Compiling a Higher-Order Call-by-Value
Functional Programming Language to a RISC
Using a Stack of Regions

MARTIN KOCH TOMMY H@OJFELD OLESEN
myth@diku.dk hojfeld@diku.dk

Department of Computer Science
University of Copenhagen
October 11, 1996

Abstract. We describe an SML-to-PA-RISC compiler. The main
topic is inter-procedural register allocation. We use the known tech-
nique of processing the functions in bottom-up order in the call graph.
Each function is processed with a fundamentally intra-procedural algo-
rithm, but inter-procedural information is employed. We get consider-
able speed-up by allowing functions to have individual linking conven-
tions.

The per-function part of the register allocator works on the source
language, rather than the target language: It runs before the code gen-
eration, and directs the code generation. Measurements suggest that
this method can compete with graph-colouring methods. Another good
sign is that this register allocation on the source language encompasses
short-circuit translation of Boolean expressions in a nice way.

The compiler also schedules instructions, and it rearranges and du-
plicates basic blocks to avoid jumps.

Everything is implemented in the ML Kit, a compiler based on region
inference, which infers, at compile-time, when memory can be allocated
and deallocated and thus makes garbage collection unnecessary. In
a phase prior to the translation described in this report, the region
inference annotates the source program with allocation and deallocation
directives. We discuss how to deal with these directives, but region
inference itself is not discussed.

We present measurements of the effect of different ingredients in our
compiler. On average, we compile our benchmarks to code that runs in
0.57 of the time of the code generated by SML/NJ version 0.93, and in
0.75 of the time of the code generated by another version of the ML Kit
that uses an intra-procedural, graph-colouring register allocation.

Contents

1 Introduction 5
1.1 Why register allocation is interesting 5
1.2 Limitation of the job, 7
1.3 Overview of thereport 8
1.4 Prerequisites Lo 9

0

1.5 How to avoid reading the whole report 1
1.6 Thanksto 10
1.7 Overview of the compiler. 10
1.8 Notation 13
2 Source language 14
3 Intermediate language 20
3.1 RISC 20
3.2 Administrating regions 21
4 Intermediate code generation 24
4.1 Representing data at run-time 24
4.2 Tuples e 27
4.3 Constructed values 28
44 Regionso 31
4.5 References L 33
4.6 Functions 34
4.7 Recursive and region polymorphic functions 40
4.8 Exceptionso 44
5 Inter-procedural register allocation 55
5.1 Why register allocation? 55
5.2 Why inter-procedural? o0 56
5.3 Our approach to inter-procedural register allocation 57
5.4 Exploiting information about registers destroyed by a function 58
5.5 Exploiting information about parameter registers 60
5.6 Design decisions conclusion 61
57 Callgraph 62
5.8 Linking convention 64
5.9 Dealing with recursion 66
5.10 Processing a strongly connnected component 67
5.11 Revised overall algorithm 72
5.12 Relation to other approaches 73
6 Per-function register allocation 77
6.1 General approach L 0oL 77
6.2 Translating an expression 80
6.3 What kinds of values can be allocated to registers 82

6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11
6.12
6.13

Register allocation strategy 85
Liveness and hostility analyses 86
Choosing a register fora value. 87
Heuristic for choosing a register 89
Which values are spilled 92
Placing the spillcode 93
Placing spill code intra-procedurally 97
Placing spill code inter-procedurally 98
Our spill code placement strategies 100
Comparison with other approaches 105

7 Development of the inter-procedural part of the algorithm 110

7.1 Overview of the back end 110
7.2 Closure analysis 111
7.3 Siblinganalysis oo 117
7.4 Closure representation analysis 118
7.5 Converting functions to functions of several arguments . . . 120
7.6 Building the callgraph 123
7.7 Finding strongly connected components 124
7.8 Traversing the strongly connnected components graph . . . 124
7.9 Finding the equivalence classes of X's 126
7.10 Potentially recursive applications 126
7.11 Approximating the set of registers that will be destroyed by
the code for an expression 128
8 Development of the per-function part of the algorithm 130
8.1 The w-analysis 131
8.2 Temporary values L 134
8.3 Thedescriptor & 137
8.4 Allocating regions oo 140
8.5 Defining and using values 142
8.6 Put points oo 144
8.7 Control flow forks oo oL 149
8.8 Boolean expressions o000 151
8.9 Function application 157
8.10 Exceptions. 164
8.11 Processing a call graphnode, A 172
8.12 The remaining constructs 177
9 Target code generation 182
9.1 Linearising the code 182
9.2 Tailoring the back end to a PA-RISC 186
9.3 Instruction scheduling 187
10 Implementation notes 194
10.1 The correspondence between the report and the code 194

10.2 Some deviations from the report in the implementation . . . 194
11 Assessment 197
11.1 How the measurements were performed 197
11.2 Benchmark programs 198
11.3 Speed e 200
11.4 The importance of the different ingredients of the inter-proce-
dural register allocation 201
11.5 The per-function part of the register allocation 203
11.6 The importance of the number of registers 204
11.7 Linearising thecode 207
11.8 Instruction scheduling 210
11.9 Anexample Lo 210
11.10 Memory consumption oL 213
11.11 Conclusions 213
11.12 Directions from here 215
REFERENCES 216
SYMBOL TABLE 221

1 Introduction

1.1 Why register allocation is interesting

One reason many programmers do not use higher-level languages is that they
are not implemented as efficiently as lower-level languages. This project is an
attempt to compile a higher-level language efficiently to a RISC architecture.

One of the most important considerations when compiling to a RISC is
register allocation. A RISC has a finite number of registers to hold data and
a set of operations (instructions) that work on these registers. There is also
a memory with a, conceptually, infinite number of memory cells that can
hold data when the registers do not suffice. Before a value in a memory cell
can be used, it must be transfered (loaded) to a register, and this takes a
long time. Transfering values from registers to memory cells (storing) also
takes a long time.

Register allocation is the job of deciding which values are put in which
registers and at which points in the program values are loaded and stored.
The goal is to produce a RISC program that loads and stores as seldom as
possible.

Values that are not “live” at the same time can share the same register.
So to some extent register allocation is a problem of packing as many values
as possible in the registers.

In most cases there will, however, be points in the program where there
are more live values than registers, and then some values must reside in
memory. Hence, the register allocation problem is also a problem of deciding
which values are kept in registers and which are kept in memory.

Since it takes a long time to access the memory, it is the least frequently
used values that should be placed in memory. A value can be used frequently
in two ways: it can be used at many points in the program, and it can be
used in a part of the program that is executed frequently (e.g., a loop).

A value may, however, be used frequently in one part of the program and
infrequently in another. Consequently, it would be nice to be able to have
a value in a register in some parts of the program and in memory in other
parts.

Thus, the register allocation problem in all its generality is: to decide,
for each value, and for every point in the program, whether that value is in
memory or in a register, and in the latter case, in which register. This should
be done in such a way that a value is always in a register when it is used,
and such that as few loads and stores as possible need be executed.

Devising an algorithm that solves this problem optimally for any program
and in a reasonable amount of time is out of the question. We must content
ourselves with a solution that “does well” on “many” programs.

Furthermore, it is a problem of such generality that one must break it into
simpler sub-problems to find a solution. Therefore, in practice, the register
allocation problem gives rise to a proliferation of problems.

There is no single, correct way to split the general problem into simpler

sub-problems, and the resulting sub-problems can be attacked in many ways.
Thus, register allocation is a problem with much room for inventiveness, and
since it is so important, there is much to gain in run-time of the compiled
programs from a good solution. This makes it a fun problem.

A common way of splitting the general register allocation problem into
simpler sub-problems is as follows: Pack the values in registers as well as
possible (using some heuristic). Values that do not get a register in this
process are kept in memory and loaded every time they are used. Thus,
after this process, it is almost completely decided which values are in which
registers at each point in the program. There is some freedom still, however:
a value in memory must be loaded before it is used, but it does not have to
be loaded right before the use. In a final phase, this freedom is utilized to
place loads and stores beneficially, e.g., if possible, outside instead of inside
a loop.

As far as we know, all register allocators that divide the general register
allocation problem this way have used a framework called graph colouring.
They have varied the heuristic used to “colour the graph”, the heuristic used
to decide which values do not get a register, and the way the final phase
places the loads and stores.

The graph-colouring framework is conceptually nice, but the graph may
become big, it may take a long time to colour it, and a value is either allocated
to a register for all of its life or not at all. We have tried another way of
splitting the general register allocation problem than the graph-colouring
framework. Roughly, we choose registers for values while generating the
code.

This way we avoid some of the disadvantages with graph colouring. On
the other hand, our strategy may be worse at packing values in registers than
a graph-colouring register allocator.

Another respect in which the general register allocation problem is nor-
mally simplified is to consider only small parts of the program at a time.
A common approach is to split the program into whole functions or into
sequences of instructions without jumps, and then perform the register allo-
cation independently for each part of the program.

An advantage of processing the program in small parts is that control
flow is less complicated. Another is that it will allow the same value to be
put in a register in some parts of the program and in memory in other parts
(even though the graph-colouring framework is used). Finally, processing the
program in small parts is necessary if the register allocation algorithm runs
in time that is quadratic in the size of its input, as these algorithms often
do.

The big disadvantage is that, at the boundaries of each program part, all
values must be in specific places, often in memory.

It is especially important in a functional language, where function calls
are very frequent, that these are implemented efficiently. Therefore, we have
not confined our register allocator to work only on one function at a time: we
have developed an inter-procedural register allocation. It is not practically

possible, however, to consider the whole program in one go, so the inter-
procedural register allocation actually considers the functions of the program
one at a time, but the register allocation is done for each function using
information about the register allocation of other functions.

1.2 Limitation of the job

The setting of this project is more specific than the title.

First, the source language is Standard ML (SML) (Milner et al., 1990,
Milner and Tofte, 1991).

Second, our translation is only one of many phases; the input program
has already been parsed, type-checked, etc., so our source language is not
really SML, but rather an intermediate, functional language.

Third, the main topic is inter-procedural register allocation. We will also
implemente instruction scheduling and a few other things that seem relevant.
There are many other relevant issues with which we will not try to deal: clo-
sure representation analysis is important because our source language is a
higher-order functional language; data representation analysis is relevant be-
cause the language is polymorphically typed; many other issues that are
relevant in compilers for imperative languages are also relevant (e.g., com-
mon sub-expression elimination, constant propagation, loop invariant code
motion, strength reduction, and peep-hole optimisations).

Fourth, programs in SML use memory in a way such that the memory
cannot be allocated on a stack, as it can in, e.g., Pascal or C. This is a pity,
as memory management with a stack is cheap, both in run-time and memory
consumption. Instead, SML is normally implemented using a heap with
garbage collection (e.g. the Standard ML of New Jersey compiler (SML/NJ)
(Appel, 1992)). This takes more time at run-time and makes the memory
consumption of programs comparatively large. A different approach is region
inference (Tofte and Talpin, 1993, 1994), which, to some extent, forces the
memory usage of SML into the stack model.

Region inference infers, at compile-time, when memory can be allocated
and deallocated. This happens in a phase prior to the translation described
in this report, and our source language contains directives from the region
inference telling when to allocate and deallocate a region, and in what region
a given data object is to be placed. We discuss how to deal with these
directives, but region inference itself is not discussed.

Fifth, we do not actually implement all of SML: we omit Modules, in-
cremental compilation, and real numbers. We do not discuss the run-time
system; it is implemented by Elsman and Hallenberg (1995).

Sixth, the target machine is Hewlett-Packard’s PA-RISC 1.1 (Hewlett-
Packard, 1992).

Although the setting thus is rather specific, some aspects are of more
general interest. The parts of the translation and register allocation dealing
with the region annotations in the source language are, of course, region infer-
ence specific, but the translation and register allocation of other constructs

in the language should be generally applicable in compiling higher-order,
call-by-value functional languages. The register allocation and translation
to the intermediate RISC language is almost independent of the concrete
RISC architecture chosen. The same goes for the basic block ordering and
duplication. The instruction scheduling can to some extent be re-tailored to
other architectures.

We have specified our algorithms formally, and they have been imple-
mented in the ML Kit, which is a region-inference-based compiler (Birkedal
et al., 1996), and we have also carried out measurements of the effect of
different ingredients in our algorithms.

1.3 Overview of the report

The report can be divided in four parts: introductory material (chapters
1-2), design discussions (chapters 4-6), development of formal specifications
of the algorithms (chapters 7-9), and assessment (chapter 11). After this
overview of the report, there is an overview of the ML Kit and a section on
notation. Notice the table of symbols at the end of the report.

Chapter 2 explains our source language, the region-annotated intermedi-
ate functional language of the ML Kit.

Chapter 3 explains the intermediate language.

Chapter 4 discusses what intermediate code to generate for each con-
struct in the language. Since we want to concentrate on register allocation,
we choose simple solutions in this chapter; there is, e.g., no closure repre-
sentation analysis or data representation analysis. Except for the exception
constructs, we have made the same design decisions as Lars Birkedal in the
existing intermediate-code generator, COMPILE-LAMBDA (partly documented
in (Birkedal, 1994)).

Chapter 5 discusses how to make inter-procedural register allocation. Our
inter-procedural strategy uses the idea of (Steenkiste and Hennessy, 1989) of
processing the functions in the call graph in bottom-up order. Each function
is processed with some fundamentally intra-procedural register allocation al-
gorithm, but because the call graph is processed bottom-up, inter-procedural
information about the callees of the function being processed will be available
and can be exploited. The chapter discusses what inter-procedural informa-
tion can be exploited and how it can be exploited. It is also discussed how the
call graph can be constructed, since this is not straightforward in a higher-
order functional language. Another problem with a higher-order functional
language is that more than one function can be applied at a given appli-
cation. This limits the freedom to treat functions individually. A detailed
specification of the inter-procedural part of our algorithm is developed in
chapter 7.

Chapter 6 discusses how to do the register allocation of each function
in the call graph, i.e., the per-function part of the register allocation. The
most interesting characteristic of this part is that we use the structure of
the source language to do the register allocation. The register allocation is

done before the code generation, and directs the code generation. A more
usual way would be to generate code first using “virtual registers”, and then
map these to real registers in the register allocation phase afterwards. Also,
we do not use graph colouring as many register allocation algorithms do.
Generally, the benefit from doing the register allocation on a higher-level
language is that there is more information available. This chapter discusses
the general issues in making the register allocation on the source language:
how the register allocation can direct the code generation, the kinds of values
eligible for allocation to a register, how to choose registers for values, how
to decide what values are kept in memory, and how to place the code that
transfers values between registers and memory. The chapter develops the
register allocation for the construct let x = e; in ey as an example. This
should give an impression of the central ideas in our register allocation; the
register allocation for the other constructs of the source language is developed
in chapter 8.

Chapter 7 develops the inter-procedural part of the algorithm. Notably,
it contains an explanation of the closure analysis which is necessary to build
the call graph, because functions are values. The closure analysis is based
on the region annotations in the source language, and was invented by our
supervisor, Mads Tofte. The chapter also explains how functions that take
tuples as arguments (the way to pass multiple arguments in SML) are imple-
mented efficiently. The introduction to this chapter gives a list of all phases
in the back end. To get an overview, look ahead to this list (p. 110).

Chapter 8 describes the per-function part of the algorithm. First, a live-
ness analysis is presented; then the register allocation for the different con-
structs of the source language is developed. We have developed the register
allocation for, among other things, the constructs that deal with regions, the
constructs that allocate in regions, the exception constructs, and for short-
circuit translation of conditional expressions.

Chapter 9 concerns the translation from the intermediate language to
PA-RISC assembly language. This translation includes reordering and du-
plicating basic blocks to avoid jumps, and instruction scheduling.

Chapter 11 presents measurements from our implementation. We com-
pare with the existing back end in the ML Kit and with SML/NJ. We also
measure the importance of different ingredients in our register allocation,
and the effects of different phases in our back end.

1.4 Prerequisites

You may need basic knowledge of compiler writing for parts of the report.
We explain our source language, but only briefly. It is basically SML,
so knowing SML or some other functional language will be a help for the
reader. Knowledge of SML corresponding to the level in (Paulson, 1991) is
quite sufficient.
Knowledge about region inference is a necessary prerequisite for parts
of the report. (Tofte and Talpin, 1993) gives the most detailed account.

Large parts can, however, be read without knowing anything about region
inference.

1.5 How to avoid reading the whole report

If you know SML and what region annotations are (or do not care about
them), you can to a great extent skip chapter 2. Likewise, if you can guess
what a generic RISC language is, you may want to make do with the first
part of section 3.2 about the extra instructions for administrating regions
and skip the rest of chapter 3. If you know how to translate SML to a RISC,
you can skip chapter 4. A quick tour through that chapter is sections 4.2,
4.4, and 4.6.

The central chapters 5 and 6 are fairly self-contained. A quick tour is
5.4, 5.7, 5.8, 5.9, and 5.11; then 6.2, 6.4-6.6, and 6.12.

Chapters 7 and 8 contain all the details and depend on the preceding
two. If you are shamelessly into quick tours, brutally skip them; or maybe
read 7.1, the first part of 7.2, 7.5, 7.8, 8.2, 8.5, 8.6, and the first part of 8.9.

The rest of the report is almost self-contained. A quick tour is the first
parts of 9.1 and 9.3; then 11.3, 11.4, 11.7, and 11.8.

For completeness, we have included a lot of technical detail in the report,
especially in chapters 7-9. We have endeavoured to put the more technical
parts in the last part of each section, such that the reader not interested in
all the details can skip to the next section when it gets too technical and
detailed.

1.6 Thanks to

In connection with this project, we want to thank Finn Schiermer Andersen,
Lars Birkedal, Erik Bjgrnager Dam, Martin Elsman, Sasja Frahm, Arne John
Glenstrup, Niels Hallenberg, Jo Koch, Torben Mogensen, Kristian Nielsen,
and Mads Tofte.

1.7 Overview of the compiler

Here is an overview of the ML Kit compiler, of which we have made the back
end.

M, front end g tegion analyses P> back end T

Fig. 0. Phases in the ML Kit compiler.

The simple functional language E is approximately the bare language
subset of SML in the definition (Milner et al., 1990) except that patterns have
been compiled into simple patterns. Next, F is a similar region annotated
language, and ‘B is PA-RISC assembly language.

This report is only about the back end, but we give an overview of the
two other phases here.

10

The front end comprises the following phases:

lexical infix
analysis arsin resolution
SML ", 2 £, >
type pattern match
checking compiling optimisation

E

Fig. 1. Front end phases.
The type checking phase ensures that only type correct E-programs are

produced. The pattern match compiling phase compiles patterns into simpler
constructs. The optimiser performs optimising transformations on E. See
(Birkedal et al., 1993) for a description of the front end, although especially
the optimiser has changed since then.

