LineStmt,

in which each function is a sequence of statements. The register allocator

adds register mapping information to LineStmt, that is, each variable is

either mapped to a machine register or spilled on the stack. The fetch and


ush phase inserts fetch and 
ush statements such that caller and callee

save registers are preserved accross function calls. The calculate o�sets

phase assigns stack o�sets to values that are stored on the stack, that is,

spilled variables and regions. The substitution and simplify phase rewrites

the LineStmt program such that the code generator can generate code for

each statement by looking at the statement only.

1.2 Reading Directions

We have included a lot of information in the dissertation and several chapters

can be skipped depending on your interests.

Chapter 2 presents the region inference allocation strategy and the in-

termediate language RegExp being input to our backend compiler. We also
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give a dynamic semantics for RegExp.

Chapter 3 starts with a discussion about functions in imperative and

functional languages and the problems involved in compiling higher order

functions. Section 3.3 presents the ClosExp language and the closure con-

version algorithm is developed in Section 3.4.

The LineStmt language and linearization algorithm is presented in Chap-

ter 4 and should probably not be skipped because LineStmt is used in the

phases after linearization.

Chapter 5 presents the register allocator that is based on graph coloring.

If you are �miliar with graph coloring then you can skip Chapter 5. However,

you should probably read Section 5.1 that introduces register allocation

information into LineStmt.

Insertion of fetch and 
ush statements is mostly standard and can be

skipped. It may be necessary though, to read Section 6.1 where fetch and


ush statements are added to LineStmt.

Chapter 7 can be skipped if you are not interested in the layout of

function frames. Chapter 8 rewrites the LineStmt program such that code

generation is easier and should probably be read if you intent to read about

code generation. The �rst few sections in the chapter on code generation

show how code is generated for allocating in regions and is speci�c to the

ML Kit. Section 9.2.4 { 9.2.6 presents the code generated for functions and

applications.

We have four chapters on garbage collection. Chapter 10 is a small

survey on garbage collection techniques and can be skipped. Chapter 11

develops the garbage collector for regions. Chapter 12 discusses tagging and

is speci�c to the ML Kit. Chapter 13 discusses the problem of �nding the

root{set.

Assessments are shown in Chapter 14 and 15.

1.3 What Has Been Implemented

We felt it important to make a complete presentation of the ideas behind the

backend compiler. First of all it was possible to evaluate all the ideas and

make sure that they were implementable. The presentation greatly reduced

the time necessary to do the implementation because most of the problems

were already solved.

The presentation left us with limited time for the implementation and

it has not been possible to implement the register allocator described in

Chapter 5. What has been implemented is the critical parts of the backend

compiler and an initial garbage collector.

The backend compiler compiles all parts of the Standard ML basis library

and the test suite supplied with the ML Kit. All variables are spilled on the

stack.
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Martin Elsman has started the implementation of the register allocator

as described in Chapter 5. Algorithm F described in Chapter 3 has been

implemented but not tested. The algorithm looks for functions that can be

implemented more e�ciently without closures and is an optimization only.

Also, phases that perform un{curring and un{boxing of functions have not

been implemented (and not described in this dissatation). They are required

to take full advantage of the ability of functions to take multiple arguments

and return multiple results.

We have, so far, used a little more than two month on the backend

compiler and two weeks on the garbage collector. We believe it takes another

month or two to complete the implementation.

1.4 Performance

Many factors in
uence the compiler techniques used when compiling with

both region inference and garbage collection enabled contra region infer-

ence or garbage collection only. For instance, using region inference only

makes it possible to skip tags on values which is an important performance

gain. Comparing systems using region inference and systems using garbage

collection only is di�cult.

We do not compare our implementation with other Standard ML compil-

ers because the register allocator has not been implemented and the results

would therefore be uninteresting. However, we do evaluate the compiler and

garbage collector. For instance, the e�ect of tagging and garbage collection

with and without region inference can be found in Chapter 14 and 15.

1.5 Notation

In this section we make some remarks about the notation used in the pre-

sentation.

Let A and B be sets. Then A n B is the set of elements in A that are

not in B. The empty set is written ; or fg. The intersection of two sets A

and B is written A\B and the union of two sets A and B is written A[B.

The power set of A is written P(A).

A function f with domain D and range R is written f : D ! R. A

function f : D ! R is a partial function i� f is de�ned for a subset of the

domain only, that is, the set of partial functions for f is:

S

fE ! RjE � Dg.

We write a function f : D ! R as a relation: f � D � R: f(d) = r

i� (d; r) 2 D � R. The pair (d; r) is also written d 7! r. The domain

of a function f is written dom(f) and the range is written ran(f). Two

functions f and g are added as follows: (f + g)(x) = if x 2 dom(g) then

g(x) else f(x). For instance f0 7! 1; 42 7! 2g + f42 7! 3; 3 7! 3g = f0 7!

1; 42 7! 3; 3 7! 3g (i.e., the function with domain f0,42,3g and range f1,3g).
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Function f : D ! R restricted to domain D

0

, written f j

D

0

is the function

f(x; y)jx 2 D \D

0

^ f(x) = yg. Given a function f : D ! R, then we write

f nD

0

for the function f j

(DnD

0

)

.

We use \i�" for \if and only if".

An expression e is directly within a function f if there is no lambda be-

tween f and e. For instance, the expression 2 is directly within the function

�x:2 + 4 but not directly within the function �x:�y:x+ y + 2.

The set of natural numbers f0; 1; 2; : : : g is written N.

We have several transformation functions that translates an intermediate

language into the same slightly changed language. For instance, in Chapter

8 we have a function SS that translates the language LineStmt (introduced

in Chapter 4) into a version of LineStmt where variables are replaced with

what is called access types. When specifying such a function, we take the

liberty to use the same set for both domain and range. The function SS is

thus speci�ed as

SS : LineStmt� : : :! LineStmt

where LineStmt is the set containing statements in both versions of LineStmt.
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Chapter 2

RegExp

In this chapter we present the intermediate language RegExp

1

which is the

language passed on from region inference and the region representation anal-

yses to the backend of the compiler. By example, we show how region infer-

ence introduce regions in the input � program producing a RegExp program.

Then we show how the region representation analyses gradually re�ne the

RegExp program in order to compile it into a machine with a conventional

one dimensional address space and a number of word size registers. All

analyses discussed in this chapter is the work of other people [10, 55, 49].

The language presented is only a limited version of the RegExp language

used in the ML Kit.

We start with a discussion about the allocation strategy that region

inference impose at runtime.

2.1 The Region Inference Allocation Strategy

Region inference combines the stack and heap allocation strategy using a

stack of regions as shown in Figure 2.1. Regions are allocated and deallo-

cated in LIFO order, that is, they follow the stack discipline.

At compile time, allocation and deallocation directives of regions are

inserted into the source lambda code based on a type analysis called region

inference [52, 51, 53]. All value creating expressions are also annotated with

a region in which the value is to be stored.

We have two di�erent kinds of regions: regions with logical size �nite

and regions with logical size in�nite. The logical size of regions is inferred at

compile time with an analysis called Multiplicity Inference [55, 10]. Regions

of logical size �nite hold only one value at runtime whereas in�nite regions

may hold an unbounded number of values.

In�nite regions will normally contain recursive datatypes such as lists

which may have unbounded size.

1

Region Expression.

18
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-

r

1

r

2

r

3

r

4

6

6

6 6

Figure 2.1: A stack of in�nite regions. Region r

4

is the topmost region

and is the �rst of the four regions to deallocate. Each region grows

vertically. The stack of regions grows horizontally.

Each in�nite region works as a restricted heap. You may either allocate

at the top of the region or reset the region.

An in�nite region consists of a list of region pages of �xed size. This

framework gives some overhead when allocating objects; an extra range

check is necessary. If the region page is full a new region page is allocated

from a list of free region pages. Region pages are needed in order to map

the one dimensional heap into the two dimensional region stack.

An in�nite region r is reset by deallocating the region pages allocated

to r except the �rst one. After a reset of r, the next element allocated in

r is allocated at the bottom of the �rst region page. In�nite regions grow

monotonically until they are either reset or deallocated.

Finite regions are split in those containing unboxed values of physical

size one word and those containing boxed values of physical size one word or

larger by an analysis called Physical Size Inference [10]. Finite regions of size

one word are never allocated because the data can be stored in a machine

register or spilled on the machine stack. Finite regions of size larger than

one word are allocated on the machine stack. Allocating objects in �nite

regions is equivalent and equally fast as allocating in machine registers or

on the machine stack. We even avoid allocating in�nite regions containing

unboxed values of size one word, that is, the values are stored in machine

registers or on the machine stack [10, Section 5].

It is essential that we have only one region stack with both �nite and

in�nite regions and that the region stack is part of the machine stack. Be-

cause �nite regions have a �xed size they are easily allocated on the machine

stack. We cannot allocate the region pages used to build in�nite regions on

the machine stack, however. Instead we allocate an in�nite region descrip-
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inf. reg. desc

other data

�n. reg. desc

inf. reg. desc

�n. reg. desc

other data

inf. reg. desc

-

�

-

�

6

Figure 2.2: Finite and in�nite regions are allocated on the machine

stack together with other stack allocated data as for instance activation

records. The stack grows upwards.

tor on the machine stack and thus make the in�nite region visible on the

region stack. We store a pointer to the �rst region page in the region de-

scriptor. It is necessary to traverse the region stack independently of the

machine stack in order to implement exceptions. Therefore we also use a

�nite region descriptor when allocating �nite regions which together with

the in�nite region descriptors contain a pointer to the previous region de-

scriptor, either �nite or in�nite. Starting with the top most region we can

traverse all regions from top to bottom.

2

A snapshot of the machine stack is

shown in Figure 2.2. The implementation of region descriptors is explained

elsewhere [22].

2.2 Region Inference

The front end of the compiler produces a typed lambda term according

to Milner's type discipline [17]. Region inference then produces a region

annotated lambda term where region allocation directives are inserted.

We call the language produced by region inference RegExp. The seman-

tic objects are shown in Figure 2.3. The grammar is shown in Figure 2.5.

The grammar resembles a limited version of the core language of SML and

share the same properties where applicable. For instance, evaluation is call

by value and evaluation order is left to right.

3

We show annotations, such

as free in function declarations, in example programs only when they are

2

The discussion of �nite region descriptors is not accurate because it turns out that

they are not needed at all but it is technical.

3

The ML Kit implements all features of Standard ML and RegExp in this presentation

is a subset of RegExp used in the ML Kit.
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x; f; lv 2 LamVar

i 2 Int

� 2 RegVar

Var = LamVar [ RegVar

free 2 FreeVar list

fv 2 FreeVar = Var

Figure 2.3: The semantic objects used in RegExp

list ::= [ ] empty list

j [x] singleton list

j [x

1

; : : : ; x

n

] list, n > 1

Figure 2.4: The index of each list element is unique. For instance, the

two lists [x

1

; x

2

] and [x

2

; x

1

] are not the same.

important for the context.

The syntactic classes are allocation directives, a, region binders, b, con-

stants, c, boxed expressions, be, patterns, pat, binary operators, bop and ex-

pressions, e. We let RegExp be the set of expressions (i.e., e 2 RegExp). The

syntactic constructs are discussed when we present the dynamic semantics

in the next section.

Lambda variables, ranged over by x, f and lv are bound in either the let

construct or in functions (� and letrec). We have the constants: integers

ranged over by i and the constant nil used to build lists. Region variables,

ranged over by �, are bound in the letregion and letrec construct.

To simplify the discussion, we assume that the free variables of ordinary

functions (�) and for letrec bound functions have been computed before-

hand. The free variables are represented by free. We use an ordered list for

the free variables where the order of the elements in the list is important,

see Figure 2.4.

2.2.1 Dynamic Semantics for RegExp

We present RegExp by describing the dynamic (operational) semantics of

the language.

4

The semantic objects used are shown in Figure 2.6.

4

It is a matter of opinion how close the dynamic semantics should resemble the actual

evaluation of the compiled program. In a speci�cation, as the de�nition of Standard ML,

it may be done entirely abstract because it is implementation independent. In this pre-

sentation we use the dynamic semantics to describe essential points in how the compiled

program works. We therefore make allocation of regions explicit together with how values

are allocated in regions. This is essential aspects of the region allocation strategy. Unfor-

tunately this approach makes the inference rules a bit more complicated but we believe it

is worth the trouble.



CHAPTER 2. REGEXP 22

a ::= at �

b ::= �

c ::= i j nil

be ::= (e

1

; : : : ; e

n

) j �

free

hx

1

; : : : ; x

n

i => e

pat ::= c j :: x

bop ::= +; -; <; : : :

e ::= x

j be a

j c

j :: e

j e bop e

j #n(e)

j letrec f

free

hx

1

; : : : ; x

n

i [b

1

; : : : ; b

m

] a = e in e end

j e e

j f he

1

; : : : ; e

n

i [a

1

; : : : ; a

m

] a

j letregion b in e end

j let val hx

1

; : : : ; x

n

i = e

1

in e

2

end

j case e

1

of pat => e

2

| => e

3

j he

1

; : : : ; e

n

i

Figure 2.5: The grammar for RegExp.

st 2 Stack = RegDesc stack

s 2 Store = RegDesc! Reg

rd 2 RegDesc

r 2 Reg = O�set ! BoxedVal

o 2 O�set

bv 2 BoxedVal = Record [ Clos [ RegVec [ SClos

ubv 2 UnBoxedVal = Int [ fnilg [ ::(Val)

v 2 Val = Addr [UnBoxedVal

rec 2 Record = Val� : : : �Val

h~x; e;Ei 2 Clos = LamVar � � � � � LamVar � RegExp � E

rv 2 RegVec = Reg� � � � � Reg

h~x; ~�; (rd; o); ei 2 LetrecEnv = Var� � � � �Var�Addr � RegExp

(rd; o) 2 Addr = RegDesc�O�set

VE = Var! (Val [ LetrecEnv)

RE = RegVar ! RegDesc

E = SClos = VE� RE

Figure 2.6: The semantic objects used in the dynamic semantics of

RegExp
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We have a stack (Stack) of regions ranged over by st. We may push and

pop from the stack as follows:

(rd; st

0

) = pop(st)

and

st

0

= push(st; rd):

The stack is essential for the implementation of exceptions. We discuss the

implementation of exceptions as little as possible because it is quite technical

and it is discussed elsewhere [38].

The store is a map from region descriptors to regions and together with

the stack it represent the two-dimensional region stack. A region Reg is a

block of memory (implemented as a list of region pages but the dynamic

semantics does not make that explicit). A region descriptor (RegDesc) or

region name is a unique name for a region. Allocating a region produces a

fresh region and region descriptor. A region is formally a �nite map from

o�sets (O�set) into boxed values (BoxedVal). Boxed values are (with a few

exceptions) the values that are larger than one word and cannot be kept in

word sized registers.

A new region is allocated by �nding a region descriptor not in the domain

of the store: rd 62 dom(s), update the store: s

0

= s+ frd 7! fgg and push the

region descriptor on the stack: st

0

= push(st; rd):

Allocating a boxed value (bv) in a region r is done by �nding an o�set not

in the domain of r : o 62 dom(r) and then update the region: r

0

= r+fo 7! bvg.

We write

s

0

= s+ f(rd; o) 7! bvg

as an abbreviation for

s

0

= s+ frd 7! fs(rd) + fo 7! bvggg

where rd 2 dom(s).

A closure (Clos) contains the argument variables, body and environment

with free variables for the function that the closure represent.

A shared closure (SClos) is used for letrec bound functions and con-

tain the free variables of all functions bound in the letrec.

5

The letrec

bound functions are known which is why we need to store a special environ-

ment LetrecEnv in the variable environment (VE ) and not in memory. The

environment LetrecEnv contains the argument variables and formal region

variables. The address (rd; o) contains a shared closure.

5

The grammar only allows one function to be de�ned in each letrec but in the im-

plementation more than one function may be bound in the same letrec and they are all

mutually recursive. Only one closure is used for all functions which is why we call it a

shared closure.
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seq ::= empty sequence

j x singleton sequence

j x

1

; : : : ; x

n

sequence, n > 1

Figure 2.7: A sequence of elements.

An address (Addr) in the store (i.e., address in an in�nite region) is

uniquely determined by a region descriptor and an o�set. We write

bv = s(rd; o)

as an abbreviation for

bv = (s(rd))(o)

where rd 2 dom(s) and o 2 dom(s(rd)).

We may restrict the environment E = (VE,RE ) to a list of free variables,

free = [fv

1

; : : : ; fv

n

]:

(VE;RE)j

[fv

1

;::: ;fv

n

]

= (VEj

ffv

1

;::: ;fv

n

g

;REj

ffv

1

;::: ;fv

n

g

)

We write ~x for a possibly empty sequence of objects x as de�ned in

Figure 2.7.

The dynamic semantics is represented as a collection of inference rules

of the form

st; s;E ` e) v; s

0

:

With stack st , store s and environment E the expression e evaluates to value

v and a new store s

0

.

Constants ` ubv) ubv

We have the constants: integers (i) and nil. They all create an unboxed

value.

` i) i

(2.1)

` nil) nil

(2.2)

Allocation Points s; (VE;RE) ` a) (rd; o); s

0

For each allocation into a region � we need a new o�set in the region.

RE(�) = rd o 62 dom(s(rd))

s; (VE;RE) ` at �) (rd; o); s

(2.3)
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Boxed Expressions st; s;E ` be) bv; s

0

Records (tuples) are created with the expression

(e

1

; : : : ; e

n

) at �

and the i'th component is selected by

#i(e)

The record is stored in region �. In RegExp the �rst component is numbered

0 whereas the de�nition of Standard ML number the �rst component 1.

An ordinary function value is created by

�

free

hx

1

; : : : ; x

n

i => e at �

where a closure for the function with all its free variables free is stored in

region �. The function may take one or more arguments which will either

be passed in machine registers or on the stack.

The inference rules for the boxed expressions are as follows:

st; s

i�1

;E ` e

i

) v

i

; s

i

i = 1; : : : ; n

st; s

0

;E ` (e

1

; : : : ; e

n

)) (v

1

; : : : ; v

n

); s

n

(2.4)

st; s;E ` �

free

hx

1

; : : : ; x

n

i => e) hx

1

; : : : ; x

n

; e;Ej

free

i; s

(2.5)

Expressions st; s;E ` e) v; s

0

A variable x is looked up in the variable environment

VE(x) = v

st; s; (VE;RE) ` x) v; s

(2.6)

A boxed expression is allocated in a region:

st; s;E ` be) bv; s

1

s

1

;E ` a) (rd; o); s

2

s

0

= s

2

+ f(rd; o) 7! bvg

st; s;E ` be a) (rd; o); s

0

(2.7)

Constants are not allocated in a region:

` c) ubv

st; s;E ` c) ubv; s

(2.8)
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Binary operations work on integers only. We use the function eval

bop

:

Int�Int! Int to evaluate the function bop given the two integer arguments.

The values true and false are represented as 0 and 1 respectively.

st; s;E ` e

1

) i

1

; s

1

st; s

1

;E ` e

2

) i

2

; s

0

eval

bop

(i

1

; i

2

) = i

st; s;E ` e

1

bop e

2

) i; s

0

(2.9)

Selection fetches the nth element from the record:

st; s;E ` e) (rd; o); s

0

s

0

(rd; o) = (v

0

; : : : ; v

m

) 0 � n � m

st; s;E ` #n(e)) v

n

; s

0

(2.10)

Functions and Applications st; s;E ` e) v; s

0

Mutually recursive functions are declared by the letrec construct:

letrec f

free

hx

1

; : : : ; x

n

i [b

1

; : : : ; b

m

] a = e

f

in e end

The function f expects arguments x

1

; : : : ; x

n

and a region vector to be

passed when called. The arguments and region vector are passed in either

machine registers or on the machine stack. Scope of the function f is the

function itself e

f

and the body e of the letrec.

The region vector binds the formal region variables b

1

; : : : ; b

m

to actual

region variables when the function is called. The actual region variables are

passed in a region vector (record).

The function f has its free variables annotated as free. Because all

letrec bound functions are known, we store only the environment in the

closure and not the code e

f

. The representation of closures are explained in

Chapter 3. Note, that (rd; o) is the address of the shared closure.

s;E ` a) (rd; o); s

1

E = (VE;RE)

s

2

= s

1

+ f(rd; o) 7! hEj

free

ig

VE

0

= VE+ ff 7! hx

1

; : : : ; x

n

; b

1

; : : : ; b

m

; (rd; o); e

f

ig

st; s

2

; (VE

0

;RE) ` e) v; s

0

st; s; (VE;RE) ` letrec f

free

hx

1

; : : : ; x

n

i [b

1

; : : : ; b

m

] a

= e

f

in e end) v; s

0

(2.11)

Applications to ordinary and letrec bound functions are handled by

the two rules:
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st; s;E ` e) (rd; o); s

0

s

0

(rd; o) = hx

1

; : : : ; x

n

; e

b

; (VE

b

;RE

b

)i

st; s

i�1

;E ` e

i

) v

i

; s

i

i = 1; : : : ; n

st; s

n

; (VE

b

+ fx

i

7! v

i

g

i=1;::: ;n

;RE

b

) ` e

b

) v

0

; s

0

st; s;E ` e he

1

; : : : ; e

n

i ) v

0

; s

0

(2.12)

and

VE(f) = hx

1

; : : : ; x

n

; b

1

; : : : ; b

m

; (rd

f

; o

f

); e

f

i

st; s; (VE;RE) ` he

1

; : : : ; e

n

i ) hv

1

; : : : ; v

n

i; s

n

s

n

; (VE;RE) ` a) (rd; o); s

0

n

rd

j

= RE(�

j

)

j=1;::: ;m

s

f

= s

0

n

+ f(rd; o) 7! hrd

1

; : : : ; rd

m

ig

(VE

f

;RE

f

) = s

f

(rd

f

; o

f

)

VE

0

= VE

f

+ fx

i

7! v

i

g

i=1;::: ;n

+ ff 7! VE(f)g

RE

0

= RE

f

+ fb

j

7! rd

j

g

j=1;::: ;m

st; s

f

; (VE

0

;RE

0

) ` e

f

) v

0

; s

0

st; s; (VE;RE) ` f he

1

; : : : ; e

n

i [�

1

; : : : ; �

m

] a) v

0

; s

0

(2.13)

The above rule may seem complicated but only elementary operations

happen in each sub phrase or side condition. We look up f in the variable

environment to get the letrec closure and then evaluate the arguments. The

next two sub phrases allocate the region vector. The environment in which

the body of f evaluates is then built. After closure conversion (Chapter 3)

we separate the allocation of the region vector from this construct which

simpli�es the above rule.

A later phase (Application Conversion, Section 2.7) annotates a call kind

at the application points in order to di�erentiate tail from non tail calls.

Letregion st; s;E ` e) v; s

0

The letregion � in e end construct declares the region variable �. The

region is allocated on the region stack and e is evaluated. The region (rep-

resented by �) is popped from the region stack after e is evaluated. The

syntactic construction enforces region allocation to follow the stack disci-

pline. Note, that region variables are also bound to regions when calling

letrec bound functions, rule 2.13.

rd 62 dom(s)

s

1

= s+ frd 7! fgg

st

1

= push(st; rd)

st

1

; s

1

; (VE;RE+ f� 7! rdg) ` e) v; s

2

( ; st) = pop(st

0

)

s

0

= s

2

n frdg

st; s; (VE;RE) ` letregion � in e end) v; s

0

(2.14)
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In example programs we write

letregion �

1

; : : : ; �

n

in e end

as an abbreviation for

letregion �

1

in

: : :

letregion �

n

in e end

: : :

end

We make a distinction between region variables, region names (descrip-

tors) and regions:

� a region variable (RegVar) is a syntactic object in the code as for

instance r37 in the program on page 30. A region variable can be

bound to several regions at runtime.

� a region (Reg) is a piece of memory at runtime.

� a region name (RegDesc) is a name (number) which uniquely identify

each region at runtime.

Declaring Lambda Variables st; s;E ` e) v; s

0

Lambda variables are declared with the

let val hx

1

; : : : ; x

n

i = e

1

in e

2

end

construct. The expression e

1

is evaluated and the result is bound to hx

1

; : : : ; x

n

i

and then the body e

2

is evaluated. The lambda variables have scope e

2

.

st; s; (VE;RE) ` e

1

) hv

1

; : : : ; v

n

i; s

1

st; s

1

; (VE+ fx

i

7! v

i

g

i=1;::: ;n

;RE) ` e

2

) v

0

; s

0

st; s; (VE;RE) ` let val hx

1

; : : : ; x

n

i = e

1

in e

2

end) v

0

; s

0

(2.15)

The unboxed record he

1

; : : : ; e

n

i is evaluated by evaluating each element

left to right.

st; s

i�1

;E ` e

i

) v

i

; s

i

i = 1; : : : ; n

st; s

0

;E ` he

1

; : : : ; e

n

i ) hv

1

; : : : ; v

n

i; s

n

(2.16)

We omit the brackets in examples if there is only one variable (i.e., hxi

is written x).
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l

1

::

2

nil

- -

Figure 2.8: Representation of the list [1,2] in memory.

Case st; s;E ` e) v; s

0

The case construct

case e

1

of pat => e

2

| => e

3

evaluates e

1

and compares the result with the pattern pat. The default

branch is chosen if no match is found, that is, e

3

is evaluated. There will

always be a default branch, that is, cases with no default branch have been

translated into cases with a default branch. The grammar supports a total

of only two branches (i.e., conditionals) but the extension to n branches is

trivial.

st; s; (VE;RE) ` e

1

) ::(v); s

1

st; s

1

; (VE+ fx 7! vg;RE) ` e

2

) v

0

; s

0

st; s; (VE;RE) ` case e

1

of ::x => e

2

| => e

3

) v

0

; s

0

(2.17)

The pair v is bound to x in the above rule.

st; s;E ` e

1

) c; s

1

st; s

1

;E ` e

2

) v

0

; s

0

st; s;E ` case e

1

of c => e

2

| => e

3

) v

0

; s

0

(2.18)

st; s;E ` e

1

) c

0

; s

1

c

0

6= c

st; s

1

;E ` e

3

) v

0

; s

0

st; s;E ` case e

1

of c => e

2

| => e

3

) v

0

; s

0

(2.19)

st; s;E ` e

1

) nil; s

1

st; s

1

;E ` e

3

) v

0

; s

0

st; s;E ` case e

1

of ::x => e

2

| => e

3

) v

0

; s

0

(2.20)

Constructors st; s;E ` e) v; s

0

The cons constructor :: takes a pair (e

1

; e

2

) where e

2

is a list and constructs

a new list with e

1

as the �rst element. The list l = ::(1,::(2,nil)) is stored

as shown in Figure 2.8.
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In the pair (v

1

; v

2

), v

1

is the head of the list and v

2

is the tail.

st; s;E ` e) (v

1

; v

2

); s

0

st; s;E ` ::e) ::(v

1

; v

2

); s

0

(2.21)

Note that :: has no runtime cost, that is, the pair (v1; v2) is already

constructed.

6

2.2.2 Example Program

We show, by example, the result of a program being fed through the region

inference analysis. Consider the SML program:

fun gen_list (0,acc) = acc

| gen_list (n,acc) = gen_list(n-1,n::acc)

The result program from the region inference analysis is as follows:

letrec gen list hv515 i [r34 , r35 ] at r1 =

(case #0(v515 ) of

0 => #1(v515 )

=>

let

val acc = #1(v515 )

val n = #0(v515 )

in

letregion r37 , r39

in

gen list h(n - 1,

let

val v41037 = (n ,acc) at r35

in

:: hv41037 i

end) at r39 i [r39 , r35 ] at r37

end (*r37,r39*)

end)

All boxed value creating expressions have at annotations and regions are

introduced by the letregion construct.

The shared closure for gen list is allocated in region r1 . If the �rst

component in the argument pair v515 is 0 then we return the accumulator,

6

We assume that lists are unboxed which is the case when the garbage collector is

disabled. If the garbage collector is enabled then it is necessary to box lists and :: does

have a runtime cost. Tagging is discussed in Chpater 12.
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b ::= � : m

m ::= 0 j1 j 1

Figure 2.9: The grammar for RegExp after multiplicity inference. The

multiplicity is denoted by m.

that is, the second component. In the default branch, we retrieve the two

components from the argument and then recursively call gen list . The region

vector for gen list is allocated in region r37 ; it contains the two region names

denoted by r39 and r35 .

2.3 Multiplicity Inference

The multiplicity inference analysis solves the problem of how many values

are allocated in a region [55, 10]. The analysis �nds an upper bound of the

number of allocations into each region. It turns out, in practice, that it is

su�cient to consider the multiplicities 0, 1 and 1. It is seldom that, for

instance three values are allocated in a region. Regions containing lists get

multiplicity1 because a list may contain an unbounded number of elements.

After multiplicity inference, every region binder b is annotated with a

multiplicity m, see Figure 2.9. The letregion construct is then

letregion � : m in e end

and the letrec construct is

letrec f

free

hx

1

; : : : ; x

n

i [�

1

: m

1

; : : : ; �

l

: m

l

] a = e in e end:

The regions have been split in unbounded regions called in�nite regions

and write once regions called �nite regions. When allocating a region with

letregion we know whether the region is �nite and can be allocated on the

machine stack or in�nite and has to be implemented with region pages. For

simplicity, we do not make the distinction in the dynamic semantics except

that we record the multiplicity in the region environment:RE = RegVar !

(RegDesc�m), where the set of multiplicitiesMult is ranged over by m (see

Figure 2.6 on page 22).

The letregion rule 2.14 now becomes:

rd 62 dom(s)

s

1

= s+ frd 7! fgg

st

1

= push(st; rd)

st

1

; s

1

; (VE;RE+ f� 7! (rd;m)g) ` e) v; s

2

( ; st) = pop(st

1

)

s

0

= s

2

n frdg

st; s; (VE;RE) ` letregion � : m in e end) v; s

0

(2.22)
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The multiplicities on the formal region variables of a letrec bound func-

tion f is an upper bound on how many times the function f allocates a value

in each region including calls to other functions. It may be the case that a

formal region variable � has multiplicity 1 but an actual region has multi-

plicity 1 in one call to f and multiplicity 1 in another call to f . This is

called multiplicity polymorphism and each region � is at runtime annotated

with its multiplicity. If � is either a free or formal region variable with mul-

tiplicity 1 then the multiplicity of � is looked up at runtime before allocating

because the code to allocate in in�nite and �nite regions are di�erent. If �

is a formal region variable with multiplicity 1 and it is bound to an actual

region with multiplicity1 then at runtime � has multiplicity 1.

The letrec rule 2.11 does not change but rule 2.13 for letrec application

does:

VE(f) = hx

1

; : : : ; x

n

; (�

0

1

;m

0

); : : : ; (�

0

l

;m

0

l

); (rd

f

; o

f

); e

f

i

st; s; (VE;RE) ` he

1

; : : : ; e

n

i ) hv

1

; : : : ; v

n

i; s

n

st; s

n

; (VE;RE) ` a) (rd; o); s

0

n

(rd

j

;m

j

) = RE(�

j

)

j=1;::: ;l

s

f

= s

0

n

+ f(rd; o) 7! hrd

1

; : : : ; rd

l

ig

(VE

f

;RE

f

) = s

f

(rd

f

; o

f

)

VE

0

= VE

f

+ fx

i

7! v

i

g

i=1;::: ;n

+ ff 7! VE(f)g

RE

0

= RE

f

+ f�

0

j

7! (rd

j

;m

j

)g

j=1;::: ;l

st; s

f

; (VE

0

;RE

0

) ` e

f

) v

0

; s

0

st; s; (VE;RE) ` f he

1

; : : : ; e

n

i [�

1

; : : : ; �

l

] a) v

0

; s

0

(2.23)

We store the multiplicity of each actual region together with the region

descriptor in the region environment.

We also adjust rule 2.3 for allocation points:

RE(�) = (rd;m) o 62 dom(s(rd))

st; s; (VE;RE) ` at �) (rd; o); s

(2.24)

The dynamic semantics does not distinguish between �nite and in�nite

regions when we allocate. However, if m is 1 we allocate into a �nite region

and if m is 1 we allocate into an in�nite region.

2.3.1 Example Program

After multiplicity inference our running example (page 30) becomes:

letrec gen list hv515 i [r34 :0, r35 :1] at r1 =

(case #0(v515 ) of

0 => #1(v515 )

=>

let
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val acc = #1(v515 )

val n = #0(v515 )

in

letregion r37 :1, r39 :1

in

gen list h(n - 1,

let

val v41037 = (n ,acc) at r35

in

:: hv41037 i

end) at r39 i [r39 , r35 ] at r37

end (*r37,r39*)

end)

We have underlined the changes. We have one unbounded region and

three write once regions. The unbounded region r35 contains the list cells.

2.4 K-normalization

The K-normalization phase inserts extra let bindings such that every non

atomic value is bound to a lambda variable [10]. The atomic values are the

constants. The inference rules for the dynamic semantics are the same.

Although it is convenient to have K normalized code in the analyses,

it makes even simple examples large because of an excessive number of let

bindings. We therefore omit some let bindings in the presentation when

they are not important for the context.

2.5 Storage Mode Analysis

After the storage mode analysis all allocation points are annotated with a

storage mode [10].

sma ::= attop j atbot j sat

a ::= sma �

Storage mode attop is used when a region contains live data at the allocation

point and we therefore have to allocate at{top in the region. Storage mode

atbot is used when the region does not contain live data and it may be

reset before we allocate. Storage mode sat (somewhere at) is used when

the decision is deferred to runtime. This happens within letrec bound

functions where it is possible to store at{bot for some actual regions and

necessary to store at{top for other actual regions. The set of storage mode

annotations is SMA ranged over by sma.



CHAPTER 2. REGEXP 34

The storage modes (either atbot or attop) for actual region names

passed to a letrec bound function f are annotated on the region names

at runtime before f is called. Inside f , the storage mode of region � is

tested before allocating in � if the storage mode at the allocation point is

sat. This is called storage mode polymorphism. It is not necessary to check

the storage mode of a region if the storage mode at the allocation point is

either attop or atbot. Note that region names never have storage mode

sat; only allocation points do!

We extend the region environment to include the storage mode (sm):

RE = RegVar! (RegDesc�m� sm), where sm 2 StorageMode = fattop,

atbotg.

In the letregion rule we use the storage mode attop which is chosen

arbitrarily; it is only when calling a letrec bound function that a storage

mode (either attop or atbot) is set in RE and used inside the letrec bound

function.

rd 62 dom(s)

s

1

= s+ frd 7! fgg

st

1

= push(st; rd)

st

1

; s

1

; (VE;RE+ f� 7! (rd;m; attop)g) ` e) v; s

2

( ; st) = pop(st

1

)

s

0

= s

2

n frdg

st; s; (VE;RE) ` letregion � : m in e end) v; s

0

(2.25)

When calling a letrec bound function we store the storage modes found

at the actual regions in the region environment:

VE(f) = hx

1

; : : : ; x

n

; (�

0

1

;m

0

); : : : ; (�

0

l

;m

0

l

); (rd

f

; o

f

); e

f

i

st; s; (VE;RE) ` he

1

; : : : ; e

n

i ) hv

1

; : : : ; v

n

i; s

n

st; s

n

; (VE;RE) ` a) (rd; o); s

0

n

(rd

j

;m

j

; sm

j

) = RE(�

j

)

j=1;::: ;l

s

f

= s

0

n

+ f(rd; o) 7! hrd

1

; : : : ; rd

l

ig

(VE

f

;RE

f

) = s

f

(rd

f

; o

f

)

VE

0

= VE

f

+ fx

i

7! v

i

g

i=1;::: ;n

+ ff 7! VE(f)g

RE

0

= RE

f

+ f�

0

j

7! (rd

j

;m

j

; resolve sm(sm

j

; sma

j

))g

j=1;::: ;l

st; s

f

; (VE

0

;RE

0

) ` e

f

) v

0

; s

0

st; s; (VE;RE) ` f he

1

; : : : ; e

n

i [sma

1

�

1

; : : : ; sma

l

�

l

] a) v

0

; s

0

(2.26)

Note that m

j

is the multiplicity of the actual region and is stored in the

region environment. The resolve sm function is necessary to get the right

storage mode annotation (sm). If a storage mode sma

j

is atbot then �

j

is

letregion bound and sma

j

is recorded in RE. If sma

j

is attop then �

j

is

either letregion bound or a formal region parameter and sma

j

is recorded

in RE ; the storage mode is resolved even in the case that �

j

is a formal
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region parameter. If sma

j

is sat then �

j

is a formal region parameter and

we look up the storage mode in RE which will either be attop or atbot.

resolve sm: StorageMode � SMA! StorageMode

resolve sm( , atbot) = atbot

resolve sm( , attop) = attop

resolve sm(atbot, sat) = atbot

resolve sm(attop, sat) = attop

The dynamic semantics for allocation points is extended to include re-

setting of regions depending on the storage mode at the allocation point

and the storage mode recorded in the region environment. Again we use the

function resolve sm:

RE(�) = (rd;m; smre)

resolve sm(smre; smap) = attop

o 62 dom(s(rd))

st; s; (VE;RE) ` smap �) (rd; o); s

(2.27)

RE(�) = (rd;m; smre)

resolve sm(smre; smap) = atbot

s

0

= s+ frd 7! fgg

o 62 dom(s

0

(rd))

st; s; (VE;RE) ` smap �) (rd; o); s

0

(2.28)

2.5.1 Example Program

After the storage mode analysis our running example (page 32) becomes:

letrec gen list hv515 i [r34 :0, r35 :1] attop r1 =

(case #0(v515 ) of

0 => #1(v515 )

=>

let

val acc = #1(v515 )

val n = #0(v515 )

in

letregion r37 :1, r39 :1

in

gen list h(n - 1,

let

val v41037 = (n ,acc) attop r35

in
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:: hv41037 i

end) atbot r39 i [atbot r39 , sat r35 ] atbot r37

end (*r37,r39*)

end)

We have underlined the changes. We allocate attop in region r35 con-

taining the list. At the application to gen list we have the allocation point

sat r35 inside the region vector. At that point r35 is recorded in RE and

mapped to either atbot or attop because r35 is a formal region parameter

to gen list .

2.6 Physical Size Inference and Drop Regions

The physical size inference analysis infers the physical size of each �nite

region [10]. Region binders and multiplicities are now de�ned as

b ::= � : m and m ::= n j 1

where the multiplicity may be an integer n or 1. Allocating �nite regions

of size n is done by reserving n words on the stack. The dynamic semantics

does not distinguish between allocating in �nite and in�nite regions.

A drop region phase is run before physical size inference which removes

all formal and actual regions � from letrec bound functions and applica-

tions if nothing is ever written in �. In the example below we see that region

r34 has been removed; compare to the example program above.

letrec gen list hv515 i [ r35 :1] attop r1 =

(case #0(v515 ) of

0 => #1(v515 )

=>

let

val acc = #1(v515 )

val n = #0(v515 )

in

letregion r37 :1, r39 :2

in

gen list h(n - 1,

let

val v41037 = (n ,acc) attop r35

in

:: hv41037 i

end) atbot r39 i [sat r35 ] atbot r37

end (*r37,r39*)
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ck ::= funjmp j funcall j fnjmp j fncall

e ::= e

ck

e

j f

ck

he

1

; : : : ; e

n

i [a

1

; : : : ; a

m

] a

Figure 2.10: The grammar for RegExp after application conversion.

We use ck for the call kind.

end)

Region r39 has physical size two words containing the argument pair.

2.7 Application Conversion

The application conversion analysis annotates each ordinary and letrec ap-

plication with a call kind [49, page 129].

We have four call kinds:

� tail calls to letrec bound functions have call kind funjmp. The re-

quirements for a call to a letrec bound function to be a tail call are

a bit tricky because what seems to be a tail call in the original SML

program may turn out to be a non tail call after region inference. A

region is needed for the region vector, so often a letregion construct

is inserted around the call. We then have to return from the call and

deallocate the region and the call is not a tail call anymore. However,

special cases exists where it is possible to implement tail calls anyway;

consult [49] for details.

� non tail calls to letrec bound functions have call kind funcall.

� tail calls to ordinary functions (de�ned with the � construct) have call

kind fnjmp.

� non tail calls to ordinary functions have call kind fncall.

The call kind is annotated at the application points as shown in Figure

2.10.

We do not make use of the call kind in the dynamic semantics so the

inference rules are the same.

2.7.1 Example Program

After application conversion our example program is as follows:
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letrec gen list hv515 i [r35 :1] attop r1 =

(case #0(v515 ) of

0 => #1(v515 )

=>

let

val acc = #1(v515 )

val n = #0(v515 )

in

letregion r37 :1, r39 :2

in

gen list

funcall

h(n - 1,

let

val v41037 = (n,acc) attop r35

in

:: hv41037 i

end) atbot r39 i [sat r35 ] atbot r37

end (*r37,r39*)

end)

This is the program that is passed on to the closure conversion phase

which is the �rst transformation in the new backend for the ML Kit. Two

regions r39 and r37 have to be deallocated after gen list is called so the call

is not a tail call.

2.7.2 Example Program - Tail Recursive

Consider the slightly changed example program below:

fun gen_list (p as (0,acc)) = p

| gen_list (n,acc) = gen_list(n-1,n::acc)

The function gen list has been turned into a region endomorphism [49,

8, 27] and the recursive call to gen list is now a tail call:

letrec gen list hv512 i [r34 :1,r35 :1] attop r1 =

(case #0(v512 ) of

0 => v512

=>

let

val acc = #1(v512 )

val n = #0(v512 )

in

gen list

funjmp

h(n - 1,

let
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val v40882 = (n ,acc) attop r35

in

:: hv40882 i

end) attop r34 i

end)

The region vector passed to gen list is reused in the recursive call so we

have not written it in the above example.



Chapter 3

Closure Conversion

An important di�erence in how a functional language like SML is compiled

compared to traditional Pascal like languages is in the treatment of func-

tions. In SML, functions may be nested and are �rst order values. A function

as a �rst order value means that it can be passed around as any other value

like numbers and strings. A function can be stored and later retrieved and

applied in a context di�erent from where it was created.

In this chapter we discuss how the implementation of SML functions

using closures [33] allocated on the heap di�ers from Pascal like languages

where activation records (function frames) [1, 6] allocated on the stack are

su�cient.

In order to simplify the phases in the backend we implement a closure

conversion algorithm [6, Chapter 15], which translates the RegExp language

into a ClosExp language in which closures are explicit. A closure of a func-

tion contains the free variables of the function and inside its body, each free

variable is accessed through the closure that is given as argument to the

function. Thus, the free variables of a function have been turned into local

variables to the function. Now that the functions have no free variables it

is possible to lift the functions to top level, that is, to split the single large

RegExp expression into a list of function declarations where the body of

each function is one ClosExp expression.

3.1 From Imperative Languages to Functional Lan-

guages

Functions are not �rst order values in imperative languages such as Fortran

and Pascal [57]. However, with some limitations, it is possible, in Pascal, to

pass a function g as an argument to another function f [57, page 121]. The

restriction is that g must be in scope when passed to f. It is not possible

to store a function in a variable, thus, functions are not �rst class values in

Pascal.

40
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In the next two sections we explain how functions in Pascal and C are

compiled using activation records on the machine stack. Then we treat SML

functions in greater detail and explain how they are represented in the ML

Kit.

3.1.1 Functions in Pascal

It is allowed to nest functions in Pascal. Lexical scoping rules apply where a

function h declared inside another function f may access the local variables

declared in the outer function f:

program scope(input,output);

var a : integer; {(2)}

function g(x : integer) : integer;

begin

g:=x+a

end;

procedure f();

var a : integer; {(1)}

procedure h();

begin

write('Result of g(1): ', g(a)); {(3)}

writeln

end;

begin

a := 1;

h()

end;

begin

a := 41;

f()

end.