The region analyses are (Birkedal et al., 1996):

region multiplicity storage mode physical size
inference inference analysis . inference

s B

\
N

Fig. 2. Region analyses.

A region is a collection of data objects for which memory may be allocated
at the same time and deallocated at the same time. The region inference
decides which data objects should be put in the same regions. Expressions
that create new data objects when they are evaluated are annotated with a
region: (10,4) may be translated into (10,4) at ri17, indicating that the
pair should be put in region r17. The region inference also decides when a
region should be introduced and discharged. This information is annotated
in the program too:

letregionpin e

declares the region p in a sub-expression e of the program, allowing
sub-expressions of e to have the annotation “at p”. Operationally,
letregion p in e introduces a new region, binds p to it, evaluates e, and
then discharges the region. This behaviour implies a last-introduced-first-
discharged order for regions, i.e., regions can be kept in a stack. Below we
discuss what it means to introduce and discharge a region, and what it means
to put data in a region.

The multiplicity inference decides for each region whether there is a bound
on the number of times data will be put into it, when the program is evalu-
ated.

While evaluating (the useless)

letregion r17 in (10,4) at ri7,

data is only put into r17 once. Therefore the amount of memory needed for
r17 can be determined at compile-time, and we say r17 has known size. This

11

amount can be allocated, when r17 is introduced and used later when data
has to be put into the region.

If, on the other hand, the sub-expression e of letregion g in e builds a
list in g, a bound on the number of times data is put into ¢ cannot in general
be determined at compile-time, because the size of the list cannot in general
be determined at compile-time. In that case we say o has unknown size, and
it is not possible to allocate all the memory needed for ¢ when it is introduced,
instead memory must be allocated each time data is put into the region. For
both types of region, discharging a region amounts to deallocating all the
memory that was allocated for it.

The physical size inference uses type information to infer the amount of
memory needed for the regions of known size. Together, the physical size
inference and the multiplicity inference change each known-size region o of
the region annotated program into ¢:4, where ¢ is the number of words needed
for p; each unknown-size region o is changed into p:?. The example above
will be translated to

letregion r17:2 in (10,4) at ri7:2,

assuming a pair of integers can be accommodated in two words.

One must distinguish regions from region wvariables. The g’s above are
region variables which will be bound to regions at run-time. The distinction
is necessary because a region variable can be bound to different regions at
run-time, namely if the binding letregion-expression is evaluated more than
once. In this respect a region variable is like any other variable—e.g. x of
let £ = e; in ey may be bound to different values, during execution of the
program, if the let-expression is evaluated more than once.

The storage mode analysis tries to discover when memory allocated for an
unknown-size region can be reused. It will sometimes enable memory to be
deallocated earlier than when regions are discharged. Like the other analyses,
the storage mode analysis annotates the program. While the multiplicity and
physical size inferences influence the way regions are treated fundamentally,
the storage mode analysis is more of an add-on; to keep things simple, we
will ignore the storage mode annotations in this report (they are not ignored
in the implementation).

Concerning region inference, see (Tofte and Talpin, 1993, 1994), of which
the former contains an algorithm. See (Birkedal et al., 1996), for descriptions
of the other region analyses.

The back end is what the rest of this report is about:

register allocation and PA-RISC assembly
intermediate code generation K code generation

E

B
Fig. 3. Back end.

Its source language, F. is the target language of the region analyses, i.e.,
it is a functional language with the region annotations sketched above. We

12

describe E in the next chapter. The intermediate language K is a RISC
language described in chapter 3. The final assembly language, B, is similar
to K, but of course includes many PA-RISC specific peculiarities (see section
9.2).

1.8 Notation

Assume #, A and # are sets. Then .Z* is the set of finite sequences
(tuples) of elements of .#; P.# is the set of subsets of #; .4\ A is the
set of elements in .# that are not in .#. The empty set is @. Cartesian
products of a set are written like this: #* = # x M x M x M.

M — A is the set of functions from .# to A", and A 5 A is the set
of partial functions from .2 to A, ie., M SN =\ J{# — N | W C .4).

A X-abstraction Aa.% with formal argument a and body % denotes a
nameless function; e.g., Aa.2 + a is the function that adds 2 to its argument.
The body of a A-abstraction extends as far to the right as possible.

Function application is denoted by juxtaposition: fg denotes f applied
to g; parentheses are only used for grouping.

We regard a function f € .# — A4 as arelation fC 4 x A": fa=biff
(a,b) € f, and use a — b as another notation for the pair (a, d). If # is a
relation, .#Z* is the reflexive, transitive closure of .Z.

Function application has the highest precedence and associates left. Cor-
respondingly, — and = associate right. Other operators associate right. x
takes precedence over —. Thus A4 — A X f#/ N means 4 — (N X
((FA)).H)).

Assume f and g are functions. Then Dm f denotes the domain of f, and
f+ gis the function defined by f+4 g = Aa.if a € Dm g then gaelse fa. E.g.,
{1 > 11,2 » 0} 4+ {2 = 12,3 = 13} is {(1,11), (2,12), (3,13)}, i.e. the
function with domain {1, 2,3} that maps a to a+10. f\# is the restriction
of f to the domain Dm f\#. o is function composition: fo g = \a.f(ga).

We abbreviate “if and only if” by “iff”.

13

2 Source language

Our source language FE is the call-by-value A-calculus, augmented with vari-
ous features such as references (updateable variables), exceptions, condition
constructs, simple and constructed values, primitive operators, and region
annotations. This chapter presents E briefly.

It is implicit in the name of a Igleta—variable which set it ranges over:

ecFE, eecFE xe X, a¢€ A, ,5 € P, etc. The only not obvious below are
perhaps: p € P, and o € R.

We use P for the set of region wvariables, and Y for the set of A-bound
variables. The core of E is the call-by-value A-calculus:

E ==Y | EE | \Y.EatP

The X-abstraction Ay.eq at p with formal argument y and body ey eval-
uates to a nameless function. SML syntax for it is fny => ¢;. We will
say that a sub-expression €’ of e is directly within e if it is within e but not
within any function inside e. E.g., €' is directly within Ay.e’ at r61 but
not directly within A\y.\z.e¢’ at r16 at r60. In the application e, ey, the
function e is called with ey as argument. Call by value means that es is
evaluated before the function is called. This is an important characteristic
of the semantics of F—especially for the implementor, as the implementa-
tion technology for call-by-need languages (like Haskell or Miranda) is very
different from that for call-by-value languages (see, e.g., (Plasmeijer and van
Eekelen, 1993)).

As an additional way to define variables, we introduce the let-construct.
We use X for the set of let-bound variables.

E = X | le¢eX=FEin FE

The expression let x = e; in es is evaluated by evaluating e; and binding
the result to z when evaluating es. This can be expressed with A-abstraction
and application (as (Ax.es at p)e;). But that is inefficient, so we treat
let X = F in F as an indepent construction.

We use [for the set of source language integers, and O for the set of
binary operators. The language includes these integer constructs:

E == 1| EOE
O == + | -

Next, we introduce constructs to build and consume tuples. We use U
for the set of unary operators.

E = (FE,..,E)atP | UFE
U = #I

14

The expression (e1, ..., e,) at p is evaluated by evaluating the sub-expres-
sions and building a tuple of the resulting values. Correspondingly, #i e
selects the i'" component of the tuple ey evaluates to. Components of a tuple
are numbered from zero (SML numbers from one). The front end (figure 1)
has compiled the more general record of SML to a tuple by deciding an order
for its fields. E.g., {2=1, flag=true, no=3} may compile to (1,true,3)
at ré4, and then #flag will compile to #1, and #2 to #0.

We use C' for the set of constructors, which is split into the nullary con-
structors C' and the unary constructors C. Here are the extensions to E for
constructors:

C u=C | C
E = C atP \ CEatP

| case Eof C=>FE|...|C=>E|_=>F
U == |

A unary constructor ¢ takes one argument as, e.g., Some, assuming the
following (SML) declaration:

datatype ’a option = Some of ’a
| None.

A nullary constructor é takes no argument (as None).

The syntax of E enforces that unary constructors only appear in expres-
sions of the form ¢y ey at p, which build a unary constructed value consisting
of the constructor ¢ and the value ey evaluates to. Analogously, a nullary
constructor ¢ can only occur in expressions of the form ¢é at p, which build
a nullary constructed value.

This is different in SML, where constructors can be used as function
values:

fun pmap f (y1,y2) = (f y1,f y2)
val it = pmap Some (1,2).

Here Some is used as a function value. To express the equivalent of that
SML-program our front end would n-expand Some:

pmap (\y.(Some y at rl) at r2) (1,2) at r3.
Assume ¢(evaluates to a constructed value. Then
caseegof c1=>e1l ... lcp=>epl_=>enq1

inspects the constructor of it and evaluates e; if the constructor is ¢;, or the
default expression ey, if none of the constructors ¢y, ..., ¢, match. The
argument of the constructed value can be accessed with | ey: +(Kloer 5 at
p) will evaluate to 5.

15

Note that the case-construct always has a default expression e, 1. This
is no restriction; a case-expression without a default expression can always
be converted to one with a default expression.

In SML, pattern matching is used to check what the constructor of a
constructed value is. The pattern match compiler (figure 1) has compiled
patterns to case- and {-expressions. For instance, the patterns in the SML
fragment

datatype ’a t = Iron of ’a | Maiden of int
case t of Iron a =>fa
| Maiden i => g i,

may be compiled to

case t of Iron => f ({ t)
| _ =g ({ t).

Boolean expressions and conditional expressions have the syntax

E =T | not E | if E then E else F
T := true | false
O == = | <=

Unlike the definition of SML, we do not treat the if-construct as a derived
form of the case-construct, because we want to deal with Boolean expressions
specially (section 8.8). The binary operator = is only allowed on integers,
Booleans, and references, not, e.g., on tuples.

It is an important characteristic of E that it has side effects. This is incor-
porated by having a special type of value called a reference, which references
a memory cell that can be updated.

F 1= ref FatP U ::= | O = :=

The expression ref e; at p creates a new reference. If e; evaluates to
a reference of a memory cell, ! e; evaluates to the value in that memory
cell, and the memory cell can be updated to the value ey evaluates to with
€1 :=€9.

With side effects, the order of evaluation must be specified to completely
determine the semantics of E. We specify that the evaluation order is left to
right, e.g., in an application, e; must be evaluated before es. Together with
call by value this completely determines the evaluation order.

Because exceptions give interesting control flow, we also want them in E.
Analogous to constructors, the set A of exception constructors is split into
nullary and unary exception constructors. We extend E:

A u= A A
E := AatP | AEatP
| exceptionAin F | raise £ | E handle A=>F

16

The expression exception a in ey binds a fresh exception name to a in
e9. (It must be a fresh one each time the exception expression is evaluated;
see section 4.8, p. 50.) The expression a at p evaluates to a nullary exception
value containing the exception name bound to @, and a; es at p evaluates
to a unary exception value consisting of the exception name bound to & and
the value that e; evaluates to.

A raise raise e;, makes control flow to the nearest enclosing handle-
expression which handles the exception value that e; evaluates to.

The expression e; handle a=>es handles a raised exception value, if
the exception name of the exception value is the same as the exception name
bound to a. For reasons of presentation, the handle-construct here is simpler
than SML’s. To express the equivalent of the SML fragment

ep handle A1 => ¢e; | A2 => ey | A3 => e3,
use
((eg handle A1 => ¢y) handle A2 => ¢9) handle A3 => e3.

There are only “at p”-annotations on expressions that build new values.
These annotations are necessary, because they tell in which region memory
should be allocated for the new value: to evaluate Ay.eq at p, it is necessary
to allocate memory for the resulting function, and the “at p”-annotation
shows that this will be done in region p; to evaluate (e;, ..., ey) at p,
memory must be allocated for the tuple that is built; to evaluate ¢; eq at p,
memory must be allocated for the constructed value; etc.

Expressions that do not build new values have no “at p”-annotation. For
instance in

let k = Ay.y+1 at r13 in (k,k) at ri4,

the two occurrences of k in (k,k) have no “at p”-annotation, for although
they evaluate to functions, they do not build new functions for which memory
must be allocated; they simply reference an already built function.

Boolean and integer constants create new values just as, e.g., a tuple does,
but these values will fit in a machine word and are therefore best represented
directly instead of as a pointer into a region. Hence, memory is not allocated
for the value created by these types of expressions, and consequently, they
have no “at p”-annotations. (This is technical, but should be clear after
chapter 4.)

The letregion-construct declares letregion-bound region variables P:

E = letregionp in E

It introduces a new region, binds it to the region variable, evaluates the
sub-expression, and then discharges the region.

This is not the only way to declare region variables: E also has region
polymorphic functions that take regions as arguments, allowing different calls
to the same function to use different regions.

17

We use P for the set of formal region variables thus declared.
The set B of (bindings of) region polymorphic functions is given by

B = FPY=E
p .= [P,...,P] | €

where P is the set of tuples of formal region variables, and F' is the set of
names of region polymorphic functions.
Finally, we introduce

E := letrecB---BatPin E | FPE

P u= [P,...,P] | €

This letrec-construct serves two purposes. First, it is used for declaring
region polymorphic functions. Second, it allows (mutually) recursive func-
tions to be defined: the region polymorphic functions (or: letrec-functions)
bi, ..., by declared in letrec by - by, at p in e,,41 can call each other.
A (region polymorphic) application f [p1, ..., pr]l es applies the letrec-
function named f to the actual region arguments p1, ..., py and (normal)
argument es.

A region variable is either letregion-bound or a formal region variable;

i.e., P = P |P. These sets have the form:
P := R:I | R:?
P := R:¥ | R:?

We define that p has known size iff p has the form p: iff it is known at
compile-time that all regions bound to p will have known size, i.e., iff the
number of words needed for each region is known to be i; p has unknown size
iff p has the form g:7, i.e., iff the number of words needed for the regions
bound to p is not known; and p has variable size iff p has the form p: iff
p may be bound to both regions with known size and regions with unknown
size at run-time. Only formal region variables can have variable size. The v
is a variable that can be bound to either some ¢ or ? at run-time according
to the kind of region g is bound to.

For instance, in

letrec fO[r0:p0ly0 = eq
f1[r1:?,r2:?]yl = e; at r3
in e3

the application £1[r0:?,r0:?]y0 may be a sub-expression of ey. Likewise,
f0 may be called from e, or (recursively) from ej. The formal (region)
variables are not in scope in the other function: r0 or y0 cannot be used in
e1 or e3. While £0 may be applied to regions with either size because the

18

size annotation on r0 is :p0, £1 may only be applied to region variables with
unknown size because r1 and r2 have :7 size annotations.

Notice the restriction on region polymorphic function application f ges:
The syntax ensures that f is always fully applied (to the actual region argu-
ments and the argument). E.g., (£0,£f1) at rl is not a possible expression.
To use a letrec-bound function as a value (i.e. to apply it partially), it must
be n-expanded: (A\y.f0[r3:?]y, Ay.f1[r3:7,r3:7]y) at rl. (But notice
that these functions are not region polymorphic. For type-checking reasons,
region polymorphism is only allowed for letrec-functions.)

It is convenient to define the set of variables:

Z == X |'Y | F | P | A

In particular, exception constructors A are regarded as variables.

We assume all variables that occur in a binding position (i.e. y in
Ay.eg at p, z in let © = e; in ey, p in letregion p in ey, f, p1,... , Pk,
and y in b, and a in exceptiona in eg) are distinct.

Expressions must ML-typecheck (Milner, 1978, Damas and Milner, 1982).

For brevity, we omit many constructs in the report: the rest of the prim-
itive integer operators (~, abs, *, mod, div, <, >, >=), other primitive op-
erators (output, std_in, std_out, open_in, open_out, input, lookahead,
close_in, close_out, end_of_stream), strings (implode, explode, size,
chr, ord), case-expressions on integers, strings and exception constructors.
These are all implemented. In the report, = is allowed on basic types only,
but polymorphic equality has been implemented. See chapter 10 concerning
discrepancies between the implementation and the report.

Reals have not been implemented, and neither has Modules.

19

3 Intermediate language

The intermediate language, K, is the language of a RISC (Hennessy and
Patterson, 1990), augmented with facilities for handling regions.

3.1 RISC

We write ¢ for a word, I for the set of words, and ® for the finite (small) set
of registers, which contain words. We write « for an instruction, and K for
the set of instructions.

The intermediate language is a simple three-address language. There are
instructions for putting a constant or the contents of a register in a register:

K = ¢&:=7
Y == & | I
and for operations on registers:
K = ¢&:=04£7
+ = + | -
E.g., ¢1:= o —1 subtracts ¢ from ¢9 and puts the result in ¢;.
There is an infinite set of memory cells, which contain words, and is

indexed by the set of words; i.e., there is a memory which is a map from I to
I. The only way to access memory cells is through load and store instructions:

K = &o=m[@®+I | md+I:=

The load ¢ := m[¢1 + 11] changes ¢9 to be the word in the memory cell with
index ¢1 + ¢1. Analogously with the store.

We introduce ; for sequencing instructions, and the instruction e that
does nothing;:

K == K;K | €

Assume ; is associative.
There are also instructions for (conditional) control flow:

K == I:'K | gotoY | ifX thenTIelsel,
where the set of conditions is
X = &<Y | =7 | &I | -X.

The label of k is ¢ if ¢: k occurs in the program, and then the effect of the
jump goto ¢ is to execute k. Because labels are words, one can jump to the
contents of a register. The conditional jump if x then ¢ else ¢ jumps to ¢ if
the condition y is true; otherwise to ¢. —y is true iff y is false. The condition
¢. tests whether bit number ¢ in the word in ¢ is 0 or 1.

The language described so far constitutes the basic intermediate language.
All features we add in the following can be described in terms of this language.

20

We need a stack, which we will call the K stack to distinguish it from
other stacks. Assume a specific register, ¢sp, is reserved for a stack pointer.
It is convenient with some abbreviations: pop ¢ pops a word and puts it in
¢; pop also pops a word, but does not put it in a register; push ¢ pushes the
word in ¢. These abbreviations are defined

pop = (Qop:=Psp—1
popd = pop; ¢:=m[ps, + 0]
push @ = mlpsy +0]:=¢ ; dsp:=bsp + 1.

With these definitions, the stack grows upwards in memory, and ¢s, points
to the first free word on the stack.

3.2 Administrating regions

It will be necessary to introduce and discharge regions, and allocate memory
in them. We introduce the instructions

¢ := letregion endregion ¢1:=at P91 endregions ¢.

A new region is introduced with ¢:=letregion, which assigns to ¢ an
identifier of the region.

If ¢ identifies a region, ¢9:=at ¢; : ¢ allocates ¢ words in that region and
sets ¢o to point to them.

The instruction endregion discharges the most recently introduced region,
i.e., it deallocates all memory allocated in that region.

As endregions ¢ is needed for a specific reason when raising an exception,

it will be explained when we discuss how to implement exceptions in section
4.8.

Implementing the region instructions

Now we explain the semantics of the region instructions in terms of simpler
K instructions. You can skip this if you are satisfied with the less detailed
explanation of these instructions.

A region is represented by a list of fixed-size chunks of memory. They
are kept in a stack:

21

the most recently introduced region

list of chunks

stack
of
regions

list of free chunks

Fig. 4. The conceptual representation of regions: a stack of lists of chunks
of memory.

The instruction ¢:=letregion pushes a chunk list with one new chunk
on this stack, and puts an identifier of the region into ¢. The instruction
¢1:=at ¢y : L tries to acquire ¢ words in the last chunk in the region identified
by ¢o. If there is not + words free in this chunk, ¢ :=at ¢9:¢ puts a new
chunk at the end of the list of chunks, and acquires its ¢ words there. The
instruction endregion pops the topmost list of chunks, and they can then be
reused. Thus, there is also a list of free chunks.

These lists and the stack are implemented as illustrated in this figure:

] 2 { free

¢descriptors: word
]
]

list with three chunks

K stack

Fig. 5. The concrete representation of regions. A box [| depicts
a word. In this illustration, 9 words can be allocated in each chunk.

22

The lists of chunks are implemented as linked lists: each chunk has a
pointer to the next chunk. The stack of chunk lists is implemented as a
linked list of region descriptors: each region descriptor has a pointer to the
next region descriptor and a pointer to its chunk list. Furthermore, because
we need to know how much free memory is left in the last chunk in the list,
each region descriptor also has pointers to the first and last free words in the
last chunk. In figure 5, two words have been allocated in the last chunk in
the topmost region; seven words are free. The region descriptors are placed
in the K stack, and we have assumed a fixed register ¢gescriptors pPoints to the
topmost region descriptor.

With this data structure, the K code to implement the region instruc-
tions is straightforward, though technical; we give an implementation of
¢ :=letregion. Assume a register ¢pgee i reserved to point to the first chunk
in the list of free chunks.

¢ :=letregion =
Di=sp ; pointer to region descriptor

push ¢descriptors , ¢descriptors := ¢ | push region descriptor

push ¢free ; set up pointer to chunk list
GDtmp = Pfree + 9 ; push Gymp ; push pointer to last free word
Dtmp = Pree + 1 ; push Gymp ; push pointer to first free word
Ofree := M[Pfree + 0] remove chunk from free list.

Instead of expanding the region instructions to simple K instructions,
the compiler may choose to implement them as sub-routines or calls to a
run-time system. In any case, they will be implemented as pieces of code.
One aspect of this is important to the translation presented in this report:
It must know which registers are destroyed by these pieces of code. So we let
qz§|etregion denote the set of registers that are destroyed, when a ¢ := letregion-
instruction is executed, and let éend,egion, (f)end,egions, and (Z)at denote similar
sets for the other instructions. With the implementation of ¢:=letregion
above, életregion = {¢tmp}-

Here we have reserved specific registers @qescriptors and ¢pree; the compiler
may choose to use memory cells.

23

4 Intermediate code generation

In this chapter we will discuss how each kind of expression in the source
language is translated to the intermediate language. We will not worry about
how registers are chosen for values, but merely assume that a register will
always be available to hold the result of a computation. Register allocation
is discussed in the following chapters which rely on the design decisions made
in this chapter.

The constructs of our source language F may be split into two groups:
constructs that build values, and constructs that consume values. For each
kind of value, there are constructs to build that kind of value, and constructs
to consume it. For example, a tuple is built by (e;, ..., e;) at p, and
consumed by #i es. A normal function value is built by Ay.eq at p, and
consumed by a (normal) application, e; e3. letrec-function values are built
by letrec by --- b, at p in e, 11, and consumed by f pges. Constructed
values are built by ¢ at p and ¢; es at p, and they may be consumed by
both 4 ey and case ey of c1=>eql| ... lep=>ep|l_-=>e,11. The remaining
constructs may also be split into constructs that build and constructs that
consume.

Before we can decide what code should be generated for a given construct,
we must decide what information the value manipulated by this construct
should comprise at run-time. The general strategy for doing this is as follows:
For each kind of value we start by discussing what the constructs that con-
sume this kind of value should do. This discussion reveals what information
values of this kind must comprise at run-time (e.g. a function value must
contain the code for the function). After having discussed how the values
of this kind should be represented at run-time, we can describe what code
should be generated for the corresponding constructs (e; es and Ay.eg at p
in the case of function values).

Since we focus on register allocation, the guiding principle in this chapter
is to choose a simple solution to problems, and we have made the same design
decisions as in the existing intermediate-code generator COMPILE-LAMBDA.
The representation of regions is also as in COMPILE-LAMBDA. It is described
in (Birkedal et al., 1996). The exception is exceptions, which we implement
differently from COMPILE-LAMBDA.

We start with some general reflections on how to represent data at run-
time.

4.1 Representing data at run-time

The atomic values are the values that can be represented in one word: inte-
gers, I, Booleans, T, and constructors, C'. We assume there are functions to
convert atomic values to their representation as words, ¢ € I:

[l € I—=1
II':DT—H € T—=1
[Jes € C—1L

24

We require that [] - | c_,; map different constructors from the same datatype-
declaration in the SML source program to different representations, but con-
structors from different datatype-declarations can have the same representa-
tion; strong typing ensures that there will never be an opportunity to mistake
one for the other. (Our source language does not have a datatype-declara-
tion. It just has one set, C, of constructors. The constructors originate from
datatype-declarations in the original SML program, but this is of no con-
cern at this point in the translation; all we need to know is the representation
of each individual constructor, and this is provided by []C%I.)

One way to naturally represent composite (i.e. non-atomic) values, such as
tuples, is as consecutive words representing the atomic values that constitute
the composite value. For example, the tuple value (1, (true,3),4) is made
up of the atomic values 1, true, 3, and 4, and it can be represented by the
words:

‘ |I1I|1—>1 ||:ECI'UGI|T—>I‘ |I3I|1—>1 ‘ |I4I|1—>I ‘

Here a box denotes a word, and juxtaposition of boxes means that the de-
noted words are consecutive.

This flat representation will not work in general, however, because the
source language, F, is type polymorphic. The problem is illustrated by the
program

let p = A\y.(y,y) at r2 at rl in
let d = Ayy.#1 yy at r7 in
d(d(p(p 2))).

The function p makes a pair of its input y. Since y may have any type, p is a
type polymorphic function. If we do not want to make specialised versions of
the code for p, the same code must be able to handle y’s of any type, e.g. the
value 2 and the value (2,2). Using flat representation, the same code for p

should transform the word to the consecutive words
, and those it should transform to

| 20, | WD | 20 | 20

when p is called the second time. To do this, p must know the size of the
flat representation of its input.
The function d takes the second component of a pair of values of any

type. From the WOI‘dS‘ 2071 | 02171 |, d should extract the second
word, while it should extract the third and fourth words, when given the rep-
resentation | 21, | [0, | 20, | 2T, |of ((2:2).(2.2).
Obviously, d must know the layout of the pair, if we use flat representation.

The solution normally applied in implementations of type polymorphic
languages is to use a uniformly sized representation of all types of values.
This representation is called uniform representation. The size used for all
types of values is usually one word. Composite values are then represented
as a pointer (which will fit in a word). The pointer points to the “actual

3

25

representation” of the composite value, which is like its flat representation,
except that the values that constitute the composite value are themselves rep-
resented in uniform representation. For instance, the uniform representation
of (1, (true,3),4) is

(1071 (4171

[truell; 31071

Here fat-edged boxes denote memory cells; other boxes denote words, as
before. (A memory cell is not the same as a word: a memory cell contains
a word. A word may reside in either a memory cell or a register.) The part
of the representation of a value that must be in memory (the part in the
fat-edged boxes) we will call the actual representation of the value.

With this representation, p knows that the size of its input is always one
word, and d knows that it can always find the second component of a pair as
the second word of the actual representation of the pair. Another advantage
of uniform representation is that it saves memory in cases where values are
duplicated: When p is applied to a value, the memory consumption is the
two words for the pair, regardless of the size of the flat representation of the
value. With flat representation, the memory needed for the pair will be the
double of the size of the value.

Uniform representation is inefficient for two reasons: It is necessary to
dereference a pointer whenever a composite value is accessed (e.g. when an
element of a tuple is accessed), and the actual representation must reside
in memory (one cannot have a pointer to a register). The latter restriction
makes it impossible to allocate composite values to registers.

One remedy to the inefficiencies introduced by uniform representation
uses that it is only necessary to use uniform representation for a value when
it is passed as an argument to type polymorphic functions (as p or d). With
this method, representation or bozing analysis decides when values must be
in uniform representation and when flat representation can be used (Leroy,
1992, Henglein and Jorgensen, 1994, Jgrgensen, 1995).

A completely different way of handling data representation in the presence
of polymorphism is the intensional type analysis of (Harper and Morrisett,
1995) used in the ML compiler TIL (Tarditi et al., 1996). In that approach,

26

the type of the argument is passed to type polymorphic functions at run-time,
such that a flat representation can be used instead of the uniform represen-
tation. In practice, TIL will often specialise type polymorphic functions and
avoid passing types at run-time.

These sophisticated solutions are beyond the scope of this project, how-
ever; we shall always use uniform representation, although we realise that it
will be a significant limitation on the register allocation that we are not able
to allocate a composite value to a collection of registers.

Concerning polymorphic equality and tags, see chapter 10. In this pre-
sentation, integers are not tagged, so we may use the function [[- J];_,; not
only to generate the run-time representation of source language integers, but
also for, e.g., index numbers.

4.2 Tuples

We have already indicated in the previous section how tuples are represented.
As an n-tuple will not generally fit in one word, it is represented as a pointer
to an actual representation, which is n consecutive words holding the uniform
representation of the n values that constitute the tuple.

The tuples in the source language, E, represent both tuples and records
in SML. This also holds for a record with only one field: The record {a=T7}
will have been translated to the 1-tuple F-expression (7) at p. The uniform
representation of a 1-tuple could be one word holding the representation of
the single value of the tuple, but treating 1-tuples specially would give more
trouble than benefit.

The 0O-tuple (the result of () at p) deserves special mentioning, as it
is used often in SML: Expressions that are evaluated for their side-effects
(e1:=e9) evaluate to the O-tuple, for any expression must evaluate to some-
thing. The 0-tuple, which has type unit, need not be represented explicitly,
because there is no built-in operation with unit in its input type. (Remem-
ber we have assumed equality is not defined on tuples in E, p. 16.) Of course,
we must build a pair, when evaluating the expression (ej:=e9,e3:=¢4) at
r5, but the exact contents of the two words of the actual representation of
the pair is of no concern: although they can be retrieved again from the
pair, they cannot be used for anyting. We decide to represent () as any ar-
bitrarily chosen value, for then the code for e;:=¢e9 does not have to bother
with putting some specific value representing () in the destination register;
it can simply leave any arbitrary value in the register. The code for e;:=¢€9
is developed in section 4.5.

The code to build a tuple, i.e. the code for the construct (ey, ... ,e,;) at p,
must allocate memory for a tuple in region p, evaluate each sub-expression,
and store the result into the tuple. We use ¢; ::‘ code to evaluate e; ‘ as a
shorthand for “code to evaluate e; and put the resulting value in ¢”.

27

gb::‘code to evaluate (e1, ..., e,) at p‘

= ¢ ::‘the address of n new cells in p‘ ;

o ::‘ code to evaluate e; ‘ smioe+ (0071 =1

On ::‘ code to evaluate e, ‘ smlge+In— 1, :=dn ;
b= 1.

The code for the construct that consumes tuple values is:

¢ ::‘ code to evaluate #7 es ‘ = ¢ ::‘ code to evaluate eq ‘ :

¢ =mlpo +[[i]l; -

(Remember that #0 extracts the first component which resides at offset 0 in
the tuple.)

4.3 Constructed values

Two constructs consume constructed values: With
caseegof ci;=>erl ... lep=>epl_=>ent1

the constructor of a constructed value can be inspected, and, according to
what it is, the proper sub-expression is evaluated. The argument of a unary
constructed value can be extracted with 4 es. This implies that the run-time
representation of a unary constructed value must comprise both the con-
structor and the argument. In other words, a unary constructed value is a
pair, and its representation is like that of a 2-tuple: The uniform represen-
tation of a unary constructed value is a pointer to two consecutive words in
memory. The first word contains the representation of the constructor, and
the second contains the representation of the argument. The value Some 7
will be represented

[Some]] C—1 IAIPas

The nullary constructed value that ¢é at p evaluates to is conceptually a 1-
tuple, and it is represented as a 1-tuple, i.e., as a pointer to one word in
memory that contains the representation of the constructor:

28

[[None] .,

Here the indirection is necessary, not to achieve uniform representation (the
nullary constructor will fit in a word), but rather to ensure that the construc-
tor of both unary and nullary constructed values can always be accessed the
same way, namely by dereferencing a pointer. This is needed by the code for

case ey of Some x =>¢;
| - =>€27

as it is not possible to determine at compile-time whether eg evaluates to a
unary or a nullary constructed value.

(Notice the distinction between constructors and constructed values: The
representation of the nullary constructor None is the word [[None]] c_p: the
representation of the constructed value that to which None at p evaluates is
a pointer to a word in memory containing [[None]]| RIRD

We choose this simple representation of constructed values to limit our
job. Constructors can be represented more efficiently by using specialised rep-
resentations for special situations: The indirection to the constructed value
can be avoided if the datatype-declaration only contains nullary construc-
tors. If pointers can be distinguished at run-time from integers representing
constructors, all nullary constructed values can be represented without the
extra indirection. The illusion of constructors with more than one argu-
ment is obtained by putting the arguments in a tuple and then applying the
constructor to this tuple; e.g., the representation of ::(1,::(2,[1)) is

29

| @0,] O

This gives another indirection: the pointer to the tuple. This indirection
can be eliminated by having a special representation of constructed values
that contain tuples. There are many more special cases that allow for more
efficient representations. Some are petty optimisations, but, for instance,
the one last mentioned implies that lists, which are used extensively in func-
tional languages, will be represented significantly better. Cardelli (1984)
implemented specialised representations of constructors in his ML compiler.

The code for the constructs that build constructed values is quite like the

code for the 2- and 1-tuples (p. 28):

¢ ::‘ code to evaluate ¢; eg at p‘ =

o ::‘the address of 2 new cells in p‘ ;

o1 :=[[¢llc sy ; Mg +0]:= b1 ;
b2 ::‘ code to evaluate ey ‘ s mdy+ 1] :=¢9 ;

b= b,
and
0] ::‘ code to evaluate ¢ at p‘ = ¢ ::‘ the address of 1 new cell in p‘ ;
¢ =[] o yr s mlge +0]:= o1 ;
¢:= 1.

The code for the consumer constructs of constructed values inspects the
first and second component, respectively: The code for

caseegof ci;=>erl ... lep=>epl_=>ent1

30

jumps to the code for the proper sub-expression. For instance:

¢ :=| code to evaluate = ¢ ::‘ code to evaluate eq ‘ ;
case co of gf_ig?_i . ¢ :=mlpo + 0] ; fetch constructor
=>e3
| _ =>e3 if 7 =[[Sex[]~_,; then ¢; else 7 ;

r1: if ¢ :[Drugsﬂ ¢ then 13 else 75 ;

L1 @ ::‘ code to evaluate e ‘ ; goto I ;

Lot ¢ ::‘ code to evaluate ey ‘ ; goto I ;

ly: ¢ ::‘ code to evaluate ej ‘ ; goto I ;

I: €.

The code to extract the argument from a (unary) constructed value is
exactly the code for #1 eo:

10) ::‘ code to evaluate | ey ‘ = ¢ ::‘ code to evaluate eq ‘ ;

¢:=mlpo +1] fetch argument.

4.4 Regions

This section discusses what code to generate to introduce a region, discharge
a region, put data in a region, and how to implement region variables and
region size variables at run-time. We follow (Birkedal et al., 1996) in all.

Introducing and discharging regions

The code for letregion p in e; must introduce a new region before the code
for e1, and discharge the region again afterwards.

Although regions are introduced and discharged in a last-in-first-out or-
der, they cannot all be allocated on the stack, because the size of some regions
cannot be determined at compile-time. This is dealt with by only allocating
memory on the stack for regions with known size; for regions with unknown
size, memory is allocated in the heap.

1. If p has unknown size, i.e., it has the form p:?, a heap region must be
created and bound to it. The ¢, := letregion-instruction creates a new region
in the heap and assigns to ¢, a pointer to a region descriptor, the data
structure necessary for administrating allocations in a region in the heap.
This pointer uniquely identifies the region. The endregion-instruction is used
to deallocate all memory allocated for data in the most recently created
region in the heap. Thus the code for letregion p:7? in ey is:

0] ::‘ code to evaluate letregion p:? in e ‘

= ¢, :=letregion ;

¢ ::‘ code to evaluate ¢y ‘ ;

endregion.

31

2. If p has known size, i.e., it has the form p:i, a region with known
size must be allocated. The memory needed for this region (i words) can be
allocated on the stack when the region is introduced:

0] ::‘ code to evaluate letregion p:¢ in e ‘

= ¢sp:=sp + L]l 7 1

¢ ::‘ code to evaluate e ‘ ;

bsp = dsp =i 1] 1 1-

Region variables and putting data in regions

This section discusses how to identify regions at run-time, what the code to
put data in a region should be, and how to decide whether a given region
has known or unknown size.

To uniquely identify regions at run-time, a region name is assigned to
each region: 1. The region name of a region with unknown size is the address
of its region descriptor. 2. The region name of a region with known size is
the address of the memory allocated for it on the stack.

A put point is an expression that has an “at p”-annotation. The code for
this expression will put some data in the region bound to p. To put ¢ words
in a region, a register, ¢, must first be set to point to an area in memory
where ¢ words can be stored. Suppose ¢, contains the region name of the
region. There are two cases: 1. If the region has unknown size, ¢, points to
its region descriptor, and then ¢ words can be allocated with the instruction
¢:=at ¢,:e. 2. If the region has known size, ¢, points to memory that has
already been allocated for it on the stack, i.e., ¢ can be set to point to the ¢
words with the instruction ¢:= ¢,.

How is it decided what the size of the region bound to p is at a specific
put point? 1. If p has the form p:?, the regions bound to it will always
have unknown size. 2. If p has the form p:i, the regions bound to it will
always have known size. 3. If p has the form p:, it can be bound to both
regions with known size and regions with unknown size; it must be checked
at run-time what the size of the region is. Thus, the region name of a region
does not, in general, provide enough information to put data in the region;
the region size (“known” or “unknown”) will also be necessary, if the region
can be bound to a region variable that has the form g:.