Inside procedure h we access the local variable a de�ned in procedure f

((1)) and not the global declared variable a ((2)). This is implemented by

storing the local variable a in the activation record for f and then store an

access link [1, Chapter 7] in the activation record for h, which points at the

activation record for f. The access link is stored in the activation record for

h when h is called. Inside h we fetch variable a by dereferencing the access
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GLOBAL

a=41

f

control link

access link

a=1

h

control link

access link

g

x=1

control link

access link

�

-

�

�

-

-

?

Figure 3.1: The control link points at the callers activation record.

The access link of a function f , say, points at the activation record for

the closest enclosing function of f . For instance, the closest enclosing

activation record for g is the global data holding a=41 whereas the access

link for h points at the activation record for f. We put the argument

x=1 before the control link. The stack grows downward.

link once giving the activation record for f. This scheme works because a

function never escape from the context (function) where it is de�ned. If

function h could escape then h could be called in a context where function

f is not activated and the local variable a would not be accessible.

When g is called ((3)) it is important that g uses the global declared

variable a ((2)) and not the one declared inside f. This is again controlled

by the access link stored in the activation record for g. An example stack

is shown in Figure 3.1. For simplicity, we have put the global address space

at the bottom of the stack.

Consider the following Pascal program where the two functions add and

mul are passed as arguments to procedure apply f.

program apply(input, output);

procedure apply_f(function f(n : integer):integer,

arg: integer);

begin

write(f(arg)); {(3)}

end; { apply_f }

procedure p();

var local : integer;
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function add(n : integer):integer;

begin

add:=local+n

end; { add }

function mul(n : integer):integer;

begin

mul:=local*n

end; { mul }

begin

local:=41;

apply_f(add,1); {(1)}

apply_f(mul,0); {(2)}

writeln

end; { p }

begin

p()

end. { apply }

The variable local is not accessible within procedure apply f but it is acces-

sible at the program points (1) and (2). At the time we pass the functions

add and mul to apply f the variable local is allocated in the activation

record for p and accessible. At program point (1) both the function add

and an access link to the activation record for p is passed. When add is

activated (through f) at program point (3), an activation record for add is

created and the access link stored is the one pointing at the activation record

for p giving access to the variable local. So even though we have nested

functions, it is possible to pass functions as arguments and still implement

function calls on the stack using activation records. Figure 3.2 shows an

example stack.

3.1.2 Functions in C

In C it is possible to take the address of a function g, store it in a variable,

retrieve it from the variable and then pass it to a function, f, (i.e., functions

can be used as �rst class values).

void *temp_f = NULL;

void apply_arg(int (*f)(int)) {

printf("The value of succ(41): %d\n", (*f)(41));

return;

}
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p()

control link

access link

local=41

apply f(add,1)

f = hadd; �i

arg=1

control link

access link

add(arg)

n=1

control link

access link

�

�

�

-

-

-

�

?

Figure 3.2: There are no global data so the access links of p and apply f

points at nil. When add is passed as argument to apply f we pack the

access link that should be used by add together with the code pointer

for add: hadd; �i. When add is called we fetch the access link from the

argument hadd; �i and put it in the activation record for add. The stack

grows downward.

void call_temp_f() {

apply_arg(*(*(int (*)(int))temp_f));

return;

}

int succ(int i) {

return i+1;

}

void main() {

temp_f = (void *)&succ;

call_temp_f();

return;

}

The function succ is passed as argument to function apply arg. The type

(int (*f)(int)) is read: f is a pointer to a function with one argument

of type int returning an int as result. When the function f is applied in

the printf statement we �rst dereference f in order to get the function and

then call f with 41 as argument.

All variables in a C function may be viewed as either global (de�ned at

top level) or local (de�ned inside a function). Fetching global data is done
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through a global data pointer. To store local data each function is equipped

with a stack allocated activation record (as for the Pascal programs above),

and the record contains all local declared data. Local data is fetched through

the stack pointer. Access links are not necessary since data is either local

to the function itself or global. The fact that functions may not be nested

in C but are always declared at top level makes it possible to implement C

functions using activation records allocated on the stack. This holds even

though we can use functions as return values because we do always have

access to the variables used by the function which are either local for the

function itself or global.

To sum up we may use functions as return values in C but may not

nest functions. In Pascal we may nest functions but not use functions as

return values. We have shown that both languages can be implemented

using traditional compiler techniques with activation records allocated on

the stack.

3.1.3 Functions in SML

In Standard ML we have both nesting of functions and functions as �rst

class values. A computation may result in a function which may be applied

in a context di�erent from where it was de�ned. A function may access all

variables declared before the function itself. Consider the following program

fun gen_f() =

let

val c = 41

fun f(arg) = arg + c

in

f

end

val g = gen_f()

val res = g(1)

The function gen f returns a function f, that depends on the local value

c. When f is called (through variable g) the activation of gen f is removed

and if c is stored in the activation record for gen f then it is not available

when f is called. We must keep access to the local value c even though

the function in which it is created has returned. The combination of nested

functions and functions as �rst class values makes it impossible to store all

local values on the stack.

The solution is to use a closure [33], which in addition to the code for the

function, holds the environment in which the function was declared. The

environment maps all free variables (variables de�ned before the function
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itself) to their values. Given the closure (which in general is allocated on

the heap and not on the stack) it is possible to apply the function everywhere

in the program because all information needed to evaluate the function is

held in the closure.

In the above example the function f has c as free variable and the closure

for f is a closure record written: (code

f

; v

c

), where code

f

is a pointer to the

code for f and v

c

is the value of c. When we call f, we fetch the code

pointer from the closure (the �rst element of the closure record) and pass f

the closure record as an argument. The closure record is allocated on the

heap and is accessible for as long time as needed.

1

3.1.4 Uniform Representation of Functions

With functions as �rst class values, it is possible to call several functions

from the same application point. Therefore, a uniform representation of

closures is needed. Consider the program:

fun f(x) =

let

val a = 41

val b = 42

in

if x then

(fn y => y+a)

else

(fn z => z+2*b)

end

val g = f(true) 1 (*1*)

The result function from f(true) called at (*1*) depends on the argument

to f. However, the code performing the call is the same so the two functions

(closures) returned from the if expression must have the same representation.

To call a function we must know where the code for the function is in

addition to the environment needed to evaluate the function (in this case

either a or b). We use the �rst address in the closure for the code pointer

and the following addresses for free variables. The code calling the function

then knows where to jump but not necessarily how the free variables are

organized in the closure which is �ne because they are �rst used in the

body of the called function. The closure records for the two functions are

(code

fny

; a) and (code

fnz

; b). A closure can be viewed as a tuple where

1

In a region based system, region inference decides whether the closure record is al-

located on the stack or on the heap. The point is that the closure record should stay

allocated for as long time as it may be used.
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the �rst element is the code pointer and the succeeding elements are free

variables of the function. The arguments y or z are also passed when the

functions are called.

3.1.5 Closure Representation

There are many ways to represent the closures [5, page 112]. We have two

basic methods: 
at and linked representation and they can be combined in

several ways. We have used 
at representation in the above examples.

With 
at representation we copy the free variables into the closure when

the closure is created. This works only if all variables are immutable, (i.e.,

the contents cannot change after declaration). This is indeed the case in

SML contrary to C and Pascal. Consider the program

let

val w=1

fun g(x) =

let

fun f(y) = w+x+y

in

f(42)

end

in

g(3)

end

With linked representation the closure for g contains all free variables in g

(i.e., w) that are not free in the outer function (i.e., still w). The closure for

f contains x (x is not free in g) but not w because w is free in g. Instead we

put a closure pointer to the closure for g in the closure for f and access w

by dereferencing the two closure pointers.

Linked representation works for mutable variables because at any time

there is only one instance of the variable. Flat representation may be

adopted to work with mutuable variables; if there will ever be more than

one instance of a variable it may be implemented as a reference to a cell in

memory.

The 
at representation tends to create larger closures (i.e., time used on

creation) but optimizes fetching values to only one fetch operation given the

closure pointer. Linked representation minimizes the size of closures and has

better creation times but fetching may now be done through several closure

pointers which is a serious disadvantage. Many combinations of 
at and

linked representation can be used. Using either 
at or linked representation

in
uence the life range for closure records. With linked representation, a

closure record may be live even though the function it represents is never
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called again. This is not the case with 
at representation. Region inference,

that infers life ranges for closure records, assumes that 
at representation is

used, thus, we use 
at rerpesentation in the ML Kit.

3.1.6 A Closure is Not Always Needed

Even though Standard ML (contrary to Pascal) o�ers functions as �rst class

values, functions are not always used as a �rst class value. Actually, it seems

that most functions are used as in Pascal. Consider the program at left.

2

let let

val q = 1 val q = 1

in in

let let

val f = fn x => x + q val f = fn <x,q> => x + q

in in

f 4 (*1*) f <4,q>

end end

end end

The function f does not escape and the free variable q needed to evaluate

f is available at the application point (*1*). It is therefore not necessary

to build a closure for f. Instead we can pass the free variable as an extra

argument to f. We then avoid building a closure and the free variable will

probably be in a machine register in f which is faster that fetching it from a

closure. The above code at right has the free variable q as an extra argument

to f.

The following rules may be used to �nd the function declarations that

do not need to be represented by closures. Let f be the identi�er to which

the function is bound as in the above program.

1. The identi�er f must appear only in applications and only as the

operator, (i.e., f e

2

).

2. All applications of f must have the free variables of f accessible (i.e.,

either as local or free variables in the function containing the applica-

tion).

The �rst rule says that f is a known function, that is, all application points

calling f only call f and the code to jump to is therefore known at compile

time. The second rule makes sure that we can actually access all the free

variables to f at the call site. A variable is accessible in a function g if it is

2

It is important to note that even though the functionality o�ered by Standard ML is

not always used by the programmer then it is still a very important functionality and it

is worth the trouble dealing with.
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either a local declared variable or a free variable to g. We have to be a bit

careful, though, because we can nest the declaration of variables and reuse

names. A free variable to f , say v, may be overridden by a more nested

declaration of v which is less nested than the call site. Consider the code at

left:

let let

val free = 42 val free = 42

in in

let let

fun f(x) = free+x fun f<x,free> = free+x

in in

let let

val free = 43 val free = 43

in in

f(2) f <2,free>

end end

end end

end end

If we just pass the variable free to f as an extra argument as in the code at

right then we get 45 and not 44 which is the right result. We must rename

all variables such that variables on the left side of = are di�erent. This has

already been done on RegExp.

The function f in the above program satis�es the two rules but the

mostly nested function g below does not; which rules are not satis�ed?

let

val a = 1

in

let

val g =

let

val b = 2

val g = fn x => a+b+x

in

g

end

in

g 3

end

end

The �rst rule is not satis�ed because the identi�er g is the result in the inner

let expression which is not an application. Rule two is satis�ed even though
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it may not seem so. In the application g 3 the free variable b to g is not in

scope. This, however, is not a violation of the rule because g in g 3 is not

the same identi�er as g to which the function is bound.

We need a closure for the inner function bound to the inner g because

it escapes. The closure only has to contain the free variable b because the

application g 3 is in scope of variable a. The code pointer is not needed

because g is the only function which can be applied. There is a variety of

ways to specialize functions as described elsewhere [56].

We note that a function f may still be implemented without a closure

even though there are lambda abstractions in between the declaration of f

and use of f (i.e., f may escape through another function g). Consider the

code:

let

val a = 42

val f = fn x => x - 2 + a

val g = fn x => f x + a

in

g

end

The application to f in the body of g escapes because g escapes. However,

no matter where g is applied, the application to f inside g will always be

to f and the free variable a of f will always be accessible inside g because

a is also free in g. The function g needs to be closure implemented. We

note that if a is not free in g then rule 2 is not satis�ed because a is not

accessible at the call to f.

3.1.7 Region polymorphic functions

A region polymorphic function di�ers from an ordinary function in three

ways [38]:

1. in every application f he

1

; : : : ; e

n

i [a

1

; : : : ; a

m

] a (see Figure 2.5 on

page 22) the function called (e.g., f ) will always be known. It is not

necessary to store the code pointer in the closure for f . The �rst rule

in Section 3.1.6 is always satis�ed.

2. in addition to the ordinary arguments he

1

; : : : ; e

n

i, f also has a region

parameter (i.e., region vector) [a

1

; : : : ; a

n

]

3. region polymorphic functions may be mutually recursive.

Consider the program with g and f as mutually recursive functions.
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let

fun g [p1] x = (x+a+f[p1]x)

and f [p2] y = (y+b+f[p2]y + g[p2]y)

in

g[r1]4 + f[r2]5

end

In rule 1 above we noticed that no code pointer is necessary in the closures

for the two functions. The following closures may then be used for the two

functions:

The function g has a and f as free variables: (a; f).

The function f has b, f and g as free variables: (b; f; g).

where f and g are pointers to the two closures respectively. The mutually

recursiveness of the two functions is obvious in the closures. However, the

closures for mutually recursive functions may be merged into one shared

closure [5, 9]. This is possible because the closures are built at the same

time anyway and they have the same lifetime. Merging the two closures

gives the shared closure record : (a; b; f; g): We choose to use shared closures

rather than separate closures.

The next observation is that the two functions f and g may be removed

from the shared closure. There is no need to have the functions f and g

inside the shared closure to point at the same shared closure (i.e., f and g

are not considered free in the body of the functions). The shared closure

record then becomes: (a; b):

We end the discussion about shared closures by looking at how a shared

closure is accessed in di�erent situations [38, page 44]. Let f

1

; : : : ; f

n

be n

mutually recursive functions with bodies e

1

; : : : ; e

n

, respectively, and scope

e. Let the shared closure be sc.

� Accessing any f

i

; i 2 1; : : : ; n yields the same closure sc in e

1

; : : : ; e

n

and e. Now assume an application f

i

he

arg1

; : : : ; e

argn

i [a

1

; : : : ; a

m

] a

directly within e, that is, not within a function in e. This yields the

shared closure sc being built for f

1

; : : : ; f

n

before evaluating e.

� If the application f

i

he

arg1

; : : : ; e

argn

i [a

1

; : : : ; a

m

] a is within e but not

directly within then the shared closure is accessed through the closure

for an in between function (i.e., the shared closure is a free variable of

the in between function).

� Assuming the application f

i

he

arg1

; : : : ; e

argn

i [a

1

; : : : ; a

m

] a is directly

within e

i

; i 2 1; : : : ; n then the shared closure bound to f

i

is the same

as the current one, (i.e., no code is needed to �nd the closure).
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3.1.8 Closure Explication

Several compilers, including the former versions of the ML Kit, decides the

representation of closures at the time they compile from lambda calculus (or

continuation passing style) into machine code (i.e., during code generation).

However, it is possible to separate the representation of closures (closure

conversion) from other compilation tasks because the representation of clo-

sures is not machine dependent and it is not di�cult to express closures

explicitly in intermediate languages.

There are several advantages of representing closures explicitly. Code

generation becomes simpler because all functions are at top level exactly as

they will be after code generation. Moreover, it is advantageous to include

machine independent information in the intermediate languages because it

gives more information for the optimizations performed in the backend.

We have implemented a closure conversion phase in the ML Kit that

converts the RegExp language into a language called ClosExp where function

declarations are substituted for closures being the values of the functions.

Furthermore, we give each function the closure as an explicit argument and

all accesses to values in the closure are changed into selects into the closure.

We also make the region vectors explicit in the program. There are no free

variables in the functions after closure conversion and they can be lifted to

top level.

3

The program has been translated from one expression into a list

of function declarations. Having closures made explicit in ClosExp makes

the succeeding phases, including code generation, simpler and we have made

it possible (though not used yet) to apply more advanced analyses on the

representation of closures.

3.2 Calculating the Need For Closures

In this section we present the algorithm that �nds the functions (either

ordinary or letrec bound) that may be implemented without a closure,

that is, with all free variables passed as arguments.

We use the two rules laid out in Section 3.1.6 and the additional re-

quirement that the maximum number of free variables may at most be

max free args . The limit max free args makes sure that we do not pass

huge closures as arguments where the total number of arguments exceeds

the number of machine registers available. The number max free args de-

pends on the register allocator used. If the closure arguments have to be

passed on the stack anyway then it is likely that it is better to build the

closure in order to limit the register pressure.

The algorithm performs a forward scan of the RegExp expression and

3

Variables imported in the module may still be considered free but they are referenced

through a global label.
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computes a partially de�ned function

fe 2 FE = LamVar ! ffn free list ; fix free listg:

Given a variable f to which a function is bound then if f is not in the

domain of fe then the function bound to f should be implemented with a

closure. If f is in the domain of fe then it may be implemented without a

closure and fe(f) gives the free variables of the function. We let fn denote

ordinary functions and fix denote letrec bound functions.

At application points we need to make sure that the free variables of

the called function are accessible (rule two). The accessible variables are

recorded in a variable environment

VE = RegVar [ LamVar

The algorithm uses two return types

rtnType ::= func free list j other

We let RtnType denote the set of return types. If a subexpression evaluates

to a function then the return type is func and otherwise the return type is

other. Consider the expression:

let

val f = fn x => x+2

in

e

end

The return type returned from expression fn x => x+2 is func and we insert

the relation f 7! func in fe.

The algorithm inserts a function in fe when the function is declared. The

function is removed from fe if one of the requirements are not satis�ed.

Algorithm F does one forward traversal of the program.

F : RegExp ! FE ! VE ! FE � RtnType seq

3.2.1 Variables and Constants

F [[x]] fe ve =

if x 2 dom(fe) then

(fe n fxg, hotheri)

else

(fe, hotheri)

The algorithm handles applications speci�cally so the variable x in the above

case will always appear as a use, that is, not as an operator in an application.

If x represents a function then x has to be implemented with a closure and

is therefore removed from fe (i.e., rule one).



CHAPTER 3. CLOSURE CONVERSION 54

F [[i ]] fe ve = (fe, hotheri)

F [[nil]] fe ve = (fe, hotheri)

3.2.2 Boxed Expressions

F [[(e

1

; : : : ; e

n

) a]] fe

0

ve =

let

val (fe

i

, ) = F [[e

i

]] fe

i�1

ve i = 1; : : : ; n

in

(fe

n

, hotheri)

end

If e

i

for some i 2 1; : : : ; n evaluates to a function then the function is im-

plemented with a closure because it is stored in the record.

F [[�

free

hx

1

; : : : ; x

n

i => e a]] fe ve =

let

val (fe

0

, ) = F [[e]] fe (setof(free) [ fx

1

; : : : ; x

n

g)

in

(fe

0

, hfunc freei)

end

The function setof converts the list of variables into a set of variables.

The set of accessible variables in the body of the function is precisely the

arguments and the free variables of the function. The return type is a

function indicated by func.

3.2.3 Expressions

The interesting cases are the let, letrec and application constructs.

Constructors

F [[:: e]] fe ve = F [[e]] fe ve

Binary Operations

F [[e

1

bop e

2

]] fe ve =

val (fe

1

, ) = F [[e

1

]] fe ve

val (fe

2

, ) = F [[e

2

]] fe

1

ve

in

(fe

2

, hotheri)

end

The result of a binary operation is an integer so the return type is other.
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Selection

F [[#n(e)]] fe ve = F [[e]] fe ve

If #n(e) evaluates to a function then the function is closure implemented

(i.e., the function is bound to a variable that has been used in an expression

creating a record.)

letrec bound functions

F [[letrec f

free

hx

1

; : : : ; x

n

i [�

1

: m

1

; : : : ; �

l

: m

l

] a = e

1

in e

2

end]] fe ve =

let

val fe

0

= if jfreej < max free args then

fe + ff 7! (fix free)g

else

fe

val (fe

0

, ) = F [[e

1

]] fe

0

(setof(free) [ ff; x

1

; : : : ; x

n

; �

1

; : : : ; �

l

g)

in

F [[e

2

]] fe

0

(ve [ ffg)

end

Initially we assume f not to be closure implemented by inserting f into fe

i� the number of free variables is less than max free args . If f should be

closure implemented then f is removed from fe when computing e

1

and e

2

.

The function f is accessible in both e

1

and e

2

. The function j�j : � list ! Int

computes the number of elements in a list.

Applications

Ordinary applications and letrec applications are handled similarly. The

letrec application is:

F [[f e [a

1

; : : : ; a

m

] a]] fe ve =

let

val fe

0

= if (f 2 dom(fe) and

fe(f).free � ve) then

fe

else

fe n ffg

val (fe

0

, ) = F [[e]] fe

0

ve

in

(fe

0

, hotheri)

end

If fe(f) = ( free list), then we write fe(f).free for free. The second re-

quirement in the condition ensures that all free variables are accessible at
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the application point (i.e., rule two). The return type is hotheri because a

function is not declared.

Letregion

F [[letregion � : m in e end]] fe ve =

F [[e]] fe (ve + f�g)

The region variable � is accessible in the body e.

Declaring variables

F [[he

1

; : : : ; e

n

i]] fe

0

ve =

let

val (fe

i

,rtn type

i

) = F [[e

i

]] fe

i�1

ve i = 1; : : : ; n

in

(fe

n

, hrtn type

1

; : : : ; rtn type

n

i)

end

The set of accessible variables in each sub expression e

i

is the same because

no variable is declared between the sub expressions. We use the newest

environment fe in each sub expression because if a function has to be imple-

mented with a closure in one of the sub expressions then it has to be deleted

from the fe that we return.

F [[let val hx

1

; : : : ; x

n

i = e

1

in e

2

end]] fe ve =

let

val (fe

0

,hrtn type

1

; : : : ; rtn type

n

i) = F [[e

1

]] fe ve

val fe

i

= case rtn type

i

of i = 1; : : : ; n

func free => fe

i�1

+ fx

i

7! (fn free)g

| other => fe

i�1

in

F [[e

2

]] fe

n

(ve + fx

1

; : : : ; x

n

g)

end

The functions (if any) bound to a variable x

i

are inserted into fe as an

ordinary function fn. The variables x

1

; : : : ; x

n

are distinct.

Case

F [[case e

1

of c => e

2

| => e

3

]] fe ve =

let

val (fe

1

, ) = F [[e

1

]] fe ve

val (fe

2

, ) = F [[e

2

]] fe

1

ve

val (fe

3

, ) = F [[e

3

]] fe

2

ve
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in

(fe

3

,hotheri)

end

F [[case e

1

of ::x => e

2

| => e

3

]] fe ve =

let

val (fe

1

, ) = F [[e

1

]] fe ve

val (fe

2

, ) = F [[e

2

]] fe

1

(ve+fxg)

val (fe

3

, ) = F [[e

3

]] fe

2

ve

in

(fe

3

,hotheri)

end

If e

2

or e

3

return a function then the function has to be implemented with a

closure because the application sites do not know which function is applied.

The return type is therefore other.

3.3 ClosExp

In this section we present ClosExp which is a re�nement of RegExp where

functions are lifted to top level. ClosExp is the result of closure conversion.

3.3.1 Call convention

A call convention speci�es how arguments to a function are passed. We use

a call convention with �ve entries:

cc = fclos: LamVar option,

free: LamVar list,

args: LamVar list,

reg vec: LamVar option,

reg args:LamVar list g

A function f may either have its free variables passed in a closure or as extra

arguments. If a closure is used then the closure is passed as an argument

to the function and the closure argument is written in the clos entry. If a

closure is not used then the free variable arguments are written in the entry

free. It is possible, in the same call, to pass some of the free variables in free

variable arguments and some of the free variables in a closure argument.

However, we do not use that option, that is, the entry clos and the entry

free cannot, at the same time, be non empty.

Regular arguments are written in the entry args. As with free variables

we can either pass region variables in a region vector or as region variable

arguments. We always pass region variables in a region vector argument
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and the region vector argument is written in the entry reg vec. The entry

reg args is never used and is included in the call convention for complete-

ness. It is likely that we, in the future, may extend the call conventions to

include functions receiving region variables as extra arguments and thereby

eliminate the need for a region vector; this is especially useful for functions

with a low register pressure.

We note that a list may be empty (see Figure 2.4) and LamVar option

means that either there is a variable or not.

The call convention is designed to maximize 
exibility in calling func-

tions. The call convention fully describes how both ordinary and letrec

functions are called. The closure conversion phase lifts all functions to top

level and with the call convention speci�ed above we get the following gram-

mar for top level declarations:

top decl ::= �

fun

lab

cc => e

j �

fn

lab

cc => e

The two constructs are identical except that we syntactically di�erentiate

between letrec (abbreviated fun) and ordinary functions (abbreviated fn).

The label lab is a unique ident (name) for the function; lab 2 Label. We

let the set TopDecl denote the set of top level declarations ranged over by

top decl.

The order of arguments passed to the function is uniquely determined by

the register allocator that allocates the variables to either machine registers

or the machine stack.

Application points must follow the call convention for the called function.

We use the following grammar at application points:

e ::= e

ck

he

1

; : : : ; e

n

i he

clos

i he

f

1

; : : : ; e

f

m

i

j lab

ck

he

1

; : : : ; e

n

i he

reg

i he

�

1

; : : : ; e

�

l

i he

clos

i he

f

1

; : : : ; e

f

m

i

For ordinary function calls the regular arguments e

1

; : : : ; e

n

are written

in the �rst bracket and the optional closure and free values in the second

and third bracket. We never use the second and third bracket at the same

time.

The letrec application is similar except that the region vector and re-

gion values have been squeezed in as the second and third bracket. We

note that ClosExp is in K{normal form and all values are either bound to a

variable ranged over by x and f or the value is a constant.

In examples, we only write the non empty entries in a call convention.

We did not write the region vector that we reuse in the recursive call to

gen list in the example on page 38. In ClosExp we explicitly write all the

arguments.
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3.3.2 Functions

Now that all functions are lifted to top level the two expressions

�

free

hx

1

; : : : ; x

n

i => e

and

letrec f

free

hx

1

; : : : ; x

n

i [b

1

; : : : ; b

m

] a = e in e end

disappear from the grammar.

Instead of the � expression we introduce a new boxed expression:

be ::= �

lab

[e

f

1

; : : : ; e

f

n

]

that evaluates to a closure record: (lab; v

f

1

; : : : ; v

f

n

) where v

f

i

is the value

of e

f

i

, i = 1; : : : ; n. The label lab refers to the function at top level.

The letrec construct is replaced by three new constructs. The boxed

expressions

be ::= [a

1

; : : : ; a

n

]

regvec

j [e

f

1

; : : : ; e

f

n

]

sclos

are the region vector and shared closure respectively. They evaluate to a

region vector record (v

�

1

; : : : ; v

�

n

) and a shared closure record (v

f

1

; : : : ; v

f

n

).

We also need a letrec construct to make the scope for f explicit.

e ::= letrec f

lab

= be a in e end

The label lab connects the top level function �

fun

lab

with f . We often omit the

label in examples where f and the label are identical. The boxed expression,

be, is always a shared closure which is bound to the variable f .

Examples

Consider the RegExp program:

let

val b = 5

val f = �

fbg

hxi =>

(let

val fn y = (�

fb;xg

hyi => x + y + b) attop r1

in

fn y

end) attop r1

in

f

fncall

h5i

end

In ClosExp we write the same program as:



CHAPTER 3. CLOSURE CONVERSION 60

�

fn

main

f g => let

val b = 5

val f = �

fn x

[b] attop r1

in

f

fncall

h5i hf i hi

end

�

fn

fn x

fclos=c, args=[x]g =>

let

val fn y = �

fn y

[#1(c), x] attop r1

in

fn y

end

�

fn

fn y

fclos=c, args=[y]g => #2(c) + y + #1(c)

Three functions are created at top level where main is the function that

initiates computation. All functions are closed because access to arguments

and free variables are described in the call convention. We insert explicit

selections into the closure records. The closure record passed to fn y is

c =(fn y ; b; x) where fn y is the code label and the expression #2(c) denotes

x in the original program and #1(c) denotes b. The closure record for fn x

is c =(fn x ; b).

We note that ClosExp is not a typed intermediate language. However,

it is possible to give the closure record for fn y a simple type, for instance:

c : Code � Int � Int where Code is a type donoting code. It would greatly

improve the reliability of the compiler if the intermediate languages could

be type checked even though the type system might not be sound, that is,

we cannot prove that the source and translated program evaluate to the

same result even though the translated program type checks. It is also

possible to engineer sound type systems where we can prove that if the

closure converted program type checks then it evaluates to the same result

as the original program [36]. Unfortunately, this is beyond the scope of this

project.

The running example for the next chapters is shown below:

fun foldl f b xs =

case xs of

[] => b

| x::xs' => foldl f (f x b) xs'

The same program in RegExp is shown in Figure 3.3.

The translation to ClosExp is shown in Figure 3.4 and Figure 3.5. Four

top level functions are created.
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letrec foldl

[ ]

hfi [r7 : 4; r8 : 4] attop r1 =

let

val fn b = �

[f;r8;foldl]

hbi attop r7 =>

let

val fn xs = �

[b;f;foldl]

hxsi attop r8 =>

(case xs of

nil => b

| :: (v942 ) =>

let

val x = #0(v942 )

val xs' = #1(v942 )

in

letregion r22 :4 in

let

val k80 =

letregion r24 :4 in

let

val k77 =

letregion r25 :2 in

foldl

funcall

hfi [atbot r24; atbot r22] atbot r25

end (*r25*)

val k79 =

let

val k78 = f

fncall

hxi

in

k78

fncall

hbi

end (*let*)

in

k77

fncall

k79

end (*let*)

end (*r24*)

in

k80

fncall

hxs' i

end (*let*)

end (*r22*)

end (*let*))

in

fn xs

end (*let*)

in

fn b

end (*let*)

in

foldl

funcall

hsumi [atbot r4; atbot r5] atbot r6

end (*letrec*)

Figure 3.3: Our running example program written in RegExp. We

assume sum, r1, r4, r5 and r6 to be previously de�ned. We have k77 =

foldl f , k78 = f x, k79 = f x b and k80 = foldl f (f x b).
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�

fun

foldl

fargs=[f ], recvec=rv , clos=cg =>

let

val fn b = �

fn b

[f , #1(rv), c] attop ff #0(rv)

in

fn b

end

�

fn

fn b

fargs=[b], clos=cg =>

let

val fn xs = �

fn xs

[b, #1(c), #3(c)] attop ff #2(c)

in

fn xs

end

�

fn

main

f g =>

letrec foldl

foldl

= [ ]

sclos

attop li r1

in

let

val rv = [attop lf r4 , atbot lf r5 ]

regvec

atbot lf r6

in

foldl

funcall

hsumi hrvi hi hfoldl i hi

end

end

Figure 3.4: The �rst three top level functions in our running example

program translated into ClosExp. In the letrec binding we introduce

both the label foldl and the variable foldl (holding the empty shared

closure). In the application the �rst term foldl is the label and the shared

closure is accessed in the fourth bracket. Actually the shared closure is

empty so it should be omitted and will be in the implementation. The

closure record c for fn b is (fn b, f , r5, foldl ).
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�

fn

fn xs

fargs=[xs], clos=cg =>

(case xs of

nil => #1(c)

| :: (v942 ) =>

let

val x = #0(v942 )

val xs' = #1(v942 )

in

letregion r22 :4 in

let

val k80 =

letregion r24 :4 in

let

val k77 =

letregion r25 :2 in

let

val rv = [atbot lf r24 , atbot lf r22 ] atbot lf r25

in

foldl

funcall

h#2(c)i hrvi hi h#3(c)i hi

end

end (*r25*)

val k79 =

let

val k78 = #2(c)

fncall

hxi h#2(c)i hi

in

k78

fncall

h#1(c)i hk78 i hi

end (*let*)

in

k77

fncall

hk79 i hk77 i hi

end (*let*)

end (*r24*)

in

k80

fncall

hxs' i hk80 i hi

end (*let*)

end (*r22*)

end (*let*))

Figure 3.5: The main function fn xs. The label in the call to foldl is

known at compile time and is therefore not free in the function, however,

the shared closure foldl is free in the function. The closure record c is

(fn xs, b, f , foldl ).
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3.3.3 Storage Modes

We extend the set of storage modes, see Section 2.5, in order to make code

generation easier, see Chapter 9. The storage modes attop, atbot and sat

are replaced by eight storage modes:

attop ff attop fi

attop lf attop li

atbot lf atbot li

sat ff sat fi

We have added the letter combinations:

ff: a formal region parameter with finite multiplicity.

fi: a formal region parameter with in�nite multiplicity.

lf: a letregion bound region variable with finite multiplicity.

li: a letregion bound region variable with in�nite multiplicity.

Consider the allocation point: e attop ff �. The storage mode attop ff

says that region variable � is bound as a formal region parameter with �nite

multiplicity. The new storage modes do not add new information to the

program but moves the information to places where the information is used

by the code generator. Knowing how a region variable is bound and its

multiplicity at the application point makes code generation easier. The set

SMA is the set of storage mode annotations ranged over by sma.

The function resolve sm de�ned on page 35 is rede�ned to work on the

new storage modes:

resolve sm: StorageMode � SMA! StorageMode

resolve sm( , atbot lf) = atbot

resolve sm( , atbot li) = atbot

resolve sm( , attop ff) = attop

resolve sm( , attop fi) = attop

resolve sm( , attop lf) = attop

resolve sm( , attop li) = attop

resolve sm(atbot, sat ff) = atbot

resolve sm(atbot, sat fi) = atbot

resolve sm(attop, sat ff) = attop

resolve sm(attop, sat fi) = attop

3.3.4 Grammar for ClosExp

The grammar for ClosExp is shown in Figure 3.6 and semantic objects for

the grammar in Figure 3.7.

For ordinary applications, e

ck

is either a closure or a label. For letrec

applications we always know which function to call. We let the set CC
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denote call conventions. The translation into ClosExp (Section 3.4.3) intro-

duces extra let bindings and it is possible that a region descriptor is bound

to a lambda variable lv and not a region variable �. This happens when

region descriptors are stored in region vectors and then selected from the

region vectors or simply appear as a free variable to the function. We let

the set ClosExp be the set of expressions ranged over by e.

3.3.5 Dynamic Semantics for ClosExp

The semantic objects used in the dynamic semantics for ClosExp is shown

in Figure 3.8. A region name rn is used to identify a region in the heap. A

region descriptor contains the region name together with the multiplicity and

storage mode. We have turned a region descriptor into a value because they

are stored in region records. Because region descriptors are values we have

no need for the region environment RE as used in the dynamic semantics

for RegExp. Note the di�erence between a storage mode sm and a storage

mode annotation sma de�ned in the grammar, Figure 3.6. A storage mode

is either atbot or attop and never somewhere{at. A label lab is considered

a constant used when calling functions.

Top level declarations FE ` top decl ) FE

0

We create a function environment FE containing all the functions declared

at top level.

FE ` �

fun

lab

cc => e) FE + flab 7! hcc; eig

(3.1)

FE ` �

fn

lab

cc => e) FE + flab 7! hcc; eig

(3.2)

FE ` top decl

1

) FE

1

FE

1

` top decl

2

) FE

2

FE ` top decl

1

; top decl

2

) FE

2

(3.3)

Begin evaluation st; h;E ` e) v; h

0

To start evaluation we call the function main with an empty call convention.

The stack and heap are empty. The function environment FE is obtained

from the top level declarations.

fg; fg; (fg;FE) ` main

fncall

hi hi hi ) v; h

0

(3.4)
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top decl ::= �

fun

lab

cc => e

j �

fn

lab

cc => e

j top decl

1

; top decl

2

ck ::= funjmp j funcall j fnjmp j fncall

sma ::= attop li j attop lf j attop fi j attop ff

j atbot li j atbot lf j sat fi j sat ff

a ::= sma xv

m ::= n j 1

b ::= � : m

c ::= i j nilj lab

pat ::= c j :: x

bop ::= +; -; <; : : :

be ::= (e

1

; : : : ; e

n

)

j �

lab

[e

f

1

; : : : ; e

f

n

]

j [a

1

; : : : ; a

n

]

regvec

j [e

f

1

; : : : ; e

f

n

]

sclos

e ::= x

j be a

j c

j :: e

j e

1

bop e

2

j #n(e)

j letrec f

lab

= be a in e end

j e

ck

he

1

; : : : ; e

n

i he

clos

i he

f

1

; : : : ; e

f

m

i

j lab

ck

he

1

; : : : ; e

n

i he

reg

i ha

�

1

; : : : ; a

�

l

i he

clos

i he

f

1

; : : : ; e

f

m

i

j letregion b in e end

j let val hx

1

; : : : ; x

n

i = e

1

in e

2

end

j case e

1

of pat => e

2

| => e

3

j he

1

; : : : ; e

n

i

Figure 3.6: The grammar for ClosExp. The call convention cc is de�ned

in Section 3.3.1. Note that an allocation point a may be of the form sma

� and sma lv.
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top decl 2 TopDecl

e 2 ClosExp

x; f; lv 2 LamVar

lab 2 Label

i 2 Int

� 2 RegVar

cc 2 CC

xv 2 Var = LamVar [ RegVar

Figure 3.7: The semantic objects used in ClosExp. We let CC denote

the set of call conventions.

st 2 Stack = RegDesc stack

h 2 Heap = RegName ! Reg

s 2 Store = Stack �Heap

rd 2 RegDesc = RegName �Mult � StorageMode

rn 2 RegName

r 2 Reg = O�set ! BoxedVal

o 2 O�set

bv 2 BoxedVal = Record

ubv 2 UnBoxedVal = Int [ fnilg [ ::(Val) [ Label

v 2 Val = Addr [UnBoxedVal [ RegDesc

rec 2 Record = Val� : : :�Val

(rd; o) 2 Addr = RegName �O�set

m 2 Mult = Int [ f1g

sm 2 StorageMode = fatbot; attopg

hcc; ei 2 FEelem = (CC� ClosExp)

VE = Var ! Val

FE = Label ! FEelem

E = SClos = VE � FE

Figure 3.8: The semantic objects used in the dynamic semantics of

ClosExp. The function environment FE maps labels into a call conven-

tion cc 2 CC and the code for the function. The record rec is used for

ordinary records, closure records and region records.
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Constants ` ubv) ubv

` i) i

(3.5)

` nil) nil

(3.6)

` lab) lab

(3.7)

We have the constants: integers (i), nil and labels lab. They all create

an unboxed value.

Allocation Points st; h;E ` a) (rn; o); h

0

VE(xv) = (rn;m; sm)

resolve sm(sm; sma) = attop

o 62 dom(h(rn))

st; h; (VE;FE) ` sma xv ) (rn; o); h

(3.8)

VE(xv) = (rn;m; sm)

resolve sm(sm; sma) = atbot

h

0

= h+ frn 7! fgg

o 62 dom(h(rn))

st; h; (VE;RE) ` sma xv ) (rn; o); h

0

(3.9)

If we allocate atbot then the heap is updated with the region xv being

reset. The function resolve sm is de�ned on page 64.

Call Conventions st; h;E `

ap

e) hcc; e

0

i; h

0

st; h;E ` e) (rn; o); h

0

h

0

(rn; o) = (lab; v

1

; : : : ; v

n

)

FE(lab) = hcc; e

0

i

st; h;E `

ap

e) hcc; e

0

i; h

0

(3.10)

FE(lab) = hcc; ei

st; h;E `

ap

lab ) hcc; ei; h

(3.11)
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The �rst rule covers closure implemented functions and the second rule

known functions. The call convention and body of function is looked up in

FE.

We have a rule that matches arguments with a call convention and re-

turns a variable environment where arguments in the call convention are

mapped into the argument values.

st; h

i�1

;E ` e

i

) v

i

; h

i

i = 1; : : : ; l

cc = fargs = [x

1

; : : : ; x

n

];

reg vec = x

n+1

;

reg args = [x

n+2

; : : : ; x

m

];

clos = x

m+1

;

free = [x

m+2

; : : : ; x

l

]g

VE

0

= fx

i

7! v

i

g

i=1;::: ;l

st; h

0

;E `

cc

(cc; he

1

; : : : ; e

n

i he

n+1

i he

n+2

; : : : ; e

m

i

he

m+1

i he

m+2

; : : : ; e

l

i)) VE

0

; h

l

(3.12)

It is not mandatory that all brackets are non empty as long as the call

convention matches the supplied arguments. For instance, if a region record

is passed as argument then there must be a corresponding variable in the

call convention.

Boxed Expressions st; h;E ` be) bv; h

0

st; h

i�1

;E ` e

i

) v

i

; h

i

i = 1; : : : ; n

st; h

0

;E ` (e

1

; : : : ; e

n

)) (v

1

; : : : ; v

n

); h

n

(3.13)

st; h

i�1

;E ` e

f

i

) v

f

i

; h

i

i = 1; : : : ; n

st; h

0

;E ` �

lab

[e

f

1

; : : : ; e

f

n

]) (lab; v

f

1

; : : : ; v

f

n

); h

n

(3.14)

VE(xv

i

) = (rn

i

;m

i

; sm

i

)

sm

0

i

= resolve sm(sm

i

; sma

i

) i = 1; : : : ; n

st; h; (VE;FE) ` [sma

1

xv

1

; : : : ; sma

n

xv

n

]

regvec

)

((rn

1

;m

1

; sm

0

1

); : : : ; (rn

n

;m

n

; sm

0

n

)); h

(3.15)

st; h

i�1

;E ` e

f

i

) v

f

i

; h

i

i = 1; : : : ; n

st; h

0

;E ` [e

f

1

; : : : ; e

f

n

]

sclos

) (v

f

1

; : : : ; v

f

n

); h

n

(3.16)

An ordinary function closure (rule 3.14) has the function label as �rst

component in the closure. A shared closure (rule 3.16) does not have labels
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in the record �elds. A region vector (rule 3.15) is a record of region descrip-

tors containing both the region name, multiplicity and storage mode. The

storage mode is used by the allocation rules (rule 3.8 and 3.9). We do not

use the multiplicity in the rules, that is, the semantics does not di�erentiate

between �nite and in�nite regions.

Expressions st; h;E ` e) v; h

0

VE(x) = v

st; h; (VE;FE) ` x) v; h

(3.17)

st; h;E ` be) bv; h

1

st; h

1

;E ` a) (rn; o); h

2

h

0

= h

2

+ f(rn; o) 7! bvg

st; h;E ` be a) (rn; o); h

0

(3.18)

` c) ubv

st; h;E ` c) ubv; h

(3.19)

st; h;E ` e

1

) i

1

; h

1

st; h

1

;E ` e

2

) i

2

; h

0

eval

bop

(i

1

; i

2

) = i

st; h;E ` e

1

bop e

2

) i; h

0

(3.20)

st; h;E ` e) (v

1

; v

2

); h

0

st; h;E ` ::e) ::(v

1

; v

2

); h

0

(3.21)

st; h;E ` e) (rn; o); h

0

h

0

(rn; o) = (v

0

; : : : ; v

m

) 0 � n � m

st; h;E ` #n(e)) v

n

; h

0

(3.22)

s; h; (VE;FE) ` be) bv; h

1

s; h

1

; (VE;FE) ` a) (rn; o); h

2

h

3

= h

2

+ f(rn; o) 7! bvg

VE

0

= VE+ ff 7! (rn; o)g

st; h

3

; (VE

0

;FE) ` e) v

0

; h

0

st; h; (VE;FE) ` letrec f

lab

= be a in e end) v

0

; h

0

(3.23)
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st; h;E `

ap

e

ck

) hcc; e

0

i

st; h; (VE;FE) `

cc

(cc; h~ei hi hi he

clos

i h ~e

f

i)) VE

0

; h

1

st; h

1

; (VE

0

;FE) ` e

0

) v

0

; h

0

st; h; (VE;FE) ` e

ck

h~ei he

clos

i h ~e

f

i ) v

0

; h

0

(3.24)

st; h;E `

ap

lab

ck

) hcc; e

0

i

st; h; (VE;FE) `

cc

(cc; h~ei he

reg

i h~e

�

i he

clos

i h ~e

f

i)) VE

0

; h

1

st; h

1

; (VE

0

;FE) ` e

0

) v

0

; h

0

st; h; (VE;FE) `

lab

ck

h~ei he

reg

i h~e

�

i he

clos

i h ~e

f

i ) v

0

; h

0

(3.25)

rn 62 dom(h)

h

1

= h+ frn 7! fgg

st

1

= push(st; rn)

st

1

; h

1

; (VE+ f� 7! (rn;m; attop)g;FE) ` e) v

0

; h

2

( ; st) = pop(st

1

)

h

0

= h

2

n frng

st; h; (VE;FE) ` letregion � : m in e end) v

0

; h

0

(3.26)

st; h; (VE;FE) ` e

1

) hv

1

; : : : ; v

n

i; h

1

st; h

1

; (VE+ fx

i

7! v

i

g

i=1;::: ;n

;FE) ` e

2

) v

0

; h

0

st; h; (VE;FE) ` let val hx

1

; : : : ; x

n

i = e

1

in e

2

end) v

0

; h

0

(3.27)

st; h

i�1

;E ` e

i

) v

i

; h

i

i = 1; : : : ; n

st; h

0

;E ` he

1

; : : : ; e

n

i ) hv

1

; : : : ; v

n

i; h

n

(3.28)

st; h; (VE;FE) ` e

1

) ::(v); h

1

st; h

1

; (VE+ fx 7! vg;FE) ` e

2

) v

0

; h

0

st; h; (VE;FE) ` case e

1

of ::x => e

2

| => e

3

) v

0

; h

0

(3.29)

st; h;E ` e

1

) c; h

1

st; h

1

;E ` e

2

) v

0

; h

0

st; h;E ` case e

1

of c => e

2

| => e

3

) v

0

; h

0

(3.30)

st; h;E ` e

1

) c

0

; h

1

c

0

6= c

st; h

1

;E ` e

3

) v

0

; h

0

st; h;E ` case e

1

of c => e

2

| => e

3

) v

0

; h

0

(3.31)
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st; h;E ` e

1

) nil; h

1

st; h

1

;E ` e

3

) v

0

; h

0

st; h;E ` case e

1

of ::x => e

2

| => e

3

) v

0

; h

0

(3.32)

A boxed expression (rule 3.18) is allocated in a region.