The information necessary at run-time to put data in a region is thus
a pair consisting of the region name and the region size. How is this pair
represented at run-time? A region size can be represented in one bit. A
region name is a word-aligned address (i.e. an integer divisible by 4 on the
PA-RISC), hence not all bits of a word are necessary to hold a region name.
Therefore, the region-name-and-size pair can be squeezed into one word:

0 30 31

The region size is held in the least significant bit, and the region name is

32

held in the most significant bits.

If the representation of the pair is in ¢,, the size of the region can be
checked with the instruction if ¢,.lsb then tynknown €lS€ tknown, Where Isb is
the number of the least significant bit (31 on a PA-RISC). Extracting the
region name from ¢, amounts to setting the least significant bit in ¢, to zero.

Thus, the code to put ¢ words into p, according to the form of p, is:

1. ¢::‘the address of ¢ new cells in g:?‘ = ¢, ::‘ code to access p:? ‘ ;
pi=at ¢,
2. ¢ ::‘ the address of ¢ new cells in Q:Z" = ¢ ::‘ code to access p:i ‘

3. ¢::‘the address of ¢ new cells in Q:QM =

®p ::‘ code to access g:d;‘ ; if @,.1sb then tynknown €lse tinown ;

Lknown : Q= ¢p ; goto [;

Lunknown : ¢:=at ¢, ; goto i ; €.

Here it is assumed ¢ :=at ¢, : ¢ extracts the region name from the word
in ¢,, i.e., it is not necessary to generate code to explicitly set the least
significant bit in ¢, to zero. Furthermore, it is assumed that ¢, := letregion
will set the region size bit appropriately in the word it returns in ¢,,.

4.5 References

The construct ref e; at p creates a reference to the value that e; evaluates
to. We represent a reference at run-time as the address of a memory cell.
Thus, in the declaration

let x = ref 7 at ri
in eq,

the value bound to x is the address of a memory cell where the representation
of 7 is stored:

Recall that a fat-edged box is a memory cell, while a box with thin edges
is a word. The representation of the reference above can be thought of as
being “the left-hand box and the arrow”. Since an address is one word, this
representation of references is uniform.

33

Thus, the code for ref e; at p must allocate a new memory cell in p,
and return the address of that memory cell. It is exactly the code for the
expression (e1) at p (p. 28):

10) ::‘ code to evaluate ref e; at p‘ =

oy ::‘ the address of 1 new cell in p‘ ;

01 ::‘ code to evaluate e; ‘ ;
m[¢¢ + 0] :=¢1 ;
qf)Z: qbt.

Notice that only one memory cell is allocated: the values a reference can
point to use uniform representation.

A reference may be dereferenced using the !-operator: evaluating !'x
yields 7. In general, the code for ! es return the word in the memory cell at
the address that es evaluates to. It is the same as the code for #0 ey (p. 28):

¢ ::‘ code to evaluate ! eq ‘ = ¢ ::‘ code to evaluate eq ‘ :
¢:=mlp2 +0].

The memory cell addressed by a reference can be updated: evaluating
x:=42 has the side effect that the memory cell addressed by the reference
now contains the representation of 42:

The reference itself never changes—=x is bound to the exact same value; it is
the word in the memory cell that changes.

In general, e : = e9 is evaluated by evaluating ey to an address of a memory
cell and then updating this memory cell to the value to which e evaluates:

¢ ::‘ code to evaluate e;:=e9 ‘ = ¢ ::‘ code to evaluate e; ‘ :

b2 ::‘ code to evaluate ey ‘ ;
m[¢1 + 0] := .

This code should return the 0-tuple, which is represented by any word (p. 27).
Therefore it is not necessary to put any specific value in ¢.

4.6 Functions

In this section we discuss functions that are built by A-abstractions,
Ay.eq at p, and the corresponding (normal) application construct, e; es.
letrec-functions is the subject of the next section.

In a higher-order functional language, a function is a value that must
be represented at run-time. Below, we discuss what information a function

34

value must contain and how it is represented, and then we can develop the
code for application and A-abstraction. (We use the term “function value” to
hint at the similarities with other kinds of values. A function value is often
called a closure.)

What information must a function value contain?

It is not generally known at compile-time which function will be applied at
a given application. For instance, two different functions may be called by
the code for the application

(if ey then Ayl.yl+v at r2 else Ay2.y2-v-w at r2) 7.

Therefore, a function value must in some cases contain the code for the
function.

Moreover, having functions as values means that a function may be ap-
plied in another environment than the one it is created in. In

let £ = let a = 97 in

let b = 98 in
let g = A\y.a+y at r103
in g

in £ 1,

the function Ay = Ay.a+y at r103 is created in an environment that binds
a to 97 and b to 98, but it is applied in an environment, where a and b are
not defined. In this situation, Ay is said to escape. Therefore, a function
value must comprise not just the code for the function but also the values of
the free variables of the function, a in this case (Landin, 1964).

Thus, a function value is a tuple where the first component is the code
for the function and the remaining components are the values of the free
variables of the function. E.g., the first A-abstraction in the if-expression
above would evaluate to the function value (“code for Ayl.yl+v at r2”,
“value of v”), while the second might evaluate to the function value (“code
for Ay2.y2-v-w at r2”, “value of v”, “value of w”). (The order of the values
of the free variables might be different.)

More efficient implementations of functions

This expensive way of implementing functions is necessary in some cases,
because functions are values and might escape. In the average higher-order
functional program, though, many (most?) of the functions are not passed
around as values; they are just called like their counterparts in, e.g., Pascal
(Welsh and Elder, 1982). When a function is only used “as a Pascal function”,
it can be implemented in a cheaper fashion, because the function value need

35

not be represented explicitly. If, for instance, the example above read

let a = 97 in

let b = 98 in

let h = Ay.a+y at r103
in h 1,

Ay would not escape, i.e., all applications of A\; would be in the scope of
its declaration, so Ay would only be applied in an environment where all
its free variables are available, and the pointer to the code for Ay would be
known at compile-time, since it is the only function that can be applied at
the application. Thus, it would not be necessary at all to have an explicit
function value for Ay at run-time.

Different definitions of what it means that a function is only used “as
a Pascal function” can be given. One such is: the identifier to which the
function is bound may only appear as e; in applications e es (or f in f pes),
only in the scope of the free variables of the function, and not under any \.
In this case, neither a code pointer, nor the free variables of the function are
necessary, and therefore it is unnecessary to build a closure.

More sophisticated, in

let ¢ = 99 in
let k = let d = 100 in
let k = Ay.c+y+d at r103
in k
in k 1,

Ay is passed as a value and applied in an environment where its free variable
d is not defined. Thus, we must have a function value at run-time, but it
need not contain the free variable c, as it is available when A, is applied, and
it need not contain the code pointer, as A, is the only function that can be
applied.

The ORBIT Scheme compiler (Kranz et al., 1986) pioneered the spe-
cialised implementation of different kinds of functions. The closure represen-
tation analysis of Shao and Appel (1994) can “allocate closures in registers”,
and functions can share closures. On average, the code generated by SML/N.J
is 17% faster with this closure representation. Although both ORBIT and
SML/NJ are continuation-based compilers, and this work therefore is not im-
mediately applicable in our translation, it should be possible to adapt their
methods.

Wand and Steckler (1994) present a transformation that transforms a
A-expression to closure-passing style, a A-expression where closures are ma-
nipulated explicitly. Function application is replaced by closure application:
the first component of the closure (a function—the “code pointer”) is in-
voked on the actual argument and the closure itself. They call their closure
conversion selective, because not all applications are converted to closure ap-
plications; for instance, h above would not be represented by a closure in their

36

scheme, because it does not escape. Some of their closures are lightweight:
they do not contain all the free variables of the function; for instance, the
closure for k above would not contain c, because it is available at all the
places where the closure might be invoked. They have not implemented the
closure conversion, and it is unclear to us how fast it is (they do not explicitly
give an algorithm).

Closure representation analysis is a subject in itself and beyond the scope
of this project. We will treat all functions in a uniform manner and always
build closures for functions. This decision has serious implications for the
register allocation: there will be no allocation of variables to registers across
functions, because the free variables of a function must always be fetched from
its closure in memory. This removes a whole layer of complexity from the
register allocation, for now the free variables of the function can be regarded
as local values that are fetched from the closure, and then we only have to
worry about putting values local to a function in registers. This limitation
thus reduces the complexity of doing inter-procedural register allocation by
forcing the register allocator to be less inter-procedural.

Representing function values at run-time

Function values must use uniform representation at run-time, and we rep-
resent a function value like we represent other tuples (section 4.2): as the
address of the actual representation of the tuple.

The constituents of the function value must themselves use uniform rep-
resentation. The uniform representation of the code for the function is a
label (which will fit in one word), and the actual representation is then the
code labelled with this label.

The representation of h will look like this, assuming the label of its code
iS tp:

lh |97|

The code for an application

Now we sketch the code for an application, which we will call the linking
code. At first, assume the application is not a tail call. The left-to-right
evaluation order and call-by-value semantics of SML specifies that the code
for an application e; ey must first evaluate e; and then es. The former
evaluates to a function value. The latter evaluates to the argument, which
must be passed to the code for the function.

When the code for the function is executed, it must have access to the val-
ues of the free variables, which are recorded in the function value. Therefore,

37

we must also pass these to the code for the function.

Furthermore, we must pass to the function a label to which it should
return.

Thus, an application can be viewed as a “goto with three parameters”:
argument, tuple of values of free variables, and return label. (We call them
parameters to avoid confusion with argument. The parameters of Ay.a+b-y
at ril are: its argument (the value to be bound to y), a tuple of the values
of its free variables (the values of a and b), and a return label.) The linking
code sets up the parameters by putting them on the stack or in appropriate
registers:

. set up closure

. set up argument

. set up return label
. jump

. return code.

CU = W N =

We will not discuss now how to decide whether a parameter is passed on
the stack or in a register and in which register, and when registers must be
saved and restored. This is part of the discussion of register allocation in the
following chapters.

Notice that by having the code in the first component of function values,
the code part of a function value can always be accessed in the same manner,
and that is necessary because the code for an application must call the code
for different function values. For instance, the code for the application (if
-+) 7 above does not know whether it is a two- or a three-tuple that is
applied; it simply extracts the code as the first component of the tuple.

To describe the linking code more specifically, assume that the parameters
are passed in three different registers: the argument in ¢, , the closure in
Pelos., and the return label in ¢, and that the result is passed in ¢peg.. The
linking code is:

Dclos. ::‘ code to evaluate e; ‘ :

1

2. Qarg. ::‘ code to evaluate e ‘ ;
3. ret. =1t ;
4

5.

¢t = m[¢clos. + 0] ; goto ¢t)
L@ = Pres.,

where ¢, is some temporary register; ¢ is the label of the code the function
should return to; and ¢ is the register for the result.

Some comments on this linking code: We simply pass the closure to the
code for the function body and not just the sub-tuple containing the values
of the free variables. Tt could be done simply by adding one to ¢¢es., but
that would cost an extra instruction and there is no reason to do it.

It is best to have part 1 and 2 of the linking code before 3, for if 3 was
before 1 and 2, the register ¢ could not be used for other values in the
code for e; and es.

38

Like a function call can be viewed as a “goto with three parameters”, the
return can be viewed as a “goto with one parameter”. In this sense, a return is
similar to a call. This similarity is explicit when using continuation-passing-
style as SML/NJ does (Appel, 1992). An application of a continuation is a
“goto with parameters”.

Tail calls

In case the application is a tail call, there is no return code (5), and the code
to set up the return label (3) is instead

Dret. ::‘ code to access the return label of the current function ‘

Space forbids a discussion of what conditions make an application qualify as
a tail call. Only, note that an application which is a tail call in the original
SML program need not be a tail call in our source language. For instance, the
application in fn y => ejes is a tail call, but the region analyses may trans-
form it to Ay.letregion rl in eel, at r2, in which the application would
not immediately be considered a tail call because r1 must be discharged after
the application.

Functions of several arguments

In SML, functions always have one argument. Functions that appear to take
several arguments may be implemented as functions that take a tuple as
argument. Consider the SML function with “two arguments”:

fun sumacc (0,n) = n
| sumacc (m,n) = sumacc (m—1, m+n).

Using the general method of generating code for tuples (explained in section
4.2), sumacc builds a tuple before each recursive call, and consumes the
tuple again when performing the pattern match. Only the components of
the tuple are used; the tuple itself is never needed. The generated code
would be more efficient if we could somehow avoid building the tuple, and
instead pass the individual components of the tuple to sumacc: Therefore,
we try to convert a function that takes a tuple as its argument to a function
of several arguments. Instead of having exzactly one argument, functions then
have at least one argument. This gives the following general code to set up
the arguments for a function application:

Garg-1 ::‘ code to evaluate the first argument ‘

Garg-n ::‘ code to evaluate the n’th argument ‘

Section 7.5 discusses when a tuple function can be converted to a function
of several arguments.

39

It is not always possible to pass all arguments in registers, for the set
of registers is finite while there is no bound on the number of elements in
a tuple. How to handle that is discussed in greater detail when we discuss
register allocation of function application in section 8.9.

The code for a \-abstraction

Now that we have decided that a function value must contain the label of the
code and the value of the free variables, we can present the code for building
a closure. A closure is a tuple, so the code to build it is much like the code for
(e1, ..., €n) at p. Assume the free variables of A\y.eq at p are vy,... ,v,:

¢ ::‘ code to evaluate A\y.eq at p‘ =

o ::‘ the address of n + 1 new cells in p‘ ;

Plabel =L ; m[¢¢ + 0] := Prabel ;
o, ::‘ code to access vy ‘ s migy+ 1] =y,

Ou,, ::‘ code to access vy, ‘ s midy +[[nll ;o] = ou, ;
¢::¢t7

where ¢y is the label of the code for (the body of) Ay.eq at p.

4.7 Recursive and region polymorphic functions

Region polymorphic functions (or, synonymously, letrec-functions) are much
like the functions discussed in the previous section. Our line of attack is to
isolate the differences. The strategy is still to keep things as simple as possi-
ble. Thus, we will build closures for letrec-functions, for exploiting that a
letrec-function never can be applied in an environment where its free vari-
ables are not available would complicate our job, as we could not simply fetch
free variables from a closure. We start with region polymorphic application,
and then discuss the representation of letrec-functions.

Differences between region polymorphic and normal application

Region polymorphic application f pes differs from normal application in
three respects. Consider the linking code (1-5) (p. 38).
First, the code to set up the closure (1) is different. For a normal ap-

plication e; es, it is ¢¢jos. ::‘ code to evaluate ¢y ‘ In a region polymorphic
application, there is no e; that evaluates to a closure; the closure we want to
pass to the function is the closure for the letrec-function named f. So the
code is “¢b¢los. :=somehow get the closure for the function named f”. What
that is more exactly, we will discuss below.

Second, there are more arguments. For a letrec-function there are also
the arguments p1, ..., pg, which too must be passed to the function. Say

40

this is to be done in the registers ¢,,,... ,¢,,, then the code to set up the
arguments is

Garg-1 ::‘ code to evaluate the first argument ‘ ;

Garg-n ::‘ code to evaluate the n’th argument ‘ ;

Dp1 ::‘ code to access p; ‘ ;

Dpr ::‘ code to access pg ‘

Third, the code to jump to the code for the applied function (4) is dif-
ferent. At a normal application, the label of the code for the body of the
function must be extracted from the closure, because it is not known at
compile-time what function will be applied, i.e., the code is

¢t = m[¢c10s. + 0] ; goto ¢t-

At a region polymorphic application, it is known at compile-time what func-
tion is applied—mamely the one named f—and hence we know what label
must be jumped to. Assuming this label is 17, the code to jump is goto ¢.

For both kinds of applications, the code to set up the return label (3) is
the same (e, :=1¢) and so is the return code (5) (¢: ¢ := ¢res.). Tail calls are
dealt with as they are dealt with at normal applications.

The first difference, how to pass the closure of the letrec-function,
touches upon the issue of how to represent letrec-functions at run-time,
which is treated now.

Representing letrec-functions at run-time

The relevant situations are captured by this example:

letrec f1 y1 = f1 v + £2 y1 + w
f2 y2 = f1 y2 + f2 u + w at ril7
in f1 1 + £2 2

Two letrec-functions are declared. Each calls itself and the other recur-
sively.

To see how to represent letrec-functions at run-time, consider a similar
example with A-abstractions instead of letrec-functions:

let x1 = Ayl.v+yl+w at rl7 in
let x2 = A\y2.x1 y2 + utw at ri7
in x1 1 + x2 2

In the following, A\f; and Afy denote the two letrec-functions (e.g., Mgy
= flyl = fiv + £2y1 + w), and Ay and A4y denote the A-abstractions
(e.g., Axi = Ayl.v+yl+w at r17). With let-expressions there can be no

41

recursion, because the x bound in let z = e; in ey cannot be referenced
in e;. Therefore, it is only Ay that applies Ay; in the second example.
According to the discussion about A-abstractions above, the expression is
evaluated thus: First a closure is built for A\y; and bound to x1; then a
closure is built for Ay and bound to x2. As A4 is applied in Ay, x1 is a free
variable in Ayo, and therefore the closure for Ay» contains the closure for Ay;.
This will be represented this way:

t1: [=[on]

20 ———=[np T o T v [

The representation of the second closure has a link to the representation
of the first closure, reflecting that the second function intends to apply the
first function. At the application x2 y2 the closure that is passed is the one
bound to x2.

This suggests the following way of implementing the letrec-functions
above. Treat £f1 and £2 as wvariables that are bound to the closure for the
function they refer to; e.g., £1 is bound to the closure for Af;. Getting
the closure for the function named f when a region polymorphic function
is applied is then an access to the variable f; i.e., number 1 in the linking
code above is ¢jps. :=|code to access f ‘ Then f1 and f2 are free variables
of both Af; and Asp. Thus, both closures should contain the values bound
to £1 and £2; e.g., the closure for ¢y should contain itself (the value bound
to £1) and the closure for A¢5 (the value bound to £2). The representation
would look like:

f1: [e | f1] f£2] v [w |

The circularity in the representation corresponds to the recursion in the
program. Fach closure points to itself reflecting that each function might
apply itself, and each closure points to the other reflecting that each function
might apply the other.

42

The code for letrec by --- by at p in ey should build the closures
for the letrec-functions and bind them to the letrec-bound variables, and
then it should evaluate e;,11. As the closures are all built at the same time,
(Birkedal, 1994) suggests building one shared closure for all functions in the
letrec-expression. The representation, which is explained below, will be

fi:

=1
o

Now f1 and £2 will both be bound to the shared closure. Their values
are omitted from the shared closure, because there is no point in saving a
couple of pointers to the shared closure in the same shared closure; i.e., we
no longer consider £1 and £2 free variables of A¢; and A¢s.