Binary operations (rule 3.20) work on integers only. As for RegExp, we

use the function eval

bop

: Int � Int! Int to evaluate the function bop given

the two integer arguments.

In the letrec rule (rule 3.23) the boxed expression (be) is always a

shared closure.

Rule 3.24 covers the unknown function calls. The three sets of arguments

are evaluated and bound in the environment VE

0

(rule 3.12) before the body

of the called function is evaluated. The arguments and call convention must

match.

The rule for known applications (rule 3.25) is similar to the rule for

unknown applications except that we have �ve sets of arguments and not

three. Rule 3.12 is used to match the call convention and arguments.

Rule 3.26 allocates a fresh region, sets the multiplicity to m and storage

mode to attop. The storage mode is chosen arbitrarily because it is ex-

plicitly set at the allocation points and when building a region vector (rule

3.15).

3.4 Closure conversion

The algorithm that translates RegExp into ClosExp (C) is fairly straight-

forward. However, there are a few minor points that we address before we

present C:

3.4.1 Preserve K-normal form

In order to keep the code generator simple we want all value creating ex-

pressions to be assigned a variable (i.e., preserve the K{normal form). If

we keep ClosExp and LineExp (see Chapter 4) in K{normal form and all

value creating expressions are atomic then we do not have to introduce more

variables during code generation. We can generate code without introduc-

ing temporary variables as long as all value creating expressions are atomic.

An atomic expression is an expression that may easily be implemented in

machine code (maybe with the use of a few machine registers). All value cre-

ating expressions in ClosExp are atomic expressions. The simpli�cation of

function declaration and application in ClosExp is essential for this property

to hold.

The ClosExp program in Figure 3.4 and 3.5 is not in K{normal form.

For instance, in Figure 3.5 line 19, we have a call to foldl . The closure for
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foldl is stored as component number 2 in the closure variable c (i.e., #2(c)).

To be in K{normal form we need the invariant that all uses in an expression

are either a variable or a constant. If this is not true then we cannot in

general generate code for the expression with no additional variables to hold

the result of sub expressions.

The algorithm C must translate the application into

let

val rv = [atbot r24 , atbot r22 ] atbot r25

val lv = #2(c)

in

foldl

funcall

hlvi hrvi hi hfoldli hi

end

where lv is a fresh lambda variable.

3.4.2 Call Conventions

The algorithm C assigns call conventions to functions using the function FE

computed in Section 3.2.3.

Consider a RegExp function

�

[f

1

;::: ;f

m

]

hx

1

; : : : ; x

n

i => e

with free variables f

1

; : : : ; f

m

. If the function is closure implemented then

we create a ClosExp closure:

�

lab

[f

1

; : : : ; f

m

]

and the following function at top level:

�

fn

lab

fclos = clos ; args = [x

1

; : : : ; x

n

]g => e

0

where e

0

is e translated into ClosExp and clos is a fresh variable. The

arguments x

1

; : : : ; x

n

are inserted into the entry args, that is, we do not

use fresh variables for the arguments. At an application to the function we

insert

x

ck

he

1

; : : : ; e

n

i hxi hi

where e

1

; : : : ; e

n

are the arguments and x is bound to the closure.

In the case that a function is implemented without a closure we get the

following ClosExp code:

lab

where the closure should have been, (i.e., we do not create a closure). At

top level we get:

�

fn

lab

ffree = [fr

1

; : : : ; fr

m

]; args = [x

1

; : : : ; x

n

]g => e

0
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where e

0

is e translated into ClosExp. At an application to the function we

insert

x

ck

he

1

; : : : ; e

n

i hi he

f

1

; : : : ; e

f

m

i

where e

1

; : : : ; e

n

are the arguments, e

f

1

; : : : ; e

f

m

are the free variables and

x is bound to the label lab. Note, that a label is a constant and we therefore

do not store in the region where the closure should have been stored. It is

possible to apply a drop regions phase after closure conversion that removes

regions that are not used.

The letrec bound functions are handled similarly with an additional

region vector. Regions holding shared closures of size 0 and region vectors

of size 0 may also be removed i� they are write{once regions. A write{once

region is a region that allows one value to be stored only.

3.4.3 Algorithm C

In order to simplify the presentation, we consider all functions closure im-

plemented. The extension to include non closure implemented functions is

straightforward and concern only the translation rules for function declara-

tion and application.

In the translation rules we write ClosExp keywords in texttype and

algorithmic code in boldface.

Variable and Function Environments

The algorithm uses a variable environment ve and a function environment

for letrec bound functions funE.

ve 2 VE = Var ! Var [ f#n(x)jn 2 N ^ x 2 Varg

and

funE 2 FunE = VE ! Label

At entry to a function a free variable fv may be bound to an element in a

closure, say #n(clos). When translating the body of a function, ve maps fv

into #n(clos). At every use of fv a function lookup ve is used to �gure out

if a sub expression should be inserted, that is, if fv is not mapped into a

variable. The lookup function is de�ned as follows:

lookup ve : Var � VE ! Var � SelectExp

lookup ve(v,ve) =

if v 62 dom(ve) then

(v, none)

else

case ve(v) of

#n(v

0

) => let
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val lv = fresh lvar("lv")

in

(lv,(lv,#n(v

0

)))

end

| v

0

=> (v

0

,none)

where se 2 SelectExp = fnoneg [ (Var � f#n(x)jn 2 N ^ x 2 Varg). A

select expression se is used by the function insert ses to insert extra let

expressions such that the result ClosExp program is in K{normal form. A

fresh lambda variable is returned by the function fresh lvar. The variables

are always unique (numbered) even though we reuse the same textual names

(e.g., "lv").

insert ses : ClosExp � (SelectExp list) ! ClosExp

insert ses (e, [ ]) = e

insert ses (e, none::rest) = insert ses(e, rest)

insert ses (e, (v

1

,#n(v

2

))::rest) =

let

val v

1

= #n(v

2

)

in

insert ses(e, rest)

end

The function insert se is similar to insert ses except that it works on one

select expression only. Consider the SML code

let

val x = (e1,e2)

in

e

end

where e1 and e2 are non atomic expressions. This is by algorithm C trans-

lated into

let

val x =

let

val v1 = e1

val v2 = e2

in

(v1,v2)

end

in

e

end
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and not

let

val x =

(let val v1 = e1 in v1 end,

let val v2 = e2 in v2 end)

in

e

end

The record in the last translation is not an atomic expression.

Placement of Let Expressions

The placement of insert se calls in the translation rules decides where the

extra let bindings are inserted. Consider the function:

�

fn

lab

fargs=[x], clos=cg =>

let

val v

1

= #1(c)+x

val v

2

= #2(c)+v

1

.

.

.

val v

3

= #1(c)+v

1

in

(v

1

; v

2

; v

3

)

end

It is simple to just insert let expressions at the outer level binding the selec-

tions to new variables:

�

fn

lab

fargs=[x], clos=cg =>

let

val t

1

= #1(c)

val t

2

= #2(c)

val v

1

= t

1

+x

val v

2

= t

2

+v

1

.

.

.

val v

3

= t

1

+v

1

in

(v

1

; v

2

; v

3

)

end

but then the life range for t

1

is the entire function. It is better to shorten

life ranges for variables such that the register allocator can reuse machine

registers e�ciently. Inserting local let bindings we get:
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�

fn

lab

fargs=[x], clos=cg =>

let

val v

1

=

let

val t

1

= #1(c)

in

t

1

+x

end

val v

2

= : : :

.

.

.

val v

3

=

let

val t

0

1

= #1(c)

in

t

0

1

+v

1

end

in

(v

1

; v

2

; v

3

)

end

The drawback is that we evaluate #1(c) twice. We believe this is better than

increasing life ranges and we never increase the number of #n(c) expressions

evaluated compared to the original program.

Region Environment

We use a region environment RE mapping a region variable into the set

fff,fi,lf,lig depending on how the region variable is bound and its mul-

tiplicity, see Section 3.3.3. The function convert sma converts a storage

mode attop, atbot and sat into a new storage mode using the region en-

vironment:

convert sma: RE � fatbot,attop,satg � RegVar ! SMA

convert sma(re,sat,�) = sat re(�)

convert sma(re,atbot,�) = atbot re(�)

convert sma(re,attop,�) = attop re(�)

We use the function mult to generate the extensions:

mult: ff,lg � Mult ! fff,fi,lf,lig

mult(f,n) = ff

mult(f,1) = fi

mult(l,n) = lf

mult(l,1) = li
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where the second argument is the multiplicity as de�ned in Section 2.6.

Note, that a free region variable inherit the storage mode from the region

environment in which it is de�ned at the function declaration.

Top Level Declarations

The algorithm C

T

translates the RegExp language into the ClosExp lan-

guage using C:

C : RegExp ! VE ! FunE ! RE ! Label ! ClosExp � SelectExp

We have

C

T

(re) = add new fn("main"; fg; insert se(C [[re]] fg fg fg "main"))

where "main" is the label used for the main function and re is the RegExp

expression. As a side condition, all top level functions are introduced by

the two functions add new fn and add new fun which collects them in a

sequence as described by the grammar for top level declarations (see Figure

3.6):

add new fn : Label � CC � ClosExp ! f()g

add new fun : Label � CC � ClosExp ! f()g

We write () for unit and fg for an empty call convention.

Variables

C [[x ]] ve funE re lab = lookup ve(x ; ve)

Allocation Points

C [[�]] ve funE re lab = lookup ve(�; ve)

Constants

C [[c]] ve funE re lab = (c; none)

Boxed Expressions

C [[(e

1

; : : : ; e

n

) sma �]] ve funE re lab =

let

val (e

0

i

; se

0

i

) = C [[e

i

]] ve funE re lab i = 1; : : : ; n

val (v; se

v

) = C [[�]] ve funE lab

val ([e

00

1

; : : : ; e

00

n

; v

0

]; ses) = unify ses([(e

0

1

; se

0

1

); : : : ; (e

0

n

; se

0

n

); (v; se

v

)])

val sma

0

= convert sma(sma; re; �)

in

(insert ses((e

00

1

; : : : ; e

00

n

) sma

0

v

0

,ses),none)

end
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We insert the select expressions around the record expression. The function

unify ses uni�es select expressions such that all selections are di�erent, that

is, there is no need to select the same �eld from a record more than once.

Consider the list of variables and select expressions:

([(v

1

; (v

1

; #n(v))); (v

2

; (v

2

; #n(v)))])

Both v

1

and v

2

are bound to the same selection #n(v). We only need one

variable bound to #n(v) and the function unify ses returns the following

two lists:

([v

1

; v

1

]; [(v

1

; #n(v))]);

where v

1

is used instead of v

2

and only one select expression is inserted

around the record expression.

C [[�

[f

1

;::: ;f

m

]

hx

1

; : : : ; x

n

i => e sma �]] ve funE re lab =

let

val new lab = lab ^ ".anon"

val c = fresh lvar("clos")

val cc = fclos = c; args = [x

1

; : : : ; x

n

]g

val ve

0

= ff

i

7! #i(c)g

i=1;::: ;m

val (lv

f

i

; se

f

i

) = lookup ve(f

i

, ve) i = 1; : : : ;m

val (v; se

v

) = C [[�]] ve funE lab

val ([lv

0

f

1

; : : : ; lv

0

f

m

; v

0

]; ses) = unify ses([(lv

f

1

; se

f

1

); : : : ; (lv

f

m

; se

f

m

); (v; se

v

)])

val e

0

= insert se(C [[e]] ve

0

funE re new lab)

val = add new fn(new lab, cc, e

0

)

val sma

0

= convert sma(sma; re; �)

in

(insert ses(�

new lab

[lv

0

f

1

; : : : ; lv

0

f

m

] sma

0

v

0

,ses),none)

end

We assume the function is closure implemented. Note, that the argument

variables x

1

; : : : ; x

n

are not inserted into ve

0

because we do not use fresh

variables for arguments.

The above translation rules insert let expressions around a boxed expres-

sion, as shown below:

let

val x =

let

let val lv1 = e1

val x = (e1,e2) at r ====> val lv2 = e2

in in

e (lv1,lv2) at r

end end
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in

e'

end

The expression e' is e translated into ClosExp.

Binary Operators

Let expressions are inserted around a binary operation.

C [[e

1

bop e

2

]] ve funE re lab =

let

val (v

1

, se

1

) = C [[e

1

]] ve funE re lab

val (v

2

, se

2

) = C [[e

2

]] ve funE re lab

val ([v

0

1

; v

0

2

]; ses) = unify ses([(v

1

; se

1

); (v

2

; se

2

)])

in

(insert ses(v

0

1

bop v

0

2

, ses),none)

end

Constructors

Let expressions are inserted around a constructor.

C [[::e]] ve funE re lab =

let

val (v

0

, se

0

) = C [[e]] ve funE re lab

in

(insert se(::v

0

, se

0

), none)

end

Selection

The expression #n(#m(v)) is translated into

let

val v' = #m(v)

in

#n(v')

end

C [[#n(e)]] ve funE re lab =

let

val (v

0

, se

0

) = C [[e]] ve funE re lab

in

(insert se(#n(v

0

), se

0

), none)

end
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letrec bound functions

C [[letrec f

[f

0

;::: ;f

m

]

hx

1

; : : : ; x

n

i [�

0

: m

0

; : : : ; �

l

: m

l

] sma � = e

1

in e

2

end]]

ve funE re lab =

let

val new lab = "f"

val sma

0

= convert sma(sma; re; �)

val re

0

= re + f�

0

7!mult(f;m

0

); : : : ; �

l

7!mult(f;m

l

)g

val (v

0

, se

0

) = C [[�]] ve funE re lab

val c = fresh lvar("clos")

val rv = fresh lvar("regvec")

val cc = fclos = c; args = [x

1

; : : : ; x

n

]; regvec = rvg

val ve

0

= ff 7! cg [ ff

i

7! #i(c)g

i=0;::: ;m

[ f�

i

7! #i(rv)g

i=0;::: ;l

val (lv

f

i

; se

f

i

) = lookup ve(f

i

, ve) i = 0; : : : ;m

val ([v

00

; lv

0

f

0

; : : : ; lv

0

f

m

]; ses) = unify ses([(v

0

; se

0

); (lv

f

0

; se

f

0

); : : : ; (lv

f

m

; se

f

m

)])

val funE

0

= funE + ff 7! new labg

val e

0

1

= insert se(C [[e

1

]] ve

0

funE

0

re

0

new lab)

val = add new fun(new lab, cc, e

0

1

)

in

(insert ses(letrec f

new lab

= [lv

0

f

0

; : : : ; lv

0

f

m

] sma

0

v

00

in

insert se(C [[e

2

]] ve funE

0

re lab)

end, ses), none)

end

We assume the function to be closure implemented. The function f has

scope in the body e

1

so we map f into the closure variable c in ve

0

. We store

the function label in funE ; then we know the label at the application points

to f . We do not use fresh variables for the arguments x

1

; : : : ; x

n

.

Applications

C [[x

ck

he

1

; : : : ; e

n

i]] ve funE re lab =

let

val (lv

i

, se

i

) = C [[e

i

]] ve funE re lab i = 1; : : : ; n

val (lv; se) = lookup ve(x, ve)

val ([lv

0

; lv

0

1

; : : : ; lv

0

n

]; ses) = unify ses([(lv; se); (lv

1

; se

1

); : : : ; (lv

n

; se

n

)])

in

(insert ses(lv

0

ck

hlv

0

1

; : : : ; lv

0

n

i hlv

0

i hi, ses), none)

end

C [[f

ck

he

1

; : : : ; e

n

i [sma

0

�

0

; : : : ; sma

l

�

l

] sma �]] ve re funE lab =

let

val (lv

�

; se

�

) = lookup ve(�, ve)
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val (lv

�

i

, se

�

i

) = C [[�

i

]] ve funE re lab i = 0; : : : ; l

val ([lv

0

�

; lv

0

�

0

; : : : ; lv

0

�

l

]; ses

1

) = unify ses([(lv

�

; se

�

); (lv

�

0

; se

�

0

); : : : ; (lv

�

l

; se

�

l

)])

val rv = fresh lvar("rv")

val f lab = funE (f)

val (lv

f

; se

f

) = lookup ve(f; ve)

val (lv

i

, se

i

) = C [[e

i

]] ve funE re lab i = 1; : : : ; n

val ([lv

0

f

; lv

0

1

; : : : ; lv

0

n

]; ses

2

) = unify ses([(lv

f

; se

f

); (lv

1

; se

1

); : : : ; (lv

n

; se

n

)])

val sma

0

= convert sma(sma; re; �)

val sma

0

i

= convert sma(sma

i

; re; �

i

) i = 0; : : : ; l

in

(insert ses(let

val rv = [sma

0

0

lv

0

�

0

; : : : ; sma

0

l

lv

0

�

l

]

regvec

sma

0

lv

0

�

in

insert ses(f lab

ck

hlv

0

1

; : : : ; lv

0

n

i hrvi hi hlv

0

f

i hi, ses

2

)

end, ses

1

), none)

end

We get the label for f by looking in funE. Note that we shorten life ranges

by inserting let expressions at two di�erent places.

Letregion

C [[letregion �:m in e end]] ve funE re lab =

(letregion �:m

in

insert se(C [[e]] ve funE (re + f� 7!mult(l;m)g) lab)

end, none)

Declaring lambda variables with let

C [[let val hx

1

; : : : ; x

n

i = e

1

in e

2

end]] ve funE re lab =

(let

val hx

1

; : : : ; x

n

i = insert se(C [[e

1

]] ve funE re lab)

in

insert se(C [[e

2

]] ve funE re lab)

end, none)

Let expressions are inserted around unboxed records if necessary:

let

val v1 = e1

<e1,e2> =====> val v2 = e2

in

<v1,v2>

end
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C [[he

1

; : : : ; e

n

i]] ve funE re lab =

let

val (lv

i

,se

i

) = C [[e

i

]] ve funE re lab i = 1; : : : ; n

val ([lv

0

1

; : : : ; lv

0

n

]; ses) = unify ses([(lv

1

; se

1

); : : : ; (lv

n

; se

n

)])

in

(insert ses(hlv

0

1

; : : : ; lv

0

n

i, ses), none)

end

Case

Sometimes it is necessary to insert a let around a case expression:

let

val v' = #5(v)

case #5(v) of in

::(x) => e2 ===> case v' of

| _ => e3 ::(x) => e2'

| _ => e3'

end

C [[case e

1

of pat => e

2

| => e

3

]] ve funE re lab =

let

val (e

0

1

,se

0

1

) = C [[e

1

]] ve funE re lab

in

(insert se(case e

0

1

of

pat => insert se(C [[e

2

]] ve funE re lab)

| => insert se(C [[e

3

]] ve funE re lab), se

0

1

), none)

end

3.5 Re�nements of the Representation of Func-

tions

It is hard to decide the right number of special cases to consider when

deciding how a function should be represented. We have decided to either

implement a function without a closure or with a closure holding all the free

variables. However, it is possible to have functions where some of the free

variables are accessible at the application point:

let f:fn<x,l1,clos>=>l1+(#1 clos)+x

val l1 = 1 let

in val l1 = 1

let in

val f = let

let val clos =
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val l2 = 2 let

in val l2 = 2

fn x => l1 + l2 + x in

end <l2>

in end

f 2 (*1*) in

end f <2, l1, clos>

end end

end

The free variables of fn x => l1 + l2 + x are l1 and l2. At the applica-

tion point (*1*) only l1 is accessible. The function is known so it is only

necessary to store the free variable l2 in the closure and pass l1 as an extra

argument at the application point as in the above code at right. We have

lifted the function to top level and explicitly created the closure clos for f.

It is possible to apply analyses that give more than two di�erent call

conventions (i.e., either with or without closures as in the above example).

Wand and Steckler present a selective and lightweight closure conversion

algorithm [56]. Only selected application points will use a closure (as in

our approach) and some closures may be leightweight, that is, may only

contain a subset of the free variables of the function; the rest are passed as

arguments.

We use a simple approach to decide which functions should have the

free variables passed as arguments and which should use a closure. A more

aggressive but still simple algorithm is used in the SML/NJ compiler [5,

Chapter 10] where a �xed point computation is done. It is based on the

following assumptions:

1. escaping functions use a closure.

2. all mutual recursive functions (i.e., de�ned in the same letrec) use

the same shared closure if they use a closure at all.

3. known functions (i.e., letrec bound functions) will not, to start with,

require a closure. If function f calls the known function g then f will

have its free variables extended with the free variables of g. This is

necessary for f to pass them as arguments to g. This is more aggressive

than our approach; we implement g with a closure if Free(f) � Free(g),

that is, we never extend the set of free variables of any function.

4. no function may have more that N arguments where N is the number

of available argument registers.

5. if a known function f calls another known function g de�ned in the

same letrec and g uses a closure then f will use the same closure (i.e.,

the shared closure). It is waste of time and registers to both pass the
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free variables as arguments and build a shared closure; why not use the

shared closure that has to be build anyway. If the register pressure is

limited then it is possible to assign closure elements to registers locally

within each function so the number of fetches from the shared closure

is limited.

A main di�erence from our approach is that we either implement all func-

tions in the same letrec with a shared closure or none at all. In SML/NJ

[5], some functions in the same letrec may use the shared closure and some

may have the free variables passed as arguments.



Chapter 4

Linearization

After closure conversion the ClosExp language is linearized into a LineStmt

language. The linearization phase makes sure that all value creating ex-

pressions are simple and that the value of such an expression is bound to a

variable. The ClosExp expression

let

val v = e1

in

e2

end

does not bind e2 to a variable. We want the linearization phase to translate

it into a sequence of statements:

val v = e1;

val res = e2

where res is the variable holding the result value. If the above let expression

is the body of a function then res is probably a machine register at runtime

in which the result of the function is returned. The expressions e1 and e2

must be simple, that is, an expression that roughly corresponds to a KAM

instruction (see Chapter 9).

4.1 Scope of Regions and Variables

It is important not to change the scope of regions. Consider the code:

let

val x =

letregion r in

let

val f = e1

86



CHAPTER 4. LINEARIZATION 87

in

f 2

end

end

in

e2

end

The expression letregion r : : : is not simple. The binding val x = : : :

has to be moved into the body of the inner let expression. If we keep the

letregion and let construct as is, then we get:

letregion r in

let

val f = e1

val x = f 2

in

e2

end

end

However, this does not work because e2 is still not bound to a variable and

more important the scope of r has changed. We cannot keep the let con-

struct because in linearized form we never have a value creating expression

that is not bound to a variable, (i.e., we cannot have a body as in the let

construct).

We want to keep the scoping of regions and if possible keep the letregion

construct as is. We also want to sequentialise value bindings. If we let the

result of e2 be stored in res then we want something like this:

letregion r in

val f = e1;

val x = f 2

end;

val res = e2

The scope of region r is now preserved but we have lost the scope of variables.

However, we must know the scope of variables in Chapter 7 where 
ush

addresses on the stack are calculated. We make the scope visible with a new

construct scope lv in e end. The scope construct introduces the variable

lv but does not bind it to a value. An expression e is now a sequence of

statements. Linearization of the above example then becomes:

scope res in

scope x in

letregion r in
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scope f in

f := e1;

x := f 2

end

end;

res := e2

end

end

where the result e2 is explicitly stored in a variable res.

We use lv := e for assignment instead of val lv = e in order to emphasize

that the variable lv is already created; we only initialize the variable. After

linearization, we still have the invariant that a variable is initialized only

once during program evaluation. This also holds for conditionals. Consider

the program

let

val x =

case e1 of

42 => e1

| _ => e2

in

e3

end

After linearization we get

scope res in

scope x in

case e1 of

42 => x := e1

| _ => x := e2;

res := e3

end

end

where res contains the result. The variable x is always initialized only one

time after the case no matter what branch is taken.

4.2 Return Convention

In the closure conversion phase we made call conventions explicit. We also

want return conventions to be explicit and this is done during linearization

because thats where we bind the result expressions to a variable (i.e., remove

the body of let expressions).

Consider the ClosExp function foldl from Figure 3.4.
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�

fun

foldl

fargs=[f ], rec vec=rv , clos=cg =>

let

val fn b = �

fn b

[f , #1(rv ), c] attop ff #0(rv)

in

fn b

end

and an application

foldl

funcall

hlv

i

i hrvi hi hlv

j

i hi

The function returns the value fn b which is bound to some variable at the

application point. We make the return convention explicit at the function

by extending the call convention cc to include a list of result variables:

cc = fclos: LamVar option,

free: LamVar list,

args: LamVar list,

reg vec: LamVar option,

reg args:LamVar list,

res: LamVar list g

Below we show the function after linearization (the extra let bindings are

actually inserted by the closure conversion algorithm).

�

fun

foldl

fargs=[f ], reg vec=rv , clos=c, res=[res ]g =>

scope lv

1

, lv

2

, fn b in

lv

1

:= #1(rv );

lv

2

:= #0(rv );

fn b := �

fn b

[f , lv

1

, c] attop ff lv

2

;

res := fn b

end

At the application point we bind the result to a variable, res say:

hresi := foldl

funcall

hlv

i

i hrvi hi hlv

j

i hi

4.3 LineStmt

The grammar for LineStmt is shown in Figure 4.1. The semantic objects are

the same as for ClosExp, see Figure 3.7 on page 67. The only places where

we have unboxed records are at application points. Unboxed records in let

constructs are translated into a sequence of variable initialization constructs

(i.e., x := se).
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se ::= be a

j x

j c

j :: se

j se

1

bop se

2

j #n(se)

ls ::= scope x in ls end

j letregion b in ls end

j x := se

j case se

1

of pat => ls

2

| => ls

3

j hx

1

; : : : ; x

h

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i

j hx

1

; : : : ; x

h

i := lab

ck

hse

1

; : : : ; se

n

i hse

reg

i hse

�

1

; : : : ; se

�

l

i

j hse

clos

i hse

f

1

; : : : ; se

f

m

i

j ls

1

; ls

2

Figure 4.1: The grammar for LineStmt. Note, that the letrec and

unboxed record constructs are removed from ls. We do not show the

grammar for top decl , ck , sma , a , m, b, c, pat , bop and be ; they are the

same as in ClosExp (see Figure 3.6 on page 66.)

4.4 Example

The linearized version of the function foldl from page 62 is shown in Section

4.2. The function fn xs from page 63 translated into LineStmt is shown in

Figure 4.2.

4.5 Algorithm L

In this section we present algorithm L that translates a ClosExp expression

into LineStmt. The top level declarations are translated by the function

L

T

: TopDecl

ce

! TopDecl

ls

where TopDecl

ce

is the set of top level declarations in ClosExp and TopDecl

ls

is the set of top level declarations in LineStmt. The non top level expressions

are translated by the function

L : ClosExp � hVar seqi ! LineStmt

where LineStmt is the set of linearised statements ranged over by ls.
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�

fn

fn xs

fargs=[xs], clos=c, res=[res ]g =>

scope v942 in

(case xs of

nil => res := #1(c)

| :: (v942 ) =>

scope x , xs' in

x := #0(v942 );

xs' := #1(v942 );

letregion r22 :4 in

scope k80 in

letregion r24 :4 in

scope k77 in

letregion r25 :2 in

scope rv , lv

1

, lv

2

in

rv := [atbot lf r24 , atbot lf r22 ] atbot lf r25;

lv

1

:= #2(c);

lv

2

:= #3(c);

hk77i := foldl

funcall

hlv

1

i hrvi hi hlv

2

i hi

end

end; (*r25*)

scope k79 in

scope lv

3

, k78, lv

4

in

lv

3

:= #2(c);

hk78i := (lv

3

)

fncall

hxi hlv

3

i hi;

lv

4

:= #1(c);

hk79i := k78

fncall

hlv

4

i hk78 i hi

end;

hk80i := k77

fncall

hk79 i hk77 i hi

end

end

end; (*r24*)

hresi := k80

fncall

hxs' i hk80 i hi

end

end (*r22*)

end)

end

Figure 4.2: The function foldl from page 63 translated into LineStmt.

Note variable lv

3

in the call to lv

3

that is used for both the code pointer

and function closure. The function lookup ve (page 74) will assign #2(c)

to two fresh lambda variables and not lv

3

only. However, the function

unify se then uni�es the two select expressions.
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4.5.1 Top level declarations

We assume the number of values returned by each function to be known and

the function

RC : Label ! Int

returns the number of return values for each function represented with its

label.

L

T

[[�

fun

lab

cc => e]] =

let

val lv

i

= fresh lvar("lv i") i = 1; : : : ; RC(lab)

in

�

fun

lab

(cc + fres=[lv

1

; : : : ; lv

RC(lab)

]g) =>

L [[e]] hlv

1

; : : : ; lv

RC(lab)

i

end

The top level function �

fn

lab

cc => e is translated likewise. We write cc +

fres=[lv

1

; : : : ; lv

RC(lab)

]g as an abbreviation for constructing a new call con-

vention extended with the list of result variables. A sequence of top level

declarations is translated by:

L

T

[[top decl

1

;top decl

2

]] = L

T

[[top decl

1

]] ;L

T

[[top decl

2

]]

4.5.2 Simple Expressions

L [[c]] hlvi = lv := c

L [[x]] hlvi = lv := x

L [[be a]] hlvi = lv := be a

Boxed expressions are not changed in the translation.

L [[e

1

bop e

2

]] hlvi = lv := e

1

bop e

2

L [[#n(e)]] hlvi = lv := #n(e)

4.5.3 Expressions

L [[letrec f

lab

= be a in e end]] h

~

lvi =

scope f in

f := be a;

L [[e]] h

~

lvi

end
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L [[e

ck

he

1

; : : : ; e

n

i he

clos

i he

f

1

; : : : ; e

f

m

i]] h

~

lvi =

h

~

lvi := e

ck

he

1

; : : : ; e

n

i he

clos

i he

f

1

; : : : ; e

f

m

i

L [[lab

ck

he

1

; : : : ; e

n

i he

reg

i he

�

1

; : : : ; e

�

l

i he

clos

i he

f

1

; : : : ; e

f

m

i]] h

~

lvi =

h

~

lvi := lab

ck

he

1

; : : : ; e

n

i he

reg

i he

�

1

; : : : ; e

�

l

i he

clos

i he

f

1

; : : : ; e

f

m

i

The lambda variables h

~

lvi are now explicitly marked as the return conven-

tion.

L [[letregion b in e end]] h

~

lvi =

letregion b in L [[e]] h

~

lvi end

L [[let val hx

1

; : : : ; x

n

i = e

1

in e

2

end]] h

~

lvi =

scope x

1

; : : : ; x

n

in

L [[e

1

]] hx

1

; : : : ; x

n

i;

L [[e

2

]] h

~

lvi

end

L [[he

1

; : : : ; e

n

i]] hlv

1

; : : : ; lv

n

i =

lv

1

:= e

1

;

.

.

.

lv

n�1

:= e

n�1

;

lv

n

:= e

n

L [[case e

1

of c => e

2

| => e

3

]] h

~

lvi =

case e

1

of

c => L [[e

2

]] h

~

lvi

| => L [[e

3

]] h

~

lvi

L [[case e

1

of ::(v) => e

2

| => e

3

]] h

~

lvi =

scope v in

case e

1

of

::(v) => L [[e

2

]] h

~

lvi

| => L [[e

3

]] h

~

lvi

end

We have two rules for the case construct because the pattern ::(v)

implicitly declares v and we therefore need a scope for v. We insert the

scope outside the case which is �ne in our grammar because we at most

can have one declaration. However, it does not work in the general case.

Consider the code
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case e

1

of

::(v) => e

2

| ::'(hv

1

; v

2

i) => e

3

| => e

4

where we have two constructors :: and ::'. If the variables v; v

1

and v

2

are

spilled then variable v can share stack space with the variables v

1

and v

2

,

that is, v and v

1

; v

2

are not live at the same time. Introducing the scope

construct outside the case makes this sharing impossible with the o�set

calculation algorithm used in Chapter 7. However, it is not a problem in the

ML Kit because the case construct can only match constants so no variable

is ever declared in a pattern in a case construct.
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Register Allocation

The phases preceding register allocation assume an in�nite number of ma-

chine registers (i.e., variables). The closure conversion phase, for instance,

introduces a new variable whenever a value is selected from a closure with no

concern to how the value is stored at runtime (i.e., in a machine register or

in a memory cell). The target computer assumes all values to either reside

in machine registers or in memory.

The purpose of register allocation is to map the variables into machine

registers, memory locations or both. On most computers, and especially

RISC based computers, accessing values in memory is much more expensive

than accessing values in registers. It is essential for the running time of the

target program to map as many variables to machine registers as possible.

It is not possible to always map all variables to registers and some variables

must be stored in memory. We say such variables are spilled. Neither, is

it possible to always obtain an optimal mapping from variables to registers

and most algorithms are driven by heuristics directing the way registers are

chosen for variables (and likewise how variables are chosed to be spilled).

A popular register allocation method is graph coloring [13]. An interfer-

ence graph is built with nodes representing values (i.e., variables) and edges

representing interferences. Two nodes that interfere may not be assigned

the same register. There can be several reasons for two variables to inter-

fere but the usual reason is that they are live at the same time. Given the

interference graph and a set of colors we compute a coloring of the graph,

that is, we assign colors to the nodes and no two nodes connected with an

edge may be assigned the same color. The set of colors represent the set of

machine registers.

Register allocation can either be done locally on each function (or ba-

sic block) called intra{procedural register allocation or globally on entire

modules (or programs) called inter{procedural register allocation.

1

1

We use the term global for modules containing one or more functions. In many books

on optimizing compilers the term global refers to function wide optimizations and local

95
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An intra{procedural register allocator does not have information about

register usage outside the function currently considered. It is therefore nec-

essary that all local values are at �xed places (often memory) when control

is transferred from one function to another. An inter{procedural register

allocator may use information about several functions in the program and

may therefore obtain better register mappings. For instance, it may be the

case that at every call to a function f then a large set of registers do not

contain live data and may therefore be used freely inside the function f ; or

if f only uses a few registers then the caller can use the other registers freely

even though f is called within the live range of the values in the registers.

A disadvantage with inter{procedural register allocators is that they often

depend on control 
ow information which is di�cult to obtain accurately in

a language with unknown functions [12, 38].

The graph color algorithm has two major problems. It may be computa-

tionally hard to color the interference graph and a variable is either assigned

a register or memory location for its entire life time. It may be better to

assign a variable a register in one part of a function and a memory location

in another part of the function. This may be done by range splitting (i.e.,

to use two variables for the same value with no overlapping life range) but

this is not included in the graph color algorithm.

It is widely believed that graph coloring is a wise choise for register allo-

cation. The average computation necessary for coloring can be made accept-

able and generating variables with short life ranges solves the range splitting

problem. For instance, the variables introduced by function insert se in the

closure conversion algorithm (Chapter 3) have small live ranges.

Other register allocation algorithms not based on graph coloring exists.

They are often motivated by the need to solve the register allocation problem

faster than is possible with graph coloring. For instance, an inter{procedural

register allocator based on graph coloring may build a huge interference

graph that is too costly to solve. Also, dynamic optimizations done at load

time require the optimizations to be almost linear which is not the case with

graph coloring.

A fast algorithm called linear scan uses the same liveness information

as graph coloring but instead of building an interference graph it is used to

compute a lifetime interval for each variable. A lifetime interval includes

the code that starts at the program point where the variable is �rst de�ned

and ends at the program point where it is last used. The lifetime intervals

can be sorted according to the order of the code. A �nite number of lifetime

intervals are active at each program point and they all compete for a register.

If there are more active lifetime intervals than registers then one or more

variables, represented by the active lifetime intervals, are spilled.

A recent study of a well written linear scan based algorithm and a well

to optimizations on basic blocks only [1, 37].
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written graph color based algorithm has shown that in general the linear scan

approach is close to the quality of graph coloring [54]. However, the com-

pile time diverges as the programs get larger with more competing register

candidates, (i.e., more variables); on a program with 245 register candidates

graph coloring used 0.4 seconds and linear scan 1.5 seconds. On a program

with 6697 register candidates graph coloring used 15.8 seconds and linear

scan 4.5 seconds.

Many phases in the compiler introduce statements that move values from

one variable v

1

to another variable v

2

. If v

1

and v

2

are assigned the same

register then the move statement can be eliminated. We can traverse the

program after register allocation and remove unnecessary move statements.

However, we can do better. If there is no interference between the two

variables v

1

and v

2

then we can assign the same register to the variables and

thereby eliminate the move statement. This is called coalescing.

Our register allocator is intra{procedural and we believe graph coloring

is the best choice because the interference graphs are no larger than they

can be solved in acceptable time. The study discussed above has shown that

the result is in general slightly better than a linear scan based algorithm.

We use a variant of graph coloring with coalescing [6].

We try to merge two nodes in the interference graph if they are source

and destination of a move statement and does not interfere. We merge

the nodes only if we can prove that it is not harder to color the resulting

interference graph, that is, if we have a K color{able interference graph then

the resulting graph, with the two nodes merged, must still be K color{able.

The algorithm described in this chapter is based on the one given by Appel

[6, Chapter 11].

We �rst discuss the additions necessary to the intermediate language to

express register allocation information. We then discuss call conventions

(with caller and callee save registers), liveness analysis and explain the gen-

eral principles used in the graph color algorithm; especially how moves are

eliminated and how registers are chosen for variables. We do not discuss the

algorithm in detail because it is explained elsewere [6].

5.1 Revised Grammar

A few additions are necessary to the grammar for LineStmt in order to in-

clude register allocation information. Normally, a register allocator returns

a rewritten program where all variables have been replaced by machine reg-

isters. However, we do not remove lambda and region variables because they

are needed in the succeeding phases. Instead we insert register allocation

information into the code such that the code generator knows which regis-

ters the variables are mapped to. We keep the variables because we need

the scope information (scope and letregion constructs) in the phase that
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calculates stack o�sets, Chapter 7.

One could annotate the register allocation information in two ways giving

a di�erent level of 
exibility.

1. For each scope lv in e end construct we can annotate the machine

register to which the lv is mapped as follows:

scope lv : phreg in e end

This says that lv has been mapped into the machine register phreg in

e.

2. We can also keep the scope construct as is, and then use a new con-

struct

e ::= regalloc lv 7! phreg

that tells the code generator that variable lv has been assigned ma-

chine register phreg. The assignment is valid until the next regalloc

construct reassigns lv to anoter machine register or cancels the assign-

ment:

e ::= regalloc lv 7! none

This implicitly says that from now on lv is spilled, (i.e., none is not a

valid color).

The �rst method is adequate for a graph color based register allocator work-

ing on entire function bodies as one entity because then any variable will

be mapped to the same register during the entire function. The second

method gives more 
exibility because a variable may be mapped to di�erent

machine registers during its life time. However, the extra 
exibility either

requires a more 
exible register allocator than graph coloring or a graph

color algorithm that considers the code between two function calls as one

entity instead of the entire function.

It is hard to see which is the best solution. We let the graph color

algorithm work on an entire function body as one entity because it seems

simpler. We then gain 
exibility by splitting registers in caller and callee

save registers which makes it possible to have registers live across function

calls. This is di�cult to achieve with a graph color algorithm working only

on the code between function calls. We annotate the register allocation

information on the scope constructs because it seems simpler and works

with our graph color method.

5.1.1 Store Type

When calculating stack o�sets we assign o�sets to spilled variables only.

The register allocator therefore annotate a store type (sty) on the scope



CHAPTER 5. REGISTER ALLOCATION 99

construct.

sty ::= stack

j phreg

where phreg 2 PhReg is a machine register. A phreg annotation says that the

variable is never spilled and stack means that there exists a path through

the function where the variable is spilled.

2

e ::= scope x : sty in e end

The variables in a call convention are replaced by a call convention store

type:

cc sty ::= LamVar : stack

j phreg

where lv :stack means that the parameter lv is passed in the call convention

on the stack and phreg says that the parameter (that was denoted by a

variable v before register allocation) is passed in the machine register phreg.

The variable v is removed from the call convention for reasons discussed in

the next section. A call convention is then as follows:

cc = fclos: cc sty option,

free: cc sty list,

args: cc sty list,

reg vec: cc sty option,

reg args: cc sty list,

res: cc sty list g

where for instance, args:cc sty list is a list of call convention store types

each denoting an argument parameter. At this point it is important to note

that a variable denoting a parameter passed on the stack has been declared,

(i.e., a stack slot has been reserved for the variable). A parameter passed

in a machine register is not bound to a variable (i.e., the variable has been

removed from the call convention). However, it may be the case that the

machine register needs to be spilled and this requires a slot on the stack to

be reserved. A stack slot is reserved by explicitly introducing the removed

variable (with scope) in the body of the function and bind it to the machine

register that it was replaced with. This is explained in the next section. We

let CC

sty

denote the set of call conventions with store types inserted ranged

over by cc

sty

.

It is not necessary to annotate store types on region variables at the

letregion construct because they always denote a known slot in the acti-

vation record of the function in which they are declared. This holds for both

�nite and in�nite regions.

2

Because we are compiling Standard ML where variables are immutable and a variable

keeps the same stack place while it is live then we store a variable only once in memory.
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5.1.2 Call Conventions

Before building the interference graph we make dedicated machine registers

explicit in the program (e.g., machine registers used for argument and result

values at application points). This is necessary for the precolored variables,

that is, variables that are dictated a speci�c register by the call conventions.

Parameters and results passed on the stack do not need explicit scope

declarations in the body of the called function because they are already

stored on the stack. Actually we simplify matters even further by not letting

spilled parameters and results be part of the register allocator (i.e., if a

parameter is spilled by a call convention then it remains spilled after register

allocation). The simpli�cation is justi�ed by the fact that we reserve many

machine registers for arguments and results and if the number of arguments

or results exceeds the number of available machine registers then the register

pressure is high and we believe the advantage of letting them be register

allocated is limited.

3

Parameters and results passed in machine registers may be spilled during

register allocation. Say that a function takes variable v as argument and

the argument is passed in a machine register ph. Then v is removed from

the call convention and declared in the body of the function with a scope

construct. At entry to the function we assign v the value of ph. It is then

possible for the register allocator to spill the argument variable v and load

ph with another value. It is also possible that v is assigned another machine

register in which case the move statement becomes a copy between two

registers. It may also be the case that v and ph are coalesced in which case

the assignment is removed. It all depends on the register pressure in the

body of the function.

There are two main reasons for moving v out of the call convention

and into the body of the function: if v is spilled then the scope construct

automatically reserves a slot in the activation record by the calculate o�set

phase (Chapter 7) and the variable v is only declared once. It would be

confusing to have the same variable present in both the call convention and

in a scope construct because where is the variable then declared? It is not

declared in the call convention because the parameter is passed in a register!

Assuming we have two machine registers for passing arguments (phreg

1

and phreg

2

) and one for the result (phreg

1

) then the slightly modi�ed function

foldl from page 89 may be rewritten as the function below. We have added

another result variable res

2

that is returned on the stack to illustrate passing

both arguments and results in registers and on the stack.

�

fun

foldl

fargs=[phreg

1

], recvec=phreg

2

, clos=c:stack,

res=[phreg

1

,res

2

:stack]g =>

3

The number of available registers depends on the target architecture which may either

be a RISC or CISC machine.
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scope res

1

in

scope f , rv in

f := phreg

1

;

rv := phreg

2

;

scope lv

1

, lv

2

, fn b in

lv

1

:= #1(rv );

lv

2

:= #0(rv );

hfn

b

i := �

fn b

[f , lv

1

, c] attop lv

2

;

res

1

:= fn b;

res

2

:= fn b

end

end;

phreg

1

:= res

1

end

5.1.3 Resolving Call Conventions

Given a call convention as de�ned on page 57 with variables donoting argu-

ment and result parameters we must convert it into a call convention that

speci�es how the parameters are passed, that is, either on the stack on in

registers.

The function

resolve cc : CC !

precolored arguments

z }| {

(LamVar � PhReg)list �

precolored results

z }| {

(LamVar � PhReg)list �CC

sty

makes this conversion and returns a list of precolored argument variables,

precolored result variables and a call convention with store type annotations

inserted. The compiler supports only one call convention, the standard call

convention, but any number of call conventions are easily supported. In case

more than one call convention is used, then an analysis deducing the call

conventions must be implemented. All functions which can be called at the

same application point must have the same call convention.

Assume, we have a list of machine registers for arguments args phreg

and a list of machine registers for results res phreg. We then assign the

variables in a call convention argument and result registers as follows. Re-

sult variables are assigned machine registers in the order left to right. If

res=[lvr

1

; : : : ; lvr

n

] and we have m = jres phregj � n then the �rst m vari-

ables (lvr

1

; : : : ; lvr

m

) in res are assigned a register from res phreg.

Argument parameters are resolved with the following order (priority):

clos, reg vec, args, free, reg args. For each entry, the variables are assigned

registers from args phreg.

For example, with args phreg = [q

1

; : : : ; q

9

], res phreg = [p

1

; p

2

] and call

convention
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cc = fclos = c,

free = [f

1

; f

2

],

args = [a

1

; : : : ; a

9

],

reg vec = rv,

reg args = [],

res = [r

1

; : : : ; r

4

]g

then resolve cc(cc) returns

([(c; q

1

); (rv; q

2

); (a

1

; q

3

); : : : ; (a

7

; q

9

)],

[(r

1

; p

1

); (r

2

; p

2

)],

fclos = q

1

,

free = [f

1

: stack; f

2

: stack],

args = [q

3

; : : : ; q

9

; a

8

: stack; a

9

: stack],

reg vec = q

2

:,

reg args = [],

res = [p

1

; p

2

; r

3

: stack; r

4

: stack]g)

The arguments a

8

, a

9

, f

1

, f

2

and results r

3

, r

4

are passed on the stack

and the other variables are removed from the call convention and returned

as either precolored argument or precolored result variables. For instance,

result variable r

1

is precolored as register p

1

.

5.1.4 Rewriting LineStmt

As discussed above we must declare the precolored variables with scope

constructs such that a stack slot can be reserved in the case they are spilled.

We must also make sure that arguments and results, at application points,

are passed in either registers or on the stack speci�ed by the call convention.

In this section we show how to rewrite the body of a function such that this is

explicit. We believe it is better to have such information explicit in the term

because it makes it easier to implement the register allocation algorithm

and see what happens, (e.g., why is an argument variable coalesced with

register ph

1

and not ph

2

). The extra statements inserted does not e�ect the

resulting program because if they were not inserted then we would have to

incorporate the same information into the register allocation algorithm and

the algorithm would be harder to comprehend. We hope, that most of the

extra moves are removed by coalescing.

Given the function resolve cc we can rewrite a LineStmt program to

be on the same form as foldl on page 100.

We use the three functions:

resolve args : (LamVar � PhReg) list ! LineStmt

resolve res : (LamVar � PhReg) list ! LineStmt

resolve app : LineStmt! LineStmt
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Declaring Argument and Result Variables

The function resolve args translates all argument variables passed in ma-

chine registers into a sequence of assignments. If resolve cc is called with

precolored argument variables: [(a

1

; r

1

); : : : ; (a

n

; r

n

)] then the sequence

a

1

:= r

1

;

.

.

.

a

n

:= r

n

is returned. The function resolve res does the opposite. Given the pre-

colored result variables [(a

1

; r

1

); : : : ; (a

n

; r

n

)] as argument the sequence of

assignments returned is

r

1

:= a

1

;

.

.

.

r

n

:= a

n

Application Points

The function resolve app resolves an application using a variant of re-

solve cc (called resolve app cc) working on call conventions containing

simple expressions and not variables only. The argument brackets are con-

verted into a temporary call convention and a list of argument and result

expressions passed in machine registers are returned from resolve app cc.

4

A sequence of copies between expressions and machine registers are then in-

serted around the application. Consider the application

hx

1

; : : : ; x

n

i := se

1

hse

2

; : : : ; se

m

i hse

1

i hi

The application is converted into the term

arg

1

:= se

1

;

.

.

.

arg

k

:= se

k

;

hres

1

; : : : ; res

h

; x

h+1

; : : : ; x

n

i :=

arg

1

harg

2

; : : : ; arg

k

; se

k+1

; : : : ; se

m

i harg

1

i hi;

x

1

:= res

1

;

.

.

.

x

h�1

:= res

h�1

;

x

h

:= res

h

4

The function resolve app cc is identical to resolve cc except that resolve app cc

has simple expressions in each entry of the call convention and not variables.
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where arg

i

and res

j

are machine registers. Argument and result values not

assigned machine registers by the standard call convention are passed on the

stack (e.g., se

k+1

; : : : ; se

m

and x

h+1

; : : : ; x

n

). Notice that the translation

preserves the property that machine registers are never live across an ap-

plication. This property is used in the phase that inserts 
ush statements,

Chapter 6. Note, that we never insert assignments after a tail call; the

assignments are never executed.

Translation

The LineStmt program is translated with the function

CC

T

: TopDecl

ls

! TopDecl

ls

working on top level declarations and the body of each function is translated

by

CC : LineStmt ! LineStmt

Below we show the interesting cases:

CC

T

[[�

fun

lab

cc => ls]] =

let

val (args, res, cc

sty

) = resolve cc(cc)

in

�

fun

lab

cc

sty

=>

scope to lvar seq(res) in

scope to lvar seq(args) in

resolve args(args);

CC [[ls]]

end;

resolve res(res)

end

end

The function to lvar seq transforms a list [(a

1

; r

1

); : : : ; (a

n

; r

n

)] into the

sequence a

1

; : : : ; a

n

(i.e., we declare the lambda variables that are mapped

into machine registers).

CC [[ls

1

;ls

2

]] = CC [[ls

1

]] ; CC [[ls

2

]]

We do a forward scan of the program.

CC [[hx

1

; : : : ; x

n

i := se

1

hse

2

; : : : ; se

m

i hse

1

i hi]] =

resolve app(hx

1

; : : : ; x

n

i := se

1

hse

2

; : : : ; se

m

i hse

1

i hi)



CHAPTER 5. REGISTER ALLOCATION 105

�

fn

fn xs

fargs=[ph

2

], clos=ph

1

, res=[ph

1

]g =>

scope res in

scope xs , c in

c := ph

1

;

xs := ph

2

;

scope v942 in

(case xs of

nil => res := #1(c)

|:: (v942 ) =>

scope x , xs' in

x := #0(v942 );

xs' := #1(v942 );

letregion r22 :4 in

scope k80 in

letregion r24 :4 in

scope k77 in

letregion r25 :2 in

scope rv , lv

1

, lv

2

in

rv := [atbot lf r24 , atbot lf r22 ] atbot lf r25;

lv

1

:= #2(c);

lv

2

:= #3(c);

ph

1

:= lv

2

;

ph

2

:= rv;

hph

1

i := foldl

funcall

hlv

1

i hph

2

i hi hph

1

i hi;

k77 := ph

1

end

end; (*r25*) end

Figure 5.1: Part one of the function fn xs with the precolored

variables made explicit and application points resolved. We have

args phreg=[ph

1

; ph

2

] and res phreg=[ph

1

]. No arguments or results are

passed on the stack.
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scope k79 in

scope lv

3

, k78, lv

4

in

lv

3

:= #2(c);

ph

1

:= lv

3

;

ph

2

:= x;

hph

1

i := (lv

3

)

fncall

hph

2

i hph

1

i hi;

k78 := ph

1

;

lv

4

:= #1(c);

ph

1

:= k78;

ph

2

:= lv

4

;

hph

1

i := k78

fncall

hph

2

i hph

1

i hi;

k79 := ph

1

end;

ph

1

:= k77;

ph

2

:= k79;

hph1i := k77

fncall

hph

2

i hph

1

i hi;

k80 := ph

1

end

end

end; (*r24*)

ph

1

:= k80;

ph

2

:= xs

0

;

hph1i := k80

fncall

hph

2

i hph

1

i hi;

res := ph

1

end

end (*r22*)

end)

end

end;

ph

1

:= res

end

Figure 5.2: Part two of the function fn xs with the precolored variables

made explicit and application points resolved.
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A letrec application is done similarly.

With the LineStmt program in this form we can build the interference

graph. Figure 5.1 and 5.2 shows the example function fn xs from Figure 4.2

on page 91 with precolored variables made explicit.

Precolored registers do not spill so their live range must be small. This

is indeed the case in foldl where the argument registers are stored in argu-

ment variables at entry to the function and result registers are given their

value at exit from the function. The live ranges are also minimized around

applications.

5.2 Dummy Register Allocator

A nice e�ect of having call conventions explicit in the LineStmt code is that

we can compile the program without using a register allocator or at least

use a trivial register allocator only. Our trivial register allocator spills all

variables, that is, annotate all scope introduced variables with stack. The

code generator then inserts load and store code such that only temporary

registers are used besides the registers used in the call convention.

We found it invaluable to use such a simple register allocator in the

early stages of the compiler because we did not have a complicated reg-

ister allocator algorithm to debug while debugging the mandatory phases

of the backend. Also, the garbage collector was easier to debug without a

complicated register allocator.

5.3 Liveness Analysis

To build the interference graph we need a liveness analysis that, for each

program point, computes the set of live variables, that is, the variables that

contain a value that is needed for the remainder of the computation.

For imperative languages the liveness analysis is normally based on a

control 
ow graph that, for each statement, has an edge to the statements

that may follow. If the program contains loops, then the control 
ow graph

contains cycles. Liveness is found by a �xed point computation on the con-

trol 
ow graph. We compute liveness information locally for each function

and because loops are implemented with function calls in Standard ML then

we do not have loops locally in each function. We can then compute the

liveness information by a single backward scan of the LineStmt program.

Consider the LineStmt code

scope x; y; z in

x := 0 (1)

y := x + 42 (2)

z := x + y (3)
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x := 42 (4)

z := z + x (5)

.

.

.

end

The liveness information is computed using def and use sets of each state-

ment, that is, the set of variables that are de�ned and used respectively

when the statement is evaluated. Note that the same variable can be used

and de�ned in the same statement (e.g., z := z + x). We let the functions

def and use return the set of de�ned and used variables for the statement

given as argument. For assignment and addition we have:

def(v

1

:= v

2

+ v

3

) = fv

1

g

use(v

1

:= v

2

+ v

3

) = fv

2

, v

3

g

The def and use functions for LineStmt are de�ned in Section 5.3.1.

The live range of a variable is the code between the �rst de�nition and

last use of the variable. The same variable may be de�ned at di�erent

program points in imperative languages but a variable is de�ned only once

in Standard ML. LineStmt is not a functional language but because it is a

linearized version of a functional language then we have a similar property,

that is, a variable is initialized only once during program evaluation, see

Section 4.1 on page 86. This is a unique property because then a variable

needs to be stored in memory at most one time even though it is spilled.

The live ranges for x, y and z in the example program above are

z = f4 7! 5, 3 7! 4g

x = f4 7! 5, 2 7! 3, 1 7! 2g

y = f2 7! 3g

Note that the above program cannot be a linearized version of a ClosExp

program because x is de�ned twice. The set of live variables at each state-

ment is computed by looking at each statement in reverse order. For each

statement we maintain a set live that is the set of live variables at entry to

the statement. If we assume z to be live after statement 5 (i.e., live(6)=fzg),

then we have

live(5) = use(5) [ (live(6) n def(5)) = fz; xg [ (fzg n fzg) = fz; xg

live(4) = use(4) [ (live(5) n def(4)) = fg [ (fz; xg n fxg) = fzg

and in general

live(i) = use(i) [ (live(i+ 1) n def(i))
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5.3.1 Def and Use Sets for LineStmt

The functions def and use for LineStmt constructs are easily de�ned. The

table below shows the def and use sets for various simple constructs:

Construct def use

sma lv fg flvg

sma � fg fg

� : m fg fg

c fg fg

::x fxg fg

An allocation point sma � does not de�ne � because � is a constant at

runtime (i.e., an o�set from the stack pointer found at compile time). The

pattern ::x de�nes the variable x.

Boxed expressions do not de�ne variables. The use sets are calculated

as follows:

use((se

1

; : : : ; se

n

)) =

S

i=1;::: ;n

use(se

i

)

use(�

lab

[se

f

1

; : : : ; se

f

n

]) =

S

i=1;::: ;n

use(se

f

i

)

use([a

1

; : : : ; a

n

]

regvec

) =

S

i=1;::: ;n

use(a

i

)

use([se

f

1

; : : : ; se

f

n

]

sclos

) =

S

i=1;::: ;n

use(se

f

i

)

Def and use sets for simple expressions are found below:

Construct def use

be a fg use(be) [ use(a)

x fg fxg

c fg fg

:: se fg use(se)

se

1

bop se

2

fg use(se

1

) [ use(se

2

)

#n(se) fg use(se)

5.4 Interference Graph

With liveness information we can compute the interference graph ig where

nodes denote variables and we have an edge between two nodes if they

interfere. Two variables v

1

and v

2

may interfere for several reasons but

the usual situation is that v

1

and v

2

are live at the same time (i.e., they

cannot be assigned the same register). Other interferences may come from

instruction sets where some instructions can access a limited number of the

registers only. Then the variables in the instruction interfere with all the

registers that the instruction does not access. We only consider interferences

of the �rst kind so two variables interfere i� there exists a program point

where they are both live.

We let IG be the set of interference graphs ranged over by ig.
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5.4.1 Unnecessary Copy Related Interferences

We give the assignment construct special treatment. A copy x := y does

not make x and y interfere because they contain the same value and may

therefore be assigned the same register. If, however, one of the registers, say

x, is rede�ned while y is still live then an interference edge will be inserted.

5

This is indeed necessary because at that time they do not necessarily contain

the same value.

Edges are added to an interference graph ig using, for each statement

ls, the two rules

1. if ls is a copy d := s, and the live set (live out) is flv

1

; : : : ; lv

n

g then

we add edges (d,lv

i

) to ig for all lv

i

not equal to s.

2. if ls is not a copy, de�nes variable d and the live set (live out) is

flv

1

; : : : ; lv

n

g, then we add the edges (d; lv

1

); : : : ; (d; lv

n

) to ig.

The graph ig is undirected.

5.4.2 Move Related Nodes

For every copy d := s we insert a move related edge in ig. A move related

edge is not an interference edge. Move related edges makes it possible to

distinguish move related nodes (i.e., d and s) from non move related nodes.

In the examples to come we use dotted edges for move related edges and

normal edges for interference edges. A node can be categorized as either:

1. a move related node (i.e., the node has at least one move related edge

and maybe other interference edges).

2. a non move related node (i.e., the node does not have any move related

edges).

3. a constrained move related node (i.e., a node with a move related

edge to a node n and an interference edge also to node n). Then it

is impossible to coalesce the two nodes. We remove all move related

edges from constrained move related nodes.

5.4.3 Building IG

With the def and use functions de�ned in Section 5.3.1 we can state the

algorithm that computes the interference graph.

IG

T

: TopDecl

ls

! IG

5

This never happens because we are compiling Standard ML and not an imperative

language.
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works on top level declarations. The body of a function is handled by

IG : LineStmt �P(LamVar)� IG! P(LamVar)� IG

where P(LamVar) is ranged over by live and is the set of live variables.

Top Level Functions

IG

T

[[�

fun

lab

cc => ls]] =

let

val (live; ig) = IG [[ls]] fg fg

in

ig

end

The empty graph is written fg.

Statements

We do a backward scan on the statements and collect liveness information

at the same time that we insert either interference or move related edges

into ig.

IG [[scope x in ls end]] live ig = IG [[ls]] live ig

IG [[letregion b in ls end]] live ig = IG [[ls]] live ig

IG [[lv

1

:= lv

2

]] live ig =

(flv

2

g [ (live n flv

1

g),

addMoveEdge(addEdge(ig; flv

1

g; live n flv

2

g); lv

1

; lv

2

))

IG [[lv := (se

1

; : : : ; se

n

) a]] live ig

((live n flvg) [ use((se

1

; : : : ; se

n

) a),

addEdge(ig; flvg; live [ use((se

1

; : : : ; se

n

) a)))

IG [[lv := se]] live ig =

((live n flvg) [ use(se), addEdge(ig; flvg; live))

IG [[case se

1

of pat => ls

2

| => ls

3

]] live ig =

let

val (live

2

; ig

2

) = IG [[ls

2

]] live ig

val (live

3

; ig

3

) = IG [[ls

3

]] live ig

2

val live

1

= live

2

[ live

3

in

(use(se

1

) [ (live

1

n def(pat)), addEdge(ig

3

,def(pat),live))

end

IG [[hx

1

; : : : ; x

n

i := se

ffncall;funcallg

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] live ig =

((

S

i2fck;1;::: ;n;clos;f

1

;::: ;f

m

g

use(se

i

)) [ (live n fx

1

; : : : ; x

n

g),

addEdge(ig; fx

1

; : : : ; x

n

g; live [ fx

1

; : : : ; x

n

g))

IG [[hx

1

; : : : ; x

n

i := se

ffnjmp;funjmpg

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] live ig =
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((

S

i2fck;1;::: ;n;clos;f

1

;::: ;f

m

g

use(se

i

))),

addEdge(ig; fx

1

; : : : ; x

n

g; fx

1

; : : : ; x

n

g))

IG [[ls

1

; ls

2

]] live ig =

let

val (live

2

; ig

2

) = IG [[ls

2

]] live ig

in

IG [[ls

1

]] live

2

ig

2

end

The rule for letrec application is similar to the rule for ordinary application.

Note that if more than one variable is de�ned as in an application then the

de�ned variables interfere with themselves and the live variables.

The function

addEdge : IG�P(LamVar)�P(LamVar)! IG

adds interference edges between variables in the two variable sets. The

function

addMoveEdge : IG� LamVar � LamVar ! IG

adds a move related edge between the two variables.

5.5 Spilling

Spilling a variable normally requires rewritting the program where a new

temporary will fetch the spilled variable and die right after the use. For

instance, if variable x is spilled we have

y = x + z ===x is spilled===> tmp = Fetch(x)

y = tmp + z

and tmp has a tiny life range. However, the rewritten program has to go

through the register allocation phase again (i.e., iterated register allocation).

In the ML Kit version 2 (and version 3) [22, 49, 50] we simpli�ed matters a

bit because we never rewrite the program if a variable is spilled. Instead we

reserve four registers that are not used by the register allocator.

The four registers are reserved for the purpose of compiling simple ex-

pressions and fetching spilled variables. For instance, the machine code to

allocate a region requires a few extra registers. Given any statement with

all variables spilled it is possible to compile it with the use of no more than

four registers.

The simpli�cation gives a less good register usage because the four re-

served registers are never used by the register allocator even though they

are not needed to compile all the statements. It may be solved by letting all

registers be available to the register allocator. If the code generator requires
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additional registers to compile a statement then the requirements may be

build into the interference graph, that is, let the statements interfere with all

registers that are needed to compile the statements. This can be controlled

by the def and use functions. We do not use this method and still reserve

a number of registers for the code generator.

6

It is not necessary to insert spill code explicitly and use iterated regis-

ter allocation because we reserve temporaries for the code generator. This

speeds up the register allocator and we believe the performance degradation

to be moderate (i.e., the register allocator still has enough registers on a

RISC machine).

5.5.1 Statements Are Not Like Three Address Instructions

Register allocation is normally performed on three address like instructions

which are simpler than the statements in LineStmt. This means that we

perform register allocation on a term with less nodes than if we used three

address instructions which is good for the running time of the algorithm but

bad for the live ranges of variables containing intermediate values.

Consider the following assignment of a record expression where all vari-

ables x

1

; : : : ; x

n

are spilled.

x:=(x

1

; : : : ; x

n

)

If we have K machine registers and n > K then it is impossible to store

all variables in temporary registers. It is not possible to perform register

allocation on

scope tmp

1

; : : : ; tmp

n

in

tmp

1

:= x

1

;

.

.

.

tmp

n

:= x

n

;

x := (tmp

1

; : : : ; tmp

n

)

end

where all temporaries have to be machine registers. We reserve n registers

for a record with n elements which is an unreasonable amount. If we were

using three address code then an n element record would probably only

require two registers; one index register and one for the elements. This

is not possible in LineStmt because we must put all elements in registers

before allocating the record. However, this can be solved by using an alloc

primitive that can allocate memory for the record and an update primitive

to initialize each element:

6

The discussion assumes that the targe machine is a RISC machine. For CISC machines

with less registers it may not be necessary to reserve temporary registers because most

instructions can probably fetch from memory, perform the operation and then store the

result in memory again if necessary.
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scope tmp

1

in

x := alloc(n);

tmp

1

:= x

1

;

update(x; 0; tmp

1

);

.

.

.

tmp

1

:= x

n

;

update(x; n� 1; tmp

n�1

);

end

We will probably use this technique in the future and thereby reduce the

register pressure.

5.6 Graph Coloring With Coalescing

After the interference graph ig is built the register allocator cycles though

the following phases that remove nodes from ig and pushes them on a stack.

Let K be the number of available machine registers (i.e., colors). The degree

of a node is the number of interference edges on the node. The move related

edges are not part of the degree.

Simplify: All non move related nodes of degree less than K are

removed from ig.

Coalesce: If simplify is not possible then do conservative coa-

lescing (see below) and return to simplify again.

Freeze: If neither simplify nor coalescing is possible, then choose

a move related node of low degree and remove the move re-

lated edges from that node. The node is not a move related

node anymore and may be removed by the simplify phase

which is applied next.

Spill: If we cannot simplify, coalesce or freeze a node then we

have to spill a variable. We calculate the priority (see be-

low) of the remaining nodes and remove the variable with

the lowest priority. We then try simplify again.

When all nodes are removed from ig we start popping nodes from the

stack. Each node is inserted in ig again and assigned a color that is not

assigned to any of the neighbors of the inserted node. We assign colors from

the caller save and callee save sets as described in Section 5.7 below. Spilled

variables are also inserted in ig and we try to assign a color even though

they were marked as potential spills on the stack. Sometimes it is possible

to assign a color to a variable that was considered spilled during the simplify

phase. For instance, if some of its neighbors share the same color or other

neighbors are spilled too. If it is not possible to color a potential spilled

variable we call it an actual spilled variable.
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5.6.1 Conservative Coalescing

If an interference graph ig can be colored with M registers, then we call

it conservative coalescing when we can union two nodes in ig and still be

guaranteed that the resulting interference graph is M color{able. Appel

gives two strategies and proves that they are conservative [6, page 232]:

Briggs: Two nodes n

1

and n

2

can be coalesced if the resulting

node has fewer that K neighbors.

George: Two nodes n

1

and n

2

can be coalesced if for every

neighbor m to n

1

, either m has degree less than K or m is

also a neighbor to n

2

.

5.6.2 Spill Priority

To �nd an adequate node to spill we calculate a priority based on how many

times the variable is used in the program and the degree. Variables with a

large number of uses and low degree get a higher priority. Variables with

low priority are spilled.

priority(lv)=

uses(lv) + defs(lv)

degree(lv)

The functions uses and defs return the number of times the variable is used

and de�ned in the function.

5.6.3 Implementation

Appel gives an e�cient algorithm which can be adjusted to the speci�cs of

LineStmt and the ML Kit [6]. As noted in the introduction Elsman has

started the implementation in the ML Kit using the algorithm by Appel.

5.7 Caller and Callee Save Registers

If we have caller save registers only then it is necessary to save all live

registers before an application. If we have callee save registers only then the

called function must save all registers that it uses. Both methods may lead

to an excessive number of stores. Consider the code

f(: : : ) =

.

.

.

x := 5; g(x) = y := x + 1;

y := 6; a := y * 43;

z := y + x; b := a + y;

q := g(y); res := b
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a := q + x;

b := q + z;

.

.

.

With caller save registers only, we have to 
ush the registers to which z

and x are bound at the application to g and fetch them afterwards. With

callee save registers only we have to 
ush the registers to which y, a and

b are bound in g and fetch them before we return the result res. With a

combination of callee and caller save registers we can allocate x and z to

callee save registers and avoid 
ushing them in f . In g we can bind y, a and

b to caller save registers because their live range do not cross an application.

Then we avoid 
ushing any variables at all.

Flushes across applications may be totally avoided by having the appli-

cation expression de�ne all caller save registers when the interference graph

is created. If a variable is not live across a function call then it will likely be

allocated to a caller save register. If a variable is live across the application

then it interferes with all caller save registers and will either be assigned a

callee save register or spilled. With caller save registers r

1

; r

2

and callee save

register r

3

a possible register assignment is: z : r

3

; x : spill; y : r

1

; q : r

1

; a : r

2

and b : r

1

. The variable x is spilled because we only have one callee save

register and it is given to z which is also live across the call to g. Both z

and x interfere with all caller save registers and hence one of them must be

spilled.

We can do better because we may bind x to a caller save register and

then store it across the function call. This is better than spilling where the

variable is held in memory all the time. This is achieved by not having the

call statement de�ne all caller save registers. Instead we mark variables with

a live range that crosses an application.

7

We then assign colors depending

on the marks. Variables not crossing applications are assigned caller save

registers if possible and variables crossing applications are assigned callee

save registers if possible. With this method a possible coloring is: y : r

1

; z :

r

3

; x : r

2

; q : r

1

; a : r

2

and b : r

1

. Now x is assigned a caller save register.

As an example of how registers can be divided into caller and callee

save registers we take a closer look at the HP PA-RISC architecture. The

HP PA-RISC machine has 32 general purpose registers [41, 40, 39].

8

The

Procedure Calling Convention manual [40] speci�es the callee save registers

to be gr

3

; : : : ; gr

18

and caller save registers to be gr

1

; gr

19

; : : : ; gr

26

; gr

28

and gr

29

. The convention is used by compilers supported by HP. We do not

have to use the same convention and it seems better to increase the number

7

This is done similarly to algorithm F in Chapter 6.

8

There are also 
oating point registers and they can also be divided into caller and

callee save registers but we limit the discussion to general purpose registers only.
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Figure 5.3: All interferences in function fn xs.

of caller save registers. The reason is that all arguments and results must

be passed in caller save registers and we expect to get a high demand on

registers to be used in the call conventions.

We note that it may not be possible to be this generous with caller save

registers on other architectures like X86 based machines.

5.8 Example

Figure 5.3 shows all interferences in the example function fn xs from Figure

5.1 and 5.2. Figure 5.4 shows all non constrained move related nodes. We

assume K = 5 with ph1; ph2 and ph3 as caller save registers and ph4; ph5

as callee save registers.

We can simplify node v942 with only one interference edge and then

coalesce the nodes ph1 ,k80 ,lv2 ,res ,lv3 and k78 using coalescing strategy

George. For example, node ph1 interfere with the nodes ph2 , ph3 , k77 ,

k79 , ph4 , lv1 , rv , xs' , lv4 , ph5 , x and c. Node k80 interfere with the nodes
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Figure 5.4: All move related nodes in function fn xs. We have removed

all constrained move related nodes.

ph2 and xs' . Because both nodes that interfere with k80 (i.e., ph2 and xs' )

interfere with ph1 then k80 and ph1 can be coalesced.

We can also coalesce the nodes ph2 ,k79 ,xs and rv using coalescing strat-

egy George. At �rst it seems that we cannot coalesce rv with ph2 because

lv2 does not interfere with ph2 . But after ph1 and lv2 are coalesced then

we can. The resulting graph is shown in Figure 5.5. There are no more

move related nodes.

We can then simplify lv4 with degree 3, see Figure 5.6. We do not have

more low degree moves and no more move related nodes. We therefore spill

a variable.

We calculate priorities for the 5 candidates

Variable Defs+Uses Degree Priority=

Defs+Uses

Degree

lv

1

2 5 0:40

k77 3 5 0:60

x 2 6 0:33

xs

0

2 6 0:33

c 6 6 1:00

The variable xs

0

, and x has lowest priority so we arbitrarily make xs

0

a

potential spill. Then we simplify lv1 with degree 4. The remaining variables

k77 , x and c can also be simpli�ed. We have spilled and simpli�ed in the

following order:

stack = [c; x; k77; lv1; xs

0

; lv4; v942]

with c on top of the stack. We have underlined the variables with a live range

crossing at least one application. We want to assign the underlined variables

callee save registers (i.e., ph

4

; ph

5

) and the non underlined variables caller

save registers (i.e., ph

1

; ph2 and ph3) whenever possible. We pop and assign
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Figure 5.5: We have simpli�ed v942 and coalesced the nodes

ph1 ,k80 ,lv2 ,res and lv3 . We have also coalesced the nodes ph2 ,k79

and xs.

Figure 5.6: We have simpli�ed lv4 .



CHAPTER 5. REGISTER ALLOCATION 120

Figure 5.7: All nodes are now popped from the stack and inserted. We

have also removed the nodes ph

3

; ph

4

and ph

5

as they are only used by

the algorithm.

the following colors to the variables:

Variable Interfere With Assigned Color

c ph

1

; ph

2

ph

4

x ph

1

; ph

2

; ph

4

ph

5

k77 ph

1

; ph

2

; ph

4

; ph

5

ph

3

lv1 ph

1

; ph

2

; ph

4

; ph

5

ph

3

xs

0

ph

2

; ph

2

; ph

3

; ph

4

; ph

5

actual spill

lv4 ph

1

; ph

3

ph

2

v942 ph

5

ph

1

We do not have any callee save registers left for k77 so k77 is assigned the

caller save register ph

3

. The only variable that has to be 
ushed across

function calls is k77 and the two callee save registers at entry and exit of

the function. The resulting interference graph after inserting variables is

shown in Figure 5.7.

With the above register assignments and the coalesced nodes we have

rewritten the function fn xs to include register allocation information, see

Figure 5.8 and 5.9. It is important not to substitute registers for variables

yet because we need to compute the live range of each variable when we

insert fetch and 
ush instructions, see Chapter 6.
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�

fn

fn xs

fargs=[ph

2

], clos=ph

1

, res=[ph

1

]g =>

scope res :ph

1

in

scope xs :ph

2

, c:ph

4

in

c := ph

1

;

xs := ph

2

;

scope v942 :ph

1

in

(case xs of

nil => res := #1(c)

|:: (v942 ) =>

scope x :ph

5

, xs

0

:stack in

x := #0(v942 );

xs' := #1(v942 );

letregion r22 :4 in

scope k80 :ph

1

in

letregion r24 :4 in

scope k77 :ph

3

in

letregion r25 :2 in

scope rv :ph

2

, lv

1

:ph

3

, lv

2

:ph

1

in

rv := [atbot lf r24 , atbot lf r22 ] atbot lf r25;

lv

1

:= #2(c);

lv

2

:= #3(c);

ph

1

:= lv

2

;

ph

2

:= rv;

hph

1

i := foldl

funcall

hlv

1

i hph

2

i hi hph

1

i hi;

k77 := ph

1

end

end; (*r25*) end

Figure 5.8: Part 1 of fn xs where we have inserted register allocation

information but not removed any assignments or simpli�ed it otherwise.

This is done by Substitution and Simplify, Chapter 8.
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scope k79 :ph

2

in

scope lv

3

:ph

1

, k78:ph

1

, lv

4

:ph

2

in

lv

3

:= #2(c);

ph

1

:= lv

3

;

ph

2

:= x;

hph

1

i := (lv

3

)

fncall

hph

2

i hph

1

i hi;

k78 := ph

1

;

lv

4

:= #1(c);

ph

1

:= k78;

ph

2

:= lv

4

;

hph

1

i := k78

fncall

hph

2

i hph

1

i hi;

k79 := ph

1

end;

ph

1

:= k77;

ph

2

:= k79;

hph1i := k77

fncall

hph

2

i hph

1

i hi;

k80 := ph

1

end

end

end; (*r24*)

ph

1

:= k80;

ph

2

:= xs

0

;

hph1i := k80

fncall

hph

2

i hph

1

i hi;

res := ph

1

end

end (*r22*)

end)

end

end;

ph

1

:= res

end

Figure 5.9: Part 2 of fn xs where we have inserted register allocation

information but not removed any assignments or simpli�ed it otherwise.

This is done by Substition and Simplify, Chapter 8.



Chapter 6

Fetch And Flush

After register allocation (Chapter 5) we have mapped variables to either

machine registers or stack locations. If a variable is mapped to a caller save

register and the variable is live across a function call then it is necessary to

store its value before calling the function and retrieve its value after the call;

the caller save register may be overwritten in the called function. We do

not have to store variables mapped to callee save registers because they are

always preserved by the called function. In this chapter we present a few

phases that insert fetch and 
ush statements such that caller save registers

containing values live across an application are preserved.

The set of variables to 
ush are the variables that ful�lls all of the re-

quirements:

� the variable is locally bound (i.e., bound with a scope construct). In

contrast, argument and return values passed on the stack (i.e., vari-

ables with stack annotations in the call convention for the function)

are not said to be locally bound. Stack slots have been reserved for

such variables in the call convention before the function is entered.

� the variable has a live range that crosses an application, that is, the

variable is de�ned before the application and used after the applica-

tion.

� the variable has not already been 
ushed (i.e., we only 
ush variables

once in a function).

� the variable is assigned a caller save register. Variables assigned callee

save registers are 
ushed at entry to the function.

We 
ush callee save registers that are used within the function at entry

to the function (i.e., before the registers are assigned another value). We

fetch callee save registers at program points where control leaves the function

(i.e., at tail calls, raise and returns).

123
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A backward scan on the LineStmt program is used to compute the live

variables and then a forward transform inserts 
ush statements at selected

program points.

It is not obvious what program points should be chosen to 
ush and

fetch variables. H�jfeld et. al. discuss this in detail [38, Section 6.9]. We

simplify the discussion and consider two placement strategies only for 
ush

statements. We can 
ush a variable before the �rst application where the

variable is live or immediately after the statement that de�nes the variable.

Conditionals complicates the insertion of 
ush statements before applica-

tions because if one branch contains an application and another branch

does not, then 
ushing the variable in only one branch is not safe if the

variable is live across another application after the conditional. We choose

the simple solution and 
ush variables right after they are de�ned. If a

variable is de�ned in a conditional then all branches will contain a 
ush

statement because either a variable is not de�ned in a branch or it is de�ned

in all branches. This property is guaranteed by the linearization phase, see

Section 4.1. Only one 
ush statement is evaluated at runtime.

We insert a fetch v statement after a non tail call if variable v is bound

to a caller save register and used before the next call. We could also wait and

fetch v just before the use of v but then again conditionals may complicate

matters. Also, the register allocater has mapped v to a register for the entire

function so fetching earlier does not in
uence the register pressure. Actually

fetching ealier may be good for the performance of the memory subsystem

but it is di�cult to verify such statements.

6.1 Revised Grammar

We extend LineStmt with the statements

ls ::= flush (LamVar [ PhReg)

j fetch (LamVar [ PhReg)

to 
ush and fetch a variable or a machine register. The register allocator

annotates a store type sty (Section 5.1.1) on each variable when it is de-

clared. We extend the storage type to include the case when a variable is

assigned a register that needs to be 
ushed.

sty ::= stack

j phreg

j flushed phreg

We 
ush a callee save register if the register is de�ned in the body of the

function. The question is then: where should we 
ush the register? Consider

the code fragment:
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scope v

1

:phreg

1

in

.

.

.

scope v

2

:phreg

2

in

flush phreg

2

;

.

.

.

fetch phreg

2

;

end;

scope v

3

:phreg

2

in

flush phreg

2

;

.

.

.

fetch phreg

2

;

end;

.

.

.

end

where phreg

2

is a callee save register and v

2

is assigned that register. The

variable v

2

does not make use of its slot on the stack and we could therefore


ush phreg

2

in that slot (as shown in the code fragment). However, because

the 
ushed value is lost when the scope for v

2

ends the program fetches the

value before the scope ends. This approach leads to an excessive number of


ushes and fetches and the advantage of having callee save registers disap-

pears. Instead we wrap a special scope construct around the function body

that will set space aside for callee save registers used by the function. The

above program then becomes:

scope reg phreg

2

:flushed phreg

2

in

flush phreg

2

;

scope v

1

:phreg

1

in

.

.

.

scope v

2

:phreg

2

in

.

.

.

end;

scope v

3

:phreg

2

in

.

.

.

end;

.

.

.

end;

fetch phreg

2

end

We then 
ush the registers at entry to the function and fetch them at exit

(i.e., callee save registers are 
ushed and fetched one time only in each
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function). The scope construct is added to the language:

ls ::= scope reg phreg : sty in e end

We have not computed the actual stack addresses yet (Chapter 7) so the

flush and fetch statements do not contain a source and destination ad-

dress.

6.2 Set Of Variables To Flush

A backward scan computes the set F 2 P(LamVar) of variables that are live

across at least one function call. It also computes the set R 2 P(PhReg) of

callee save registers that are used in the function.

The function

F

T

: TopDecl

ls

! P(LamVar)�P(PhReg)

computes F and R for a top level function. It uses the function

F : LineStmt�P(LamVar)�P(LamVar)�P(PhReg)!

P(LamVar)�P(LamVar)�P(PhReg)

on the body of a function.

6.2.1 Top Level Functions

F

T

[[�

fun

lab

cc => ls]] =

let

val ( , F;R) = F [[ls]] fg fg fg

in

(remove spilled args(cc; F ); R \ callee save)

end

The set R contains all machine registers de�ned in the function so we inter-

sect with the set of callee save registers.

The set F , containing variables live across a function call, returned from

F may contain argument variables passed on the stack. They are removed

from F by the function remove spilled args. They are spilled and there-

fore always preserved across a function call.

6.2.2 Statements

The set L contains all live variables (and not machine registers). The pro-

gram returned by the register allocator does not have machine registers live

across applications.
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F [[scope x: sty in ls end]] L F R =

let

val (L

0

; F

0

; R

0

) = F [[ls]] L F R

val R

00

= if sty = phreg

i

then R

0

[ fphreg

i

g else R

0

in

if sty = stack or (sty = phreg

i

and phreg

i

2 callee save) then

(L

0

; F

0

n fxg; R

00

)

else

(L

0

; F

0

; R

00

)

end

F [[letregion b in ls end]] L F R = F [[ls]] L F R

F [[v := se]] L F R =

((L n def var(v)) [ use var(se), F ,

R [ (get reg(v) [ get reg(se)))

F [[case se

1

of pat => ls

2

| => ls

3

]] L F R =

let

val (L

2

; F

2

; R

2

) = F [[ls

2

]] L F R

val (L

3

; F

3

; R

3

) = F [[ls

3

]] L F

2

R

2

val L

1

= L

2

[ L

3

in

((L

1

n def var(pat)) [ use var(se

1

), F ,

R

3

[ (get reg(se

1

) [ get reg(pat)))

end

F [[hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] L F R =

let

val vars to 
ush = L n fv

1

; : : : ; v

n

g

val use =

S

i2fck;1;::: ;n;clos;f

1

;::: ;f

m

g

use var(se

i

)

val L

0

= vars to 
ush [ use

val R

0

= R [ (

S

i2fck;1;::: ;n;clos;f

1

;::: ;f

m

g

get reg(se

i

)) [ get reg(hv

1

; : : : ; v

n

i)

in

if ck 2 ffuncall, fncallg then

(L

0

, F [ vars to 
ush , R

0

)

else

(use, F , R

0

)

end

F [[ls

1

; ls

2

]] L F R =

let

val (L

2

; F

2

; R

2

) = F [[ls

2

]] L F R

in

F [[ls

1

]] L

2

F

2

R

2

end

The functions def var and use var are similar to the def and use functions

from Chapter 5 except that all machine registers are removed. The function
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get reg returns all machine registers in the argument construct. We do not

have to 
ush variables live over a tail call. Before we 
ush a variable from

F we have to check that it is assigned a caller save register. This is done

implicitly by removing variables from F at the scope construct.

We note that it should not be necessary to update R in the application,

case and assignment constructs because if a callee save register is de�ned

in the function then it is mentioned in at least one scope construct. How-

ever, we consider the constructs anyway because this holds only as long as

argument and result values are passed in caller save registers only.

6.3 Insert Flushes and scope reg

We now insert fetch statements for callee save registers used in the body of a

function at program points where the function is left, that is, at return and

at tail calls. We also insert the scope reg construct that makes sure that

stack locations are reserved for the callee save registers used in the function.

Flush statements are inserted for variables assigned caller save registers and

live across an application.

We use the function

IFF

T

: TopDecl

ls

�P(LamVar)�P(PhReg)! TopDecl

ls

on top level functions and

IFF : LineStmt�P(LamVar)�P(PhReg)! LineStmt

on function bodies.

6.3.1 Top Level Functions

IFF

T

[[�

fun

lab

cc => ls]] F R =

�

fun

lab

cc =>

scope reg to reg seq(R) in


ush regs(R);

IFF [[ls]] F R;

fetch regs(R)

end

The set F , that contains all variables that are live across at least one ap-

plication and assigned caller save registers, does not change during the

translation. The set R is passed to IFF such that callee save registers

can be fetched before tail calls. The set R never changes. The func-

tion to reg seq converts the set of machine registers into a sequence (i.e.,

fr

1

; r

2

g = r

1

: flushed r

1

; r

2

: flushed r

2

). The function 
ush regs con-

verts a set of machine registers fr

1

; r

2

g into
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flush r

1

;

flush r

2

and fetch regs converts the set into

fetch r

1

;

fetch r

2

6.3.2 Statements

The set F contains all locally declared variables assigned caller save registers

that are live across at least one function call. The set R contains all callee

save registers used in the function.

IFF [[scope x : sty in ls end]] F R =

if x 2 F then

scope x : flushed phreg

i

in IFF [[ls]] F R end

else

scope x : sty in IFF [[ls]] F R end

IFF [[letregion b in ls end]] F R = letregion b in IFF [[ls]] F R end

IFF [[v := se]] F R =

if v 2 F then

v := se;

flush v

else

v := se

IFF [[case se

1

of pat => ls

2

| => ls

3

]] F R =

if def(pat) 2 F then

case se

1

of

pat => flush def(pat); IFF [[ls

2

]] F R

| => flush def(pat); IFF [[ls

3

]] F R

else

case se

1

of pat => IFF [[ls

2

]] F R | => IFF [[ls

3

]] F R

IFF [[hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] F R =

if ck 2 ffunjmp,fnjmpg then

let

val ck

0

= mk ck(ck,R)

in

hv

1

; : : : ; v

n

i := se

ck

0

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i

end

else

let

val fv

0

1

; : : : ; v

0

k

g = fv

i

jv

i

2 F; i = 1; : : : ; ng

in

hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i;
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flush v

0

1

;

.