As region polymorphic applications know the label of the code for the
applied function, it is not necessary to have code pointers in the shared clo-
sure. E.g., at the region polymorphic application £1 v, it will always be A¢4
that is applied. The shared closure could never flow to a (normal) applica-
tion, and thus make it impossible to syntactically identify what function is
being applied, because names f of letrec-functions can only appear in the
construct f pes. An example like

| u v W

let x = letrec fy = ez at r119
in f
in x 120
where it is actually £ that is applied at x 120 is not possible.

Note also that the common free variable w of A\¢1 and Aso is now stored
in memory only once.

This shared closure representation of letrec-functions saves space and
simplifies things. For instance, it is easier to build a shared closure than the
two circularly linked closures above.

The code for letrec by --- by, at p in ep,qq is thus

code to build the shared closure for by, ..., by, ;

10 ::‘ code to evaluate e, 11

)

where the shared closure for by, ... , by, is simply a tuple containing all the
free variables of the functions by ... by, (excluding the names of the letrec-
functions by ... by,).

We decided to treat letrec-function names f as variables. How are these
variables accessed? We say f1, ..., fm are siblings, if they are bound in the

same letrec-expression:

letrec f1 p1y1 =e1

fmPmYm = em at p in e,

43

Accesses to any of fi, ..., f;,, within ey, ... ,emny1 yield the same value,
viz. the shared closure for the letrec-functions with the names f1, ..., fi..
Therefore, there is no reason to distinguish between accesses to, e.g., f1 and
fm-

Assume f; € {f1, ..., fm}. Consider a region polymorphic application
fipe directly within e, (i.e. within e;,1, but not within the body of
any function in ey, 1). The code for this application will access f;, and this
access to f; should yield the shared closure that has been built by the code
preceding the code for e, 1.

Now consider a region polymorphic application f; p'e’ directly within e; €
{e1, ... ,em}. We call such an occurrence of f; a sibling access. This access
will occur in the code for the letrec-function named f;, and while executing
that code, the current closure will be the same shared closure that the access
to f; should yield, i.e., within the code for the letrec-function named f;,

the code ¢ ::‘ code to access f; ‘ is simply ¢ :=the current shared closure.

Finally, consider occurrences of f; that are within, but not directly within,
one of ey, ..., ey, i.e. within another function within one of ey, ... ,¢e,,. In
letrec fy = Ay’.fy’ at rl at r2 in eo, f is a free variable of Ay’ .- -,
i.e., the application £ y’ is not a sibling access, £ must be fetched from the
closure. The code for the function named f must access f to put it into this
closure. In that sense, there is a sibling access to £ directly within the body
for the function named f.

4.8 Exceptions

We call the run-time object that handles an exception a handler, a con-
cept we shall postpone defining until we have discussed how raise e; and
e1 handle a => ey work.

The stack of active handlers

A handler belonging to e; handle a=>ey should only handle exceptions
raised while evaluating e;. E.g., the handler in

(17 handle a => 7) + raise a at r119

should not handle anything; it is only active while 17 is evaluated and not
when a at ri119 is raised. At run-time, we must maintain a set of active
handlers. The code for e; handle a=>ey must install in the set of active
handlers a new handler that will handle a-exceptions. This handler should
be installed before e; is evaluated, and it should be discarded if evaluating e;
did not activate it. Thus, the active handlers can be kept in a stack, which
we will call the stack of active handlers. (Do not confuse this stack with the
K stack (the stack in the language K), or with the stack of regions.)

44

Using a=>es to denote the handler belonging to e; handle a=> e,

[0) ::‘ code to evaluate e; handle a=> ey ‘ = handler-push a=>e5 ;

10) ::‘ code to evaluate e | ;

handler-pop.

Raising an exception and propagating a raised exception

At raise eq, the exception value that e; evaluates to must be passed to the
topmost handler on the stack of active handlers that can handle the exception
value. Thus,

(((raise a’ at r119) handle a=>1) handle a’=>2) handle a’=>3

should evaluate to 2, for when a’ at r119 is raised, the stack of active
handlers will be (starting with the topmost handler):

a=>1
a’=>2
a’=>3

and the topmost handler capable of handling a’ at r119is a’=>2. In other
words, when an exception is raised, handlers are popped from the stack of
active handlers until a handler capable of handling the exception is found. We
decide that the responsibility of finding the proper handler lies with the code
for the handlers: raise e; simply pops the topmost handler and passes it the
exception value. This handler is then expected to deal with the exception
value. A handler deals with an exception value that it cannot handle by
raising it again; this way the responsibility of dealing with an exception
value propagates to the next handler on the stack of active handlers. This
strategy can be illustrated in SML for the example above:

exception A and A’;
(((raise A’) handle A=>1
| x =>raise x) handle A’=>2
| x =>raise x) handle A’=>3
| x =>raise

Here, each handler deals with any exception it does not “really” want to
handle by explicitly handling it and raising it again.

Raised exceptions that are handled by no handler should be reported
as uncaught exceptions and make the program terminate. This is done by
having a top-level handler that handles any exception. We will not describe
this part of the implementation of exceptions further.

As it is not known at compile-time which handler will handle a raised
exception value, all handlers and code to raise an exception value must agree

45

X.

on how this exception value is passed. We designate some register ¢;aiseq t0
pass the value in. The code to raise an exception will have the form:

¢ ::‘ code to evaluate raise e; ‘ = Praised ::‘ code to evaluate ey ‘ ;

handler-pop h ;
jump to the code for h.

In addition, two things must be done when an exception is raised. Con-
sider

(letregion rl7 in
(let insignif = (b,b) at rl7 in
(if b then raise a at r119 else 1)+5)) handle a => 6.

The region introduced by the letregion-expression must be discharged
again. If a at r119 is raised, control will flow directly to the handler, skip-
ping the rest of the code for the letregion-expression, including the code to
discharge that region. Therefore, the code for raise a at r119 must explic-
itly discharge the region. In general, after e; handle a=> e, has been evalu-
ated, the stack of regions must be as it was right before e; handle a=> ey was
evaluated, regardless of whether the handler introduced by e; handle a =>es
was activated or not. Therefore, raise ez must reset the stack of regions
to its state before the topmost handler was pushed, i.e., it must discharge
regions introduced since the topmost handler was pushed.

Also the K stack must be reset: above, if the variable insignif was
pushed on the K stack, it must be popped when a at r119 is raised.

Thus, the code to raise an exception must be

10 ::‘ code to evaluate raise e; ‘ =

Draised ::‘ code to evaluate eq ‘ :

handler-pop A ;
reset the stack of regions and the K stack
to what they were before h was pushed ;

jump to the code for h.

Note that e; must be evaluated before the handler is popped from the stack of
active handlers, for e; might itself raise an exception which should be handled
by the handler on the top of the stack of active handlers (as in raise (raise
x)), and e; must also be evaluated before the stacks are reset, because the
evaluation might need some of the values that will be deallocated.

Resetting stacks at a raise

It is easy to reset the K stack at a raise: Simply reset ¢, to the value it had
before the last handler was pushed on the stack of active handlers:

46

Pspi [——=

bep: =t 1:i¢s

(i) (i1) (i)

Fig. 14. The K stack. ¢ always points to the next free word. (i)
just before the topmost handler is pushed; (i¢) just before an exception
is raised; (7i%) just after the exception is raised.

This will also discharge any regions of known size, since they are allocated
on the K stack.

Then remain the regions of unknown size, which are allocated in the
heap. These regions have region descriptors allocated in the A-part of the
K stack. Assuming all region descriptors are in a linked list, we can run
through this list and discharge (using endregion) all regions whose region
descriptor is in the A-part of the stack, i.e., those whose region descriptor is
above (gaved-sp- Therefore, it is possible to detect what heap regions should
be discharged at a raise given tgayed-sp 0f the handler on the top of the stack
of active handlers. We will not discuss in further detail how this operation
can be implemented; it is provided by our intermediate language in form of
the instruction endregions ¢, where ¢ must contain isayed-sp-

Summing up, the only information necessary to reset the (K and region)
stacks appropriately when an exception is raised is the contents, tsaved-sp, 0f
¢sp before the handler on top of the stack of active handlers was pushed. If
® = Lsaved-sp» the K stack can be reset and the appropriate known-size regions
be discharged with the instruction ¢s, := ¢, and the appropriate regions of
unknown size can be discharged with endregions ¢.

The concept handler

Now we can define the concept handler. A handler is the information needed
by the code for raise e; to do the actual handling and reset the stacks, i.e.,
it is a pair (tsaved-sp, Lhandler-code): Where tgaved-sp is the contents of ¢s, when
the handler on top of the stack of active handlers was pushed, and thandier-code

47

is the label of some code that deals with an exception. Thus, the code for
e1 handle a=>¢y 18

¢ ::‘ code to evaluate e; handle a=> ¢y ‘ =

handler-push (¢sp, to=>¢,) ;

¢ ::‘ code to evaluate e; ‘ ;

handler-pop,

where 14=5 ¢, is the label of the code for the handler a =>e3, and the code for

raise ey is:

10) ::‘ code to evaluate raise e; ‘ =

Oraised ::‘ code to evaluate e; ‘ ;
handler-pop (¢1, ¢2) ;

endregions ¢ ;
¢sp =¢1;
goto ¢s.

Implementing the stack of active handlers

A handler is represented by a handler element, which contains tgayeq-sp and
Lhandler-code for the handler it represents. We implement the stack of active
handlers as a linked list of handler elements. A global variable, h, points to
the topmost handler element.

h: E%' Lsaved-spq Lhandler-code0 Lpreviousq

Lsaved-sp1 Lhandler-code 1 l Lhandler-code 1

Fig. 15. The list of active handlers.

Memory for this linked list can be allocated in the K stack, if the pushes
and pops of handlers are interleaved with other K stack pushes and pops in
such a way that the stack discipline will be upheld. This turns out to be the
case, as will be apparent after reading this chapter.

48

Psp: [— =

Lprevious

Lhandler-code(

Lprevious |

Lhandler-code 1

Fig. 16. The stack of active handlers allocated on the K stack.

Notice that igued-sp is not in the handler elements in figure 16: The
position on the K stack of the handler element itself indicates what igayved-sp
is. That tgaved-sp need not be explicitly saved is an extra bonus from allocating
memory for the stack of active handlers in the K stack

With this implementation of the stack of active handlers, we can give a
more specific description of the code for raise e;. If an exception is raised
with the stack situation in figure 16, h indicates how much must be peeled off
the stack. The heap regions with region descriptors above h are discharged
with the endregions-instruction, and ¢sp is reset to h, effectively discarding
the A-part of the K stack. Then, h is reset to tprevious, thereby popping the
handler on the top of the stack of active handlers. After that, control flows

49

to the code labelled thandier-codeo:

10) ::‘ code to evaluate raise e ‘ =

Praised ::‘ code to evaluate ey ‘ ;

endregions h ;
Gsp == h ;
pop h ;

pop ¢’ ;

goto ¢'.

} reset stacks

} handler-pop

The code for e; handle a=> ey creates a new handler element on the K
stack, links it to the list of handler elements, evaluates ey, and then it takes
the handler element out of the linked list and removes it from the K stack:

¢ ::‘ code to evaluate e; handle a=> ey =

push tg=5¢, ;

push h : handler-push
h:: ¢Sp)

¢ ::‘ code to evaluate ey | ;

pop h ;

} handler-pop
pop.

(Exactly what the code is depends on how we implement the global variable
kh, which is discussed when we discuss register allocation (section 8.10). For
instance, “push A” may not correspond exactly to a push-instruction, which
is the reason we use “push” instead of “push”.)

Exceptions are generative. Exception names

Despite the name, exception constructors are more like let-bound variables
than like constructors. At run-time, an exception constructor is a variable
bound to an ezception mame, whereas a constructor ¢ is a constant, viz.
the word [[¢]]_,;- As with constructors, notice the distinction between an
exception name (the value bound to @) and a nullary exception value (the
value that @ at p evaluates to).

The expression exception a in eg is akin to a let-expression: each time
it is evaluated, a fresh exception name is bound to a. The following example
(stolen from (Birkedal and Welinder, 1993)) serves to illustrate the behaviour

50

of exceptiona in es:

letrec strange y =
exception a in
if y=0 then raise a at r0
else ((strange (y-1)) handle a => 0)
at r0
in strange 2.

The exception raised in the recursive call strange (y-1) will never be han-
dled, because the exception name of the handler is of a newer vintage than
the exception value that is raised: In each recursive call of strange, the ex-
ception constructor a is declared anew, and bound to a different exception
name each time.

This perhaps strange semantics of exceptions was designed to ensure that
different exception declarations that accidentally use the same identifier for
the exception constructor will indeed give rise to different exceptions (Milner
and Tofte, 1991, p. 19). It has the by-effect that we must bind a different
exception name to the same exception constructor every time it is declared,
although it is declared by the same declaration every time.

We represent an exception name as a word, and keep track of what ex-
ception names have been used with a global variable n. Here is a sketch of
the code for exception g in es:

¢ ::‘ code to evaluate exceptiona in e ‘ =

ni=n+1:

bind a to n in the environment ;

10 ::‘ code to evaluate e |

Representing exception values

Exception values are much like constructed values as illustrated below. Among
other things, we must use a uniform representation of them, as they can be
used like any other values.

o1

L

| [cllos I[[true]] T—>

| ICIEEN I[true]] Talj

118 |[falsell; |

117 I[I:true:l:lTaI|

Fig. 18. FEzxception values compared to constructed values. The figure shows the
result of (f false,f true) at r3 in either of the contexts

let £ = Ay.exception a

in (ay at r2) at ri and let £ = Ay.(c y at r2) at r1l

in O in O
assuming the global variable n is initially 116.

As the figure suggests, exception values will be represented like con-
structed values, except that the exception value has the representation of
the exception name of the applied exception constructor where a constructed
value has the representation of the applied constructor. Likewise, nullary ex-
ception values are represented analogously with nullary constructed values.

With this representation of exception values, the code for the expression
kinds that make such values resembles that for constructors (p. 30):

¢ ::‘ code to evaluate @y eq at p‘

o ::‘the address of 2 new cells in p‘ ;

¢s:=|code to access a|; m[p, +0]:= s ;
bo: _‘ code to evaluate es ‘ m{¢; + 1] := ¢ ;
b= ¢y

52

o ::‘ code to evaluate d at p‘ =

o ::‘the address of 1 new cells in p‘ ;

dg ::‘ code to access d)‘ ; mgy + 0] := g ;

=y

The code for a handler

The code for the handler a => e5 must decide whether it can handle the raised
exception. If it can, it evaluates es; otherwise it raises the exception again:

code for the handler a=>e; =

la=>ey: Pa ::‘ code to access a‘ ;

¢a? = m[¢raised + O])
if pg =cpg? thenvelser; ¢: ¢ ::‘ code to evaluate eq ‘ ; goto I ;

: code to raise the exception again.

The handler puts the exception name bound to a in ¢, and the exception
name of the raised exception into ¢,2. Remember that the code for a raise-
expression puts the raised exception value in ¢paigeq (p- 46).

If the handler can handle the raised exception, it evaluates eq, and then
it jumps to I, the code for the expression e; handle a=>ey that it belongs
to. Thus, the code for e; handle a=>es (p. 50) must end with the label i.

After e; handle a=>ey has been evaluated, the exception a may or may
not have been raised, and correspondingly, the result of the expression may
stem from e; or from ey, and thus, the code for e; and ey must use the same
destination register, i.e., ¢ above must be the same as the ¢ in the code for
e1 handle a=>ey (p. 50).

The “code to raise the exception again” is the same as the code for a
raise-expression except that ¢,aseq already contains the raised exception
value.

Comparison with other approaches

A raise is a transfer of control and of a value, i.e., it is a “goto with ar-
gument”, i.e., an application of a continuation. Therefore, it is particularly
nice to implement exceptions in a continuation-passing style compiler such as
SML/NJ (Appel, 1992). There is always a current continuation that should
be applied to the result of the expression being computed. The current han-
dler (the topmost on the stack of active handlers) is implemented as a handler
continuation, and all raise does is to apply the handler continuation instead
of the current continuation to the exception value.

53

The existing intermediate-code generator, COMPILE-LAMBDA, implements
handlers much like SML/NJ’s handler continuation: A handler is imple-
mented as a handler function that takes the raised exception as argument.
The code for e; handle a => ey builds a closure for the handler function but
also saves on the stack the label that the handler function should return to.
The code for raise e; “applies” the current handler function to the value ey
evaluates to, except that the return label it gives the handler function is the
label that was saved when the handler function was created.

A raise is like a function application in that it is a transfer of control
and of a value, but it is unlike a function application in that it does not
return. Therefore it is the creator of the handler function (the code for
e1 handle a=>ey), and not its caller (the code for raise e;), which knows
the return label.

Our approach is better for two reasons: First, COMPILE-LAMBDA’s han-
dler function will always be applied in an environment where its free variables
are available, and thus it is unnecessary to build a closure for a handler func-
tion. Second, it is unnecessary to explicitly manipulate a return label, as
the code for a handler always “returns” to the same program point, namely
the program point just after the expression e; handle a=> ey it belongs to.

These improvements may have no significance in practice: the overhead
in COMPILE-LAMBDA’s explicit manipulation of return labels should be small;
and although we avoid building a closure for a handler function, the variables
used in the handler will often have to be saved on the stack anyway.

A region inference based compiler has to control deallocation of mem-
ory, and a raise may make it necessary to deallocate some memory, while
a garbage collection based compiler (as SML/NJ) can simply rely on the
garbage collector to clean up. The method we use to deallocate at a raise
(including the idea of putting region descriptors on the K stack and having
the endregions instruction) is due to Lars Birkedal and Mads Tofte, who used
it in COMPILE-LAMBDA.

54

5 Inter-procedural register allocation

Our inter-procedural register allocation can be divided in two: the inter-
procedural strategy (for processing the functions of the program), and the
per-function strategy. This chapter discusses the former; the latter is dis-
cussed in the next chapter.

We discuss the purpose of register allocation (section 5.1), in particular
the goals of making it inter-procedural (section 5.2), our approach to inter-
procedural register allocation (section 5.3), how to exploit inter-procedural
information (sections 5.4 and 5.5). Then we discuss the problems in im-
plementing our inter-procedural strategy (sections 5.6-): building the call
graph (section 5.7), how to have individual linking conventions for functions
(section 5.8), and deal with recursion (sections 5.9 and 5.10). Then the over-
all algorithm for the inter-procedural strategy is summarized(section 5.11).
We conclude with a comparison with other approaches to inter-procedural
register allocation (section 5.12).

The inter-procedural part of our algorithm, discussed in this chapter, is
developed in detail in chapter 7.

5.1 Why register allocation?

Register allocation is probably the single most important thing when com-
piling to a RISC. Its purpose is to reduce the number of load, store and move
instructions.

If the time to execute an operation on the RISC is one unit, each operand
that is not in a register and has to be loaded from memory before performing
the operation will add at least one unit to the execution time. If, furthermore,
the result of the operation has to be stored in memory, the execution time will
be increased by at least one unit more. Register allocation will not in general
be able to eliminate all memory traffic, but even a simple register allocation
will cut down memory traffic significantly. In the existing back end, KAM, for
the ML Kit, there is a near 50% reduction in execution time when comparing
code that has been register allocated with code that loads the operands from
memory before each operation and stores the result afterwards (Elsman and
Hallenberg, 1995, p. 40). This is even without retaining values in registers
across basic block boundaries.

We will try to reduce the number of register-to-register moves by try-
ing to make the producer of a value place the value in the same register as
the consumer wants the value in. It is difficult to say much about the rela-
tive importance of reducing the number of loads and stores, and eliminating
register-to-register moves. For instance, on the PA-RISC, a load takes one
clock cycle to execute plus one cycle to transfer the value from the cache to
a register (assuming a cache hit, for now). If the instruction immediately
after the load needs the loaded value, it must wait for one cycle until the
value arrives. Thus, a load takes one or two clock cycles, where a move al-
ways takes only one. So generally, eliminating a load should be preferred to

95

eliminating a move, but the importance of eliminating moves should not be
underestimated. George and Appel (1995) report a surprisingly big speedup
of 4.4% solely from eliminating moves, and this is even an improvement over
an algorithm that already tries to eliminate moves.

Traditionally, to simplify the intermediate code generation phase of com-
pilers, this phase has been allowed to generate many move instructions, re-
lying on the ensuing register allocation to eliminate them, thus making it
necessary for this phase to deal with moves. Alternatively, the code genera-
tion can be made smarter (and more complex) and produce fewer moves. In
any case, making code that has as few moves as possible is desirable.

The considerations above assume that the loaded value is in the cache.
If there is a cache miss, the load will take around 20 clock cycles instead
of one to two (Andersen, 1995). Considering the negligible price of a load
when there is a cache hit compared to the penalty for a cache miss, should
not the goal of register allocation be to reduce the number of cache misses
rather than the number of load and move instructions? We believe not. Since
there is more room for data in the cache than in the registers, it should not
be possible to reduce the number of cache misses using the registers: any
value that is used often enough to be eligible for allocating to a register
will also be in the cache, assuming the cache is completely associative. Of
course, caches are never completely associative, and hence, values that are
used often may accidentally be thrown out, but predicting this at compile-
time is out of the question. The conclusion is that it is not the job of the
register allocator to avoid cache misses: when doing register allocation, we
assume that all values are in the cache, and that the price for a load hence is
one or two clock cycles. This assumption increases the relative importance
of eliminating moves compared to that of eliminating loads.

5.2 Why inter-procedural?

In this section we discuss the merits of inter-procedural register allocation
and the benefits we expect from it.

We assume functions are smaller in programs in functional languages than
in imperative ones, and function calls are more frequent at run-time. This
is partly a programming style imposed on the programmer by the language
(e.g., to loop, one must make a recursive function), and partly, it is our expe-
rience that programmers tend to program this way in functional languages.

This implies that it is more important that function calls are imple-
mented efficiently in a functional language. One way to do that is with
inter-procedural register allocation, for it allows individual function calls to
be implemented in specialised, efficient ways, rather than in the same general,
inefficient way.

The second assumption—that functions are generally smaller—also ren-
ders inter-procedural register allocation more important: If the code for each
function in many cases only needs a small part of the available registers, an
intra-procedural register allocation algorithm will not be able to exploit the
registers fully.

56

5.3 Our approach to inter-procedural register allocation

We see two approaches to inter-procedural register allocation: the {ruly
inter-procedural approach allocates registers for the whole program at once,
whereas the per-function inter-procedural approach extends a basically intra-
procedural register allocation to an inter-procedural one by doing the register
allocation on one function at a time but exploiting inter-procedural informa-
tion while doing so. The following considerations lead us to choose the second
approach.

Clearly, a truly inter-procedural algorithm could give a better result than
algorithms using the more restricted, per-function approach, but it is not
clear how such an algorithm could be devised.

Moreover, a truly inter-procedural algorithm might easily be computa-
tionally costly for big programs. It is, e.g., out of the question to build one
big interference graph for the whole program and do graph colouring on it
(Steenkiste, 1991, pp. 41-42).

If we wanted to allocate free variables of functions to registers across
functions, a truly inter-procedural approach would be necessary. But recall
from section 4.6 that we have confined ourselves from doing this by deciding
that the free variables of a function are passed to it in a tuple in memory
every time the function is applied. Consequently, when a function body is
evaluated, the free variables are fetched from this tuple and not from the
current environment. This isolation of functions from the environment they
are applied in harmonises with the per-function approach.

Allocating free variables of functions to registers across functions is easier
in languages that do not have functions as values. As discussed in section
4.6, in Pascal, the free variables of a function need not be kept in a closure,
for they will always be available in the environment where the function is
applied. This is because each free variable of a function f is a local variable
in some other function that has been called and has not returned yet, and
therefore, the free variable is accessible to f. Hence, in Pascal, allocating the
free variables of f to registers amounts to allocating local variables of other
functions to registers across the calls to f. In C (Kernighan and Ritchie,
1988), the problem is conceptually even simpler: a variable is either free in
all functions (global) or local to a single function.

Furthermore, truly inter-procedural register allocation may be problem-
atic with separate compilation, because not all functions are available. With
the per-function approach, functions are processed one at a time, and func-
tions in other modules will be no problem except that there is less inter-
procedural information about them than about the functions inside the mod-
ule. (Currently, our compiler has no separate compilation.)

In the following sections, we will discuss how a per-function register al-
location can use knowledge about other functions. The basic idea in the
algorithm is from (Steenkiste and Hennessy, 1989).

o7

5.4 Exploiting information about registers destroyed by a function

One useful type of inter-procedural information is what registers are de-
stroyed when a given function is applied. Consider the call graph

A
|
A2
VRN
A3 A7
AN
M A5 X

Fig. 19. A call graph. The X’s are functions; A2 calls A3 and A7, etc.

Suppose we are doing register allocation for A3, and suppose we know what
registers are destroyed by the calls in A3 to A4, A5, and Ag. Figure 20 il-
lustrates how this knowledge can be used when allocating registers for the
values used in 3.

o AR
g AR

T
oS AR R

o e
oS A (R
by I S I S

Fig. 20. Register allocation for A3. The bottom line symbolises the
code for A3 (we assume there are no jump instructions). The dotted lines
represent registers ¢; through ¢,o. The vertical lines indicate the points
in the code for A3 where A4, A5, and Ag, respectively, are called, and
which registers will be destroyed by the call. E.g., A4 destroys registers
¢1 through ¢4. The horizontal lines a, b, ¢, and 4 indicate live ranges of
values.

We have tried fitting values a, b, ¢, and d into registers in a good way.
For instance, it is better to put b in any of ¢3 through ¢y than in ¢; or ¢o,
because the latter are destroyed while b is still live by the call to A5, and
then b would have to be saved elsewhere across that call.

58

The figure shows that A3 will destroy ¢; through ¢7, when it is called.
The values could have been placed like this:

Go T
¢8d— """"" N
o7
o7 R
o A
VRN A
o SRR A
oS A I
TR A I

but then a call to A3 would destroy 10 registers, instead of 7. To minimise
the total number of registers destroyed when A3 is called, it is best to use
¢1 through ¢g in the body of A3, because these registers will be destroyed
anyway when g is applied.

The example shows that we should pursue two goals when choosing reg-
isters for values in a function:

(7) If possible, put a value in a register that will not be destroyed by an
application while the value is live, for then the register need not be
saved across that application.

(74) When possible, use the register with the smallest number that will
be destroyed anyway, thereby trying to minimise the total number of
registers used by the function, and thus leaving more registers for the
register allocation of any caller of this function. Using the register
with the lowest number will “push the values into the clefts” between
function calls. For example, in figure 20, d could have been placed in
¢4, but this would not be as good a choice.

These goals are in order of priority, for if the priority was opposite, the
register allocation would be too eager to reuse registers; it would never use
more than one register.

Contrast this with what an intra-procedural register allocation will do. A
uniform convention for all functions will tell what registers are destroyed by a
call. For instance, the convention might be that ¢; through ¢5 are destroyed
when any function is called. Then the picture would be

59

g T o
T -
7 T
¢6 b
oL SR R AR R
VAR R AR R
- SRR R R R
PSR RS A A
by A

Fig. 21. Register allocation for A3 when a uniform convention for which
registers are destroyed at a function call is assumed.

A function that destroys registers other than ¢; through ¢5 (e.g. Ag) must
save them. This more rigid scheme implies worse register allocation: Ag must
save ¢g, although it is not used by the caller, A3. The value b cannot reside
in ¢3 across the call to A5, because the uniform convention says A5 destroys
that register, although it does not. We must either save b in memory across
the call to A5 or put it in one of the caller-saves registers, which must then
in turn be preserved for A3 to comply to the convention.

5.5 Exploiting information about parameter registers

Another way inter-procedural information can be utilised is when param-
eters are passed to functions, and when functions return their result. By
a linking convention for a function, we mean the information necessary to
generate code to call that function, i.e., how should the argument be passed,
etc. With individual linking conventions, different functions can receive their
parameters and return their result in different registers. Thus, a function can
receive its argument and return its result, etc. in the registers that suit it
best, instead of having to move values to and from fixed registers. If, e.g., ¢
in figure 20, p. 58, indicates the live range of the argument to A3, it is best for
A3 to receive its argument in another register than ¢; through ¢4, because
these are destroyed by the call to Ay while c is still live.

Perhaps an even greater advantage with individual linking conventions is
achieved alone from using different registers at different function calls, in-
stead of always the same: Assume we use a uniform linking convention for
all functions such that the closure is passed in ¢ i, , the argument in ¢4y,
the return label in ¢,¢;, and the result is returned in ¢,.s.. The code for
the expression f(g 1) + h 2 is in figure 22. The code to save and restore
in that figure is necessary with a uniform linking convention. With individ-
ual linking conventions, it may sometimes be avoidable: Because the result
from a function is always returned in the same register, the result of £(g 1)
must be saved elsewhere while h 2 is computed. Using individual linking

60

conventions, £ and h may return their results in different registers, and the
result of £(g 1) can remain in its register, while h 2 is computed (assuming
that h does not destroy that register). Likewise, with the uniform linking
convention, £ and g will both use ¢.j,s. to pass the closure in, and then the
closure for £ must be saved elsewhere while g is evaluated.

Dclos. ::| code to access f | :
(save @.ios. for £ somewhere) ;
Delos. ::‘ code to access g‘ ©)
(barg. =1;
Gret. =11 ; save ¢.,s. for £ across
‘code to jump to g‘ : code for g 1
L1 (barg. = (b'r‘es.)
¢ret. =2, J

(restore ¢1,s. for £) ;

‘code to jump to £ ‘ ;
1a: (save @pes, from f) ;

@elos. :=| code to access h| :
(barg. = 2) save (bres' from f
Pret, (=13 | across code for h 2

‘code to jump to h‘ ;

13: ¢ =(restore @, from call to £) ;

¢ =¢ + Pres.

Fig. 22. A disadvantage with using a fized linking convention. The code
for £(g 1) + h 2 assuming the closure is always passed in ¢.ps., the
argument in @4, the return label in ¢, and the result is returned
in ¢res.. There is saving and restoring of values (the bracketed code),
because the registers of the linking convention are “crowded”.

5.6 Design decisions conclusion

To conclude, we expect to profit on inter-procedural register allocation mainly
through the information it gives about which registers are destroyed by the
functions called. This will allow us to avoid unnecessary saving of registers
across function calls, and it will enable us to reduce the total number of
registers a function destroys (by trying to “put live ranges into the clefts (of
figure 20) between function calls”). It is not clear that a uniform caller-save
and callee-save convention will not be almost as good as inter-procedural
register allocation in this respect. On the other hand, it is very cheap in
space and time to collect and use this inter-procedural information with the
method we propose. The strongest argument against making the register
allocation inter-procedural is that it complicates the algorithm. We also ex-
pect to gain something from implementing function calls in individual ways,
and not always use the same dedicated linking registers. In this respect, a
uniform convention cannot compete.

The following sections explain in greater detail how the inter-procedural
strategy presented above can be implemented, and discuss some problems.

61

This ends in a sketch of the overall algorithm for the inter-procedural strategy
for translating £ to K.

Generally, the functions we need inter-procedural information about when
doing register allocation of a function are the functions it might call, i.e. its
children in the call graph. So, if we do per-function register allocation of the
children of a function before we do it for the function itself, the information
will be available. For instance, with the call graph of figure 19, we would
process (do register allocation and generate code for) A3 and A7 before \s.
In other words, we process the nodes in the call graph in bottom-up order.
In the following we discuss how to build and process the call graph. As will
be evident, the two main problems are recursion and the fact that functions
are values.

5.7 Call graph

Functions appear in the program in two forms: as A-abstractions, A\y.eq at p,
and as letrec-functions, f py = e¢y. Therefore, we define the set of functions

A = AY.EatP | FPY=E.

A call graph for a program is then a directed graph of functions A € A.
To build a call graph, we need information about what functions might be
applied at a given application. Obtaining this is more difficult in a higher-
order functional language than in other languages because functions are val-
ues that flow in the program like any other types of values. For instance, in
the program

let a = Mf.(A\x.f x at r6) at r5
in
a (A\y.y at r71) 23,
it is actually Ay.y at r71 that is applied at the application £ x.

To establish which functions may be applied at an application, a data
flow analysis, called closure analysis, is necessary. Formally, a closure analy-
sis translates a program e € F to a lambda-annotated program é € E, where
E is defined by the same grammar as F, except that all applications have
been annotated with a set A C A of functions that can be applied at that
application:

E 2= EpAE | FAPE |
where A = ZA. The lambda-annotated version of the program above is

let a = AMf.(Ax.f()1x at r6) at rb
in
apy) (A\y.y at r71)y, 423,

using the abbreviations

A = Xx.f x at r6
A = M.(Ax.f x at r6) at rb5
Ay = Ay.y at r71.

62

Our closure analysis is described in section 7.2.

A call graph for a program, e, is a directed graph where the nodes are
the functions of e and where there is an edge from one function to another,
if the first might call the latter. In the program above, there is an edge
from Ay to Ay. Function calls are not necessarily within a function, though.
For instance, the application a (Ay.y at r71) above, where A may be
applied, is not within any function. From which call graph node should the
corresponding edge to As then be? This problem is solved, when making
the call graph, by pretending that the program is not simply e, but rather
Amain = AVmain-€ @t Tmain, where ymain € Y and rmain € P are dummy
identifiers that do not occur in e. Then, the applications that are not within
any function in e will be inside Amain; €.g., the call graph for the example
program will have an edge from Apain to As.

More formally, a call graph for e must be defined with respect to a closure
analysis: It is a rooted, directed graph,

v = (X8, Aman) € 7 =PAx P(AxA)xA,

whose nodes, X, are the functions of Apain = AVmain - € @t Tmain, and where
there is an edge from A\ to Ao, i.e., (A1, A2) € &, iff the closure analysis says
A1 might call Ay. The root node of the graph is Apain.

It is trivial to build a call graph from a lambda-annotated program. The
details can be found in section 7.6. A call graph for the example program is:

Amain

Ax s

/

Ay

Finally, code is generated for the program by processing each A of the
call graph in bottom-up order; e.g., first A¢, then Ay, Ay, and Apain.

Here is a first try at the overall algorithm for translating an expression
to intermediate code:

[Dea [Deg rdfs

E v B s ? K.

The closure analysis, [-ﬂca € E — E, translates the program, e, to a
lambda-annotated program, é. From this, [-ﬂcg € E — ? builds the call
graph. The nodes of the call graph are processed in reverse depth-first search
order by rdfs € 7 — K to produce the code k € K for the program. (For
now, we assume there is no recursion in the program, and hence, the call
graph will be acyclic, and can be processed in a reverse depth-first search.
Section 5.9 explains how to deal with recursion.) In other words, the function
to translate a program e to k is

|:|:':|:|compi1e = rdfs o |:|:':|:|cg o|:|:':|:|ca'

63

During the bottom-up traversal, rdfs must remember inter-procedural
information about the A’s that have been processed thus far. For instance,
after having processed)y it must be recorded which registers are destroyed
by Ay (as discussed in section 5.4 above), and what the linking convention for
Ay is (section 5.5). This is done in an environment, n € H that maps A’s to
their inter-procedural information. What this environment exactly records
is discussed below. The initial environment, 79, maps all A’s to “unknown”.
The function rdfs starts by processing Amain, the root node of ~:

rdfsy = let (n, k) = rdfsy AmainYN0 In K,

where rdfsy is a function of three arguments: M.y, the function currently
being processed; v, the call graph; and 7, the current environment. rdfsy Acyr.
processes the children {\1, ..., N} of Acyr. before it processes Acyp.. Each A
is processed with [] -] jon0de; Which takes Ay, and the current environment,
n, and returns the code, k, for Acyr. and an environment, n', updated with
information for Aqy;:

rdfso Aeur.yn = let {\1, ..., N} = children Acyr.y

(n, K1) = rdfsg A\1yn

(1, K1) = rdfsg Ny

(777 ’%) = |:|:>‘CUI‘-:|:| donode
in (n, Kk;K1; K.

The environment passed to [[Acur.]]qonoqe Will contain the necessary inter-
procedural information for the functions A.,,. might call, because they have
been processed before A¢,;. is processed.

In what follows, we shall modify and refine this sketch of the overall
algorithm to take care of the problems encountered.

5.8 Linking convention

Different functions can be applied at the same application in a higher-order
functional language. Consider the lambda-annotated expression

let a = Af.(Ax.fyy)% at rl) at r2 in
let b = A\g.g(,),)3 at r3 in
let i = Ay.y at r7

in (a{)\f}b, b{/\g}i, b{)\g}(a{)\f}i)) at rb.

Ag is shorthand for Ag.g 3 at r3, etc. At the application f x, both A,
and Ay may be applied. Since it is the same code that will be calling these
functions (namely the code for £ x), Ay and Ay must use the same linking
convention. Since also Ay and Ay can be applied at the same application,

64

they too must use the same linking convention, and in effect, all three \’s
have to use the same linking convention.

Generally, if \{ and A\ may be applied at the same application, they must
use the same linking convention. The relation “must use the same linking
convention” on the set of A’s in a program is an equivalence relation, and
the set of A’s in a program can be divided into equivalence classes of A’s that
must use the same linking convention. For the program above, there are two
equivalence classes: {As} and {Ax, Ay, Ag}.