.

.

flush v

0

k�1

;

flush v

0

k

end

IFF [[ls

1

; ls

2

]] F R = IFF [[ls

1

]] F R ; IFF [[ls

2

]] F R

If the pattern is a cons (i.e., ::x) in the case construct then we 
ush x (if

necessary) at entry to the branches.

Consider the rule for application. A result passed on the stack will have

a variable in the result bracket and not a machine register. We 
ush the

variable if necessary.

We never insert 
ushes after a tail call but we insert fetches of callee

save registers before the call because a tail call is an exit from the function.

However, we must be careful. Is it safe to insert fetch constructs of callee save

registers before the application construct? Is it possible that the callee save

registers may, before they are fetched, contain values necessary to compile

the application? The problem is that code to pass values on the stack has

not been generated but is postponed to code generation and the callee save

registers may contain values necessary to compile the arguments. However,

in Chapter 9 we, of reasons not to mention here, decide that tail calls may

not pass arguments on the stack. The remaining code that is generated

by the code generator and executed before the call includes fetching the

code pointer from a closure in the case of an ordinary function call. If the

closure is assigned a callee save register then it is unsafe to rede�ne the

register before fetching the code pointer. We therefore annotate the fetch

statements on the call kind and the code generator can then insert the fetch

statements after the code pointer has been fetched but before jumping to

the called function. The call kind is then de�ned as

ck ::= funjmp LineStmt

j funcall

j fnjmp LineStmt

j fncall

and the function mk ck as

mk ck(funjmp, R) = funjmp (fetch regs R)

mk ck(fnjmp, R) = fnjmp (fetch regs R)

where fetch regs is de�ned in Section 6.3.1. Notice, that we, at tail calls,

may fetch more callee save registers than actually necessary because a callee

save register may not have been de�ned at the tail call. It is a simple

optimization to make sure that, at each tail call, we only fetch callee save

registers that have been de�ned.
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6.4 Insert Fetches

Given the set F computed by F we know what variables are 
ushed. With a

backward scan of the program we compute the set of variables used between

function calls and insert fetch statements.

6.4.1 Top Level Functions

The function

IF

T

: TopDecl

ls

�P(LamVar)! TopDecl

ls

inserts fetch statements in top level functions.

IF

T

[[�

fun

lab

cc => ls]] F =

let

val (ls

0

, ) = IF [[ls]] f g F

in

�

fun

lab

cc => ls

0

end

6.4.2 Statements

The function

IF : LineStmt �P(LamVar)�P(LamVar)! LineStmt �P(LamVar)

inserts fetch statements in the body of top level functions. The set U is

the set of variables that are used after the current statement and before the

next application. Notice, that U is not the same as the set of live variables

because we start with the empty set at each function call. The set F is the

set of variables live across at least one application and assigned a caller save

register.

IF [[scope x : sty in ls end]] U F =

let

val (ls

0

; U

0

) = IF [[ls]] U F

in

(scope x : sty in ls

0

end, U

0

)

end

IF [[letregion b in ls end]] U F =

let

val (ls

0

; U

0

) = IF [[ls]] U F

in

(letregion b in ls

0

end, U

0

)
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end

IF [[v := se]] U F = (v := se, use(se) [ (U n fvg))

IF [[case se

1

of pat => ls

2

| => ls

3

]] U F =

let

val (ls

0

2

; U

0

2

) = IF [[ls

2

]] U F

val (ls

0

3

; U

0

3

) = IF [[ls

3

]] U F

in

(case se

1

of pat => ls

0

2

| => ls

0

3

,

((U

0

2

[ U

0

3

) n def(pat)) [ use(se

1

))

end

IF [[hv

1

; : : : ; v

n

i := se

ffncall;funcallg

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] U F =

let

val fv

0

1

; : : : ; v

0

k

g = F \ (U n fv

1

; : : : ; v

n

g)

in

(hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i;

fetch v

0

1

;

.

.

.

fetch v

0

k�1

;

fetch v

0

k

,

S

i2fck;1;::: ;n;clos;f

1

;::: ;f

m

g

use(se

i

))

end

IF [[ls

1

; ls

2

]] U F =

let

val (ls

0

2

; U

0

2

) = IF [[ls

2

]] U F

val (ls

0

1

; U

0

1

) = IF [[ls

1

]] U

0

2

F

in

(ls

0

1

; ls

0

2

, U

0

1

)

end

Notice, that we never have the case that a variable is fetched before it is


ushed. For instance, consider the code fragment:

.

.

.

hv

0

i := f hxi hci hi;

fetch v

0

;

flush v

0

;

.

.

.

Assume the function IFF inserts the 
ush statement because v

0

is de�ned

at the call site and v

0

2 F . However, the function IF does not insert the

fetch because v

0

is not live at entrance to the function call.



CHAPTER 6. FETCH AND FLUSH 133

6.5 Example

The function fn xs from Figure 5.8 and 5.9 on page 121 and 122 is shown

in Figure 6.1 and 6.2 where we have inserted flush, fetch and scope reg

statements.

We have used the following caller and callee save sets: caller save =

fph

1

; ph

2

; ph

3

g and callee save = fph

4

; ph

5

g.

The variables fc; x; k77; xs

0

g are live across function calls but only k77

is assigned a caller save register: ph

3

. The variables c and x are assigned

the callee save registers ph

4

and ph

5

respectively. The variable xs

0

is spilled.

The function F then returns the set F = fk77g. The set R of used callee

save registers returned by F is fph

4

; ph

5

g.
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�

fn

fn xs

fargs=[ph

2

], clos=ph

1

, res=[ph

1

]g =>

scope reg ph

4

: flushed ph

4

, ph

5

: flushed ph

5

in

flush ph

4

;

flush ph

5

;

scope res :ph

1

in

scope xs :ph

2

, c:ph

4

in

c := ph

1

;

xs := ph

2

;

scope v942 :ph

1

in

(case xs of

nil => res := #1(c)

|:: (v942 ) =>

scope x :ph

5

, xs

0

:stack in

x := #0(v942 );

xs' := #1(v942 );

letregion r22 :4 in

scope k80 :ph

1

in

letregion r24 :4 in

scope k77 :flushed ph

3

in

letregion r25 :2 in

scope rv :ph

2

, lv

1

:ph

3

, lv

2

:ph

1

in

rv := [atbot lf r24 , atbot lf r22 ] atbot lf r25;

lv

1

:= #2(c);

lv

2

:= #3(c);

ph

1

:= lv

2

;

ph

2

:= rv;

hph

1

i := foldl

funcall

hlv

1

i hph

2

i hi hph

1

i hi;

k77 := ph

1

;

flush k77

end

end; (*r25*)

Figure 6.1: Part 1 of function fn xs after we have inserted explicit

scope reg, fetch and flush statements. We have used caller save =

fph

1

; ph

2

; ph

3

g and callee save = fph

4

; ph

5

g.
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scope k79 :ph

2

in

scope lv

3

:ph

1

, k78:ph

1

, lv

4

:ph

2

in

lv

3

:= #2(c);

ph

1

:= lv

3

;

ph

2

:= x;

hph

1

i := (lv

3

)

fncall

hph

2

i hph

1

i hi;

k78 := ph

1

;

lv

4

:= #1(c);

ph

1

:= k78;

ph

2

:= lv

4

;

hph

1

i := k78

fncall

hph

2

i hph

1

i hi;

fetch k77;

k79 := ph

1

end;

ph

1

:= k77;

ph

2

:= k79;

hph1i := k77

fncall

hph

2

i hph

1

i hi;

k80 := ph

1

end

end

end; (*r24*)

ph

1

:= k80;

ph

2

:= xs

0

;

hph1i := k80

fncall

hph

2

i hph

1

i hi;

res := ph

1

end

end (*r22*)

end)

end

end;

ph

1

:= res

end;

fetch ph

4

;

fetch ph

5

end

Figure 6.2: Part 2 of function fn xs after we have inserted explicit

scope reg, fetch and flush statements. We have used caller save =

fph

1

; ph

2

; ph

3

g and callee save = fph

4

; ph

5

g.



Chapter 7

Calculate O�sets

All variables and machine registers in the LineStmt program are now anno-

tated a storage type that uniquely speci�es how it should be stored, either

on the stack, in a machine register or both. In the calculate o�sets phase

we assign a slot in the activation record for the function (i.e., on the stack)

to every variable or machine register that needs it.

We also assign one or more slots for regions. Finite regions are allocated

directly in the activation record. In�nite regions are implemented with an in-

�nite region descriptor (Chapter 2) that is allocated in the activation record.

More speci�cally we

� add o�sets to the storage type sty annotated on scope and scope reg

statements. The storage types stack and flushed require a slot in

the activation record.

� add a storage type sty to the letregion construct such that region

variables can be assigned one or more slots in the activation record.

� add o�sets to the fetch and flush statements.

7.1 Revised Storage Type

The storage type is extended with an o�set annotation for stack and flushed:

sty ::= stack(o)

j phreg

j flushed(phreg; o)

where o 2 O�set. The fetch and flush statements also include an o�set:

e ::= flush(xv; o)

j fetch(xv; o)

j letregion b : sty in e end

136
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o�set: -4

rcf

return lab

o�set: -2

o�set: -1

ccf

o�set: 0

o�set: 1

activation record

6

Figure 7.1: An example stack containing a call convention frame (ccf),

return convention frame (rcf), return label and an activation record. A

call convention contains ccf , rcf and the return label. The �rst slot in

the activation record has o�set 0 and the o�sets in the call convention

are negative. The stack grows upwards.

where xv is a variable or a machine register. The storage type on letregion

constructs are always on the form stack(o), for some o�set o.

7.2 Algorithm CO

We do a single forward scan on the LineStmt program. We use the environ-

ment

F : (LamVar [ PhReg) ! O�set

to map 
ushed variables or machine registers into their o�set address in the

activation record.

7.2.1 Top Level Functions

The function

CO

T

: TopDecl

ls

! TopDecl

ls

is used on top level functions

CO

T

[[�

fun

lab

cc => ls]] =

�

fun(f size)

lab

cc => CO [[ls]] init F(cc) 0

Ordinary functions are done similarly. The f size annotation on top level

functions denote the size of the function frame. It is calculated as the

maximum o�set used in the body of the function and calculated as a side

e�ect in CO (though, not shown in the algorithm).

The function init F updates F with o�sets to parameters passed on the

stack. Consider Figure 7.1 where we have a call convention and an activation
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record allocated on a stack. O�set 0 is the �rst slot in the activation record

(i.e., the slot at the bottom of the activation record). O�sets to parameters

in the call convention are negative and o�sets to locally de�ned variables are

positive. Given a call convention cc the function init F can assign o�sets to

the stack allocated parameters because the layout of the call convention on

the stack is uniquely de�ned in the same way that the function resolve cc

in Section 5.1.3 uniquely assigns machine registers to parameters.

7.2.2 Statements

The function

CO : LineStmt � ((LamVar [ PhReg)! O�set)�O�set! LineStmt

is used on function bodies.

CO [[scope x : stack in ls end]] F o =

scope x : stack(o) in CO [[ls]] (F + fx 7! og) (o+ 1) end

CO [[scope x : phreg

i

in ls end]] F o =

scope x : phreg

i

in CO [[ls]] F o end

CO [[scope x : flushed phreg

i

in ls end]] F o =

scope x : flushed(phreg

i

; o) in CO [[ls]] (F + fx 7! og) (o+ 1) end

CO [[scope reg phreg

i

: flushed phreg

i

in ls end]] F o =

scope reg phreg

i

: flushed(phreg

i

; o) in CO [[ls]] (F + fphreg

i

7! og) (o+ 1) end

CO [[letregion � :1 in ls end]] F o =

letregion � :1 : stack(o) in CO [[ls]] F (o+ size reg desc) end

CO [[letregion � : n in ls end]] F o =

letregion � : n : stack(o) in CO [[ls]] F (o+ n) end

CO [[v := se]] F o = v := se

CO [[case se

1

of pat => ls

2

| => ls

3

]] F o =

case se

1

of pat => CO [[ls

2

]] F o | => CO [[ls

3

]] F o

CO [[hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] F o =

hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i

CO [[ls

1

; ls

2

]] F o = CO [[ls

1

]] F o ; CO [[ls

2

]] F o

CO [[flush xv ]] F o = flush(xv, F (xv))

CO [[fetch xv ]] F o = fetch(xv, F (xv))

The constant size reg desc denotes the size of an in�nite region descriptor.

7.3 Example

The function fn xs from Figure 6.1 and 6.2 on page 134 and 135 is shown

in Figure 7.2 and 7.3 with o�sets inserted.
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�

fn(14)

fn xs

fargs=[ph

2

], clos=ph

1

, res=[ph

1

]g =>

scope reg ph

4

: flushed(ph

4

; 0), ph

5

: flushed(ph

5

; 1) in

flush (ph

4

,0);

flush (ph

5

,1);

scope res :ph

1

in

scope xs :ph

2

, c:ph

4

in

c := ph

1

;

xs := ph

2

;

scope v942 :ph

1

in

(case xs of

nil => res := #1(c)

|:: (v942 ) =>

scope x :ph

5

, xs

0

:stack(2) in

x := #0(v942 );

xs' := #1(v942 );

letregion r22 :4:stack(3) in

scope k80 :ph

1

in

letregion r24 :4:stack(7) in

scope k77 :flushed(ph

3

; 11) in

letregion r25 :2:stack(12) in

scope rv :ph

2

, lv

1

:ph

3

, lv

2

:ph

1

in

rv := [atbot lf r24 , atbot lf r22 ] atbot lf r25;

lv

1

:= #2(c);

lv

2

:= #3(c);

ph

1

:= lv

2

;

ph

2

:= rv;

hph

1

i := foldl

funcall

hlv

1

i hph

2

i hi hph

1

i hi;

k77 := ph

1

;

flush (k77,11)

end

end; (*r25*)

Figure 7.2: Part 1 of the function fn xs where we have added o�set

annotations on the storage type, fetch and flush statements. The size

of the activation record is 14; a �nite region (r25) of size two is stored

at o�set 12 and we start at o�set 0.
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scope k79 :ph

2

in

scope lv

3

:ph

1

, k78:ph

1

, lv

4

:ph

2

in

lv

3

:= #2(c);

ph

1

:= lv

3

;

ph

2

:= x;

hph

1

i := (lv

3

)

fncall

hph

2

i hph

1

i hi;

k78 := ph

1

;

lv

4

:= #1(c);

ph

1

:= k78;

ph

2

:= lv

4

;

hph

1

i := k78

fncall

hph

2

i hph

1

i hi;

fetch (k77,11);

k79 := ph

1

end;

ph

1

:= k77;

ph

2

:= k79;

hph1i := k77

fncall

hph

2

i hph

1

i hi;

k80 := ph

1

end

end

end; (*r24*)

ph

1

:= k80;

ph

2

:= xs

0

;

hph1i := k80

fncall

hph

2

i hph

1

i hi;

res := ph

1

end

end (*r22*)

end)

end

end;

ph

1

:= res

end;

fetch (ph

4

,0);

fetch (ph

5

,1)

end

Figure 7.3: Part 2 of the function fn xs where we have added o�set

annotations on the storage type, fetch and flush statements.



Chapter 8

Substitution and Simplify

The register allocator inserts register mapping information at scope con-

structs but does not replace variables with registers throughout the code.

Substitution and simplify is the last phase before code generation and re-

places variables with register allocation information. Unnecessary copy

statements are removed; coalescing two nodes may produce an unnecessary

copy statement.

Substitution and simplify produces a term where at every use or de�-

nition, we either have a label, a constant, a machine register or one of the

following annotations:

� spilled variables are annotated with stack(o), where o is the o�set in

the activation record where the variable is stored.

� locally declared in�nite regions are annotated with reg i(o) where o is

the o�set in the activation record where the in�nite region descriptor

is stored.

� locally declared �nite regions are annotated with reg f(o), where o is

the o�set in the activation record where the content of the region is

stored.

After substitution and simplify we have a simpli�ed term on which we be-

lieve code generation (Chapter 9) gets as simple as possible. For instance, it

is possible to perform code generation with no use of environments. The code

generator performs a single pass over the term and unfolds each LineStmt

construct to machine code.

It is not necessary to bind a local declared region to a variable or register

because the region is boxed (i.e., denote a memory area) and the address of

the memory area is known at compile time. However, passing a region to a

region polymorphic function does happen in either a machine register or in

a spilled variable on the stack.

141



CHAPTER 8. SUBSTITUTION AND SIMPLIFY 142

8.1 Revised Grammar

Now that we remove statements we may end up with all statements removed

(likely not to happen, though). We add the statement none to denote that.

The full grammar for LineStmt after substitution and simplify is shown

in Figure 8.1. The semantic objects are shown in Figure 8.2. We have added

an access type that denotes how a value is obtained (e.g., from a machine

register or from the stack).

The constructs scope, scope reg and letregion on �nite regions are

not needed after substitution and simplify because variables are replaced

with an access type. We can either keep the constructs anyway for the

purpose of information (i.e., how variables are mapped to stack o�sets and

machine registers) or remove them from the language. We remove them in

the presentation but the implementation keeps them. However, the pretty

printer in the implementation may choose not to print the constructs. We

may not remove the letregion construct for in�nite regions because the dy-

namic semantics for an in�nite region is to store an in�nite region descriptor

in the activation record. We therefore introduce the construct letregioni

o in ls end in the language, where o is the o�set in the activation record

where the in�nite region descriptor is stored. We can also remove the stor-

age type from the language now that the scope, scope reg and letregion

constructs are removed.

8.2 Algorithm SS

We do a single forward scan on the LineStmt program and records the access

type for each variable in an environment F .

F : Var! Aty

The environment maps variables and region variables into an access type

denoted by the set Aty (aty 2 Aty). Unnecessary copy statements are

removed by comparing the access type of the variables in the copy statement

and if they are equal then the copy statement is removed.

8.2.1 Top Level Functions

The function

SS

T

: TopDecl

ls

! TopDecl

ls

is used on top level functions

SS

T

[[�

fun(f size)

lab

cc => ls]] = �

fun(f size)

lab

cc => SS [[ls]] f g

Ordinary functions are done similarly.
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top decl ::= �

fun(f size)

lab

cc => ls

j �

fn(f size)

lab

cc => ls

j top decl

1

; top decl

2

aty ::= stack(o)

j phreg

j reg i(o)

j reg f(o)

ck ::= funjmp LineStmt j funcall j fnjmp LineStmt j fncall

sma ::= attop j atbot j sat

a ::= sma aty

m ::= n j 1

b ::= � : m

c ::= i j nilj lab

pat ::= c j :: aty

bop ::= +; -; <; : : :

be ::= (se

1

; : : : ; se

n

)

j �

lab

[se

f

1

; : : : ; se

f

n

]

j [a

1

; : : : ; a

n

]

regvec

j [se

f

1

; : : : ; se

f

n

]

sclos

se ::= be a

j aty

j c

j :: aty

j se

1

bop se

2

j #n(aty)

ls ::= letregioni o in ls end

j aty := se

j case se

1

of pat => ls

2

| => ls

3

j haty

1

; : : : ; aty

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i

j haty

1

; : : : ; aty

n

i := lab

ck

hse

1

; : : : ; se

n

i hse

reg

i ha

1

; : : : ; a

l

i

j hse

clos

i hse

f

1

; : : : ; se

f

m

i

j ls

1

; ls

2

j flush(aty; o)

j fetch(aty; o)

j none

Figure 8.1: The grammar for LineStmt after substitution and simplify.

We have removed the constructs: letregion, scope, scope reg and the

storage type. We have introduced the letregioni construct where o is

the o�set in the activation record where the in�nite region descriptor is

stored.
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lab 2 Label

i 2 Int

phreg 2 PhReg

o 2 O�set

cc 2 CC

Figure 8.2: The semantic objects used in LineStmt. We let CC denote

the set of call conventions. The set O�set denote o�sets in an activation

record. The set PhReg contains the machine registers.

8.2.2 Statements

The function

SS : LineStmt� (Var! Aty)! LineStmt

is used on function bodies.

SS [[scope x : stack(o) in ls end]] F = SS [[ls]] (F + fx 7! stack(o)g)

SS [[scope x : flushed(phreg) in ls end]] F = SS [[ls]] (F + fx 7! phregg)

SS [[scope x : phreg in ls end]] F = SS [[ls]] (F + fx 7! phregg)

SS [[scope reg phreg : flushed(phreg; o) in ls end]] F = SS [[ls]] F

SS [[letregion � :1 : stack(o) in ls end]] F =

letregioni o in SS [[ls]] (F + f� 7! reg i(o)g) end

SS [[letregion � : n : stack(o) in ls end]] F = SS [[ls]] (F + f� 7! reg fg(o))

SS [[v := se]] F =

if F (v) = (SS

se

[[se]] F ) then

none

else

F (v) := SS

se

[[se]] F

SS [[case se

1

of pat => ls

2

| => ls

3

]] F =

case SS

se

[[se

1

]] F of SS

pat

[[pat]] F => SS [[ls

2

]] F | => SS [[ls

3

]] F

SS [[hv

1

; : : : ; v

n

i := se

ck

hse

1

; : : : ; se

n

i hse

clos

i hse

f

1

; : : : ; se

f

m

i]] F =

hF (v

1

); : : : ; F (v

n

)i := SS

se

[[se

(SS

ck

[[ck]] F )

]] F

hSS

se

[[se

1

]] F; : : : ;SS

se

[[se

n

]] F i

hSS

se

[[se

clos

]] F i

hSS

se

[[se

f

1

]] F; : : : ;SS

se

[[se

f

m

]] F i

SS [[ls

1

; ls

2

]] F =

case (SS [[ls

1

]] F ,SS [[ls

2

]] F ) of

(none,none) => none

j (ls

0

1

,none) => ls

0

1

j (none,ls

0

2

) => ls

0

2

j (ls

0

1

,ls

0

2

) => ls

0

1

; ls

0

2

SS [[flush(xv,o)]] F = flush(F (xv); o)

SS [[fetch(xv,o)]] F = fetch(F (xv); o)
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The algorithm SS uses some derived functions for simple expressions, boxed

expressions, allocation directives, call kinds and patterns.

SS

ck

: CallKind ! (Var! Aty) ! CallKind

SS

ck

[[funcall]] F = funcall

SS

ck

[[fncall]] F = fncall

SS

ck

[[funjmp ls]] F = funjmp (SS [[ls]] F )

SS

ck

[[fnjmp ls]] F = fnjmp (SS [[ls]] F )

where CallKind is the set of call kinds ranged over by ck. Tail calls may

contain fetch statements for callee save registers in the call kind, see Chapter

6.

SS

pat

: Pat ! (Var! Aty) ! Pat

SS

pat

[[c]] F = c

SS

pat

[[:: x]] F = F (x)

where Pat is the set of patterns ranged over by pat.

SS

be

: BoxedExp ! (Var! Aty) ! BoxedExp

SS

be

[[(se

1

; : : : ; se

n

)]] F = (SS

se

[[se

1

]] F; : : : ;SS

se

[[se

1

]] F )

SS

be

[[�

lab

[se

f

1

; : : : ; se

f

n

]]] F = �

lab

[SS

se

[[se

f

1

]] F; : : : ;SS

se

[[se

f

n

]] F ]

SS

be

[[[a

1

; : : : ; a

n

]

regvec

]] F = [SS

sma

[[a

1

]] F; : : : ;SS

sma

[[a

n

]] ]

regvec

SS

be

[[[se

f

1

; : : : ; se

f

n

]

sclos

]] F = [SS

se

[[se

f

1

]] ; : : : ;SS

se

[[se

f

n

]] ]

sclos

where BoxedExp is the set of boxed expressions ranged over by be.

SS

sma

: Alloc ! (Var ! Aty) ! Alloc

SS

sma

[[sma xv]] F = sma F (xv)

where Alloc is the set of allocation directives ranged over by a.

SS

se

: SimpleExp ! (Var! Aty) ! SimpleExp

SS

se

[[be a]] F = (SS

be

[[be]] F ) (SS

sma

[[a]] F )

SS

se

[[x]] F = F (x)

SS

se

[[:: se]] F = :: (SS

se

[[se]] F )

SS

se

[[se

1

bop se

2

]] F = (SS

se

[[se

1

]] F ) bop (SS

se

[[se

2

]] F )

SS

se

[[#n(se)]] F = #n(SS

se

[[se]] F )

where SimpleExp is the set of simple expressions ranged over by se. The

environment F has lambda variables and region variables as domain. In the

case that we lookup a machine register (i.e., F (ph)) then we return ph.
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8.3 Example

The function fn xs from Figure 7.2 and 7.3 on page 139 and 140 is shown

in Figure 8.3 after substitution and simpli�cation.
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�

fn(14)

fn xs

fargs=[ph

2

], clos=ph

1

, res=[ph

1

]g =>

flush (ph

4

,0);

flush (ph

5

,1);

ph

4

:= ph

1

;

(case ph

2

of

nil => ph

1

:= #1(ph

4

)

| :: (ph

1

) =>

ph

5

:= #0(ph

1

);

stack(2) := #1(ph

1

);

ph

2

:= [atbot lf reg f(7), atbot lf reg f(3)] atbot lf reg f(12);

ph

3

:= #2(ph

4

);

ph

1

:= #3(ph

4

);

hph

1

i := foldl

funcall

hph

3

i hph

2

i hi hph

1

i hi;

ph

3

:= ph

1

;

flush (ph

3

,11);

ph

1

:= #2(ph

4

);

ph

2

:= ph

5

;

hph

1

i := (ph

1

)

fncall

hph

2

i hph

1

i hi;

ph

2

:= #1(ph

4

);

hph

1

i := (ph

1

)

fncall

hph

2

i hph

1

i hi;

fetch (ph

3

,11);

ph

2

:= ph

1

;

ph

1

:= ph

3

;

hph1i := (ph

3

)

fncall

hph

2

i hph

1

i hi;

ph

2

:= stack(2);

hph1i := (ph

1

)

fncall

hph

2

i hph

1

i hi);

fetch (ph

4

,0);

fetch (ph

5

,1)

Figure 8.3: We have simpli�ed the function fn xs. The code generator

works on this code.
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Code generation

The simpli�ed LineStmt program from Chapter 8 is in a form that makes

code generation easy; every construct in the program can be compiled by

looking at the construct only, that is, no environments are needed and the

code generator can be viewed as a sophisticated macro expander.

We use the Kit Abstract Machine (KAM) as the target machine, which

is a low level three address code machine extended with region allocation

primitives. The KAM machine is invented for the purpose of presentation

only and the code generator in the ML Kit compiles into the target machine

directly (e.g., HP PA-RISC). We believe it is better to compile directly

to the target machine (e.g., HP PA-RISC) than using another intermedi-

ate language before the tharget machine because it is di�cult to de�ne an

intermediate language that is more low level than LineStmt and still in-

corporates the di�erences in the architectures. For instance, a X86 based

machine does not require all operands of an instruction to reside in machine

registers which is normally the case for a RISC based machine. The code

generator can then compile the access type stack di�erenctly on the two

architectures. A load from store into a machine register is necessary for a

RISC machine but probably not for the X86 machine.

The grammar for KAM is shown in Section 9.1. The algorithm CG

that compiles the LineStmt program into KAM is shown in Section 9.2.

We discuss how allocation points with multiplicities and storage modes are

compiled, Section 9.2.2 and 9.2.3. Functions and applications are discussed

in Section 9.2.5 and 9.2.6. The running example program compiled into

KAM is shown in Section 9.3.

9.1 Kit Abstract Machine

The Kit Abstract Machine (KAM) resembles a von Neumann Machine with

mostly three address statements. The machine has a number of general 32

bit machine registers PhReg ranged over by ph.

148
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We have a runtime stack with a stack pointer sp 2 PhReg. We may

push, pop and update the stack as an array (i.e., sp[o] denotes the cell on

the stack with o�set o 2 O�set from sp). The stack grows with increasing

addresses and sp always points at the �rst free cell on the stack. The code

generator uses the convention that the stack pointer always points at the

�rst address after the function frame for the current function, and the stack

pointer is updated at application and return points only.

The KAM does not have a regular heap but a region heap with an in�nite

number of �xed sized region pages. Finite regions are stored on the stack

and in�nite regions have an in�nite region descriptor stored on the stack

with a pointer to a list of region pages. Region pages in the region heap

are either in a free list or allocated to a region. Allocating data in in�nite

regions will fetch region pages from the free list. Contrary deallocating (or

resetting) a region puts the region pages back into the free list.

9.1.1 Grammar for KAM

The grammar we use for KAM (Figure 9.1) is almost identical to the gram-

mar found in \A Brief Introduction to Regions" [48].

We assume addresses to be word aligned, that is, with the two least

signi�cant bits zero. The two bits have a special meaning in pointers to

regions. We use the �rst bit to hold the multiplicity (�nite or in�nite) and

the second to hold the storage mode (atbot or attop). Setting the in�nite

bit is done by the primitive set inf bit. Setting the atbot bit is done

by the primitive set atbot bit. Testing the bits are done by the boolean

expressions infinite(ea) or atbot(ea). The in�nite bit is cleared with

clear atbot bit(ea). In�nite regions are allocated with alloc, reset with

reset region and deallocated with dealloc region.

A constructor tag (::) is set with cons tag and cleared with decons.

The boolean expression is cons tests wheter or not an ea is the constructor

::; it is used to compile case statements only. The semantic objects used in

the grammar are shown in Figure 9.2.

The code generator uses two macros to push and pop the stack.

push(ea) � sp := sp + 1;

sp[-1] := ea

pop(ea) � ea := sp[-1];

sp := sp - 1

The code generator uses two temporary registers t

1

; t

2

2 PhReg that are not

used by the register allocator.
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c ::= i j nilj lab

ea ::= c j ph

boolexp ::= ea = ea j ea > ea j ea < eaj : : :

j infinite(ea) j atbot(ea) j is cons(ea)

bop ::= + j - j* j : : :

stmt ::= ph := ea

j ph := ph[o]

j ph[o] := ea

j ph := ea bop ea

j if boolexp then stmt

j if boolexp then stmt else stmt

j nop

j jmp(ea)

j alloc(ea; i)

j reset region(ea)

j alloc region(ea)

j dealloc region(ea)

j cons tag(ea)

j decons(ea)

j lab : stmt

j clear atbot bit(ea)

j set atbot bit

j set inf bit

j stmt ; stmt

fun ::= fun lab is stmt

j fn lab is stmt

prg ::= fun ; fun

Figure 9.1: The grammar for KAM.

lab 2 Label

i 2 Int

phreg 2 PhReg

o 2 O�set

Figure 9.2: The semantic objects used in KAM. The set O�set denote

o�sets, either positive or negative. The set PhReg contains the machine

registers.
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9.2 Code Generation

The LineStmt code contains all information in the syntax necessary to gen-

erate KAM code without the use of any information about bound variables.

The code generator CG simply does code expansion and takes only three

integer arguments besides the LineStmt code. Top level declarations are

translaled with

CG

T

: TopDecl

ls

! Fun

using the function

CG : LineStmt� Int � Int ! Stmt

on function bodies, where Fun is the set of functions ranged over by fun and

Stmt is the set of KAM statements ranged over by stmt. The �rst constant

is the size of the activation record (size

�

). The second constant is the size

of the call convention frame (size

ccf

), see Section 9.2.4.

The next few sections de�ne auxiliary functions used by CG.

9.2.1 Constants and Access Types

We use four functions to translate constants and access types. The functions

take an extra argument being a temporary register that may be used to

generate code (e.g., if an access type has to be fetched from or stored on

the stack); the KAM resembles a RISC machine where an e�ective address

is a constant or a machine register. The functions return a pair with the

�rst component being code that needs to be evaluated before or after the

value or register returned as the second component is used. The function

resolve c use simply returns the constant:

resolve c use(i) = i

resolve c use(nil) = nil

resolve c use(lab) = lab

The function resolve aty use returns code to access a variable or region:

resolve aty use(stack(o), t, size

�

) = (t := sp[�size

�

+ o]; t)

resolve aty use(ph, t, size

�

) = (nop, ph)

resolve aty use(reg i(o), t, size

�

) =

(t := sp� size

�

+ o;set inf bit(t); t)

resolve aty use(reg f(o), t, size

�

) = (t := sp� size

�

+ o; t)

Figure 9.3 shows the convention used that sp always points at the �rst

address after the function frame. O�set 0 is the o�set at the bottom of the

function frame. The call convention is below the function frame and the

access types for parameters passed on the stack have negative o�sets, see

Chapter 7. The address of a slot at o�set o in the activation record (or call
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o�set: -4

rcf

return lab

o�set: -2

o�set: -1

ccf

o�set: 0

o�set: 1

activation record

6

sp

-

Figure 9.3: An example stack containing a call convention frame (ccf),

return convention frame (rcf), return label and an activation record. A

call convention contains ccf , rcf and the return label. The �rst slot in

the activation record has o�set 0 and the o�sets in the call convention

are negative. The stack grows upwards.

convention) relative to sp is then sp� size

�

+ o. Addresses and o�sets are

in words.

The function resolve aty def is de�ned only for machine registers and

spilled variables because it is not possible to store into (or de�ne) a letregion

bound region variable.

resolve aty def(stack(o), t, size

�

) = (sp[�size

�

+ o] := t; t)

resolve aty def(ph, t, size

�

) = (nop, ph)

The function resolve se use is de�ned for either constants or access types.

resolve se use(c, t, size

�

) = (nop,resolve c use(c))

resolve se use(aty, t, size

�

) = resolve aty use(aty, t, size

�

)

9.2.2 Allocation Points

We have to consider both the multiplicity and storage mode when allocating

into regions. For instance, allocating atbot in an in�nite region is di�erent

from allocating atbot in a �nite region; the region pages used in the in�nite

region must be freed before allocating but no resetting is done when allo-

cating in the �nite region. The storage modes were introduced in Section

3.3.3 on page 64. The multiplicities (reg f and reg i) were introduced in

Chapter 8.

Storage modes and regions are categorized as follows in the LineStmt

program (phreg can be replaced by stack(o)):
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attop li reg i(o): the region is letregion bound and in�nite. We al-

locate attop with the KAM instruction alloc because we know the

region is in�nite.

attop lf reg f(o): the region is letregion bound and �nite so storage has

already been set aside on the stack.

attop lf phreg : the region is letregion bound, �nite and free to the func-

tion. Storage has already been allocated on the stack.

attop li phreg : the region is letregion bound, in�nite and free to the

function. We use alloc to allocate storage.

attop ff phreg : the region is an actual region argument to the current

function or another function and free in the current function. The

region can either be �nite or in�ntie and we must check the multiplicity

before allocating, that is, in the case phreg represents an in�nite region

we use alloc. If phreg represents a �nite region then storage is already

allocated on the stack.

attop fi phreg : the region is in�nite and we use alloc to allocate storage.

A formal region parameter to a region polymorph function may either

be �nite or in�nite but in the case that the function stores more than

one time in the region (denoted by the last i in the annotation) then

we know the region is in�nite.

sat fi phreg : the region is in�nite. We check the storage bit to see wheter

or not we shall reset the region before allocating.

sat ff phreg : the region is either �nite or in�nite. We check the multiplicity

and if in�nite then we test the storage mode and if atbot then the

region is reset. The test on multiplicity and storage mode may be

done at the same time.

atbot li reg i(o): the region is letregion bound and in�nite. We reset

the region before allocating.

atbot lf reg f(o): the region is letregion bound and �nite. Space has

already been allocated on the stack and no resetting is necessary.

Combinations of storage modes and access types not shown above will never

happen in the LineStmt program, except that phreg may be substituted with

stack(o).
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Resolve Allocation Points

We use the function resolve ap to generate the statement that will allocate

memory according to an allocation point. The register ph

res

is always used

to hold the pointer to the allocated memory. If a �nite region is represented

by a register, ph say, then we cannot use ph for the result because ph may

not be changed (e.g., clearing storage and in�nite bits) if ph is used after

the allocation.

resolve ap(attop li reg i(o),ph

res

,n,size

�

) =

ph

res

:= sp� size

�

+ o;

ph

res

:= alloc(ph

res

, n)

resolve ap(attop lf reg f(o),ph

res

,n,size

�

) =

ph

res

:= sp� size

�

+ o

resolve ap(attop lf aty,ph

res

,n,size

�

) =

ph

res

:= resolve aty ap(aty,size

�

)

resolve ap(attop li aty,ph

res

,n,size

�

) =

ph

res

:= resolve aty ap(aty,size

�

);

ph

res

:= alloc(ph

res

, n)

resolve ap(attop ff aty,ph

res

,n,size

�

) =

ph

res

:= resolve aty ap(aty,size

�

);

if infinite(ph

res

) then ph

res

:= alloc(ph

res

; n)

resolve ap(attop fi aty,ph

res

,n,size

�

) =

ph

res

:= resolve aty ap(aty,size

�

);

ph

res

:= alloc(ph

res

; n)

resolve ap(sat fi aty,ph

res

,n,size

�

) =

ph

res

:= resolve aty ap(aty,size

�

);

if atbot(ph

res

) then reset region(ph

res

);

ph

res

:= alloc(ph

res

; n)

resolve ap(sat ff aty,ph

res

,n,size

�

) =

ph

res

:= resolve aty ap(aty,size

�

);

if infinite(ph

res

) then

if atbot(ph

res

) then

reset region(ph

res

);

ph

res

:= alloc(ph

res

; n)

resolve ap(atbot li reg i(o),ph

res

,n,size

�

) =

ph

res

:= sp� size

�

+ o;

reset region(ph

res

);

ph

res

:= alloc(ph

res

, n)

resolve ap(atbot lf reg f(o),ph

res

,n,size

�

) =

ph

res

:= sp� size

�

+ o

The access type aty in the above function is always either a machine register

or a spilled variable (i.e., stack(o)). The auxiliary function resolve aty ap

is de�ned as follows:
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resolve aty ap(ph,size

�

) = ph

resolve aty ap(stack(o),size

�

) = sp[�size

�

+ o]

9.2.3 Set Storage Modes

Storage modes are set when passing regions as arguments to letrec bound

functions, (e.g., when a region vector is constructed). The following speci�es

how the storage bits are set (phreg can be replaced by stack(o)).

attop li reg i(o): the atbot bit is not set so no change is necessary.

attop lf reg f(o): the region is �nite and the atbot bit is therefore in-

signi�cant.

attop lf phreg : the region is �nite and the atbot bit is therefore insigni�-

cant.

attop li phreg : even though the region is free to the function then the

atbot bit is not set because it is letregion bound. It is not necessary

to clear the atbot bit.

attop ff phreg : the region may or may not be in�nite so we have to check

the multiplicity and then clear the atbot bit if the multiplicity is in-

�nite. Actually, we may blindly clear the atbot bit no matter the

multiplicity.

attop fi phreg : the region is in�nite and we clear the atbot bit.

sat fi phreg : the atbot bit is already set appropriately.

sat ff phreg : the atbot bit is already set appropriately.

atbot li reg i(o): we set the atbot bit.

atbot lf reg f(o): the atbot bit is insigni�cant.

atbot li phreg : we set the atbot bit.

atbot lf phreg : the atbot bit is insigni�cant.

The atbot bit is never set on letregion bound regions when they are created

so we do not have to explicitly clear the atbot bit for those regions.

Resolve Storage Modes

The function resolve sm regvec sets or clears the atbot bit in regions

passed to region polymorphic functions as speci�ed in the previous section.

The function is given a temporary register t that is used if necessary.
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resolve sm regvec(attop li reg i(o),t,size

�

) =

(t := sp� size

�

+ o;set inf bit(t),t)

resolve sm regvec(attop lf reg f(o),t,size

�

) = (t := sp� size

�

+ o; t)

resolve sm regvec(attop lf ph,t,size

�

) = (nop, ph)

resolve sm regvec(attop lf stack(o),t,size

�

) = (t := sp[�size

�

+ o]; t)

resolve sm regvec(attop li ph,t,size

�

) = (nop, ph)

resolve sm regvec(attop li stack(o),t,size

�

) = (t := sp[�size

�

+ o]; t)

resolve sm regvec(attop ff ph,t,size

�

) =

(t := ph; clear atbot bit(t), t)

resolve sm regvec(attop ff stack(o),t,size

�

) =

(t := sp[�size

�

+ o]; clear atbot bit(t), t)

resolve sm regvec(attop fi ph,t,size

�

) =

(t := ph; clear atbot bit(t), t)

resolve sm regvec(attop fi stack(o),t,size

�

) =

(t := sp[�f szie+ o]; clear atbot bit(t), t)

resolve sm regvec(sat fi ph,t,size

�

) = (nop, ph)

resolve sm regvec(sat fi stack(o),t,size

�

) = (t := sp[�size

�

+ o], t)

resolve sm regvec(sat ff ph,t,size

�

) = (nop, ph)

resolve sm regvec(sat ff stack(o), t) = (t := sp[�size

�

+ o], t)

resolve sm regvec(atbot li reg i(o),t,size

�

) =

(t := sp� size

�

+ o;set inf bit(t);set atbot bit(t),t)

resolve sm regvec(atbot lf reg f(o),t,size

�

) = (t := sp� size

�

+ o; t)

resolve sm regvec(atbot li ph,t,size

�

) =

(t := ph;set atbot bit(t),t)

resolve sm regvec(atbot lf ph,t,size

�

) = (nop,ph)

We note, that in many cases (e.g., when the access type is stack(o)) it

is possible to add the constants atbot bit and inf bit when the address is

calculated instead of using the set atbot bit and set inf bit primitives.

The constants must be de�ned such that they set the appropriate bit when

added.

9.2.4 Call Convention

The register allocation phase (Chapter 5) inserts statements around the

function calls such that arguments and results passed in registers are actually

put in the registers before the call and retrieved from the registers after the

call. However, it is the responsibility of the code generator to put arguments,

not passed in registers, on the stack and retrieve results, not passed in

registers, from the stack on return from the call. This section speci�es how

this can be done.

We need a convention for storing a call convention on the stack. A call

convention is split in three parts: a call convention frame (ccf), a return
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�

caller

-

sp

�

caller

rcf

return lab

42

stack(2)

ccf

�

callee

-

sp

�

caller

stack(3)
rcf

-

sp

6

Figure 9.4: At left we have the stack before the application. At center

we have the stack at entry to the called function and at right the stack

at return from callee. The stack grows upwards.

label

1

and a return convention frame (rcf). The call convention is allocated

before callee is called. On return from callee we have rcf allocated. Figure

9.4 shows the content of an example stack before an application, at entry to

a called function and at return.

A call convention uniquely speci�es which arguments and results are

passed on the stack and in what order. The method we use is to �rst

convert the application into a temporary call convention called the actual

call convention. We then use a function resolve act cc that, given an actual

call convention as argument, returns a statement that stores arguments into

the call convention frame (ccf) and a statement fetching results from the

return convention frame (rcf). The function also returns the size of the call

and return convention frames.