When we process a function and decide the linking convention for it, we
must ensure that all the functions in its equivalence class get the same linking
convention. This implies that the linking convention for a function may be
fixed before the function is processed. If, for instance, we process Ay above
first (and hence decide a linking convention for it), the linking convention for
Ax and Az will already be decided when we process them.

It follows that a linking convention is associated with an equivalence
class of functions (and not with the individual function). The set of registers
that will be destroyed when the code for a function is called, on the other
hand, is individual to each function. Thus, the inter-procedural environment,
n, consists of two maps: n' maps an equivalence class of X’s to its linking
convention, and 79 maps an individual X to the set of registers that will be
destroyed when) is called. Say Ay and A; have been processed (in that order),
and assume the linking convention decided for Ay is [y, that Ay destroys the
registers (,zgy, and that \x destroys ¢y, then the inter-procedural environment
will be n = (1, n), where

771 = {{A}U)‘ya)‘g}'_)lya {Af}H_lc}
= A= dy, N dy, A, N O

where “A= — —|.” means that the linking convention has not yet been decided
for the equivalence class A=, and “\ — @” means that the set of registers
that will be destroyed by a call to the code for X is not yet known.

We modify rdfs from the previous section to find the set, X5 € Z(ZA\),
of equivalence classes, A= € A, of functions in the program, and to set up
the initial environment, 19, that is passed to rdfsy; to map all equivalence
classes to —j. and all functions to &:

o= ({X = -1 [X €X), (A= g€ XEY}).

To find the set A=% of equivalence classes of functions, rdfs uses a union-
find algorithm, [[-] ; € B — Z(ZA), described in section 7.9. Assuming
v has the form (X8, &, Apain), rdfs becomes

rdfsy = let X% = [[Amain]] uf
no={N = -1 | F XS}, (A= o |)e X8}
(77’ "‘5) = Tdfs(] 7>‘main770

n k.

65

5.9 Dealing with recursion

If there is recursion (Koch and Olesen, 1996) in the program, there can be
cycles in the call graph:

Al

Fig. 23. A call graph with recursion. A4 and A5 are mutually recursive functions.
A2 may call itself directly, and it may call A\3. Likewise, A3 may call itself directly,
and it may call As.

A graph with cycles cannot be traversed bottom-up. We handle this by
finding the strongly connected components of the call graph.! This gives us
another graph in which the nodes are the strongly connected components of
the call graph and there is an edge between two strongly connected compo-
nents iff there is an edge in the call graph between a call graph node in the
first strongly connected component and another one in the second:

L A subset of the nodes of a graph is a strongly connected component iff it is the biggest
subset such that there is a path from every node in the subset to every other node in the
subset.

66

T

.

Fig. 24. The strongly connnected components graph for the call graph in
figure 23.

In contrast to the call graph, the strongly connnected components graph
will be acyclic, and thus, it can be processed bottom-up.

Like a call graph, a strongly connnected components graph is a rooted,
directed graph:

Y= (AN) € T = PAXP(AXA) XA,

where A is the set of strongly connnected components, i.e., A = ZA. If the
root node of the call graph is A ain, the root node, X .. . of the corresponding
strongly connnected components graph will be {Amain }-

We assume the function sccs € 7 — T' will convert a graph v to its
strongly connnected components graph ~, and we modify rdfs to take a
instead of a ~, such that

|:|:':|:|compile = rdfs o sces o |:|:':|:|cg O|:|:':|:|ca‘

Before, rdfs processed each node X of the call graph with [-ﬂdonode S
H — K x H (p. 65); now it processes each strongly connected component
X° € A with a similar function do-scc € A — H — K x H, which in turn
uses [-ﬂdonode to process the \’s of each strongly connected component.

5.10 Processing a strongly connnected component

Recursion introduces other problems than cycles in the call graph. Consider
the following figure:

67

A6

Fig. 25. Zooming in on Ay from figure 23. The fat line symbolises the code for As.
The dots in the code are applications where A3, A4, A5, and Ay are called. Here we
have chosen that A3 and Ay may be applied at the same (first) application in A,
while the application of A5 and the recursive application are each from their own
application. The code for As could look differently given the call graph in figure 23.

In the following sections we shall assume we are processing Ay. We want
to know which registers will be destroyed by the calls in A9, i.e., we want to
form a picture for Ay like that for A3 in figure 20 (p. 58).

Potentially recursive applications

We say an application ejxeq or fx pges directly within a A in a strongly
connnected component X° is potentially recursive iff some A that may be
applied at that application is in A°, i.e., iff ANX° # &. In figure 25, the first
application (dot) in the code for A9 is potentially recursive, since a function
(A3) that is in the same strongly connnected component as the caller (\s)
may be applied (i.e., {A2, A3} N {A3, A4} # &). The second application is not
potentially recursive. The third is.

When processing applications in later phases, we will want to know
whether they are potentially recursive or not. Therefore, we annotate each
application with “O” or “(” according to whether it is potentially recursive
or not. E.g., if fiby (n-2) is a potentially recursive application, the anno-
tated version is: fibg‘) (n-2). The application (A\y.y at r7)(yy.y at z7}fib,
which is not potentially recursive, has this annotated version:

% :
(Ay.y at r7) gy at o7} £iD.
This annotation of applications is done by the function] -]| ar-A - It trans-

lates a lambda-annotated function to a recursiveness-annotated function in
which all applications are annotated with an r € R where R ::= O | ¢; i.e.,

68

after the translation, the expressions are
E = ERE | FPRE |
The rest of the grammar is similar to that for E.

Non-recursive applications

Consider the second dot in figure 25 above—the application where A5 may
be applied. This application will destroy the registers that A5 destroys. But
As may call A4, and thus, calling A5 may also destroy the registers destroyed
by A4. In general, calling a function implies that all functions in its strongly
connnected component A° may be called and thus that the set of registers
that may be destroyed is the union of the sets of registers destroyed by
the X's in X°. Although A5 calls)4, the set of registers destroyed by A4 is
not necessarily a subset of the registers that are recorded to be destroyed
by As, for A5 may have been processed before A4, i.e., at a point where it
was still undecided what registers would be destroyed by Ay. The set of
registers destroyed by Ag, on the other hand, will be included in the set of
registers recorded to be destroyed by A5, because Ag is in another strongly
connected component than A5 and therefore will have been processed when
A5 is processed.

The essence of this is that the “registers destroyed by ...” concept should
be associated with each strongly connnected component rather than with
each function; i.e., the nd-component of the inter-procedural environment 7
maps strongly connnected components A° to the set of registers that may be
destroyed when a A € X° is called. For instance, after having processed the
strongly connected components {\¢} and {A4, A5} the environment is n =
(n', n%), where 1! maps equivalence classes of functions to linking conventions
as before, and n may be

nd — { {>‘4’>‘5} = {¢17 ¢2a ¢37 ¢47 ¢5}7
{Xe} = {1, b2, d3}, { Mo, A3} =@, (M} o},

assuming Ay and A5 together destroy ¢; through ¢s, etc., and assuming
that we have yet to process the strongly connnected components {\;} and
{2, A3}. Notice that n9{A¢} C n9{\4, A5}, as one would expect because)5
calls Xg.

7

Approximating the set of registers that will be destroyed by a function

There is one final aspect to processing a strongly connected component that
we must consider before we give the final description of the algorithm. Re-
member the goals (i) and (i) (p. 59), which should be pursued when choosing
a register for a value. Some kind of preliminary analyses will be required to
fulfil them.

Goal (i) requires a liveness analysis on the A currently being processed.
This liveness analysis can be done on a per-function basis, as values are not

69

live inter-procedurally, for free variables of a function are fetched from its
closure (p. 37). The liveness analysis will be discussed when we discuss how
to process a A (section 6.5).

Goal (7) instructs us to put a value in a register that will be destroyed
anyway. To decide which registers will be destroyed anyway, another analysis
is needed.

At first, it may seem natural to do this analysis on a per-function basis
too, i.e., to start the processing of each A by finding out which registers will
be destroyed by applications in that A. E.g., start processing A3 of figure
20 (p. 58) by discovering that the registers ¢ through ¢7 will be destroyed
anyway because they are destroyed by applications in As.

But since calling a function may mean calling the other functions in its
strongly connnected component, it might be better to do this analysis on
a strongly-connected-component basis. Consider the strongly connnected
component {)\i, Niis)\Z“}

Assume a per-function approximation of which registers are destroyed any-
way says A;, Aji, and \;; will destroy qzvﬁi, éii, and ém, respectively. Since an
application of, e.g., A\; may trigger applications of other \’s in the strongly
connected component, we might choose to consider the set of registers that
are destroyed anyway by each \ as the set ¢; U ¢ U @i

For strongly connected components that represent loops in which some
time will be spent at run-time, the latter approach is the most reasonable:
Calling a function in the strongly connected component will make the pro-
gram loop through all functions in the strongly connected component. Thus,
the registers that will be destroyed anyway in each A in the strongly con-
nected component are the registers that will be destroyed by the loop; it is
immaterial that the loop happens to be distributed over many functions.

On the other hand, strongly connected components do not necessarily
represent loops. Consider the situation where a A only infrequently calls
other functions in its strongly connnected component. An example could
be a function that calls an error handling function when it (very rarely)
is applied to an invalid argument. Assume the error function rescues the
situation by calling back its caller with a valid argument. Then the two
functions will be in a strongly connected component together:

70

letrec

next year = if year>99 then erroneous year
else year+1
erroneous year = let x = verbally_abuse_user year

in next (year mod 100)

verbally_abuse_user year = (some expression whose code destroys
many registers)

This example gives rise to the following call graph fragment:

An\Lext
()\errzeous

Averbally_abuse_user

Here, it is inaccurate to approximate the set of registers that will be
destroyed anyway by Apext by the set of registers that is destroyed by all the
A’s in the strongly connected component {Apext; Aerroneous J, for it will destroy
many registers because it contains Aerroneous, Which calls Ayerbally_abuse_user
that destroys many registers.

The two solutions, to approximate per function, and to do it per strongly
connected component, are equally simple to implement, and it is possible to
argue for both solutions. Perhaps the difference between them is small in
practice. We choose the latter.

Roughly, the approximation of which registers are destroyed anyway by
A is the union of the sets of registers that are destroyed by the functions that
may be applied by A. These sets are known because the functions that may
be applied by A have already been processed (at least in the cases where there
is no recursion). There are, however, other opportunities for predicting which
specific registers will be destroyed by the code for a given expression. For
instance, we know that the code for letregion p:? in e; creates a region
in the heap with the instruction ¢:=letregion (section 4.4), and thus that
it will destroy the set of registers destroyed by this specific instruction (viz.
q§|etregion—cf. chapter 3). We can define a function to approximate the set of
registers that the code for a A destroys.

Given a X and an inter-procedural environment 1 € H, the function

|:|:':|:|da—/\ EK —>H—>¢@@

returns an approximation of the set of registers that will be destroyed by the
code for X. The environment is needed for approximating which registers
are destroyed by applications directly within X.

71

The implementation of I:[':I:Ida-/\ is explained in detail in section 7.11.

5.11 Revised overall algorithm

We have discussed some necessary modifications to the basic bottom-up over-
all algorithm. This section presents the revised overall algorithm.

rdfs ~ first finds the set A=5 of equivalence classes of functions that must
use the same linking convention, then sets up the initial environment 7y, and
calls rdfsy to process the strongly connected components graph « in reverse-
depth-first search order. Assume ~ has the form (A°%,.%, XY .) and X

. main main
18 { Amain } :

rdfsy = let A= = |:|:>\main:|:| uf

o = ([DEs—i | e XY,
(X5 o | XeX5))

(K, n) = rdfso Y X 270
in kK.

The reverse-depth-first traversal rdfsy is almost as before, except that it now
works on the strongly connected components graph instead of on the call
graph, and hence uses the function do-scc € A — H — K x H to process
each node, instead of [- [jop0qe € A & H = K x H:

rdfso YX2uem = let {X]...., A]} = children vy X2,

(K1,) = rdfsoyX]n

(K1, m) = rdfso yA]n
("i: 77) = dO-SCC A(gur.n
in (k;K1; ;K M)

Roughly, do-scc X°n uses|] - ﬂdonode on all X’s in the current strongly connnected

component A7, . See explanations below:

cur.*

do-scc Xy = let {X1,..., X} = { I aer Xur. | X € Xour }
¢ =[N 1lgann U - U DNl gann
v=(n,)

(’ﬂ’ V) = |:|:X31:|:|donode v

(Kj’ V) = [X)J:D donode ¥
n= vi 4+ X% = v?})

cur.

in (ki - KM

72

The arguments of do-scc are the current strongly connected component
X2, and the current inter-procedural environment, 7, and it returns the
code for the functions in A, and an updated inter-procedural environment.
Before the functions are processed, all applications in them are annotated by
[[- 1], vielding the recursiveness annotated functions {X4,... ,)f]-}. Fur-
thermore, the set, @, of registers that will be destroyed anyway by A2, is ap-
proximated. The function [-ﬂdonode takes and returns a strongly connnected
component environment v, which comprises the inter-procedural environment
n and the approximation ¢: v = (1, ¢). We use v" to denote the 7 in v,
and v4 to denote the ¢ in 7 in v; etc. There is no natural order in which to
process the A’s in a strongly connnected component; do-scc simply processes
them in arbitrary order.

While processing a function, [-ﬂdonode updates the ¢ in v whenever a
value is allocated to some register. Hence the ¢ in the v returned by the
last [-ﬂdonode tells which registers will be destroyed when a function in
the strongly connnected component X7, is applied. The inter-procedural

environment 7 returned by do-scc is updated to record this.

5.12 Relation to other approaches

This section relates our inter-procedural register allocation to others. See
also (Steenkiste, 1991) for a discussion of inter-procedural register allocation
schemes.

Per-function inter-procedural register allocation

We have mentioned two approaches to inter-procedural register allocation:
truly inter-procedural and per-function inter-procedural (p. 57). All inter-
procedural register allocators using the latter approach, including ours, have,
to our knowledge, used Steenkiste and Hennessy’s (1989) method of process-
ing the call graph bottom-up.

Theirs is the only inter-procedural register allocation for a call-by-value
functional language (Lisp) we have heard of.

The main differences between our and their inter-procedural strategies
are: We use individual linking conventions for functions. This is more diffi-
cult in Lisp, especially because of the dynamic environment of Lisp. They
only distinguish between applications where a single, known function may be
applied and applications where an unknown function may be applied; we use
a closure analysis to approximate the set of functions that can be applied.

Chow’s (1988) approach to inter-procedural register allocation is also
based on Steenkiste’s idea. As the per-function part of his algorithm, Chow
uses priority-based colouring (Chow and Hennessy, 1990). His source lan-
guage is imperative. (The register allocator is implemented in a general back
end used for a C and a Pascal compiler, among others.)

Chow deals in a uniform manner with the situations when the inter-
procedural information is not available—at recursive calls, indirect calls and
calls to functions in another module (separate compilation). In all these cases,

73

he uses a fixed linking convention with, among other things, a convention for
which registers are caller- and callee-save registers. This implies that registers
will be preserved properly across recursive calls. This way, he elegantly kills
three birds with one stone. While one does not expect a compiler for an
imperative language to implement recursion especially efficiently, it is crucial
that it is in a functional language: we must do better than just use a fixed
convention for recursive calls. Hence his solution is not applicable for us.

In our compiler, different functions may be called at the same application:

let i = if p then f else g in
(£ 7, i 9) at ri3

At i 9, both f and g may be applied. This is not the case in Chow’s compiler.
Consider the C fragment

if (p) i=&f; else i=&g;
£(7); *1(9);

At an application, either one specific, named function is called (e.g. £(7);),
or a function pointed to by some variable is called (e.g. *i(9) ;). The latter
is called an indirect call, and Chow’s compiler does not attempt to determine
which functions might be called in that case. This is quite reasonable in an
imperative language, where indirect calls are generally used less frequently
than functions are used as values in higher-order functional languages. Fur-
thermore, finding out which functions might actually be called at an indirect
call requires an elaborate data-flow analysis (that would probably not give
very accurate information anyway)—closure analysis is easier in functional
languages.

Thus, in Chow’s compiler, at an application, it is either completely un-
known which function might be called, or it is known what single function
will be applied. Therefore, unlike us, Chow does not have to worry about
functions that may be applied at the same application and hence must use the
same linking convention. Consequently, it is also less complicated for Chow
than for us to allow different functions to have different linking conventions.

Like our algorithm, Chow’s allows a function to pass parameters in more
than one register.

Chow measures reductions in executed clock cycles of the generated code
from —1% to 14% on 13 programs with a geometric mean of about 3%.
We explain this slightly discouraging result as follows. First, his language
is imperative and not functional. Second, he compares the inter-procedural
register allocation with an intra-procedural one with four registers for passing
parameters and conventions for which registers are caller-save and callee-save
registers, and this gives many of the advantages that inter-procedural register
allocation gives; i.e., his baseline is rather good. Third, he counts clock cycles
instead of measuring actual execution time, so the interaction with the cache
is not in the picture. Fourth, his benchmarks use library routines that do
not participate in the inter-procedural register allocation.

74

According to Chow, there is a clear tendency that the inter-procedural
register allocation does better on smaller programs. He conjectures that
this is because larger programs have deeper call graphs and hence the set of
registers has been exhausted in the upper regions of the call graph.

Truly inter-procedural register allocation

The first inter-procedural register allocation that has employed the approach
of processing the entire program (truly inter-procedural register allocation)
is Wall’s (1986).

We assume there is no separate compilation and thus that we have the
whole program. Wall deals with separate compilation by postponing the
register allocation to link time, when all modules are linked together to form
one object code file.

Doing the register allocation program-wide excludes graph colouring as a
realistic method; it will be too costly in time and space. Instead of building
an interference graph, Wall groups together local variables that will never be
live at the same time and thus can share the same register. Wall uses the
call graph, in a way analogous to ours, to see which local variables will be
live at the same time. If functions have local variables and call each other as
indicated here,

Alzgc

a and b can be put in the same group, because they will never be live at the
same time, while a and ¢ cannot because they may be live simultaneously.
For each global variable g, a singleton group {g} is created. Now, if there are
52 registers, Wall’s algorithm picks the 52 groups that have highest priority,
and assigns registers to the variables in them. The priority of a group is the
sum of some estimate of the usage frequencies of the variables in the group.
In comparison, Steenkiste’s way of processing the call graph bottom-up will
simply give highest priority to the functions in the lower parts of the call
graph.

Wall allocates free variables to registers unlike us. If we wanted to allocate
free variables to registers, we would have to change the decision to fetch all
free variables from a closure (section 4.6). Allocating a free variable to a
register is easier for Wall, because in his source language (C) a variable is
either local to one specific function or free in all functions it occurs in, i.e.,
global. In SML, a variable can be local in one function and free in another.