The actual call convention for an ordinary application

haty

1

; : : : ; aty

h

i := se

ck

hse

a1

; : : : ; se

an

i hse

c

i hse

f

1

; : : : ; se

f

m

i

or a region polymorphic application

haty

1

; : : : ; aty

h

i := lab

ck

hse

a1

; : : : ; se

an

i hse

r

i ha

1

; : : : ; a

l

i hse

c

i hse

f

1

; : : : ; se

f

m

i

is

acc = fclos= se

c

,

free= [se

f

1

; : : : ; se

f

m

],

args= [se

a

1

; : : : ; se

a

n

],

reg vec= se

r

,

1

We always put the return label on the stack. However, we believe it is better to let

the return label be an ordinary argument such that it can be passed in a register if the

register pressure is low.
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reg args= [a

1

; : : : ; a

l

],

res= [aty

1

; : : : ; aty

h

] g

The function resolve act cc uses the same priorities as resolve cc on page

101 (and init F on page 137) to �nd the stack o�sets. Consider the appli-

cation

hph

9

; stack(3)i := lab

ck

hph

3

; 42; stack(2)i hph

2

i hi hph

1

i hi

with args phreg = [ph

1

; ph

2

; ph

3

] and res phreg = [ph

9

]. The corresponding

actual call convention is

acc = fclos= ph

1

,

free= [ ],

args= [ph

3

; 42; stack(2)],

reg vec= ph

2

,

reg args= [ ],

res= [ph

9

; stack(3)] g

Two arguments (42,stack(2)) and the result to go in stack(3) are passed

on the stack, see Figure 9.4. The function resolve act cc(acc) returns the

statement

pop(t);

sp[�size

�

+ 3] := t

that fetches the result from the return convention frame and the statement

push(42);

t := sp[�size

�

� 1 + 2];

push(t)

that stores the arguments in the call convention frame. We note that the

stack pointer is pointing at the �rst address after the current function frame

when the code to store arguments is executed. The stack pointer points at

the �rst address after the return convention frame when the code to fetch

results is executed. The o�sets used when accessing slots in the function

frame depends on the number of pop and push statements executed.

9.2.5 Functions

At entry to a function (either letrec or ordinary) we allocate the function

frame on the stack. The frame size (size

�

) is annotated on top level decla-

rations (computed in Chapter 7). The call and return convention is explicit

in the body of a function by either refering to machine registers or stack

positions directly. Arguments and results passed on the stack are referenced

directly with an o�set from the stack pointer. The stack annotations are
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calculated in Chapter 7 and Figure 9.4 shows an example stack when calling

a function.

The code for the body of a function is organized as follows:

� code to allocate the function frame.

� code for the body of the function.

� code to return to the calling function by loading the return address

from the stack.

� code to set the stack pointer at the �rst address after the return con-

vention frame (i.e., rcf). The function frame for callee, call convention

frame (ccf) and return label is thus deallocated. Caller needs rcf to

fetch results passed on the stack.

Tail calls makes it necessary to deallocate both function and call conven-

tion frames before leaving the function; and not at the application point.

CG

T

[[�

fun(size

�

)

lab

cc => ls]] =

fun lab is

sp := sp+ size

�

;

CG [[ls]] size

�

size ccf(cc) ;

sp := sp� size

�

� size ccf(cc);

pop(t);

jmp t

Figure 9.5 shows the stack pointer at entry and exit of a function. The

function size ccf returns the size of the call convention frame (i.e., the

number of arguments pushed on the stack). An ordinary function (fn) is

translated likewise. Top level declarations are translated sequentially:

CG

T

[[top decl

1

;top decl

2

]] =

CG

T

[[top decl

1

]] ;

CG

T

[[top decl

2

]]

9.2.6 Applications

An ordinary application involves the following phases:

� store registers, that must be saved across the function call. This is

already done, see Chapter 6.

� allocate the return convention frame.

� push the return address on the stack. The code generator needs to

create a new return label.
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�

caller

rcf

return lab

ccf

-

sp

�

caller

rcf

�

sp
6

Figure 9.5: At entry to the function (at left), the stack pointer points at

the �rst free address after the call convention frame (ccf). At exit from

the function (at right), the stack pointer points at the �rst free address

after the return convention frame (rcf). The stack grows upwards.

� allocate the call convention frame.

� put arguments in machine registers or into the call convention frame as

speci�ed by the call convention. We only have to consider arguments to

go in the call convention frame. Arguments to go in machine registers

are resolved by the register allocator, see Chapter 5.

� jump to the function.

On return from the call we have to

� move the result values from the return convention frame into the places

(either machine registers or stack positions) where they are supposed

to be.

� the stack pointer points at the �rst address after rcf so we must deal-

locate rcf .

� fetch values that were stored across the function call. This is already

done, see Chapter 6.

The translation function for a function call to a region polymorphic

function is thus:

CG [[haty

1

; : : : ; aty

h

i :=

se

funcall

hse

1

; : : : ; se

n

i hse

reg

i ha

1

; : : : ; a

l

i

hse

clos

i hse

f

1

; : : : ; se

f

m

i]] size

�

=

let

val (st

args

; size

ccf

; st

res

; size

rcf

) = resolve act cc(fclos=se

clos

, : : : g)

val return lab = fresh lab("app")
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val st

jmp

= resolve jmp(se; size

rcf

+ size

ccf

+ 1 + size

�

)

in

sp := sp+ size

rcf

;

push(return lab);

st

args

;

st

jmp

;

return lab: st

res

end

An application to an ordinary function is translated likewise. We use the

function resolve jmp to generate jump code depending on where the target

label is; either as a label constant or in a closure.

resolve jmp(lab; sp

adjust

) = jmp lab

resolve jmp(stack(o), sp

adjust

) =

t := sp[�sp

adjust

+ o];

t := t[0];

jmp t

resolve jmp(ph; sp

adjust

) =

t := ph[0];

jmp t

The constant sp

adjust

is the distance from top of ccf to the �rst address in

�

caller

, see Figure 9.5 at left.

Tail Calls

A tail call is simpler than an ordinary call because we do not return to caller

again; there are no more code to execute. We do not have to setup a return

convention frame and we shall not push a return address on the stack.

Because a tail call is an implicit return from the current function we

must deallocate the current function frame together with the current call

convention frame before jumping to the called function. We must also fetch

some callee save registers as explained in Chapter 6:

� fetch callee save registers.

� deallocate the current function frame.

� deallocate the current call convention frame.

� allocate a new call convention frame.

� put arguments into the call convention frame.

� jump to the function.
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�

rcf

return lab

ccf

caller

�

caller

-

sp

�

rcf

return lab

�

callee

�

sp

6

Figure 9.6: At left we have the stack before a tail call. In the general

case we must deallocate �

caller

and ccf at the same time that we build

a new ccf for the called function. This is, in general, not possible to do

e�ciently so we make the assumption that all functions called in a tail

call may not have a ccf . At right, we have the stack at entry to the

called function. The stack grows upwards.

Figure 9.6 shows the stack before a tail call. If callee expects arguments on

the stack then we must overwrite ccf

caller

and �

caller

with ccf

callee

. However,

this is di�cult because both ccf

caller

and �

caller

may be needed when com-

puting the arguments (i.e., we cannot overwrite ccf

caller

and �

caller

while

building ccf

callee

). This may be solved by copying ccf

caller

into �

caller

at

entry to the caller and then reserve as much space between return lab and

�

caller

as is needed for all possible calls inside caller. The amount of space

needed is a local property of caller. We do not �nd this worth the trouble

because a tail call is not a fast call anymore. We decide to convert all tail

calls calling functions taking arguments on the stack into ordinary calls and

thereby keep tail calls fast. We do not believe this restriction to be a problem

because we have many argument registers. We make sure that algorithm F

(see Chapter 3) does not make functions non closure implemented if they get

more arguments than there are argument registers. If other analyses (like

unboxing records) also confer to this restriction then we will never convert

a tail call into a non tail call.

There is no restriction on the number of return values, that is, rcf may

always be used. We may weaken the restriction and use ccf

callee

in a tail

call in the case that ccf

callee

only contains actual region arguments being a

subset of the region arguments already in ccf

caller

, (see [49, Chapter 14]).

CG [[haty

1

; : : : ; aty

h

i :=

lab

funjmp(ls)

hse

1

; : : : ; se

n

i hse

reg

i ha

1

; : : : ; a

l

i

hse

clos

i hse

f

1

; : : : ; se

f

m

i]] size

�

size

ccf

=
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if size act ccf(fclos=se

clos

, : : : g) > 0 then

CG [[haty

1

; : : : ; aty

h

i :=

lab

funcall

hse

1

; : : : ; se

n

i hse

reg

i ha

1

; : : : ; a

l

i

hse

clos

i hse

f

1

; : : : ; se

f

m

i]] size

�

size

ccf

else

CG [[ls]] size

�

size

ccf

;

sp := sp� size

�

� size

ccf

;

jmp lab

The statements ls fetches callee save registers, see Chapter 6. The callee

save registers are not fetched if the tail call is turned into an ordinary call.

Tail calls to ordinary functions are handled likewise.

9.2.7 Statements

In this section we show CG for some of the remaining statements. The

translation of statements not shown are similar to the translations shown.

They are all straight{forward given the previously de�ned functions.

CG [[aty := (se

1

; : : : ; se

n

)]] size

�

=

let

val (st

r

; r) = resolve aty def(aty, t

1

, size

�

)

val st

alloc

= resolve ap(a, r, n, size

�

)

val (t

i

; st

i

) = resolve se(se

i

; t

2

; size

�

)

in

st

alloc

;

st

1

;

r[0] := t

1

;

.

.

.

st

n

;

r[n� 1] := t

n

;

st

r

end

CG [[aty := [a

1

; : : : ; a

n

]

regvec

]] size

�

=

let

val (st

r

; r) = resolve aty def(aty, t

1

, size

�

)

val st

alloc

= resolve ap(a, r, n, size

�

)

val (t

i

; st

i

) = resolve sm regvec(a

i

; t

2

, size

�

)

in

st

alloc

;

st

1

;

r[0] := t

1

;

.

.

.

st

n

;
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r[n� 1] := t

n

;

st

r

end

CG [[ls

1

; ls

2

]] size

�

size

ccf

=

CG [[ls

1

]] size

�

size

ccf

; CG [[ls

2

]] size

�

size

ccf

CG [[flush(aty,o)]] size

�

=

let

val (st; t) = resolve aty use(aty, t

1

, size

�

)

in

st;

sp[�size

�

+ o] := t

end

CG [[fetch(aty,o)]] size

�

=

let

val (st; t) = resolve aty def(aty, t

1

, size

�

)

in

t := sp[�size

�

+ o];

st

end

CG [[aty

1

:= #n(aty

2

)]] size

�

=

let

val (st

r

; t

r

) = resolve aty def(aty

1

, t

1

, size

�

)

val (st

s

; t

s

) = resolve aty use(aty

2

, t

1

, size

�

)

in

st

s

;

t

r

:= t

s

[n� 1];

st

r

end

CG [[letregioni o in ls end]] size

�

size

ccf

=

t

1

:= sp� size

�

+ o;

alloc region(t

1

);

CG [[ls]] size

�

size

ccf

;

t

1

:= sp� size

�

+ o;

dealloc region(t

1

)

CG [[aty

1

:= ::aty

2

]] size

�

=

let

val (st

r

; t

r

) = resolve aty def(aty

1

, t

1

, size

�

)

val (st

s

; t

s

) = resolve aty use(aty

2

, t

1

, size

�

)

in

st

s

;

t

r

:= cons tag(t

s

);

st

r

end

CG [[aty := se

1

bop se

2

]] size

�

=
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let

val (st

r

; t

r

) = resolve aty def(aty, t

1

, size

�

)

val (st

s1

; t

s1

) = resolve se(se

1

, t

1

, size

�

)

val (st

s2

; t

s2

) = resolve se(se

2

, t

2

, size

�

)

in

st

s1

;

st

s2

;

t

r

:= t

s1

bop t

s2

;

st

r

end

CG [[case se

1

of c => ls

2

| => ls

3

]] size

�

size

ccf

=

let

val (st; t) = resolve se(se

1

, t

1

, size

�

)

in

st;

if (t = c) then

CG [[ls

2

]] size

�

size

ccf

else

CG [[ls

3

]] size

�

size

ccf

end

CG [[case se

1

of ::aty => ls

2

| => ls

3

]] size

�

size

ccf

=

let

val (st

s

; t

s

) = resolve se(se

1

, t

1

, size

�

)

val (st

r

; t

r

) = resolve aty def(aty, t

1

, size

�

)

in

st

s

;

if is cons(t

s

) then

t

r

:= decons(t

s

);

st

r

;

CG [[ls

2

]] size

�

size

ccf

else

CG [[ls

3

]] size

�

size

ccf

end

9.3 Example

The example function (fn xs) from page 147 is shown in Figure 9.7 translated

into KAM code.
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fn fn xs is

sp := sp+ 14;

sp[�14 + 0] := ph

4

;

sp[�14 + 1] := ph

5

;

ph

4

:= ph

5

;

if (ph

2

= nil) then

ph

1

:= ph

4

[1]

else

if is cons(ph

2

) then

ph

1

:= decons(ph

2

);

ph

5

:= ph

1

[0];

t

1

:= ph

1

[1];

sp[�14 + 2] := t;

ph

2

:= sp� 14 + 12;

ph

2

[0] := sp� 14 + 7;

ph

2

[1] := sp� 14 + 3;

ph

3

:= ph

4

[2];

ph

1

:= ph

4

[3];

push(fold ret);

jmp foldl;

fold ret: ph

3

:= ph

1

;

sp[�14 + 11] := ph

3

;

ph

1

:= ph

4

[2];

ph

2

:= ph

5

;

push(fn ret1 );

t

1

:= ph

1

[0];

jmp t

1

;

fn ret1: ph

2

:= ph

4

[1];

push(fn ret2 );

t

1

:= ph

1

[0];

jmp t

1

;

fn ret2: ph

3

:= sp[�14 + 11];

ph

2

:= ph

1

;

ph

1

:= ph

3

;

push(fn ret3 );

t

1

:= ph

3

[0];

jmp t

1

;

fn ret3: t

1

:= sp[�14 + 2];

ph

2

:= t

1

;

push(fn ret4 );

t

1

:= ph

1

[0];

jmp t

1

;

fn ret4:

ph

4

:= sp[�14 + 0];

ph

5

:= sp[�14 + 1];

sp := sp� 14;

pop(t

1

);

jmp t

1

Figure 9.7: The function fn xs compiled into KAM code.
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Chapter 10

Basic Garbage Collection

Algorithms

In this chapter, we discuss basic garbage collection algorithms and introduce

a one phase and a two phase garbage collection abstraction. The immediate

di�erences between the algorithms presented are emphasized.

The chapter motivates the choice of garbage collector to use with region

inference. Region inference introduces several problems that are not found

in systems based solely on garbage collection and the choice of garbage

collector is therefore not obvious. A main di�erence is the number of heaps.

A system based on region inference does not have one or at most a small

bounded number of heaps but several maybe thousands, (i.e., each region has

its own region heap) and each region heap does not constitute a continuous

memory area but a list of linked region pages, see Chapter 2.

We illustrate some of the problems of measuring and comparing garbage

collection algorithms. These problems are relevant when evaluating our

implementation.

A comprehensive survey of garbage collection algorithms is found in Wil-

son's paper [58]. The survey has been very helpful both as a survey and as

a source of reference. The two phase garbage collection abstraction pre-

sented below is borrowed from the survey. Another excellent source is the

book \Garbage Collection { Algorithms for Automatic Dynamic Memory

Management", by Richard Jones and Rafael Lins [30].

10.1 Fundamentals

Garbage Collection may be de�ned in several ways and a de�nition often

used is that garbage collection is a mechanism which automatically reclaims

storage for the purpose of reuse. This is of course what we use garbage

collection for, but actually region inference does the same thing and the two

methods are very di�erent. It is better to characterize garbage collection

168
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as an automatic and dynamic method for reclaiming storage for the purpose

of reuse. Region Inference is then characterized as an automatic and static

method for reclaiming storage for the purpose of reuse.

A static method does not interrupt program execution and is proba-

bly more time e�cient than a dynamic method. Allocation and dealloca-

tion statements are inserted into the program at compile time. A dynamic

method interrupts program execution and scans the memory to �nd the set

of values needed for the rest of the execution. This takes time but is also

more precise if the set of live objects can be determined precisely.

We use two simple garbage collection abstractions. The �rst abstraction

consists of two phases:

1. the detection or marking phase is the phase that splits the allocated

storage into a set of live objects

1

and a set of dead objects. This is

called the garbage detection phase [58].

2. in the second phase, we collect all dead objects and thereby free storage

for new objects to be allocated. This is called the garbage reclamation

phase [58].

As we will see, many garbage collection algorithms �ts into the above two{

phase abstraction. A one{phase abstraction is possible using two heaps:

1. �nd all live objects, and each time a new live object is found copy it

into a new heap. Afterwards the old heap may be freed.

An object is dead, opposed to live, if it is no longer needed by the running

program.

2

It is not necessarily the case that a garbage collector �nds all

dead objects, (i.e., conservative garbage collection). However, the set of

live objects must always contain, at least, all objects needed to �nish the

computation. If not, the garbage collector is not safe.

How do we split the memory into dead and live objects and ensure that

none of the live objects are deallocated? The set of live objects are normally

de�ned to be the set of objects that can be reached from a root{set. A

possible root{set contains globally de�ned variables, variables allocated in

activation records and registers. The root{set depends on when and where

the program may be interrupted and how the compiler is organized. The

root{set for the ML-Kit is de�ned in Chapter 13.

Given the set of live objects (Live) we require that:

1

In this section, we use the word object for one or more memory cells allocated as one

unit (e.g., a closure).

2

Note, that live as used in this chapter is di�erent from live used in liveness analyses,

see Chapter 5. If an object is needed by the program then it is de�ned live here. In the

liveness analyses, however, there may exists objects de�ned live by the liveness analysis

that are not needed by the program, (i.e., the liveness analysis is an approximation to live

as de�ned here).
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for all obj 62 Live, the object obj cannot be reached by any

pointer traversal from any object live 2 Live.

If an object obj 62 Live can be reached from another object live 2 Live then

we cannot guarantee that obj is not needed to �nish the computation.

To �nd the set of live objects it is necessary to know whether or not a

given object contains scalars and/or pointers. For now, we assume objects

to be tagged with such information. Tagging in the ML-Kit is discussed in

Chapter 12.

We discuss two approaches to �nd the set of live objects. The �rst,

called reference counting is suitable for implementing real{time garbage col-

lection (i.e., the maximal program interruption time is bounded). The other

approach called tracing traverses memory starting from the root{set. The

algorithms presented here do not achieve real{time garbage collection but

can be modi�ed to do so.

10.2 Reference Counting

Reference counting [16] is a garbage collection technique which in its basic

version comes close to real{time collection. Each object holds a reference

count, which is the number of pointers pointing at the object.

An object is considered live, i� its reference count is not zero. The

reference count is initialized to one when the object is allocated for the �rst

time and incremented each time the object is allocated again (i.e., a new

pointer is pointing at the object).

An object is deallocated by decrementing the reference count, and the

object is reclaimed when the reference count reaches zero. The object being

reclaimed may point at other objects. If so the reference count of the \point

at" objects are decremented too, and if those reference counts reach zero they

must be reclaimed too. Deallocating an object may therefore start a series

of deallocations and reclamation of objects. This is why the basic reference

counting algorithm is not a real{time garbage collector; one deallocation

may lead to an unbounded number of deallocations. However, the problem

is easily solved with lazy deallocation. An object is deallocated by pushing a

reference to the object onto a stack of deallocated but non reclaimed objects.

References to objects are then popped from the stack and reclaimed with a

given frequency that cope with the real{time requirements. One possibility

is to reclaim one object at each allocation.

Garbage detection is performed by the bookkeeping of reference counts.

The garbage reclamation phase is when objects are deallocated. The book-

keeping of reference counts is limited to a small number of instructions but

they are executed every time an object is allocated and deallocated.

A reference count takes up space, and a word is necessary if a precise

bookkeeping of reference counts is needed. A shorter reference count �eld
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can be used as for instance three bits with the counts 1 : : : 7 and 1. The

reference count 1 cannot be decremented and objects with the count 1

must be reclaimed with another garbage collection technique. A hybrid

garbage collector using a one{bit reference count and a tracing garbage col-

lector (e.g., mark{sweep or mark{compact, see the sections below) has been

proposed [59]. The idea is that while the tracing garbage collector is idle,

the mark bit may be used to distinguish between objects known to have a

reference count of one and objects having another reference count. Deallo-

cating an object with a reference count of one may be reclaimed instantly

whereas other objects are reclaimed by the tracing garbage collector. The

method delays the invocation of the tracing garbage collector signi�cantly

in environments where most objects are referenced only once.

In programs based solely on reference counting, it is necessary to make a

conservative approximation of the maximum number of possible references

to each object, when deciding the size of the reference count. This is in

general di�cult to estimate, especially for a compiler where it depends on

how the programmer uses the programming language being compiled. For

instance, in Standard ML, the function �a:(a; a) creates two references to a

each time the function is applied (we assume a represents a boxed value).

Manipulation of recursive data structures may create many pointers to the

same value. If we have the lists l

1

and l

2

then the function

fun splice l1 l2 = l1 @ l2

called with splice l

1

l

2

creates another pointer to the elements in list l

1

if

we use the implementation of @ as de�ned in SML90 [35].

3

The number of

pointers to the elements in l

2

remains the same except for the �rst element.

A major problem with reference counting is the inability to reclaim cyclic

structures. It is possible to have a cycle between two objects even though

there is no pointer from the root{set to the objects.

Cycles occur rarely in Standard ML, but here is an example showing

that they can occur, see Figure 10.1.

datatype cycle = A of cycle ref

| B of cycle ref

| None;

val res =

let

val n = None

val a = A (ref n)

val b = B (ref a) (* 1 *)

val _ = case a

of A(r) => r:= b (* 2 *)

3

The function is de�ned as fun nil @ M = M | (x::L) @ M = x::(L @ M).
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res

-

(*1*)

A None

-

B

@

@I

res

�

(*2*)

A

�

�	

B

@

@I

Figure 10.1: A possible representation of the values at the two situa-

tions (*1*) and (*2*). When the reference is updated the value None

will be deallocated, and hence freed.

| _ => print "Crash"

in

a

end

When the variable res is assigned the value of a (A) then the reference

count is two (from res and the value of b (B)). When res is deallocated

then the reference count for A is decremented to one. As no live value points

at A and the reference count is one, the values A and B are never reclaimed.

It turns out that a purely functional language creates cyclic data struc-

tures in a restricted manner, which can be treated specially and reference

counting is then applicable [7]. It is also possible to handle more general

circular structures, such as doubly linked lists. Each circular structure is

considered a single group. We have a reference count for each group and if

the count reaches zero then the entire group is deallocated [11].

The bookkeeping of reference counts puts a proportional factor on the

work done by the running program; the bookkeeping uses time on both

allocation and deallocation of objects. Reference counting may therefore not

be time e�cient, when there are many short lived values, which is common

in functional languages.

It is possible to defer the bookkeeping of local variables [18]. Instead of

updating reference counts on all objects we consider heap{allocated objects

only, that is, if a heap{allocated object points at another object then we

update the reference count. The reference count does not include pointers

from stack allocated objects. Instead of reclaiming an object when the

reference count reaches zero we insert the object in a list of potentially dead

objects. The stack is scanned with a given frequency and potentially dead

objects are only dead (and reclaimed) if they are not pointed at by any stack

allocated object.

Basic reference count algorithms consider the heap as one chunk of data.

Objects removed from the heap are inserted into one or more free lists.

Allocating an object involves searching the free lists.

The most important advantages of reference counting is the suitability for

real{time garbage collection and the fast reclamation of deallocated objects.
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root

?

h

1

?

h

2

??

h

3

�	

(a)

prev=nil

cur=h

1

root

?��

h

1

h

2

?

h

3

�	

(b)

prev=h

1

cur=h

2

root

?��

h

1

6

h

2

6

h

3

(c)

prev=h

3

cur=nil

root

?��

h

1

6

h

2

h

3

�	

(d)

prev=h

2

cur=h

3

Figure 10.2: The process of pointer reversal at four points in the al-

gorithm. Arrows pointing into \nowhere" represents nil pointers. We

assume the elements to be records with a �eld n donoting the pointer to

the next element.

10.3 Mark{Sweep Collection

A mark{sweep collector [34] �nds the live objects by following pointers from

a root{set. The objects reached are marked as live objects (i.e., detection of

live values). The heap is then sweeped for dead objects, that is, space not

occupied by marked objects is reclaimed (garbage reclamation) and inserted

in a free list.

The mark{sweep principle must perform at least two traversals of the

heap where the reclamation traversal (in its basic version) must touch every

address in the heap. As with reference counting, the heap is fragmented

in chunks of varying size containing either live or reclaimed objects. The

fragmentation problem is also known from explicit allocation by the pro-

grammer. For instance, the functions malloc() and free() are normally

implemented using one or more free lists containing chunks of reclaimed

objects of varying size [32, page 185].

To build the free lists it is necessary to search for the unmarked objects.

A scan through the entire heap may be necessary. The reclamation scan may

be optimized by building a data structure (for instance a bitmap) saying

where to �nd marked and unmarked objects while marking the live objects.

The marking phase involves considerable problems. A recursive algo-

rithm visiting nodes in either breadth or depth �rst order may run out of

stack space. An iterative algorithm pushing visited nodes on a stack for

later revisiting may also run out of stack space.

A linear and constant space algorithm can be obtained by using pointer

reversal. When traversing the heap, all branch points (i.e., objects with

unvisited children) must be saved somewhere for later revisiting. Pointer

reversal saves this information in the heap (i.e., in already allocated objects).

Consider Figure 10.2 with an example heap containing a single linked list.

While we traverse the list we reverse pointers such that we can go back

again.

Pointer reversal on a single linked list can be implemented using three
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variables, prev, cur and next. Initially we have the situation in Figure 10.2(a)

with prev = nil and cur = root (i.e., h

1

). We then advance to the next

element (h

2

) by setting next = cur! n, cur ! n = prev, prev = cur and

cur = next. If variable v points at object o then we let v ! n be the �eld n

in o containing the pointer out of o. The pointer for h

1

is now reversed, see

Figure 10.2(b). We continue until the situation in Figure 10.2(c) is reached

and it is now possible to go back to h

1

from h

3

. We work back again by

setting next = prev ! n, prev ! n = cur, cur = prev and prev = next,

see Figure 10.2(d). We stop when the original heap has been reconstructed

(i.e., prev = nil). Additional 
ags (besides the mark 
ag) are needed when

objects contain more that one successor object but the method remains the

same.

4

Instead of storing mark bits in the headers of heap allocated objects

we can use an external bitmap and reserve one bit for each object with a

granularity corresponding to the smallest object allocated. On an 32 bits

machine with the smallest object being a word the bitmap size is

1

32

= 3:1%

of the heap space. On 64 bit architectures we have an overhead of 1:6%.

The sweep phase may be combined with allocation (lazy sweeping) [29].

The mark phase remains the same but we do not sweep the entire heap

and build free lists. Instead we sweep the heap imcrementally each time an

object is allocated by sweeping until an empty chunk of memory is found. If

none is found we initiate the marking phase and sweeps the newly marked

heap until a chunk of memory is found. The advantages are that no free lists

must be managed and the overall garbage collection delays are smaller. We

only need a global sweep pointer pointing at the address where the sweeper

should start next time.

Live objects spread through out the heap may invoke paging more often

than with a compacted heap (Section 10.4). The cache systems may also

su�er from having more global pointers and with an exhausted heap we may

initiate garbage collection more often because it is harder to accomodate the

allocation requirements than if all reclaimed objects were merged into one

larger chunk.

10.4 Mark-Compact Collection

A mark{compact collector solves the fragmentation problem of mark{sweep

collectors and thereby makes allocation faster.

Instead of sweeping the address space, the live objects are compacted

into one continuous block of memory. The rest of the memory area is then

4

A fun exercise is to implement the simple pointer reversal algorithm using two variables

prev and cur only and the identity (A�B)�B � A, where � is the exclusive{or operation.

The same identity can also be used to decrease the number of assignments in the algorithm

sketched above from four to three [45].
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Figure 10.3: The two{�nger method traverses the heap in both direc-

tions looking for free space and live objects to relocate at the same time.

The initial heap is shown in (a) and (b) is after relocation. Note the re-

location pointers inserted in the relocated objects in the top half of the

heap. They are used when updating pointers in the bottom half (dark

area) of the heap.

freed.

The obvious advantages with compaction compared to sweeping are that

no free lists must be managed. Also, allocating objects is simpler as both

large and small objects are allocated from the same continuous area of mem-

ory. Only a pointer has to be moved in order to allocate an object. The

garbage collector is initiated when the allocation pointer exceeds the free

memory area.

However, as with a mark{sweep collector, two or more parses over the

address space are necessary. Many algorithms exists for compacting live

objects and we review three of them. For a more detailed comparison of

compacting algorithms including the calculation of symbolic time formulas

consult [15].

The two{�nger method [43] is simple and fast but in its basic version it

is suitable for �xed sized objects only. The �rst phase marks all live data.

The second phase scans the heap using two pointers, see Figure 10.3. The

alloc pointer starts at the bottom of the heap and looks for free space for

relocated objects. The live pointer starts at the top of the heap and looks

for live objects to relocate. Objects are relocated by copying them into the

space pointed at by alloc. After copying, the object pointed at by live is

overwritten with the new address pointed at by alloc. The copying ends

when the two pointers meet. Pointers in the bottom half are then updated

by traversing the bottom half and changing all pointers pointing into the

top half containing relocated objects, see Figure 10.3.
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Figure 10.4: The break{table method inserts a break table into the free

cells in the heap. For each object moved, the old address of the object

together with the total amount of free space found so far is added to the

table. The new address of the object at address 20 is 20-12=8.

It is possible, allthough cumbersome, to implement the two{�nger method

with variable sized objects where di�erent sized compaction blocks are needed,

that is, one alloc pointer for each object size is needed.

The next method uses a break table stored in the free address space in the

heap [26]. The break table contains enough information about the relocated

objects in order to update pointers pointing at relocated objects. First live

objects are marked. The next phase moves objects and builds the break

table that, for each object moved, contains the start address of the object

before moving and the total size of free space found so far (i.e., (addr; size)),

see Figure 10.4. There is always free space for the break table as long as one

table entry (pair) is smaller than the smallest heap{allocated object [26]. As

objects are moved toward lower addresses it is necessary to move the break

table toward higher addresses. This can be done by rolling the table such

that only fractions of the table is moved for each relocated object. When

all objects are moved the table is sorted after address of object (i.e., addr).

Addresses pointing at relocated objects are resolved by scanning the

compacted half of the heap and for each pointer p �nd the entries (a

1

; s

1

)

and (a

2

; s

2

) in the break table such that a

1

� p < a

2

. The new address for p

is then p� s

1

. For instance, in Figure 10.4 the new address of the relocated

object at address 26 is 26-14=12.
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Figure 10.5: The original heap is shown in (a). After threading, the

header �eld of object C (infoC ) is moved into the pointer �eld of object

A and a pointer to object B is stored in the header �eld in C. Updating

the pointers to C in A and B is then done by following the pointer out

from C.

The complexity of the algorithm is O(n logn) due to the sorting and

searching into the break table (n is the size of the heap). However, in

practice an almost linear complexity can be engineered [25].

The last compacting method we discuss is based on threading and is

related to pointer reversal used for marking live objects [24, 31]. Suppose

we have two objects A and B pointing at another object C, see Figure

10.5(a). If we move object C then the pointers into C must be updated with

the new address of C. This can be done easily by �rst building the structure

in Figure 10.5(b). Given object C we know which objects are pointing at C

and can easily update the pointers with the new address of C without loss

of information including the header �eld in object C. The update of some

or all addresses is done before objects are moved to their new locations.

Besides marking live objects, a forward and backward scan of the heap

are needed (i.e., complexity O(n) where n is the size of the heap). The for-

ward pass handles forward pointing pointers and the backward scan handles

pointers pointing backwards, consult [31] for further detail. The method

assumes that pointers only point at the header of other objects. This is

always the case in the ML Kit. However, the method also assumes that a

header �eld is large enough to contain an address (necessary for threading)

and that the address is distinguishable from non addresses. This is not the

case in the ML Kit. For instance, nullary value constructors occupy one

word only even if tagging is enabled, see Chapter 12.

10.5 Copying Garbage Collection

A simple copying garbage collector (called stop and copy) [23] uses two

address spaces, also called semi spaces. Only one semi space is used at the
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time (i.e., the current semi space) in which objects are allocated. Garbage

collection is initiated when the current semi space is full. Live objects are

traversed and copied from the current semi space (also called the from{space)

into a new semi space, called the to{space. The copied objects are compacted

in the to{space. After copying an object, the �elds in the copied{from

object are replaced with forward pointers pointing at the �elds in the new

object in to{space. We assume that forward pointers can be distinguished

from other pointers and values. For each object traversed in from{space we

know whether or not the object has already been copied and if an instance

already exists in to{space then a forward pointer tells us the new address

of the object. The live objects in from{space are copied exactly once. After

all live objects in from{space has been traversed, we let to{space be the

current semi space and the from{space is not used until garbage collection

is initiated again. As pointers are updated when objects are copied into

to{space, only one scan of the live objects is needed.

As with mark{compact collectors, there is no fragmention and allocation

is done e�ciently by moving an allocation pointer.

We allocate about twice the memory necessary for the running program

which may be a problem for some memory demanding programs. The virtual

memory systems used in modern computers [42, 28] partly solves the prob-

lem by swapping the non current semi space out of memory when memory

demand is high. However, the time involved in paging and swapping may

be signi�cant descreasing the overall performance of simple stop and copy

algorithms

10.5.1 Simple Stop and Copy

In this section we describe a simple stop and copy algorithm based on recur-

sion [23]. Cycles are easily handled by marking each object with a visited


ag. When an object is �rst met, the mark is set. The mark is then checked

to see whether or not an object has already been visited. However, assuming

we can distinguish forward pointers from other pointers and non pointers

then the forward pointers gives us the same information as a mark 
ag. This

only requires that all �elds in an object are updated with their new forward

pointers before decendants of the object are traversed. Consider the object

# 4 #

with two pointer �elds and a scalar �eld.

5

When the object is �rst met we

make a new instance of the object in to{space, and update all three �elds

in the from{space object with forward pointers into the �elds of the new

to{space object. We then recursively traverse the pointer objects in the

to{space object. Note that if pointers always point at the start of an object

then we only need one forward pointer for each object.

5

We use # to denote pointers and numbers to denote non pointer �elds.
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Figure 10.6: Pointer �elds are shown with arrows and scalar �elds with

their scalar value. The root{set consists of the object v

1

.
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Figure 10.7: Forward pointers are shown as arrows with a �lled circle.

The two semi spaces to{space and from{space are not shown. We assume

objects named with a \pling" (e.g. v

0

2

) to be allocated in to{space and

other objects to be allocated in from{space.

We assume that root{set objects are never moved and therefore always

leave pointers into root{set objects unchanged. However, this depends on

the application.

Consider the example heap in Figure 10.6. The root{set object contains

one pointer �eld pointing at v

2

. A copy of v

2

is put in to{space named v

0

2

,

and the two pointer �elds in v

2

are changed into forward pointers, see Figure

10.7.

The �rst pointer �eld in v

0

2

is then traversed which �rst produces a new

instance of v

3

. Forward pointers are put in v

3

, see Figure 10.8.

The �rst pointer �eld in v

0

3

points at the root{set object and is left

unchanged. The second pointer �eld in v

0

3

points at a forward pointer in

v

2

and is updated accordingly. We are now done with object v

3

and return

the address of object v

0

3

so that the pointer object in v

0

2

can be updated, see

Figure 10.9.

The second pointer �eld in v

0

2

is then traversed and a copy of v

4

is

allocated in to{space (v

0

4

). The scalar �eld in v

4

is replaced by a forward

pointer to v

0

4

. The address of v

0

4

is returned and the second pointer object in
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Figure 10.8: The object v

3

has been copied into to{space (v

0

3

) and

forward pointers are put in v

3

. Note, that there are no changes to object

v

0

2

yet.
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Figure 10.9: The �rst pointer �eld in v

0

2

is updated after return from

object v

3

. Note the change in the second pointer �eld in object v

0

3

.
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Figure 10.10: Objects with forward pointers may now be freed.

v

0

2

is updated to point at v

0

4

. We are now done with v

2

and the address of v

0

2

is returned to v

1

and the pointer �eld is updated to point at v

0

2

, see Figure

10.10. The objects v

2

; : : : ; v

4

residing in from{space may now be freed.

The following C function implements the algorithm sketched above with

the restriction that pointers must point at the start of an object. The pointer

objPtr points at a live object.

int gc(int *objPtr ) f

int *new , *i ;

if is in root set(objPtr)

return (int)objPtr ;

else f

if is forward ptr(*objPtr )

return clear forward ptr (*objPtr);

else f /* We point at an unvisited object */

new = copy val(objPtr);

for(i=�rst obj ptr (*new),i ,i=next obj ptr (i))

if is ptr (*i)

*i = gc(*i); /* Update �eld i. */

return (int)new ;

g

g

g

The function copy val(objPtr) copies the object pointed at by objPtr and in-

troduces forward pointers. The function is in root set(objPtr ) tests whether

or not objPtr points at a root{set object and the function is forward ptr (*objPtr)

tests wheter or not the point at object is already copied. If it is copied

then the forward pointer is returned after clearing the bit that identi�es the

pointer as a forward pointer. The loop runs through all �elds in the copied

object and calls gc recursively on all pointer �elds.
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Figure 10.11: We loop over the to{space area to collect the live values.

The scan pointer s points at the next �eld to collect.

Recursion is expensive because we perform a function call for each live

pointer value in the heap. It takes time to setup a function frame with

temporary values etc. A deep call tree may invoke a fatal error by exhausting

the stack. Data structures, as large search trees, in Standard ML may create

a deep call tree with the above method.

10.5.2 Cheney's Algorithm

The disadvantages of recursion are easily avoided using the to{space area

to record the values that have been copied but not collected yet [14]. We

do a breadth �rst traversal instead of a depth �rst traversal as the recursive

algorithm above.

The algorithm uses an allocation pointer a and a scan pointer s both

pointing into the to{space area. The allocation pointer points at the address

where the next relocated object is stored. The scan pointer points at the

current object (or �eld) being garbage collected. Each time an object (or

�eld) is collected the scan pointer is adjusted to point at the neighbor object

(or �eld). The algorithm ends when s = a.

Consider the example heap in Figure 10.6 again. The root{set object

v

1

is not copied into to{space. The �rst value we copy is v

2

and then we

scan the to{space area and collect all other live values. As in the recursive

algorithm we insert forward pointers when copying v

2

. We also update the

pointer �eld in v

1

to point at v

0

2

, see Figure 10.11

The next �eld to collect, pointed at by s, is an object pointer pointing

at v

3

. The value v

3

is copied into to{space, see Figure 10.12.

The second object pointer in v

2

points at a scalar object that is copied

into to{space. The �rst pointer object in v

0

3

points at the root{set value

and is left unchanged. The second object pointer in v

0

3

points at a forward

pointer and is updated accordingly. Now the scan pointer points at the

scalar object which is left unchanged. The algorithm stops when a = s, see
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Figure 10.13.

The algorithm is fast because it is driven by a simple loop. First we loop

through the root{set values and copy the initial objects into to{space. Then

we loop over the to{space area until all objects have been collected; there

are no other external structure that has to be updated. Note, that we can

not deallocate objects containing forward pointers in from{space before all

values in to{space have been collected. The overall algorithm is as follows:

1. a = �rst addr in to space

2. 8 objPtr 2 root set : *objPtr = gc(*objPtr);

3. for(s=�rst addr in to space;s<a;s++) if (is ptr(*s)) *s = gc(*s);

4. make to{space the current semi space.

The function gc is slightly di�erent from the recursive algorithm.

int gc(int *objPtr ) f

if is in root set(objPtr ) then
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return objPtr ;

else f

if is forward ptr (*objPtr) then

return clear forward ptr (*objPtr);

else /* We point at an unvisited value */

return copy val(objPtr);

g

g

The funtion copy val ajusts the allocation pointer.

10.5.3 Generational Garbage Collection

A copying garbage collector is e�ective on small objects with a short life

time; an object with a life range that starts and ends between two successive

garbage collections is collected for free. However, large objects with a longer

life range are expensive because they are copied at each collection. Especially

global data are copied over and over again.

Generational garbage collection solves this problem in the case that most

objects allocated have a short life range and the number of pointers from old

objects into newer objects are small. An older cell can point to a newer cell

if the older cell is modi�ed after it is created. This is only possible through

references in Standard ML.

The heap is divided into a number of generations, G

1

; : : : ; G

n

and the

newest generation G

1

is garbage collected most often. As objects survive

garbage collections they get older and are eventually copied into older gen-

erations that are collected less often. Given a root{set a naive algorithm

must traverse all live objects including objects in older generations in order

to �nd all live objects in the younger generations. It is better if we can limit

the search to include younger generations only. This is possible if there are

no pointers from an older generation into a younger generation. Each time

we have a pointer into an older generation we then stop traversing. However,

with references in Standard ML we may have references from older gener-

ations into younger generations, but they are relatively rare. In SML/NJ

[5] the problem is solved by maintaining a list of addresses of cells in older

generations which have been updated after they were created. Letting the

list be part of the root{set we are sure to get all live data in the younger

generations and still only traverse the younger generations. This is only

e�cient because the list in practice is small.

The Caml Light garbage collector [44] is generational with two genera-

tions and hybrid using a stop and copy collection of the young generation

and incremental mark{sweep collection of the old generation. The mark{

sweep collector reduces the time used on copying because older objects are

not moved.
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10.6 Comparing The Algorithms

We have chosen the criterias below as a basis for comparing the basic garbage

collection algorithms described in this chapter.

User interaction tolerance: for how long time and how often is the user

program interrupted.

Reference counting gives small but many user interactions which may

give the impression of a smoother program execution compared to

the tracing algorithms with fewer but longer interactions. It is easier

to have reference counting ful�ll some real{time requirements than a

tracing algorithm. The lazy sweeping method [29] improves the basic

mark{sweep method but still has to trace all live data. Both reference

counting and the tracing algorithms can be made incremental but

their implementations and especially tracing algorithms tend to be

complicated.

We do not consider real{time properties to be important for the garbage

collector in the ML Kit. Garbage collection is an add on only and re-

gion inference is the main memory allocation strategy which handles

most real{time requirements. Small real{time applications should be

developed using region inference only.

Precision criteria: how precise is the algorithm in reclaiming dead ob-

jects.

Reference counting does not reclaim cyclic structures. All tracing algo-

rithms reclaims all but live data i� a precise root{set can be calculated.

We want the garbage collector in the ML Kit to reclaim all garbage

based on the root{set given, that is, we want cyclic structures to be

reclaimed properly.

Aggressiveness: for how long time are objects allocated after they have

died.

Reference counting is aggressive because an object is reclaimed as soon

as the count reaches zero. Tracing algorithms wait until they are trig-

gered by, for instance, an exhausted heap. Region inference shares

the eagerness of reference counting where entire regions are relaimed

as soon as they are inferred to be dead. The only di�erence is that

reference counting is dynamic and region inference is static. Region

inference already recycles the heap e�ciently [10, 49]. We expect re-

gion inference to recycle most of the allocated memory such that the

rate in which memory is �lled with dead objects is low.

Root{set computation: the tracing algorithms need to compute a root{

set. It is possible to compute a root{set in the ML Kit, see Chapter

13.
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Tag information: what kind of tagging is necessary to implement the al-

gorithm.

Reference counting requires several bits for the reference counts op-

posed to the tracing algorithms which need a single bit only (for each

word) to di�erentiate between scalars and pointers.

6

This is indeed a

serious drawback of reference counting in our framework because we

have a large number of objects. The problem tends to disappear when

the number of objects gets smaller as for instance in �le systems where

the number of open �les is easily handled using reference counting. A

�le descriptor is reclaimed when the reference count reaches zero.

Overhead/performance: what kind of overhead is imposed by the algo-

rithm and what is the asymptotic performance complexity. We note

that complexity formulas involving constants must be read carefully

because, the size of the constants may be more important than the

actual complexity. This is indeed the case with garbage collection al-

gorithms. All algorithms we have presented are linear (in the size of

live data or the heap) except for the break table method with com-

plexity n logn, where n is the size of the heap.

Say that allocating an object gives overhead a, then if it is done often

it is signi�cant whether the constant is large or small.

Let H be the size of the heap and let U be the amount of allocated

(used) memory, (i.e., U � H). Let N be the number of times an object

is allocated (and deallocated).

The time used on reference counting is t

RC

= c

1

N , where c

1

is time

used on allocation and deallocation including bookkeeping of reference

counts and free lists.

The mark{sweep method uses time t

MS

= c

2

U + c

3

H where c

2

is the

time used on allocation and tracing the heap and c

3

is the time used

on sweeping. Using lazy sweeping the term c

3

H dissapears from t

MS

and the overhead c

2

also includes the searching for a chunk of memory.

With lazy sweeping the complexity depends on live objects only and

not the size of the heap, as is the case for mark{compact collectors.

The mark{compact method uses time t

MC

= c

4

H log c

5

U using the

break table method and t

MC

= c

6

H using threading. The constant c

4

includes time to move objects, update pointers and roll the break table.

The constant c

5

is the overhead in sorting and searching the break

table. The constant c

6

includes the work of threading and unthreading

pointers.

6

The presentation is simpli�ed because a single bit is not always enough to di�erentiate

between scalars and non scalars, see Chapter 12. But it is still, by far, better than reference

counts.
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The copy method uses time t

C

= c

7

U where c

7

includes the time used

to copy live objects and update forward pointers.

Allocation is more expensive for mark{sweep collectors based on free

lists than for compacting collectors. This is important in Standard

ML where the allocation frequency is high and the average life range

small. The SML/NJ'0.93 compiler reclaims, in average, 98.7% of the

heap at each garbage collection [5, page 206]. The compating collectors

use time proportional to the heap size and not the size of live data.

This favors the copying method except in the case where we have large

objects with longer life ranges. This is however not the average case

in Standard ML programs where most objects allocated are tupples

and closures.

Implementation: considering the region heap (being a linked list of region

pages) it is di�cult to see how an e�cient allocation strategy is based

on free lists. We then need a free list for each allocated region.

Region inference makes most regions contain objects of the same size.

However, some regions do not and the two{�nger method is therefore

not suitable.

The threading algorithm assumes that all objects have a pointer sized

header �eld. We believe this to be an expensive restriction especially

due to the large amount of constructors that can be implemented using

one word only.

The break table method assumes the smallest heap allocated object

to be of size two words. This is not the case in the ML Kit where

for instance a nullary value constructor occupies one word only. It is

still possible to use the method with the cost that not all garbage may

be removed [25]. The region heap also complicates the break table

method signi�cantly because the break table must be rolled between

di�erent non continuous region pages.

The simple recursive copy method works with the region heap as long

as we can allocate into the region heap. Let each region have two lists

of region pages, a from{list and a to{list. After garbage collection we

free all from{lists and, for each region, make the to{list the current

list of region pages. This also minimizes the overhead of data used.

Instead of having an overhead of one semi space the overhead is the

number of region pages used to hold live data.

We believe the most promising choice for the ML Kit is a copying garbage

collector. It is simple to implement, works with regions and only needs a

minimum amount of tagging. We re�ne the Cheney method to work with

regions in Chapter 11.



Chapter 11

Garbage Collection of

Regions.

In Chapter 10 we found the most promising garbage collection method for

regions to be simple non generational copying garbage collection. In this

chapter we show how the copying priciple developed by Cheney [14] is ex-

tended to work with regions. We also describe extensions to region descrip-

tors and region pages.

11.1 Algorithm Using Recursion

It is easy to re�ne the simple recursive copying garbage collector from Section

10.5.1 to work with regions. The algorithm does not put restrictions on the

number of to{spaces and from{spaces.

We extend the in�nite region descriptors to hold an additional list of

region pages so that each region has its own from{space and to{space. An

in�nite region descriptor then contains the following �elds (consult [22] for

more information about each �eld in the descriptor):

1. allocation pointer (a), which points at the next available address in the

region page currently being allocated into. When garbage collecting,

a points into to{space, and otherwise a points into from{space.

2. pointer to the �rst region page (fp) in from{space.

3. pointer to the end of the region page currently being allocated into.

This is called the border pointer, b. The pointer b points at the border

of to{space when garbage collecting and otherwise at the border of

from{space.

4. pointer to the previous region descriptor on the region stack, p.

5. pointer to the �rst region page in to{space, (fp' ).

188
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-

?

0

66

-

?
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a

fp'
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(b)
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?

0

??

-

0
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Figure 11.1: Part (a) shows an example region descriptor with from{

space (fp) and to{space (fp' ) at a time where garbage collection is not

performed. Values are allocated in from{space. The pointer fp' may

point at anything. Part (b) shows what happens during garbage col-

lection. The allocation and border pointers now work on the to{space.

After garbage collection the from{space region pages are freed and the

to{space region pages are turned into from{space region pages.

We note that it is not necessary to have two instances of the allocation

and border pointers because at any time we either allocate into from{space

or into to{space. The region pages in from{space contain garbage after a

garbage collection phase and are moved to the free list for recycling. The

pointer fp is then set to point at to{space, that is, to{space is then the

current space in which objects are allocated, see Figure 11.1.

11.2 Cheney's Algorithm and Regions

Cheney's algorithm from Section 10.5.2 does not, as is, work with regions

because we do not have a single to{space but an unbounded number of to{

spaces, that is, an unbounded number of scan and allocation pointers. The

algorithm ends when all scan and allocation pointers are equal. The stop

criteria is then a �xed point criteria:

8r 2 Reg : r! a = r ! s;

where Reg is the set of in�nite region descriptors on the region stack, r! a

is the allocation pointer and r ! s is the scan pointer in region r. A

naive implementation of the �xed point criteria looping through all region

descriptors on the stack is indeed not an e�cient solution. There may only

be a small number of regions not ful�lling the stop criteria.

Consider Figure 11.2 with a data structure that imposes an interesting

behavior on Cheney's algorithm extended to regions. At any time during

garbage collection, at most two regions will contain one copied and non

collected value. With the naive implementation of the �xed point criteria

the region stack is traversed for almost every copied value, see Figure 11.3.
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�
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Figure 11.2: The �gure shows an example data structure allocated in

three regions. It is a possible implementation of lists where cons and nil

cells are allocated in �

cons

, records in �

rec

and elements in �

elem

. We

note that lists are implemented more e�ciently in the ML Kit and that

this �gure serves only as an illustration.
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�

elem

�

rec

�
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Figure 11.3: It may be necessary to loop through the region stack many

times because only a fraction of the set of live values in a region is copied

into to{space each time the region is collected. Scanning region �

cons

gives one new value in �

rec

, (a)!(b). Scanning region �

rec

gives one new

value in �

cons

and �

elem

, (b)!(c). Scanning �

elem

does not introduce

new values but scanning �

cons

introduces one new value in �

rec

, (d).
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Figure 11.4: The �gure shows seven snapshots of the scan stack (a)

{ (f) when collecting the data structure in Figure 11.2. The maximal

height of the stack is n+1 where n is the number of elements in the list.

11.2.1 A Stack of Values

The problem with more than one to{space is avoided using a scan stack

containing pointers to values copied into to{space areas but not traversed

yet. Each time a value is copied into to{space, a pointer to the value is

pushed on the scan stack.

It is not necessary to have a scan pointer in each region descriptor, and

not even on the scan stack. We simply pop the top pointer and collect the

value it points at. We are done when the scan stack is empty.

There is a small overhead for each copied value in both time and space

compared to Cheney's algorithm, but it solves the problem of having many

to{spaces. There is no recursion and the algorithm is not vulnerable to

recursive data structures. However, many objects may be pushed on the

scan stack at the same time. This extra space usage is a fatal problem.

Figure 11.4 shows the scan stack while collecting the data structure in Figure

11.2.

11.2.2 A Stack of Regions

Instead of storing pointers to values in the scan stack we can store pointers

to region descriptors containing non collected values [47].

Consider the region descriptor in Section 11.1, Figure 11.1. We extend

the region descriptor with a region status:

NONE if there are no non collected values in to{space.

SOME(s) if there are non collected values in to{space. The

pointer s then points at the next non collected value in

to{space (i.e., s is the scan pointer).

Each time a value (v) is copied into to{space (v

0

), the region status is

checked, and if NONE, then the status is changed into SOME(a) where

a is the allocation pointer pointing at the address where v

0

is stored. A

pointer to the region is pushed onto the scan stack. If the region status is
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Figure 11.5: We have drawn the values v

2

; v

3

and v

4

as allocated in

the two regions. The region �

1

has two region pages allocated with a

value in each one and a pointer to the next region page. A null pointer is

written 0. We have not drawn the backward pointer from a region page

to the region descriptor. Only one region page is necessary in region �

2

.

The value v

1

is allocated on the stack and is in the root{set.

SOME(ptr) then nothing is done, because the value v

0

is automatically col-

lected next time the pointer to the region descriptor is popped from the scan

stack. The region status of the region currently being collected is changed

to NONE when we are done with the region. This prevents the region to be

pushed on the scan stack while it is actually being collected.

A minor optimization is to push the scan pointer on the scan stack

directly (instead of a pointer to the region) and then only manage a status

bit in the region descriptor. We use Cheney's algorithm locally on each

region and are done when the scan stack is empty.

The algorithm is best illustrated on our running example in Figure 10.6

on page 179. Assume we have two regions, �

1

and �

2

, where value v

2

and

v

3

are allocated in �

1

and value v

4

is allocated in �

2

, see Figure 11.5.

To initialize the scan stack we collect all values in the root{set (i.e.,

v

1

). This may cause values allocated in regions, to be copied into to{spaces.

After initialization, all regions containing values in to{spaces will have the

region status SOME(ptr) and are pushed on the scan stack.

Unfortunately, we must check the region status each time we copy a

value. This is only feasible if we, given a pointer to a copied value inside a

region page, can �nd the region descriptor holding the region status. This

is done by having all region pages of �xed size and aligned. Given a pointer

(val ptr) into a region page, the start of the region page is found by masking

out the o�set (val o� ) of the pointer relative to the base address (base ptr)

of the region page.

Say that each region page has size 1 Kb. and is aligned at 1 Kb. ad-

dresses. The �rst 10 bits of the base pointer to the region page are then

zero. Every pointer into the region page then consists of the base pointer
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Figure 11.6: We reduce pointer spaghetti by not drawing the border, al-

location and previous region descriptor pointers. The status SOME(ptr)

is drawn as S. Likewise, the status NONE is drawn N. The scan stack

contains region �

1

. Forward pointers are drawn with a bullet.

plus an o�set which is held in the �rst 10 bits:

base ptr = val ptr AND 0

31

� � � 0

10

1

9

� � � 1

0

and

val ptr = base ptr OR val o�

The region descriptor is located by storing a pointer in each region page

descriptor pointing back to the region descriptor. Given a pointer into a

region page, the corresponding region descriptor is found by a binary AND

operation and one dereferencing.

Consider Figure 11.5. After initialization the value v

2

is copied into

to{space in region �

1

, see Figure 11.6.

We pop the �rst pointer o� the scan stack that points at region �

1

. We

therefore collect value v

0

2

and the two values v

3

and v

4

are copied. While

scanning the to{space of region �

1

, we update the region status to point

at the next non collected value. The region �

1

is not pushed on the scan

stack when value v

3

is copied because v

0

3

is collected after value v

0

2

. That is,

we continue to scan to{space of region �

1

until no non collected values are

available.

After collecting value v

0

3

we are done with region �

1

and �

2

is on the scan

stack, see Figure 11.7.

It is actually not necessary to change the status of region �

2

when copying

value v

4

because the value only contains scalars.

The maximal depth of the scan stack is limited by the number of region

descriptors on the region stack; at any time, at most one pointer to each

region descriptor is on the scan stack. We can use the machine stack as a

scan{stack and the likelihood that the machine stack is exhausted during
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Figure 11.7: Several pointers are not shown to reduce pointer spaghetti.

A pointer to region �

2

is now on the scan stack. No more values are

collected because value v

0

4

is a scalar.

garbage collection is no di�erent from the likelihood that the machine stack

is exhausted when not using garbage collection except for a constant factor

less than two (i.e., the scan stack occupies less space than the function frames

that hold the in�nite region descriptors). It is therefore feasible to assume

that the machine stack can hold the scan stack.

1

Consider the data structure in Figure 11.2. We saw in Section 11.2 that

the naive implementation of the �xed point criteria behaved poorly on this

data structure. We have the same behaviour with the above algorithm in

that each region will change status for almost every value copied. However,

this only implies a small constant overhead and not a linear overhead in the

size of the scan stack. We do not expect this overhead to be signi�cant.

The complexity of the algorithm is t

C

= cU where U is the amount of

live data, see Section 10.6. The constant c includes the time used to copy

live objects, update forward pointers, handling region status and the scan

stack. The algorithm is slower than the original Cheney algorithm but with

a constant factor only.

11.3 A Revised Region and Region Page Descrip-

tor

We have already discussed the changes necessary to the region descriptor in

order to adopt the Cheney algorithm for regions. We introduced a pointer

fp' pointing at to{space. However, notice that while garbage collecting a

region we never allocate into from{space. It is therefore not necessary to

have the from{space linked to the region descriptor. We just have to make

sure that from{spaces are not freed until after garbage collection.

Before garbage collection, we traverse the region stack and move the

region pages in all from{space areas (pointed at by fp) into one linked list

1

We do not use the machine stack in the initial implementation but a �xed sized array.
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of region pages. We reserve a global pointer from space to point at the

�rst region page. The pointer fp in each region descriptor is then initialized

to point at a fresh region page from the free list, now being the to{space.

Garbage collection is performed as described above and when all values have

been collected the region pages pointed at by from space are garbage and

inserted into the free list.

While collection is in progress, we allocate new region pages from the

free list and not from the list pointed at by from space . This is not more

expensive than having both fp and fp', because after collection we should

append all region pages pointed at by fp to the free list anyway. With the

revised method, we remove the pages from the region descriptors before

collection, but wait to after collection before we insert them in the free list.

We implement the region status (NONE or SOME) with a single bit in

one of the address �elds in the region descriptor. The actual scan pointer is

pushed on the scan stack instead of a pointer to the region descriptor. We

then conclude that no additional �elds are added to the region descriptor in

order to implement copying garbage collection.

Each time an object is copied into to{space we need access to the region

descriptor to allocate a new object and to check the region status. The

region descriptor is found by storing an additional pointer in the region page

descriptor pointing at the region descriptor. The region page descriptor then

contains two pointers:

1. a pointer to the next region page, n

2. a pointer pointing at the region descriptor, rd

11.4 The Garbage Collection Algorithm

In this section we present the garbage collection algorithm in pseudo code.

First we traverse the region stack and move all region pages into a global list

of from{space region pages. We allocate a fresh region page for each region.

The variable topRegion points at the in�nite region descriptor at top of the

region stack. The global variables fromSpaceBegin and fromSpaceEnd point

at the �rst and last from{space region page. There is always at least one

region allocated (i.e., topRegion never points at NULL).

fromSpaceBegin = NULL;

fromSpaceEnd = addr of last region page(topRegion);

for (rd=topRegion ;rd != NULL;rd=prev region(rd)) f

lastRegionPage = get last region page(rd);

next ptr (lastRegionPage) = fromSpaceBegin ;

fromSpaceBegin = addr of �rst region page(rd );

�rst region page ptr(rd ) = fresh region page();

g
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We then garbage collect all objects in the root{set.

8objP tr 2 root set : �objP tr = gc obj(�objP tr)

where the function gc obj garbage collect an object.

int gc obj (int obj ) f

if (is in root set(obj ) || is scalar (obj )) then

return obj ;

else f

/* We know obj is a pointer */

objPtr = (int *) obj;

if is forward ptr (*objPtr) then

return clear forward ptr (*objPtr);

else /* We point at an unvisited value */

return (int) copy obj (objPtr );

g

g

The function copy obj copies the value from a from{space region page into

the to{space area of the region where the object belongs. An integer (tested

with is scalar ) is unboxed and is returned as is. The region status is checked

and the region pushed on the scan stack if necessary.

int *copy obj (int *objPtr ) f

rd = get region descriptor (objPtr);

new obj ptr = copy val(objPtr ,rd );

if status(rd) = NONE f

push scan stack(new obj ptr );

set status SOME(rd);

g

return new obj ptr ;

g

The function get region descriptor returns a pointer to the region descriptor

in which the object is allocated. The region descriptor is found as shown in

Section 11.2.2; region pages contain a pointer back to the region descriptor.

The function copy val allocates space and copies the object into to{space.

A forward pointer is inserted in *objPtr pointing at the new object. The

allocation pointer in the region descriptor is adjusted.

After copying all root{set objects we iterate until the scan stack is empty.

while not empty scan stack() f

scanPtr = pop scan stack();

rd = get region descriptor (scanPtr );

while scanPtr != get alloc ptr(rd ) f
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8 �eld 2 scanPtr : *�eld = gc obj (*�eld);

scanPtr = scanPtr + size of obj (scanPtr );

g;

set status NONE(rd );

g

We are done garbage collecting when the scan stack is empty. The from{

space region pages are now inserted into the free list.

next ptr (fromSpaceEnd ) = freeList ;

freeList = fromSpaceBegin ;

The variable freeList is a pointer to the �rst region page in the free list.

11.5 Finite Regions

So far we have discussed garbage collection of in�nite regions only and found

a promising algorithm. Unfortunately, �nite regions complicate matters. We

have three kinds of objects in the ML Kit.

1. objects allocated in in�nite regions. These objects are traversed and

copied by the revised Cheney algorithm.

2. objects allocated in �nite regions residing in activation records on the

machine stack. These objects are traversed but not copied (i.e., they

may contain pointers to other objects).

3. constants in the data area of the program binary. They are neither

traversed nor copied. It is not necessary to traverse a constant because

it never points at a heap allocated object.

How do we di�erentiate between the objects and how do we treat objects in

�nite regions? Constants are easily recognized because we use a bit in the

tag of objects to denote constants. The result of following a pointer to a

constant is the pointer itself and no further processing.

A pointer p pointing at an object o in a �nite region is recognized

by a range check on the machine stack boundaries (i.e., stackBot < p <

stackTop). An object in a �nite region may be in two states:

1. never traversed, that is, p is the �rst pointer found pointing at o.

2. already traversed and updated, that is, p is not the �rst pointer found

pointing at o.
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In the �rst case we can either recursively follow the �elds in o and update o

or save the address of o on a scan stack for later processing. In the second

case we may not follow the pointers in o and update o because they have

already been updated.

We chose to put the object on a scan stack for later processing such

that we still have a non recursive algorithm. The size of the scan stack is

potentially unbounded. We have not found this bound to be a problem in

our implementation. Chains of pointers from �nite regions to �nite regions,

not intervened by a pointer into an in�nite region, do not seem to be long.

Every time we have a pointer to an object in an in�nite region then the

region is pushed on the scan stack (if not already there). With two scan

stacks, one for �nite regions and one for in�nite regions, then by always

popping from the stack with �nite regions (before popping from the stack

with in�nite regions) we keep the size of the two stacks small.

2

To see wheter a �nite region has already been traversed we need a mark

on the region. It is possible, however di�cult, to mark a �nite region when

it has been processed. The problem is that we must reset the marks when

we are done garbage collecting. This requires information about where the

�nite regions reside on the machine stack. One possibility is to record it in

the frame map at each application point (see Chapter 13).

If we, given a pointer p into an in�nite region, can �gure out wheter p

points into from{space or into to{space then we know whether p has already

been processed. If p points into to{space then p has already been pocessed.

We implement this by marking all region pages in from{space when from{

space is build and reset the marks when from{space is merged with the free

list.

We do not have these problems in the Cheyney algorithm. Wheter an

object has been traversed or not is recognized by the presence or absence

of a forward pointer. Also, the scan pointer never passes an object twice in

to{space.

11.5.1 Recursive Data Structures

If we have two pointers pointing at an object o in a �nite region then we

traverse o twice because there is no tag on o saying that o has already been

traversed. However, all �elds in o pointing into to{space are never followed.

What if a pointer p in o points at another �nite region? Then we follow p

because p is the same whether it has been followed or not (i.e., the point at

object is not moved). Our algorithm may therefore follow pointers out of

objects in �nite regions more than once which unfortunately take time. We

have not had time to measure this overhead.

2

We only use one scan stack in the implementation and even in that case we have never

had a problem with the size of the scan stack.



CHAPTER 11. GARBAGE COLLECTION OF REGIONS. 199

What happens if we have a cyclic data structure involving �nite re-

gions only? Then we may loop in�nitely because the regions are continously

pushed on the scan stack; we may follow the same pointer from one �nite

region into another �nite region many times. However, if the cyclic data

structure involves an in�nite region then we are safe; no object in an in�nite

region is traversed more than once.

The region inference rules and the multiplicity analysis (Section 2.3) do

not allow cyclic data structures involving �nite regions only. To create a

cyclic data structure we must use references.

The region inference rules require that the region(s) containing the value

that a reference points at are always the same for each reference. Consider

a refernece val a = ref v where v must reside in region �. If we update a

with a := v

0

then v and v

0

must both reside in region �. The multiplicity

analysis then gives � multiplicity 1 and v, v

0

are allocated in an in�nite

region.

We must always have at least one update in order to create a cycle and

we conclude that a cycle always involves at least one in�nite region. We

note that this argument has not been proved.

We consider changing the implementation to use marks on �nite regions

such that all objects are traversed only once. The above unproved argument

is then insigni�cant. This requires the frame map to be extended with

information about the placement of �nite regions in the function frames

because the marks must be reset after a garbage collection.

11.6 Garbage Collect a Few Regions Only

Experience has shown that most space leaks are localized around a few

global (i.e., older) regions, that is, a few regions contain most of the dead

values. Inspired by generational garbage collection (see Section 10.5.3) it

seems resonable to localise garbage collection to a few global regions in the

same way that generational garbage collection concentrates on the younger

generations.

Generational garbage collection uses the property that generations con-

tain objects of approximately the same age. This is not the case in region

inference. Global regions may contain old and new objects. We have lots of

pointers from younger regions into older regions.

Figure 11.8 illustrates the problem of localising the search for live objects.

We want to concentrate on the older regions (drawn black in the �gure)

but must traverse the younger regions because the yonger regions contain

pointers into the older regions.

It may be possible to limit the search by marking region pages as dirty

if they contain a pointer into an older region that is included in the set of

regions to reclaim. Then the search for live objects can stop at region pages
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The old regions are drawn black.
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Figure 11.8: Pointers can only go from newer region to older regions.

We have darkened the older regions being the regions that we would like

to concentrate on.

not marked dirty. We have not investigated this further.

We may also have pointers from older regions into younger regions but

it happens rarely and the garbage collector cannot handle them properly.

Consult [51, page 10] for an example. It is possible to detect such a pointer

at compile time and the compiler refuses to compile a program with such

a pointer when garbage collection is enabled. The problem is that such

a pointer is turned into a dangling reference when the younger region is

deallocated and the garbage collector cannot handle dangling references.

A generational garbage collector can limit the search to include younger

generations only. Only a small set of pointers point from old generations into

young generations. In SML/NJ'0.93, a set of addresses of cells in older gen-

erations, containing pointers into younger generations, is maintained (oldP-

trs). If a pointer p, pointing into an older generation, points at an address

included in oldPtrs then p is followed; otherwise p is not followed. This is

e�cient because the set oldPtrs is small.

It does not seem possible to reduce the set of live objects to traverse

in order to garbage collect global regions only because many pointers exists

from younger regions pointing into older regions (i.e., many region pages are

dirty). However, it may still be a considerable saving to reclaim objects in

a few regions only, that is, traverse all live objects but only copy objects in

the regions that contain most garbage. The regions to garbage collect may

be chosen with one of the heuristics:

1. only garbage collect the n regions allocated in the bottom of the region

stack, that is, the n oldest regions. Experience shows that they contain

most space leaks and therefore also most dead objects.
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2. only garbage collect regions with more than m region pages allocated.

This concentrates garbage collection to regions containing lots of data

and therefore also the likelihood that some of the data is dead. How-

ever, it is not necessarily the case. Young regions may contain large

data structures as the result of a local computation (e.g., a large syn-

tax tree). An extra �eld in the region descriptor may be necessary to

store the number of region pages currently allocated.

3. only garbage collect regions which have grown with a certain amount

since the last garbage collection. This may require an extra �eld in

the region descriptor containing the number of region pages after the

last garbage collection.

11.7 Using Only One Global Region

Managing the region heap does involve more computing compared to having

only one or a few heaps (i.e., region pages). It may therefore be the case that

for some programs (i.e., programs where memory is not recycled e�ciently by

region inference) it is better to use an ordinary generational copying garbage

collector for the in�nite regions, that is, to throw away all region information

about in�nite regions. We may then use a traditional garbage collector for

all data allocated in in�nite regions. However, we can still use the region

information for �nite regions and still allocate them on the machine stack,

which may be a signi�cant improvement compared to allocating all objects

on the heap.

11.8 When to Increase The Heap

We do not know the demand for memory when we start executing a program.

The runtime system must require memory from the operating system if

the program requires more memory than already requested. The garbage

collector requires the heap size to be larger than the total size of region

pages currently allocated to regions. A copying garbage collector using two

semi spaces requires the heap to be twice as big as the size of one semi

space. Our garbage collector only requires the heap size to be the size of

from{spaces plus the size of to{spaces. The size of to{spaces is the size of

all region pages used to hold live values after a garbage collection phase.

We need a simple heuristic to decide when to request more memory and

also how much. A simple heuristic is to initiate garbage collection every time

the free list is exhausted. During garbage collection we request heap space

from the operating system corresponding to the size of all to{spaces. How-

ever, this will continuously increase the heap size at every garbage collection

even though the program may run e�ciently with less memory.
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An heuristic based on the ratio of heap size to live data, 
, is used in

SML/NJ [3]. Let h be the total number of allocated region pages and let l

be the number of live region pages (which is less than the number of used

region pages). The current ratio is 
 =

h

l

. Let 


0

be the desired ratio. If 


0

is too small (� 2) then the performance of garbage collection degrades (i.e.,

we garbage collect too often). If 


0

is too big we use too much memory and

probably have poor locality of reference.

We initiate garbage collection when the number of region pages n in the

free list is less than

h




0

. This means that the free list cannot hold the amount

of live variables that we expect there is; given 


0

and heap size h we expect

the current amount of live data, calculated in region pages, to be

h




0

. For

instance, if 


0

= 3 we initiate garbage collection when n <

h

3

because we

expect l to be

h

3

.

Given 


0

we have three cases where more memory is requested:

1. a large object is allocated which requires more memory than is avail-

able in the free list. We request dse

m

region pages where s is the size

of the object and d�e

m

rounds up to the nearest number divisible by

m (i.e., we let m be the smallest number of region pages that we can

require from the operating system). Garbage collection is initiated

afterwards.

2. after garbage collection we have l equal to the size of to{space. We

request n = d


0

l� he

m

new region pages from the operating system if


 =

h

l

< 


0

.

3. we run out of region pages during garbage collection and requests a

constant sized chunk of memory, m say, and then continue garbage

collection.

The �rst case is likely not to happen. The third case happens if we have

lots of live data or if garbage collection is initiated too late. The rounding

in 1 and 2 makes sure that we request a decent amount of memory and not

one region page only.

Finding the best value for 


0

is important to get optimal performance.

We invesitigate this in Chapter 15.



Chapter 12

Data Representation

Tagging is normally used for two reasons in Standard ML compilers: poly-

morphic equality and garbage collection. The ML Kit uses a type based

translation that translate programs with polymorphic equality into programs

without polymorphic equality such that tagging is not required [21]. The

translation handles all Standard ML programs except rare programs using

non{regular datatype declarations. For instance, it is not possible to build

an explicit equality function working on the following datatype declaration;

actually it is not even possible to de�ne a function f that can be mapped

on the elements in the datatype:

datatype � dat rec = A of �

| B of (�� �) dat rec

val a = A(1)

val b = B(A(1; 1))

The values a and b both have type int dat rec but it is not possible to build

an equality function that compares A(1) and (B(A(1; 1))). The function

fun f (A(a); A(b)) = a = b

| f (B(a); B(b)) = f(a; b)

gives a type error when compiled:

datatype_ex_tags.sml:10.22-10.28 Error:

operator and operand don't agree [circularity]

operator domain: ''Z dat_rec * ''Z dat_rec

operand: (''Z * ''Z) dat_rec * (''Z * ''Z) dat_rec

in expression:

f (a,b)

The value A(1) has type int dat rec and A(1; 1) has type (int � int)

dat rec. We need polymorphic recursion to type such a function. The ML

203
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Kit supports a polymorphic equality function based on tagging for these rare

programs and the compiler instructs the user to enable tagging if necessary.

If the ML Kit is used without garbage collection then no tagging is

necessary which is an important feature of the ML Kit compared to other

Standard ML compilers. However, the garbage collector implemented in

the ML Kit does require tagging in order to distinguish pointers from non

pointers.

In the following we discuss the data representation used when garbage

collection is enabled. We use uniform representation such that all values or

pointers to values occupy one word. As in SML/NJ we distinguish between

objects containing pointers and objects containing scalars only [4]. The

garbage collector may skip traversing objects containing scalars only whereas

�elds in objects containing pointers must be traversed.

We assume all pointers are word aligned such that the two least signif-

icant bits are zero. We use the least signi�cant bit to di�erentiate between

pointers and scalars, that is, the least signi�cant bit is always 1 for scalars.

Integers, booleans and units are all scalars and represented as follows: in-

teger i as 2i + 1, value true as 3, value false as 1 and the unit value () as

1. Consult [22] for a discussion about the arithmetic operations working on

tagged integers.

The ML Kit can call C functions and results from C functions can be

stored in ML values (e.g., records). It is a fatal error if the garbage collector

decodes a C value as a pointer value. We therefore require all C values to

be tagged as integers with the least signi�cant bit set.

Boxed values are represented by a pointer pointing at the value allocated

in a region either in the region heap or on the stack.

1

We reserve the �rst

three bits of boxed values to hold a descriptor describing the kind of value.

A word in memory is written b

31

b

30

� � � b

1

b

0

with the least signi�cant bit (b

0

)

at right.

We have an immovable bit saying wheter the value is a constant.

12.1 Scalar and Pointer Records

A scalar record is a record containing scalars only. It is not necessary to

traverse a scalar record. A pointer record is a record containing one or more

values that must be traversed. We use the same tag for scalar and pointer

records but encode the �elds that must be traversed in the descriptor. The

descriptor for a record is as follows:

s o i tag

1

The implementation does not allocate constants (e.g., strings and reals) in a region;

they are constants in the program. Such values are never copied by the garbage collector.



CHAPTER 12. DATA REPRESENTATION 205

The �eld s (with 13 bits) denotes the size of the record excluding the de-

scriptor.

2

The �eld o (with 13 bits) denotes the number of �elds to skip. We

make sure that the values to traverse are packed at the end of the record.

We traverse s� o values. The descriptor has o�set zero and the �rst �eld in

the record has o�set 1. The �eld i denotes the immovable bit. The last �eld

tag is the descriptor tag being 5 bits. We only use the three least signi�cant

bits. Bit three and four are always 0.

12.2 Tagging Objects

The region allocated objects are listed below.

Real: a real is implemented with double precision, that is, two words for

the real and three words including the descriptor. Doubles must be

double aligned on some architectures, including the HP PA{RISC [41].

Reals are allocated in regions containing reals only and region pages

are double aligned. If a real occupies three words then each second

allocated real would not be double aligned. We therefore represent

reals with four words.

3 3 i 110 { d

1

d

2

The �rst word contains the descriptor for a scalar record of size 3

words.

String: a string is represented by a list of string fragments. This allows

strings to be larger than the size of one region page. Copying a string is

done by copying all string fragments into a new list of string fragments.

The header of a string contains the string size, descriptor and �rst

string fragment:

size i 001 fsize next w

1

� � � w

fsize

A string fragment contains a header with the size of the string fragment

(fsize) and a pointer to the next string fragment (next). The size �eld

is 26 bits. Consult [22] for more information about the implementation

of strings.

Record: all values in a record must be traversed so it is represented as a

pointer record.

n 0 i 110 v

1

� � � v

n

2

We believe 13 bits for the size �eld is adequate. A record cannot be larger than a

region page and it is unlikely that we will use region pages larger than 8Kb.
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The record contains n �elds.

Nullary value constructor: a nullary constructor occupies one word con-

taining a tag and constructor tag (c{tag). The constructor tag denotes

the contructor in the datatype binding.

c{tag i 010

The constructor tag occupies 26 bits. Polymorphic equality requires

distinct tags on value constructors.

Unary value constructor: a unary constructor occupies two words where

the second word contains the value:

c{tag i 011 value

The constructor tag (c{tag) occupies 26 bits.

Reference: polymorphic equality requires a distinct tag on references.

{ i 101 value

Ordinary closure: an ordinary closure contains a code pointer in the sec-

ond word and free variables in the following words. Free variables are

either lambda variables, exception constructors or region variables.

Lambda variables and exception constructors are traversed by the

garbage collector but region variables are not! A region is not a value

and a pointer to a region is not part of the set of live values. A pointer

to a region may have the two least signi�cant bits arbitrarily set (i.e.,

the storage mode and multiplicity bits). We get arbitrary results if

the garbage collector follows a region pointer because it points either

at a �nite region containing an arbitrary value or an in�nite region de-

scriptor which is not a region allocated object. A closure is therefore

divided into a part containing values and a part containing pointers

to regions.

We put the code pointer at o�set one and the regions after the code

pointer. Exception constructors and free variables are packed at the

end of the closure. A closure is represented as a pointer record with n

�elds and the �rst value to traverse at o�set o+ 1:

n o i 110 code ptr

reg ptr

1

� � � reg ptr

r

value

1

� � � value

v

The encoding makes sure that the garbage collector can copy the entire

closure and only traverse the value containing part of the closure.
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Letrec closure: a shared closure is similar to an ordinary closure except

that the code pointer is missing:

n o i 110 reg ptr

1

� � � reg ptr

r

value

1

� � � value

v

We have n �elds in the closure and value

1

is at o�set o+ 1.

Region vector: a region vector contains pointers to regions and is repre-

sented at a scalar record.

n n i 110 reg ptr

1

� � � reg ptr

n

Tables: tables are divided into table fragments in the same way that strings

are divided into string fragments. The table fragments are maintained

in a binary search tree such that lookup and update are done e�ciently.

The header of a table contains a descriptor, the table size and the �rst

node in the tree. A tree node contains two pointers for the children

and a table fragment:

size i 111 child

1

child

2

w

1

� � � w

n

All table fragments are of the same size n and up to n� 1 �elds may

be unused in the last table fragment. We note that it is necessary to

zero all table fragments before returning from the allocation function

because garbage collection may be initiated while a ML function ini-

tializes the table. We note that vectors are implemented as strings

(i.e., they are immutable). We use 26 bits for the size �eld.

Exception name: exception names are used by all exception constructors

and consists of two words containing an exception number and a name

of exception. The unique exception number is generated at runtime

and implements the generative nature of exceptions. The name of an

exception is a pointer to the syntactic name of the exception found

in the source program. The name is printed if the exception is never

handled after it has been raised.

2 2 i 110 exn. number name of exn.

Exception names are implemented as scalar records; the string contain-

ing the name of the exception is a constant string and the exception

number is also a constant.

Nullary exception constructor: a nullary exception constructor is rep-

resented as a pointer record of size one word. The record �eld contains

a pointer to the exception name.
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1 0 i 110 name ptr.

Unary exception constructor: a unary exception constructor is similar

to a nullary exception constructor except that it also carries a value:

2 0 i 110 name ptr. exn. value

Consult [27] for more information about the implementation of excep-

tions.

Objects represented as a scalar record are never seen by the polymor-

phic equality function. Of all objects represented with a pointer record the

type system makes sure that the record value is the only value seen by the

polymorphic equality function. Objects allocated in �nite regions, (i.e., in

function frames) use the same layout such that we have a uniform access

no matter where the object is allocated. Table 12.1 shows the descriptor

and content type of each region allocated object. The content type being

either pointer or scalar says how the object is scanned by the garbage

collector. Objects with content type pointer must be traversed to �nd the

boxed values and objects with content type scalar are not traversed.

Polymorphic equality (implemented with tags) and garbage collection

require tags for di�erent purposes. Polymorphic equality requires that a

subset of the region allocated objects can be distinguished precicely. For

instance, a unary value constructor must be distinguished from a reference

even though they both occupy two words. A garbage collector may view

them as the same kind of object because they are both of size two words

where the �rst �eld contains the tag and the second �eld a value either

boxed or unboxed. The garbage collector requires that all region allocated

objects are tagged including region vectors and closures.

There are two kinds of heap allocated objects in In SML/NJ [4]. Objects

containing pointers and objects containing scalars only. All objects are

allocated as a record where the �rst �eld contains the size of the record.

This makes it possible to use a small number of di�erent tags only for all

the di�erent objects. We use a few more tags in the ML Kit because we

have special implementations of tables and strings.

12.3 Eliminating Fragmented Objects

It is possible to eliminate the fragmented objects by considering objects

larger than a region page as a special object and allocate them in a sepa-

rate list of large objects. Each in�nite region descriptor then has two lists

of region pages; one with constant sized region pages and one with region

pages of varying size each holding precisely one object. This complicates
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Region allocated value

Content

type

Descriptor

(binary)

Eq.

String scalar 001 *

Nullary value constructor scalar 010 *

Unary value constructor pointer 011 *

Reference pointer 101 *

Real scalar 110

Exception name scalar 110

Region vector scalar 110

Record pointer 110 *

Nullary exception constructor pointer 110

Unary exception constructor pointer 110

Ordinary closure closure 110

Letrec closure closure 110

Tables pointer 111 *

Forward pointer { x00 {

Table 12.1: We have thirteen di�erent region allocated objects and a

forward pointer. The tags are in binary notation with the least signi�cant

bit at right. The forward pointer contains the tag 00 and a pointer in

the same word. The column Eq. marks the values recognized by the

polymorphic equality function based on tagging. We must be able to

distinguish these values precisely.
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the garbage collector because two scan pointers for each region descriptor is

needed. However, the elimination of fragmented objects may give a signi�-

cant performance gain and we never have to copy a large object. A special

region page containing one large object only is trivially compacted. We have

not implemented region pages of varying sizes.



Chapter 13

Root{set and Descriptors

The root{set is the set of root values in the graph of live values in the

program, that is, the transitive closure of the root{set is the set of live

values.

We must �nd the root{set at any program point where garbage collection

can be initiated. The root{set changes dynamically as the program executes

and at some program points it may be harder to determine the root{set than

at other program points.

The garbage collector must be safe meaning that the garbage collector

never reclaims a live object. We also want the garbage collector to be as

eager as possible, that is, to reclaim as many objects as possible. Minimizing

the root{set increases the number of objects reclaimed; objects not being in

the transitive closure of the root{set are reclaimed. A conservative garbage

collector cannot minimize the root{set and therefore reclaims fewer objects.

To be safe the root{set must at least include the values necessary to build

a graph holding the values that are potentially used for the rest of the

computation.

We simplify the root{set computation by allowing garbage collection to

be initiated at application points only. It is fairly easy to capture the state

of the machine stack at each application point and thereby determine the

root{set. Applications happen so often that we believe it is 
exible enough

to garbage collect at application points only.

The compiler described in Part II is organized such that a root{set can

be build using machine registers and the machine stack. It is possible to

calculate the set of live values, assigned machine registers or allocated on

the machine stack, for each function at each application point. We calculate

a frame map, representing live values, over the function frame and call con-

vention. We also calculate a register map over the machine registers. The

maps are statically determined for each application point and are inserted

into the program binary such that we can �nd the maps while traversing

the machine stack looking for live values.

211
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O�set Value Live

0 ph

4

*

1 ph

5

*

2 xs

0

*

3 r22

4 r22

5 r22

6 r22

7 r24

8 r24

9 r24

10 r24

11 k77 *

12 r25

13 r25

Table 13.1: The function frame has size 14 words and contains 4 live

values at the application to foldl. The o�set is computed from top of the

frame. The live values are marked in the third column and is computed

by a single backward scan of the program similar to algorithm F in

Chapter 6.

13.1 A Function Frame

A function frame can be viewed as a constant sized memory area holding

local values and regions either �nite or in�nite. Regions are not part of the

root{set. Local values are in the root{set if they are live. Table 13.1 shows

the function frame for function fn xs in Figure 7.2 and 7.3 on page 139 and

140 at the �rst application to foldl.

The function frame changes as the function evaluates but the frame is

�xed at every application point. It is therefore possible to calculate a frame

map, represented as a bit vector, describing the cells holding a live value.

We use a bit for each word in the function frame and if 1 then the cell holds

a value which is in the root{set. The frame map over the function frame in

Figure 13.1 is

00100000000111;

where the least signi�cant bit (at right) represents the top word (ph

4

) in the

function frame (i.e., o�set 0).
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frame g

arguments to g

return address to f

results to f

Figure 13.1: Function frame and call convention frame on the machine

stack for an example function g. We assume a function f has called g.

The call convention frame is allocated at the application to g and the

frame for g at entry to g.

13.2 Call Convention

A call convention allocated on the machine stack contains three parts: ar-

guments to the called function, the return address and cells in which result

values are stored, see Figure 13.1.

The call convention frame may contain live values in both the argument

and result part. This is statically determined at each application point in the

function. Note that the live values in a call convention is a property of the

called function and not the caller. We let the frame map (computed in the

previous section) include both the function frame and call convention frame

allocated below the function frame. The frame map is then represented as

a bit vector covering both the function frame and call convention frame.

13.3 Callee Save Registers

We use callee save registers for values with a life range that crosses function

calls because callee save registers are 
ushed only in functions using the

registers, see Chapter 5. It is impossible to know statically where a callee

save register, de�ned in a function f , is 
ushed. For instance, say that

ph

1

; ph

2

and ph

3

are callee save registers and live at an application in f to

a function g. The function g uses two callee save registers ph

1

and ph

2

that

are 
ushed at entry to g. Also, at an application to a function h, in g, the

register ph

1

is live and assume all registers are 
ushed at entry to h, see

Figure 13.2.

The live registers ph

1

and ph

2

in f are 
ushed in g but only because g

uses the two registers. The two registers ph

1

and ph

2

may not be 
ushed

if another function g

0

is called from the same application point. At the call

to h from g only ph

1

and ph

3

are live (and not ph

2

even though ph

2

is used

somewhere in g). We have underlined the 
ushed registers that contain

live values in Figure 13.2. The 
ushed registers, containing live data, are

found at garbage collection time with a backward scan of the machine stack
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Live: : : :

Flush: ph

1

, ph

2

, ph

3

gFrame for h

Live: ph

1

Flush: ph

1

, ph

2

gFrame for g

Live: ph

1

; ph

2

; ph

3

Flush: ph

1

; ph

2

; ph

3

gFrame for f

6

Figure 13.2: For each function f; g and h we statically compute the

callee save registers live at an application point and the callee save regis-

ters 
ushed at entry to a function. For instance, ph

1

and ph

2

are 
ushed

at entry to function g and ph

1

is live at the application to h. The un-

derlined registers contain live data and are in the root{set. The stack

grows upwards.

computing liveness information.

At each application point we statically compute two callee save register

maps: a map with all live callee save registers liveCalleeRegs and a map

with 
ushed callee save registers 
ushedCalleeRegs. We always have live-

CalleeRegs � 
ushedCalleeRegs. In the example in Figure 13.2 we have:


ushedCalleeRegs

f

= fph

1

; ph

2

; ph

3

g 
ushedCalleeRegs

g

= fph

1

; ph

2

g

liveCalleeRegs

f

= fph

1

; ph

2

; ph

3

g liveCalleeRegs

g

= fph

1

g


ushedCalleeRegs

h

= fph

1

; ph

2

; ph

3

g liveCalleeRegs

h

= f: : : g

At garbage collection time we start at the bottom of the machine stack

and for each function frame compute the set of live and 
ushed callee save

registers liveAndFlushed, that is, the set of 
ushed callee save registers in

the root{set.

The set live holds currently live callee save registers and initially live =

;. At the function frame for f we have liveAndFlushed

f

= live \ 
ushed-

CalleeRegs

f

= ; and live = (live n 
ushedCalleeRegs

f

) [ liveCalleeRegs

f

=

fph

1

; ph

2

; ph

3

g. At g we have liveAndFlushed

g

= live \ 
ushedCalleeRegs

g

= fph

1

; ph

2

g and live = (live n 
ushedCalleeRegs

g

) [ liveCalleeRegs

g

=

fph

1

; ph

3

g. At h we have 
ushedAndLive

h

= live \ 
ushedCalleeRegs

h

=

fph

1

; ph

3

g.

Consider the function frame in Table 13.1. Now that we use the above

register maps to �nd 
ushed callee save registers in the root{set then it is

unnecessary to include callee save registers in the frame maps. A callee save

register being 
ushed in a function does not necessarily say that the 
ushed

value is in the root{set. We therefore remove all callee save registers from

the frame maps. The machine registers ph

4

and ph

5

are callee save registers
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in the frame map shown in Section 13.1. The frame map is then:

001000000001

13.4 Frame Descriptors

We have now de�ned the frame and register maps necessary to compute

the root{set. The maps are computed at compile time and inserted into

the target code in a frame descriptor. Each application has its own frame

descriptor containg the following �elds:

frameMap

frameSize

o�setToReturn


ushedCalleeSaveRegs

liveCalleeSaveRegs

9

>

>

>

>

=

>

>

>

>

;

frame descriptor

The last four �elds each occupies one word assuming no more than 32 callee

save registers. It may be possible to pack the �rst four �elds into less than

four words. The o�setToReturn �eld is explained in the next section. The

frame size does not include 
ushed callee save registers but does include the

size of the call convention allocated below the function frame. The frame

map occupies d

frameSize

32

e words assuming a 32 bit target machine.

The �elds are stored with the frame map at top because the frame de-

scriptor is read from the bottom, see next section.

The smallest frame descriptor size is 5 words and the code size overhead

is 5noOfApp where noOfApp is the number of applications in the source

program.

13.5 Stack Layout

The machine stack holds function frames and call conventions. Figure 13.3

shows an example machine stack with two functions f and g at the top.

Function f has been called from a function allocated further down the stack,

say h and g is called from f . Say that function g calls function p.

Garbage collection is always initiated at entry to a function, that is,

before the function frame of the called function is allocated. We 
ush the

machine registers before calling the garbage collector.

All arguments are live at the time we garbage collect; either allocated

in the call convention frame or in the 
ushed machine registers. The result

part does not contain any live values.

The garbage collector is given three arguments:

number of arguments in the call convention frame below the

machine registers.
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machine registers

arguments to p

return address to g

results to g

frame g

arguments to g

return address to f

results to f

frame f

arguments to f

return address to h

results to h

.

.

.

Figure 13.3: The layout of an example machine stack when the garbage

collector is called at the application to p from g. The machine registers

are 
ushed at the top of the stack. The call convention to function p has

been allocated but the function frame for p is not allocated. The stack

grows upwards.
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fun g:

call p

frame descriptor for call to p

ret p:

fun f:

call g

frame descriptor for call to g

ret f :

Figure 13.4: Frame descriptors are inserted into the target code at the

addresses preceding the return addresses. Given the return address we

can �nd the frame descriptor. The vertical lines denote arbitrary code.

size of the call convention frame below the machine regis-

ters including return address and results.

register map describing arguments passed in machine regis-

ters. This is a one word bit vector (assuming 32 machine

registers).

The three arguments are uniquely determined at entry to a function. The

stack pointer points at the �rst cell above the machine registers. Given the

stack pointer and the three arguments, the garbage collector can determine

the argument part and the address of the top most function frame (g).

The garbage collector knows the number of machine registers on the target

machine. The garbage collector also knows the cell containing the return

address to function g (given the number of arguments).

The return address to function g is used to �nd the frame descriptor

for function g. The frame descriptor is stored in the program binary at the

addresses preceding the return address, see Figure 13.4.

Given the return address we can read the frame descriptor �elds in the

order: LiveCalleeSaveRegs, 
ushedCalleeSaveRegs, o�setToReturn, frame-

Size and frameMap. The �elds 
ushedCalleeSaveRegs and frameSize give

us the size of the function frame, including the call convention below the

function frame on the machine stack. We therefore know the address of the

next function frame on the machine stack. The �eld o�setToReturn gives us

the cell on the machine stack containing the return address where we �nd

the next frame descriptor.

Using the frame descriptors we can traverse the machine stack from top

to bottom. To calculate the liveAndFlushed sets, see Section 13.3, we need

to traverse the stack bottom up. This is done by reserving a single word



CHAPTER 13. ROOT{SET AND DESCRIPTORS 218

machine registers

arguments to p

return address to g

results to g

NULL

frame g

arguments to g

return address to f

results to f

addr. of frame desc.

g

frame f

arguments to f

return address to h

results to h

.

.

.

Figure 13.5: The address of the frame descriptor at the application to

function g, from f , is stored in the reserved word in the function frame

for f . We use NULL to denote the top most function frame. The stack

grows upwards.

in each function frame. On the way down the machine stack we store the

address of the frame descriptor of the preceding function frame, see Figure

13.5

On the way up the stack we calculate the liveAndFlushed set. Consider

Figure 13.5. At the function frame for f we know the frame descriptor for g.

Inside the function frame for g we �nd the address of the frame descriptor

for f which is used to calculate liveAndFlushed

f

.

13.6 Implementation

The frame descriptor, as presented, includes all information necessary for

callee save registers. However, we do not use callee save registers in the

initial implementation and we have therefore simpli�ed the descriptor. A

descriptor, in the implementation, contains a frame map and size of frame
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plus call convention. Neither have we implemented the calculation of live

and 
ushed callee save registers. Currently, a single top down pass on the

machine stack is su�cient to calculate the root{set.



Part IV

Measurements
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Chapter 14

Performance of the ML Kit

backend

We have divided the assessments in two chapters. In this chapter we focus

on the backend compiler. The garbage collector is tested in Chapter 15.

We still need to implement a few essential phases in the backend with the

register allocator being the most important. To test multiple argument pass-

ing we need a phase to un{curry functions and a phase to un{box records.

These de�ciencies make it uninteresting to compare our compiler with other

compilers and we refrain from doing so. However, we note that the compiler

compiles all of the Standard ML basis library and the test suite that comes

with the ML Kit.

1

One of the design goals was to implement a backend compiler organized

as a series of small phases which should make the compiler easier to compre-

hend and debug and at the same time not compromise compilation speed.

Implementing the backend has shown that this strategy indeed made the

task easier. The backend was implemented in a little more than two month

which includes adjustments to the runtime system.

2

Tagging, bit vector

calculations and the garbage collector algorithm was added in less than two

weeks. Section 14.1 gives an overview of the SML modules that implement

the new backend. To see the e�ect on compile times we compare our backed

with the backend of the ML Kit version 3 compiler (KitV3) in Section 14.3.

We investigate the e�ect of enabling tagging in Section 14.4. Tagging

has a negative e�ect on both execution times, memory usage and size of

binaries. We let tagging include boxing of lists, that is, if tagging is enabled,

then extra descriptors are inserted on boxed values and lists are represented

boxed [21].

1

Some modules (e.g., arrays and words) in the basis library do not compile with tagging

enabled because tagging of those modules has not yet been implemented in the runtime

system.

2

The runtime system is basically the same as in the ML Kit version 3.

221
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Section 14.2 introduces the benchmark programs used in this chapter

and Chapter 15.

Compiler timings were measured on a Sun UltraSPARC 1 with 256Mb.

of main memory. Executables were run on a HP 9000/735 with 240Mb. of

main memory. The ML Kit is compiled using Standard ML of New Jersey,

version 110.0.3.

14.1 Files

The modules shown in Table 14.1 implement the new backend compiler in

the ML Kit. The garbage collector algorithm is implemented in module

GC.c (658 lines of C code) in the runtime system.

14.2 Benchmark Programs

All the benchmark programs compile without the Standard ML basis library

and are used to test both the backend compiler and garbage collector. We

use the following programs:

kitlife old: the game of life using lists. This version has not been optimized

for region inference.

kitlife35u: as kitlife old but optimized for region inference, that is, kitlife35u

uses less memory than kitlife old when compiled with region inference

enabled.

kitkb old: Knuth{Bendix completion. This version has not been optimized

for region inference.

kitkbjul1: as kitkb old but optimized for region inference.

kitkbjul9: as kitkbjul1 but more optimized for region inference, that is,

kitkbjul9 uses less memory than kitkbjul1.

kitsimple: A spherical 
uid{dynamics program. It performs a series of


oating point operations. It has not been optimized for region infer-

ence.

kitreynolds2: build a large balanced binary tree and search it. The pro-

gram performs well with region inference.

kitreynolds3: same as kitreynolds2 but uses lots of memory with region

inference.

kitqsort: an implementation of quick sort optimized for region inference.
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SML Modules in the Backend Compiler

File Lines of code Notes

CALC OFFSET.sml 49

CalcOffset.sml 496 includes bit vector com-

putation.

CALL CONV.sml 54

CallConv.sml 292 implements the call con-

vention.

CLOS CONV ENV.sml 66

ClosConvEnv.sml 349 environment for closure

conversion.

CLOS EXP.sml 147

ClosExp.sml 2178 ClosExp language and

closure conversion algo-

rithm.

CODE GEN.sml 29

CodeGen.sml 2031 generates code for HP

PA{RISC.

FETCH AND FLUSH.sml 42

FetchAndFlush.sml 365 insert fetch and 
ush

statements.

LINE STMT.sml 191

LineStmt.sml 884 LineStmt language and

linearization algorithm.

REG ALLOC.sml 54

RegAlloc.sml 764 register allocation algo-

rithm.

SUBST AND SIMPLIFY.sml 50

SubstAndSimplify.sml 311 substitution and sim-

plify algorithm.

Total 8352

Table 14.1: The modules that implement the new backend compiler.

Signature �les are written with capital letters and functor �les with both

capital and small letters.
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Benchmark Programs

Program Lines Of Code

kitlife old 205

kitlife35u 288

kitkb old 708

kitkbjul1 769

kitkbjul9 762

kitsimple 1115

kitreynolds2 91

kitreynolds3 92

kitqsort 157

kittmergesort 130

professor game 347

Table 14.2: Size of benchmark programs.

kittmergesort: an implementation of merge sort slightly optimized for re-

gion inference.

professor game: �nds all solutions to a 4 � 4 puzzle by searching the set

of possible solutions. This program has not been optimized for region

inference.

The size of the benchmark programs is shown in Table 14.2. We include

kitreynolds2 and kitreynolds3 in the test because they exhibit extreme be-

haviour with region inference.

14.3 Compilation Speed

Table 14.3 shows the compiler timings for our backend compiler. The ab-

breviations used are: closure conversion (CC), linearization (LS), dummy

register allocation (RA), fetch and 
ush (FF), calculate o�sets (CC), bit

vector calculation (CBV), simplify and substitution (SS) and code genera-

tion (CG).

Table 14.4 shows the compile timings for KitV3. The abbreviations used

are [22, 49, 50]: compile lambda (CL), copy propagation (CP), dead code

elimination (DE), register allocation (RA) and code generation (CG).

The closure conversion, linearization and fetch and 
ush phases are in-

cluded in the compile lambda phase in KitV3. In general it seems a little

more expensive to have three phases instead of one but we must keep in mind

that the compile lambda phase has been highly optimized. We have not done

any time pro�ling on the phases in our backend. Even in the case that we
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Compilation Speed of New Backend

Program CC LS RA FF CO CBV SS CG Total

kitlife old 0.19 0.07 0.02 0.23 0.03 0.16 0.08 0.49 1.27

kitkbjul9 1.24 0.17 0.08 1.11 0.27 0.65 0.42 2.02 5.96

kitsimple 1.91 0.43 0.24 1.64 0.36 0.81 0.56 3.15 9.10

kitreynolds3 0.08 0.00 0.04 0.11 0.02 0.07 0.04 0.18 0.54

kitqsort 0.05 0.00 0.00 0.07 0.01 0.03 0.05 0.11 0.32

kittmergesort 0.08 0.00 0.02 0.09 0.05 0.05 0.03 0.15 0.47

professor game 0.28 0.12 0.03 0.34 0.04 0.25 0.11 0.62 1.79

Table 14.3: All timings are in seconds and do not include time used

on garbage collection. The register allocation phase (RA) is the dummy

register allocator as described in Chapter 5.

Compilation Speed of KitV3

Program CL CP DE RA CG Total

kitlife old 0.30 0.14 0.08 0.45 0.23 1.20

kitkbjul9 1.32 0.63 0.39 3.18 0.88 6.40

kitsimple 2.36 0.90 0.72 11.46 1.52 16.96

kitreynolds3 0.10 0.03 0.06 0.18 0.03 0.40

kitqsort 0.06 0.02 0.01 0.11 0.03 0.23

kittmergesort 0.07 0.02 0.01 0.17 0.05 0.32

professor game 0.32 0.10 0.10 1.32 0.25 2.09

Table 14.4: All timings are in seconds and do not include time used on

garbage collection.
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cannot optimize either CC, LS or FF then we believe the time di�erence is

a small price for the simplicity gained in less complicated modules.

We cannot compare the timings for register allocation because we use

the dummy register allocator. However, we believe that we gain some time

on doing register allocation on the linearizated code instead of three address

code as is done in KitV3. We have a smaller number of nodes in the syntax

tree to process (e.g., records have not been compiled into three address

code instructions). The register allocator described in Chapter 5 performs

coalescing and we believe that it will not be necessary to use a separate copy

propagation phase.

We expect to incorporate dead code elimination into the phases where

it is easy to implement and a separate phase should not be necessary. For

instance, it is easy to remove code between a tail call and the next label.

We have to wait for the code produced by the register allocator described

in Chapter 5 but we do not expect to �nd code, without side e�ects, that

calculate and de�ne variables that are never used by the program.

We are surprised by the compile timings for our code generator being

higher than the timings for the code generator in KitV3 . Our code generator

should be as simple as the code generator in KitV3 and we probably have

a few time ine�ciencies that can be eliminated. Even though the code

generator generates code for allocation directives, records etc., then it is

basically driven by simple macro unfolding.

14.4 E�ect of Tagging

We have two important ine�ciencies when tagging is enabled. We add an

extra descriptor on boxed values which is expensive in both execution time

and memory usage. With tagging disabled it is possible to represent lists

unboxed [21]. Tagging e�ects execution time, memory usage and the size

of binaries. Table 14.5 shows the execution time and memory usage for

programs with tagging enabled and disabled. Memory usage is measured

in number of region pages requested from the operating system, that is, a

region page used in many regions during evaluation is counted as one region

page. The size of a region page is 1Kb. Timings are measured with the unix

program time. We report the best user time obtained after two or more

runs of the program.

We obtain considerable savings by disabling tagging in both execution

time and memory usage. Our results, especially on memory usage, with

tagging enabled are not as good as the results reported by Elsman [21]. We

believe it comes from the tagging of objects that are not seen by the poly-

morphic equality function. For instance, exception names, region vectors,

exception constructors, closures and shared closures are not tagged in the

experiments reported by Elsman.
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E�ect of Tagging on Time and Memory Usage

Tagging Disabled Tagging Enabled

Program Time Memory Time Memory

kitlife old 41,18 7200 44,41(8%) 13110(82%)

kitlife35u 44,45 30 46,84(5%) 60(100%)

kitkb old 54,96 29250 65,04(18%) 46020(57%)

kitkbjul1 49,05 2550 58,39(19%) 4440(74%)

kitkbjul9 46,26 2010 55,26(19%) 3690(84%)

kitsimple 101,43 600 111,16(10%) 1260(110%)

kitreynolds3 25,98 16530 29,48(13%) 41490(151%)

kitreynolds2 10,88 30 11,05(2%) 30(0%)

kitqsort 11,74 5100 16,60(41%) 12750(150%)

kittmergesort 5,38 1200 7,77(44%) 3000(150%)

professor game 15,60 4170 18,41(18%) 9900(137%)

Table 14.5: All running times are in seconds. Memory usage is mea-

sured in number of region pages requested from the operating system.

One region page is 1Kb. The machine stack is not included. The over-

head

Tag�NoTag

NoTag

is written in percentages.

The size of binaries is shown in Table 14.6.

The results are mostly similar to the results reported by Elsman consid-

ering that our binaries are smaller. For instance, we report an overhead of

17% on kitsimple and Elsman reports an overhead of 10% where the size of

the binary for kitsimple with tagging enabled is 360Kb. and with tagging

disabled 328Kb.

The object �les are in general smaller in the new backend than in the old

backend. We believe it comes from more compact code generated and that

we use stub code when allocating into in�nite regions. In the old backend

we inline the code for allocating into an in�nite region. In the new backend

we jump to some stub code containing the code for allocating into an in�nite

region.
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Size of Binaries

Tagging Disabled Tagging Enabled

Program Size of Binary Size of Binary

kitlife old 38553 51401(33%)

kitkbjul9 153425 184481(20%)

kitsimple 217697 254945(17%)

kitreynolds3 16209 19145(18%)

kitqsort 10737 13273(24%)

kittmergesort 13737 17177(25%)

professor game 58417 66953(15%)

Table 14.6: The size of binaries is in bytes. We show the size of the

stripped object �le. We have used the unix program gstrip. The over-

head

Tag�NoTag

NoTag

is written in percentages.



Chapter 15

Performance of the Garbage

Collector

In this chapter we present performance �gures for the garbage collector.

Section 15.1 measures the garbage collector combined with region infer-

ence. Section 15.1.3 compares the garbage collector with region inference in

the ML Kit and tries to answer the following question concerning the case

when region inference and garbage collection are combined: of the memory

that is reclaimed, what proportion is reclaimed by region management and

what proportion is reclaimed by the garbage collector? The heap size in
u-

ences how often garbage collection is performed. We use di�erent heap sizes

in Section 15.2 and seek the optimal ratio of heap size to live data (i.e., 


0

).

Section 15.3 looks at the expense of inserting bit vectors into the binaries.

We focus on the cost of garbage collection and not the total cost of stor-

age management, that is, we do not investigate the cost of allocation and

region manipulation. Tarditi and Diwan [46] argue that it is necessary to

measure the total cost of storage menagement because the time used on

garbage collection may be less than the time used on other storage manage-

ment tasks. Actually, tagging, allocation and checking for garbage collection

seems as expensive as garbage collection and they report the total cost of

storage management in SML/NJ0.91 to be 19% to 46%; much higher than

the time used on garbage collection. Indeed it is interesting to perform

an analysis of the low{level details of the storage management scheme in

the ML Kit but such a comprehensive analysis is beyond the scope of this

project.

15.1 Cost of Garbage Collection

A popular garbage collection method used in Standard ML compilers is

generational garbage collection [3, 5]. Generational garbage collection is very

e�ective on Standard ML programs because they allocate a wast amount of

229
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data with tiny life ranges and the wast majority of garbage is reclaimed in

the younger generations. The overhead of a well implemented generational

garbage collector on Standard ML programs is 5 to 10%. The overhead

depends on various parameters including the heap size contra the size of live

data. In an early version of SML/NJ an heap size of 7 times the amount of

live data gave an overhead of garbage collection of only 6% [3].

The garbage collector in the ML Kit cannot make use of the short life

range properties of Standard ML programs and must traverse all live data

at each garbage collection phase and not only regions containing newly al-

located data. However, region inference reclaims most short lived data at

almost no cost and it is therefore interesting to see how the combination of

simple copying garbage collection and region inference performs compared

to generational garbage collection. If region inference reclaims enough short

lived data such that the slower garbage collector is used at a frequency

corresponding to the frequency of garbage collecting the oldest generations

in a generational garbage collector then the performance may be almost

identical.

Many system parameters makes these simple judgements doubtful. For

instance, it is hard to estimate how region inference in
uence on locality of

reference having the region heap represented as a linked list of region pages.

Also, our simple garbage collector uses a breadth �rst search to �nd live

data and not a depth �rst search (or an approximately depth-�rst search

[30, page 135]) which is better at obtaining good locality of reference. Our

garbage collector is also more complex in that in�nite regions are fragmented

and �nite regions are allocated on the machine stack. These complications

cost valuable time at garbage collection time.

We de�ne the overhead of garbage collection to be the time used on

garbage collection excluding time used on tagging, that is, the time used in

tracing and copying data. We time a program with tagging enabled (t

tag

)

and with both tagging and gc enabled (t

gc

). Time used on garbage collecting

is then t

gc

�t

tag

. Table 14.5 on page 227 shows our test programs with region

inference and tagging enabled. Garbage collection is disabled.

We measure memory usage as the number of region pages requested from

the operating system, that is, a region page can be used in many regions

during evaluation but is counted as one region page only. It is not in general

the case that all region pages are �lled with objects and we need the region

pro�ler [27] to measure the memory usage accurately. However, the region

pro�ler has not been ported to the new backend so counting region pages is

the best we can do. It is di�cult to estimate the inaccuracy that this incurs

on the results but we believe the general guidelines to hold. All timings

are measured with the unix program time. We report the best user time

obtained after two or more runs of the program.

The garbage collector is an initial implementation and contains several

ine�ciencies. We �nd it plausible that we can gain a speed up of 1.5 to 2 by
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GC Enabled and RI Disabled

Program rp

total

rp

ts

t

gc

GC time # GC's

kitlife old 120 24 56.72 12.31(28%) 2833

kitlife35u 120 24 57.02 10.18(22%) 2833

kitkb old 5280 1747 236.60 171.56(264%) 675

kitkbjul9 390 91 114.19 58.93(107%) 3977

professor game 120 17 32.06 13.65(74%) 3201

Table 15.1: All timings are in seconds. Memory usage rp

ts

is the maxi-

mal number of region pages in to{space found after a garbage collection.

rp

total

is the number of region pages requested from the operating sys-

tem. Each region page is 1 Kb. The GC time is the di�erence t

gc

� t

tag

and the overhead

GCtime

t

tag

in percentages.

removind unnecessary debug code, unnecessary conditionals and optimizing

loops.

15.1.1 Simple Stop and Copy

In this section we measure the simple copying garbage collector without

region inference, that is, we let region inference use global regions only. All

values are allocated in global regions which is equivalent to turning region

inference o�.

We set 


0

= 3:0 (see Section 11.8) and m = 120, where m is the smallest

amount of region pages that can be requested from the operating system

(i.e., when we call malloc). Table 15.1 shows the e�ect of enabling garbage

collection when region inference is disabled. The time used on garbage

collection GC time is calculated as the running time minus the time used

when both tagging and region inference are enabled (Table 14.5 on page

227). Using the time when region inference is enabled as base time may be

somewhat misleading. However, it has not been possible to �nd the base

time for all the programs when region inference was disabled because the

system ran out of memory. We belive the timings and overhead we report

in Table 15.1 to be a little (but not signi�cantly) higher than they should

be.

As expected, it is evident that a generational garbage collector with an

overhead of 5 to 10% is by far better than our simple stop and copy garbage

collector with region inference turned o�. Besides the lack of generations we

also have a more complicated heap split in region pages.

The optimized and unoptimized versions of kitlife behaves similarly but

there is a huge di�erence in the behavior of the two kitkb programs. We

believe the set of live values in kitkb old is so big that tracing and copying

are a major burden on the garbage collector. This is consistent with the
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GC Enabled and RI Enabled

Program rp

total

rp

ts

t

gc

GC time # GC's

kitlife old 738 236 49.42 5.01(11%) 41

kitlife35u 90 28 50.38 3.54(8%) 3

kitkb old 12519 4163 73.50 8.46(13%) 21

kitkbjul1 1764 578 62.91 4.52(8%) 31

kitkbjul9 585 185 60.26 5.00(9%) 49

kitsimple 2067 679 125.10 13.94(13%) 6

kitreynolds2 30 3 12.75 1.70(15%) 1

kitreynolds3 30 7 32.81 3.33(11%) 2822

kitqsort 5994 1995 22.46 5.86(35%) 14

kittmergesort 4512 1494 9.24 1.47(19%) 7

professor game 149 40 19.56 1.15(6%) 149

Table 15.2: All timings are in seconds. Memory usage rp

ts

is the maxi-

mal number of region pages in to{space found after a garbage collection.

rp

total

is the number of region pages requested from the runtime system.

Each region page is 1 Kb. The GC time is the di�erence t

gc

� t

tag

and

the overhead

GCtime

t

tag

in percentages.

general experience that tuning a program for regions often makes them run

faster on a system that uses garbage collection and no region inference.

15.1.2 Region Inference plus Simple Stop and Copy

In this section we measure the performance of garbage collection when re-

gion inference is enabled and all regions are reclaimed each time a garbage

collection is initiated. We set 


0

= 3.0 and m = 30.

In general we get much better timings with an overhead ranging from

6 to 35% and an average of 13%, see Table 15.2. Comparing the kitlife

and kitkb programs we see that the unoptimized versions use more time on

garbage collection but with a few percentages only. The kitqsort program

has a large overhead probably because the live set is big. The kitreynolds2

program is highly region inference optimized and we garbage collect one

time only.

1

The kitreynolds3 program, however, uses lots of memory with

an extremely small live set and the garbage collector is very e�ective. The

kitsimple, kittmergesort and professor game have not been region inference

optimized and they all perform well.

Comparing Table 15.1 and 15.2 we see that the size of to{space (i.e.,

rp

ts

) in general is bigger when region inference is enabled. We measure

number of region pages requested from the operating system. With the live

1

By construction, we always garbage collect at least one time.
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objects allocated in many di�erent regions then we need more region pages

and each region page is less full. Because the to{space area increases then

the total memory usage rp

total

also increases. In general rp

total

should be

equal to rp

ts




0

.

Table 15.3 shows the memory usage obtained by enabling region infer-

ence, tagging and garbage collection. The results are interesting because we

have di�erent savings in the range from -276% to 100% where -276% means

that we use 276% more region pages when garbage collection is enabled.

We use more memory when enabling garbage collection on programs

that perform well without garbage collection. For instance, kitlife35u, kit-

simple and kittmergesort. First of all tagging is expensive and secondly the

garbage collector needs both a from{space and to{space. However, we get

amazing optimizations on other programs: kitlife old, kitkb old, kitkbjul9,

kitreynolds3 and the professor game. The only program that has been re-

gion inference optimized is kitkbjul9. The general guideline is that garbage

collection should not be enabled on programs that perform well on region

inference and enabling garbage collection may in fact have a negative ef-

fect. However, if you have a non region inference optimized program then

its likely that you save space by enabling the garbage collector.

Notice, that it is a guideline only and the e�ect of enabling garbage col-

lection very much depends on the program. For instance, we save memory,

using garbage collection, on a region optimized program as kitkbjul9. We

use more memory, using garbage collection, on kitqsort being region opti-

mized. We save memory, using garbage collection, on the professor game

not being region optimized. We use more memory, using garbage collection,

on kitsimple not being region optimized. Many factors (e.g., amount of

garbage generated, fragmentation in region pages, size of live set) in
uence

the e�ect of enabling or disabling garbage collection.

15.1.3 Region Inference contra Garbage Collection

Experience has shown that region inference reclaims most of the garbage

generated but we do not have any measurements saying how much that

actually is. We have seen that the result of enabling garbage collection

very much depends on the target program and in general garbage collection

achieves good results on non region inference optimized programs. However,

can we estimate how much memory region inference recycles even on non

region inference optimized programs? We expect region inference to recycle

the vast amount of memory. We can do a simple estimation using Table

15.1 and 15.2, see Table 15.4.

We see that region inference gives us big savings on all programs both

in the number of times we perform garbage collection and the time we use

on garbage collection, hence region inference has a major impact on the

memory usage.
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Memory Usage

Program RI GC RI TAG RI TAG�RI GC RI RI �RI GC

kitlife old 738 13110 12372(94%) 7200 6462(90%)

kitlife35u 90 60 -30(-50%) 30 -60(-200%)

kitkb old 12519 46020 33501(73%) 29250 16731(57%)

kitkbjul1 1764 4440 2676(60%) 2550 786(31%)

kitkbjul9 585 3690 3105(84%) 2010 1425(71%)

kitsimple 2067 1260 -807(-64%) 600 -1467(-244%)

kitreynolds2 30 30 0(0%) 30 0(0%)

kitreynolds3 30 41490 41460(100%) 16530 16500(100%)

kitqsort 5994 12750 6756(53%) 5100 -894(-18%)

kittmergesort 4512 3000 -1512(-50%) 1200 -3312(-276%)

professor game 149 9900 9751(98%) 4170 4021(96%)

Table 15.3: Memory usage RI GC is rp

total

when region inference and

garbage collection are enabled. RI TAG is rp

total

when region inference

and tagging are enabled. RI is rp

total

when region inference is enabled

and tagging/garbage collection disabled. The overheads

RI TAG�RI GC

RI TAG

and

RI�RI GC

RI

are in percentages.

Garbage Collection contra Region Inference

Program t

GC RI

t

GC NORI

# GC

GC RI

# GC

GC NORI

kitlife old 5.01 12.31 41 2833

kitlife35u 3.54 10.18 3 2833

kitkb old 8.46 171.56 21 675

kitkbjul9 5.00 58.93 49 3977

professor game 1.15 13.65 149 3201

Table 15.4: All timings are in seconds. t

GC RI

is the time used

on garbage collection when region inference is enabled and t

GC NORI

is when region inference is disabled. Likewise #GC

GC RI

is num-

ber of times we garbage collect when region inference is enabled and

#GC

GC NORI

is when region inference is disabled.
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Memory Recycled by Region Inference

Program Approx. RI

kitlife old 94%

kitlife35u 99%

kitkb old 99%

kitkbjul1 99%

kitkbjul9 99%

kitsimple 99%

kitreynolds2 100%

kitreynolds3 31%

kitqsort 70%

kittmergesort 100%

professor game 98%

Table 15.5: We have approximated RI by calculating RI for each

garbage collection cycle and then report the average. We have 


0

=

3.0 and m = 30.

With the garbage collector we can estimate the fraction of garbage re-

claimed by region inference. The fraction depends on the garbage collection

strategy used; eventually region inference reclaims all garbage (i.e., when

the program ends) and the fewer times we garbage collect the more data is

reclaimed by region inference. However, it is resonable to de�ne the data

reclaimed by garbage collection to be data that is reclaimed \too late" by

region inference corresponding to the chosen value of 


0

. This fraction gives

a more precise indication of how eager region inference is.

Let g

i

be garbage collection phase i. Let L

i

be the amount of live data

after g

i

(i.e., size of to{space) and let A

p

be the total amount of data al-

located in the period between g

i

and g

i+1

. Let L

i+1

be the amount of live

data after g

i+1

and A

i+1

be the amount of allocated data before g

i+1

(i.e.,

size of from{space). The amount of data reclaimed by garbage collection

is A

i+1

� L

i+1

and the amount of data reclaimed by region inference is

L

i

+A

p

�A

i+1

. The total amount of data reclaimed is L

i

+A

p

� L

i+1

and

we get the fractions:

RI =

L

i

+A

p

�A

i+1

L

i

+A

p

� L

i+1

and GC =

A

i+1

� L

i+1

L

i

+A

p

� L

i+1

We did these calculations on the benchmark programs and Table 15.5

shows, in percentages, how much memory is approximately recycled by re-

gion inference.

The results are extraordinary but notice again, that memory is measured

in region pages. We believe this has a signi�cant and positive e�ect on RI
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because every time a region is deallocated or reset then we count an entire

region page even though the region page is not full. However, even with

that inaccuracy we belive the results to be promising. Notice, that we only

measure the region heap, that is, we do not consider the values stored in

�nite regions which are also recycled automatically by region inference.

Figure 15.1 and 15.2 shows the two most interesting cases with GC (i.e.,

100-RI) as a function of time. Consider Figure 15.1. At garbage collection

number 5, the garbage collector reclaims a little less than 6% of the mem-

ory reclaimed since garbage collection number 4. Hence, region inference

reclaims more than 94% of the garbage in that period.

15.2 Heap Size

The garbage collection algorithm presented in Chapter 11 takes time pro-

portional to the number of live objects, that is, no time is used on reclaiming

garbage. We found the complexity to be t

C

= cU where U is the amount

of live data, and the constant c includes the time used to copy live objects,

update forward pointers, handling region status and the scan stack. We can

approximate the cost of garbage collection per object. Let H be the heap

size. The amount of garbage is then G = H � U and the cost per garbage

object is

cU

H � U

=

c

H=U � 1

Assuming the amount of live data U is approximately the same between

two garbage collections then the formula predicts that garbage collection

gets cheaper as the heap size increases.

Appel did a similar calculation with a simple copying garbage collector

and found the number of garbage collections and time used on garbage

collection to descrease as the heap size increased [2].

There are several issues in the ML Kit that may in
uence the above

prediction.

1. garbage collection is combined with region inference and if region in-

ference reclaims most of the dead objects then the need for garbage

collection descreases.

2. for large heap sizes the live objects are likely to be scattered out on

the entire heap. As heap size increases we get more global pointers

which may have a signi�cant performance degradation on the virtual

memory system and cache performance. We get more page faults and

the cache is used less e�ciently.

3. The garbage collector must manage more region pages with a large

heap.
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Memory Reclaimed by Garbage Collection
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Figure 15.1: The �gure shows the amount of memory (in percentages)

reclaimed by garbage collection as a function of time. At garbage collec-

tion number 2, the garbage collector reclaims approximately 2% of the

memory reclaimed since garbage collection number 1. Hence region in-

ference reclaims 98% of the garbage in that period. Time is the garbage

collection cycle number.
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Memory Reclaimed by Garbage Collection
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Figure 15.2: The �gure shows the amount of memory (in percentages)

reclaimed by garbage collection as a function of time. At garbage col-

lection number 10, the garbage collector reclaims approximately 7% of

the memory reclaimed since garbage collection number 9. Hence, region

inference reclaims 93% percent of the garbage in that period. Time is

the garbage collection cycle number.
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Garbage Collection and Heap Size(


0

)

Program 


0

rp

total

GC time #GC time=#GC rp

ts

kitkb old 2.2 9261 21.77 72 0.30 4196

kitkb old 2.5 10292 11.12 35 0.32 4105

kitkb old 3.0 12519 8.46 21 0.40 4163

kitkb old 3.5 13820 7.49 16 0.46 3940

kitkb old 5.0 18490 5.28 10 0.53 3692

kitsimple 2.2 1658 20.45 16 1.28 740

kitsimple 2.5 1722 16.05 9 1.78 677

kitsimple 3.0 2067 13.94 6 2.32 679

kitqsort 2.2 4463 34.87 67 0.52 2023

kitqsort 2.5 5087 13.23 28 0.47 2023

kitqsort 3.0 5994 5.86 14 0.42 1995

kitqsort 5.0 9975 2.04 6 0.34 1989

kittmergesort 2.2 4155 4.76 20 0.24 1875

kittmergesort 2.5 3765 2,79 12 0.23 1494

kittmergesort 3.0 4512 1.47 7 0.21 1494

Table 15.6: GC time is in seconds and is the time used on garbage

collection (i.e., t

gc

� t

tag

). Heap size (rp

total

) is the number of region

pages requested from the operating system. To{space (rp

ts

) is the largest

size of to{space after a garbage collection cycle measured in number of

region pages.

The heap size is controlled by the ratio 


0

, see Section 11.8 on page 201. In

general we have h � l


0

, where h is the heap size and l is the amount of

live data. By increasing 


0

we indirectly increase the heap size. We have

measured the benchmark programs with di�erent values of 


0

.

All programs behaves similarly regarding the number of times we garbage

collect. As 


0

increases the number of times we garbage collect decreases.

However, the total time used on garbage collection remains almost the same

for some programs: kitlife old, kitlife35u, kitkbjul1, kitkbjul9, kitreynolds2,

kitreynolds3 and the professor game. Table 15.6 shows the programs where

the time used on garbage collection decreases signi�cantly.

Why does the time on garbage collection not descrease as 


0

increases

on all the programs? An important factor is that the programs not listed

in Table 15.6 are the programs with the smallest to{spaces (see Table 15.2).

This means that less time is used on each garbage collection cycle and the

total time used on garbage collection may not increase signi�cantly even

though we garbage collect more often.

Table 15.6 shows that the time used on each garbage collection cycle is
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Code Size and Bit Vectors

Program

Size

(no gc.)

Size

(with gc.)

# FN # App

kitlife old 51401 57849(13%) 67 148

kitkbjul9 184481 207273(12%) 301 449

kitsimple 254945 290337(14%) 401 794

kitreynolds3 19145 22105(15%) 49 45

kitqsort 13273 14681(11%) 25 13

kittmergesort 17177 19049(11%) 31 26

professor game 66953 73937(10%) 107 98

Table 15.7: The table shows the size of stripped object �les with and

without garbage collection in bytes. The overhead comes from extra code

at entry to each function and the decriptors inserted at every application

point, see Chapter 13. The overhead

GC�NoGC

NoGC

is written in percentages.

The two last columns show the number of functions and the number of

non tail calls in the program.

either increasing, constant or descreasing depending on the program. We

would expect a constant behavior because the size of to{space is likely to

be independent of 


0

. However, we see some variations in the to{space

column. An argument for an increasing time per garbage collection cycle

as 


0

increases is that more time is spent manipulating region pages in

the garbage collector. We need more analyses in order to make further

conclusions.

We believe a value of 


0

= 3.0 works well on most programs. How-

ever, some programs bene�t from adjusting 


0

depending on the amount of

memory one wants to use.

15.3 Bit Vector Size

Table 15.7 shows the size of executables with and without garbage collection.

Tagging is enabled in both columns. We have measured the size of the object

�les, that is, the runtime system is not included in the sizes reported. The

object �les are stripped with the unix program gstrip.

The bit vectors used in the implementation have an overhead of one word

plus the words used to hold the frame map. The smallest bit vector is two

words. The code inserted at entry to each function is 12 words. The code

fetches a 
ag from memory and if the 
ag is set then the garbage collector

is called. Keeping the 
ag in a register would reduce the code to 9 words.

Given the number of functions and number of non tail calls we see that
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most of the overhead comes from entry code to functions. For instance,

kitreynolds3 uses 2352 bytes on the entry code and 608 bytes on bit vectors.

This is a little more than 3 words per bit vector. Notice, that because all

variables are spilled the function frames are larger than they should be.

With the register allocator we expect to get a saving in memory used on bit

vectors. On kitsimple we use 19248 bytes on entry code and 16144 bytes on

bit vectors. This gives an average bit vector size of 5 words.

Allocating �nite regions in function frames increases the size of the frame

maps. The reason for kitsimple to use 5 words may be that many reals

are allocated in �nite regions and with tagging enabled each �nite region

containing a real has size 4 words. Extra space may also be used to keep

reals double aligned.
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Conclusion

In this chapter we discuss the contributions and some of the interesting

results obtained by combining region inference and garbage collection. We

then discuss future work.

16.1 Contributions

We have designed and implemented a new backend for the ML Kit. It has

been designed to be simple but still produce good quality code. Not having

a register allocator unfortunately makes it impossible for us to verify the

quality of the code.

The structure of the backend, with many small phases, has proven to

simplify the implementation greatly (i.e., the new backend separates aspects

of compilation which were intertwined in the old backend). Each phase

concentrates on a few minor tasks and is easier to implement and debug

than large and complicated phases that perform many tasks at the same

time. The succes of having many phases depends on the ability to express

the information computed in each phase in the intermediate languages. It

has been challenging to design the intermediate languages and we believe

we have succeeded; the LineStmt language is reused throughout the backend

and it incorporates all information computed in the di�erent phases. The

ability to de�ne polymorphic datatypes in Standard ML is a key feature in

the de�nition of LineStmt in the implementation. The backend has been

implemented in a little more than two months and already compiles the

Standard ML basis library.

The compilation speed of the new backend is faster than the old backend

on most of the benchmark programs. We believe, that this will also hold

after implementing the register allocator; the time used on register allocation

can be gained from optimizing some of the other phases including the code

generator.

We have developed a garbage collector that works with regions. We

242
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found that the region management scheme �ts well with a simple Cheyney

copying garbage collector where each in�nite region has its own scan pointer.

We solved the stop criteria problem using a scan stack of regions. Finite

regions gave us some problems, mainly because they are allocated on the

machine stack and therefore not copied. We solved the problems by marking

to{space and from{space region pages explicitly. The solution gave us a few

more tests when tracing objects but the garbage collector still performs well.

Tagging of values is implemented such that the same tags can be used

by the garbage collector and polymorphic equality function. We have seen

that tagging is very expensive, both in terms of space and time usage. The

size of object �les is also signi�cantly smaller when tagging is disabled. The

fact that using region inference without garbage collection requires no tags

is a signi�cant bene�t of the region management scheme.

We have implemented an e�cient root{set computation method based on

bit vectors inserted into the object �les. Object �les compiled with garbage

collection enabled are 10 to 15% larger than the corresponding object �les

without garbage collection. This is a resonable increase considering the

bene�ts, at runtime, of having bit vectors stored in the object �les.

We have seen dramatic e�ects of combining region inference and garbage

collection in Chapter 15. For instance, a program optimized for region in-

ference (e.g., kitkbjul9 contra kitkb old) may in fact give memory savings

with garbage collection, even if garbage collection is used without region

inference. However, region inference does reclaim the vast amount of mem-

ory. We have seen that the combination of region inference and garbage

collection performs well with an average execution time overhead of 13%

even though the garbage collector implementation has not been optimized.

The number of garbage collections (and time spent on garbage collec-

tion) descreases drastically for all programs if region inference is enabled.

This indicates that region inference does have the same e�ect as young gen-

erations in a generational garbage collector: a garbage collection cycle with

region inference enabled corresponds to a major garbage collection cycle in

a generational garbage collector.

Enabling region inference and garbage collection may have a negative

e�ect on memory usage compared to using garbage collection only. This is

mainly because of fragmentation problems, that is, many region pages are

almost empty. The fragmentation problem is a fundamental problem with

the region heap and it seems necessary to use both large and small region

pages to solve the problem.

A very positive result is that with the combination of garbage collection

and region inference, then the region management scheme reclaimes the vast

majority of the memory.

We have also seen that the number of garbage collections decreases as the

heap size increases (i.e., if 


0

increases). We found that, for most programs,




0

= 3.0 is a resonable compromise between time spent garbage collecting
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and wasted space.

16.2 The ML Kit

The ML Kit is a research compiler that is freely available. The current

version is version 3 and can be found at

http://www.diku.dk/research-groups/topps/activities/mlkit.html

Version 3 does not include the new backend and garbage collector.

16.3 Future Work

It is important that we tune the implementation such that we can get more

information about the combination of region inference and simple copying

garbage collection. The register allocator and region pro�ler are two critical

components missing.

We have seen that fragmentation problems are essential for region in-

ference. Considering the increase in number of region pages used when

enabling region inference and garbage collection contra garbage collection

without region inference then there must be a lot of nearly empty region

pages. It seems plausible that a smaller region page size may solve some of

the fragmentation problems. However, it should be investigated if it is pos-

sible to implement a more 
exible system with two or more sizes of region

pages. Is it the case that the overall memory usage will bene�t from having

some regions use small region pages only and some regions use large region

pages only? Is it possible to improve memory performance using di�erent

sized region pages without compromising execution time?

To get more detailed information about the storage management system

in the ML Kit a comprehensive analysis looking at all aspects of storage

management is needed [46]. Detailed information about the time used on

manipulating regions, allocating into in�nite regions, tracing etc. may lead

to further optimisations. It is also possible to include the memory sub system

performance, that is, how paging and cache performance are in
uenced by

region inference and the garbage collector [46, 20]. It is especially di�cult to

guess how the region heap in
uences sub system performance as two region

pages allocated for the same region may be far apart in the address space.

Adding threading together with a graphics interface to the ML Kit would

make it possible to implement business like applications where the user

starts several threads running in di�erent windows. Threading in
uences

garbage collection because garbage collection may only happen at gc{points,

see Chapter 13. Diwan et al. make sure that all threads reaches a gc{

point before they initiate garbage collection [19]. It is also interesting to

see if a database interface using methodologies from the world of functional
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programming can be designed and implemented. For instance, is it possible

to map, fold and apply a function on all or some of the entries in a table?
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