75

At function calls, Wall allocates space on the stack for the parameters.
The function entry code will load the parameters from the stack to their reg-
isters. Thus, functions have a uniform linking convention, which is necessary
because they might be called indirectly. At direct calls, though, the uniform
linking convention is not used; instead the parameters are moved directly to
their registers and the function entry code that loads them from the stack is
skipped.

Summing up, Wall’s inter-procedural register allocation is fundamentally
different from ours in that it is truly inter-procedural, but it uses inter-
procedural information akin to our “destroys” information. Functions can
use different linking conventions stating which parameters are passed on the
stack, and which in registers, but not in which specific register each parameter
is passed. Thus, inter-procedural information about which registers to pass
parameters in, is not used in the register allocation of the function. Wall deals
with indirect calls by, in principle, having two versions of each function: one
conforming to a specific, uniform linking convention, and a specialised version
that takes some of its parameters in registers.

The inter-procedural register allocation of Santhanam and Odnert (1990)
must also be categorised as truly inter-procedural, because it can allocate a
global variable (their source language is C) to a register over many functions.
The main improvement over Wall’s allocation of global variables to registers,
is that the global variable does not have to be allocated to a register in
all of the program, and the same global variable can even be allocated to
different registers in different functions. Santhanam and Odnert do this by
identifying webs in the call graph, where a particular global variable is used.
A web is a global variable and a minimal sub-graph of the call graph such
that the global variable is neither referenced in any ancestor node nor in
any descendent node of the sub-graph. They build an interference graph of
webs, where the nodes are the webs and two webs interfere, i.e., there is an
edge between them, if they contain the same call graph node. Then graph
colouring is used to assign registers to webs. If a web does not get a colour,
the corresponding global variable is not allocated to a register across function
boundaries in that web, but the global variable may be allocated to registers
in other webs.

Inter-procedural register allocation for call-by-need languages

(Boquist, 1995) describes an inter-procedural register allocation for a higher-
order call-by-need language. Note that the implementation technology for
call-by-need languages is very different from that for call-by-value languages.
Boquist’s approach is truly inter-procedural: he uses graph colouring for the
whole program. This may prove untractable for large programs. Like we
do, Boquist allows individual linking conventions for functions. The node
coalescing part of the graph-colouring register allocation algorithm (i.e., the
elimination of register-to-register moves) decides the individual linking con-
ventions. Boquist uses analyses similar to closure analysis to narrow in the
possible control flow.

76

6 Per-function register allocation

In the previous chapter we explained how to translate a program e to inter-
mediate code k by translating the functions of the program one at a time.
This chapter discusses how to translate each function. Since we have already
discussed what intermediate code to generate for each construct of E (chap-
ter 4), this chapter is mostly concerned with the register allocation aspects
of the translation.

Our general approach is to allocate registers on the source language, before
the intermediate-code generation, and then let the register allocation direct
the intermediate-code generation. The customary approach is the opposite:
first generate intermediate code, then allocate registers. We motivate our
uncommon approach (section 6.1); then the rest of this chapter discusses
how to implement it. This is done by developing the register allocation and
subsequent intermediate-code generation (from now on: the translation) for
the construct let x = e1 in eo.

Developing the translation implies discussing how the register allocation
can direct the intermediate-code generation (section 6.2), what kinds of val-
ues there are (section 6.3), and how to allocate values to registers (section
6.4). To aid when choosing a register for a value, we use a standard liveness
analysis tailored to our needs (section 6.5). The allocation of values to reg-
isters is simple-minded: simply allocate a value to a register when the value
is used during the translation (section 6.6). A heuristic function is used to
choose a register given the liveness information at a given program point (sec-
tion 6.7). Before we can finish developing the translation of let = = e in eo,
we must discuss what to do when not all values fit in registers: We discuss
which values are spilled, i.e., kept in memory (section 6.8). We give a rudi-
mentary framework for discussing where to place spill code, the code that
moves values between memory and registers (section 6.9). Using this frame-
work, we discuss where to place spill code within functions (section 6.10)
and caller-save vs. callee-save registers (section 6.11). In the end, we content
ourselves with a simple spill code placement strategy, and present the final
translation for the let-construct (section 6.12). We conclude by comparing
our per-function register allocation with other methods (section 6.13).

6.1 General approach
Graph colouring

Register allocation by graph colouring is done by building an interference
graph; the nodes are live ranges of values, and there is an edge between
two live ranges if they overlap, i.e., if they must not be allocated to the
same register. Colouring this graph with at most & colours such that no two
neighbouring nodes get the same colour corresponds to assigning the live
ranges to at most k registers such that no two overlapping live ranges are
put in the same register.

77

Since Chaitin et al. implemented the first register allocator to use graph
colouring (Chaitin, 1982, Chaitin et al., 1981), almost all register allocators
in the literature have been cast in this framework.

A strength of graph-colouring register allocation is that it creates a global
picture (the interference graph) of the problem and converts the complicated
optimisation problem of having as much data in registers as possible into a
conceptually simpler one—that of colouring a graph. The problem of colour-
ing a graph with as few colours as possible is simpler to understand, but not
to solve, as it is NP-hard (Garey and Johnson, 1979). An interference graph
gives a global picture of the problem, not a solution. A heuristic must be
used to solve the problem.

A problem with basic graph-colouring register allocation is that a value is
either allocated to a register for all of its live range or not at all; it cannot be
put in memory in some parts of its live range and in a register in other parts,
or be put in different registers in different parts of its live range. (Extending
the basic graph-colouring register allocation to do live range splitting (Chow
and Hennessy, 1990), may circumvent some of these problems.)

Graph colouring captures the problem of deciding which values should
be kept in which registers. It does not easily address the problem of where
to place spill code, because there is no connection between the program and
the interference graph.

Furthermore, the interference graphs may become very large (Gupta et
al., 1994).

One way of addressing these shortcomings of basic graph-colouring reg-
ister allocation is to take the structure of the program into account, instead
of only looking at the interference graph. Callahan and Koblenz (1991) do
this: they do graph-colouring register allocation on the parts of the program
instead of on the whole program. This means that a value can be in different
registers, etc. in different parts of the program. It also reduces the problem
with the size of interference graphs. When spill code is placed, the structure
of the program is used. For instance, the area where a value is not in a
register may be increased in order to move its spill code outside a loop. The
results of the graph-colouring register allocation of the parts of the program
are combined in a way that retains the global perspective. This way they get
the global picture an interference graph for the whole program would give,
while avoiding the unfelicities of basic graph-colouring register allocation.

We explore the idea of using the structure of the source language for
register allocation in the next section.

Using the structure of the source program

Viewing register allocation as one of many transformations in the compiler,
the question arises: What requirements should the input language to the
register allocator satisfy?

1. It must be so close to the target machine language that it can be seen
which registers are needed for the different operations. Our intermediate lan-

78

guage K has this property (almost): Tt is easy to see that, e.g., ¢1 := ¢2 + @3
maps to a target machine instruction that will use three registers. (It is only
almost, because for instance on the PA-RISC, the instruction m{¢; + ¢] := ¢
will map to instructions that use an auxiliary register if the offset ¢ is suffi-
ciently large.)

2. Uses of values should appear as such, because it is not known until after
the register allocation what they should end up as in the target language.
Whether a value must be loaded or not depends on whether it is allocated
to a register or not. The form of the code to load the value depends on
whether the value is, e.g., free, let-bound, or an argument to a function.
Consequently, it should be possible to see whether a value is, e.g., free, let-
bound, or an argument to a function. Our intermediate language does not
accommodate this, but it could be extended with a “use value instruction”.

3. Function calls should be recognisable or else inter-procedural register
allocation will not be possible. If we extend K with a “function call instruc-
tion”, it could satisfy this.

The usual manner of designing an input language to the register allocator
would now be to take a language very close to the target machine language
and extend it to satisfy the three requirements. But observe that the source
language E obviously satisfies the last two requirements and actually also
the first, for we know which registers are needed by the different constructs
of the language, because we know what code should be generated for each
construct. For instance, the code for e; + e9 has the form

) ;:‘ code to evaluate ey ‘ 0D ::‘ code to evaluate eg ‘ Q=1+ P,

where ¢ and ¢o are registers needed temporarily, and ¢ is the register that
should hold the result of the expression. Hence, we know that two registers
are needed for the construct ey + es.

By taking the structure of the program into account, Callahan and Kob-
lenz address some of the problems that basic graph-colouring register alloca-
tion does not consider. We want to experiment by going further and avoid
graph colouring entirely by using source level information. At the same time,
we want to explore how much can be retained of the global picture an inter-
ference graph would give. Some of this global perspective can be found in
the structure of the source language: Above, the value that e; evaluates to
is live while es is evaluated, because it is defined by the code for e; and used
after es has been evaluated when the results of the two sub-expressions are
added together. If we keep the value from e; in ¢, the code for es must not
change ¢, or alternatively, ¢y must be preserved elsewhere across the code
for es.

With this approach, the result of the register allocation is (as normally)
to decide which registers should be used and when values should be moved
between memory and registers. A usual register allocator would modify
the already generated code to incorporate this information, but our register
allocator instead uses the information to direct the generation of code. E.g.,
for the expression above, the register allocation would result in a choice of ¢

79

and ¢2 and maybe a decision to preserve ¢; across the code for e5. The code
for the expression would then be generated accordingly, after the register
allocation.

It is well-known that it is possible to translate the source language directly
to register allocated code, for this is done by syntax-directed compilers that
keep track of the contents of the registers in a register descriptor (Waite,
1974). What we want to investigate is wusing source level information to
make good register allocation.

Now we give a first try at developing the translation of let z =e; in ey
without worrying about exactly how the register allocation is done. We will
then discuss how source-level register allocation of that expression may be
done.

6.2 Translating an expression

The main difference between an expression-oriented language and three-
address code is that in the latter, (sub)expressions must be designated a
specific destination register (except when the expression is a constant). For
instance, the expression

let x = (a+b)+c in ey
could be translated to these instructions:

$1:= Pa+ Py ;
g = Q1+ e ;

0] ::‘ code to evaluate ey |,

where ¢ is the register for the result, ¢; is a temporarily used register, and
Pa, Pv, Pc, and ¢, are the registers allocated to a, b, c, and x, respectively.
(At first, register allocation will not be the issue; we assume all values are
in registers.) We only used a temporary register for the sub-expression a +b.
If we had introduced a new temporary register for every sub-expression, the
instructions would have been:

¢1:= ¢a ;
$2:= Py ;
¢3:= 1+ P2 ;
b4:= ¢c ;
¢5:= p3+ Pa ;
bx =5 ;

10) ::‘ code to evaluate e9 |,

The problem we consider in this section is how to decide when it is necessary
to introduce a new temporary register.

80

If an expression “naturally provides a specific destination register”, it is
not necessary to introduce a new temporary register. This applies to the
sub-expressions a, b, and ¢ above, whose natural destination registers are
the registers they are allocated to—a,, ¢p, and ¢, respectively. Therefore,
d1, @2, and ¢4 are not needed. Conversely, ¢3 is necessary, because the
expression a+b does not naturally provide a specific destination register.

Also the context of a sub-expression may naturally provide a specific des-
tination register, and then a new temporary register for that sub-expression
need not be introduced. For instance, the context let x = [in ey naturally
provides a specific destination register, viz. the register allocated to x, ¢y,
and therefore the temporary, ¢s, for the sub-expression (a+b) +c, is not
needed.

Summing up, a temporary is needed for a given sub-expression, iff nei-
ther the sub-expression, nor its context, naturally provide a specific desti-
nation register. Hence, we want information to flow both upwards (from
sub-expression to context) and downwards (from context to sub-expression),
when translating expressions.

Consider how to translate the expression let = = ¢; in es. Using ¢, for
the register allocated to x, the code should be

o ::‘ code to evaluate e; ‘) ::‘ code to evaluate eq ‘

When translating the let-expression, we do not know what the destination
register, ¢, for the whole let-expression is. To get information to flow down-
wards, we do not translate an expression to instructions, x, but rather to a
function, g, that will return instructions to evaluate the expression, when it
is applied to the result register:

B = Ao Oy ::‘ code to evaluate ey ‘ o) ::‘ code to evaluate e ‘

(The body of a A-abstraction extends as far to the right as possible.) One
can think of 4 as some code with a hole in it for the destination register. If
the sub-expressions e; and ey are translated to 8; and (32, respectively, the
translation of let x = e; in e can be written as

B = Ap. bidg ; (29
The context of the let-expression will be able to decide which register the
result of the expression should be placed in, by applying § to that register.
Now the function [- [],, that translates an expression can be defined for
the let-construct:
[-1,, € E—B
8 € B=®d 5K

|I1et T =ep in eQ:Dra = let 81 = |:|:€1:|:|ra
B = |:|:€2:|:|ra
B=Ap. b1y ; B2
in 3,

81

where ¢, is the register that should contain x. Notice how information flows
from the context to the sub-expression, when a 3 is applied to a ¢.

We also wanted information to flow the other way—from sub-expression
to context. This is achieved by modifying [] - I| to return not only a g,
but also a natural destination register. Thus, now the result of [[e]] , is a
pair ((b 3), where qS is the natural destination register for e. If e does not
naturally have a specific destination register, we say its natural destination
register, qS, —register- Hence, |I I|ra € E— (9, x B), where , =& U
{—register }- $ always ranges over @ .

For let x = e; in e, the natural destination register is the same as the
natural destination register of the sub-expression es:

[let =€ in eo]] , = let

(¢

(¢

[3 >\¢ Bidz i Baip
n (¢2, B),

where ¢, is the register that should contain z.
If we extend [[-]],, to also decide what ¢, should be, it would be a
combined register allocation and code generation for the let-expression:

[[let 2 =e; in 62:|:|ra = let (¢17 51) |:|:el:|:|ra
¢23 52 |:|:62:|:|ra

the register allocation part of the translation:
find a register, ¢,, to contain z

ﬁlz Ap. Brpy 5 Bodh
n (¢27 ﬁ)

Summarising, we intend to make the per-function part of the register
allocator work on the source language representation of each function by
incorporating the register allocation in the translation function|] -]| - In the
rest of this chapter, we develop |I-:|:|m for the 1let-construct. The translation
is developed for the other constucts in chapter 7.

6.3 What kinds of values can be allocated to registers

A walue is data that may reside in a register at run-time. In this section,
we analyse what kinds of values there are. We refer to the function cur-
rently being processed with Acy,.. The following contrived fragment serves
to illustrate the different kinds of values.

82

letregion r5:7 in
let x1 = 5 in

letrec f1[r1:?]yl =
letregion r3:3 in
letregion r4:7? in
(y1+x1) +
let x2 = (cl1 x1 at r5:7,
Ay3.let x3 = 3
in £2 [r3:3] y3 at r1:?) at r3:3
in 7
2 [r2:2]y2 = (y2,y2) at r2:p2

at r5:7
in £2 [r5:7]0

In some respects, all values are treated uniformly. E.g.. any value is
eligible for allocation to a register but also for keeping in memory, albeit in
different ways. The kinds of values with respect to Acyr. are:

1.

The argument y of Aeyr.. (Suppose in the following examples that Acy;.
is Af1, i.e., the function named £1 in the fragment above. The argument
of)\fi is yi)

. Region arguments p of Aeyr. (r1:7).

. let-bound variables x that are bound by a let-expression directly

within A¢yr. (i.e. bound in Acyr. but not bound in any A within A¢y,.)
(x2, but not x3, because it is also bound in Ays inside Acyr.).

. known-size letregion-bound variables p:7 bound directly within Agy.

(r3:3).

. unknown-size letregion-bound variables p:? bound directly within

Acur. (r4:7).

. letrec-function names f bound directly within A¢,,.. (There are none

in the body of As1, but if we assume for a minute that we are processing
a A whose body is the whole fragment, the £2 in the region polymorphic
application £2 [r5:7] 0 in the last line is an example of a use of a
letrec-function name.)

Exception constructors a bound directly within Acyr.. As was discussed
in section 4.8, an exception constructor is a variable because it may be
bound to different exception names at run-time (unlike a constructor,
which is a constant).

. Free variables ¢ of Aqyp. (x1, £2, and r5:7 are free variables of \¢).

In contrast to the above-mentioned kinds of values, this includes free
variables that do not occur directly within Acy. (e.g., £2). The free
variables will appear as values of the above-mentioned kinds (including

83

free variables) when some other X is Aqyr., and they will not be of
the kinds mentioned below. E.g., x1 is a let-bound and r5:7 is a
letregion-bound, in the A containing the whole fragment.

9. Temporary values. In the fragment above, the result of the sub-expres-
sion (y1+x1) is called a temporary value. It is needed to evaluate the
expression (yl+x1) + let x2 = ... but only after the let-expression
has been evaluated; yet (y1+x1) must be evaluated before the let-
expression is evaluated. Thus, the value it evaluates to must be re-
membered somewhere while the let-expression is evaluated.

10. The closure. The free variables of A, must be fetched from the clo-
sure, which is one of the parameters that are passed to A¢yr, when it is
applied.

11. The return label is also a value that is passed to A¢yr. when it is applied.

These values except 9, 10, and 11 are named; i.e., they are variables in the
program. If we worked on some intermediate language (e.g., continuation-
passing-closure-passing style (Appel, 1992), instead of directly on the source
language, the latter kinds of values could also be explicit in the language.

We treat the closure like the other values, and it partakes in the register
allocation on equal terms with any other value: it can be kept in memory
in some parts of the function, and it can be put in different registers—
even in the same function. A more usual practice would perhaps be the—
on the face of it—simpler solution of dedicating a specific register to hold
the closure throughout the body of the function. If the same dedicated
register is used in all functions, this would make it a busy register (but, of
course, different registers could be the dedicated closure register in different
functions). Worse, having dedicated registers complicates the algorithm in
different ways, for many of the things that must be taken care of for values
in normal registers must also be explicitly taken care of for the dedicated
register: it must be saved across code that destroys it; it must be recorded
somewhere what the dedicated register is so that it can be accessed. (These
things were very bothersome in earlier versions of this algorithm, where the
closure was not treated as a value.) By regarding the closure as a value, all
of this is taken care of uniformly.

The observations about the closure generally also apply to the return
label. Often in compilers, the return label is pushed on the stack, which is
a reasonable thing to do, for it is only used once and this is at the very end
of the function; i.e., the return label is very “spill-worthy”. We could have
chosen that too, but it seems nicer to also treat the return label like other
values. Also, when Aqyy. is small enough to allow the return label to stay in
a register until it is needed, this will be more efficient than having the return
label on the stack.

Recall that Z is the set of variables (p. 19). We define the set of values:

V. u= Z | clos | ret.

84

6.4 Register allocation strategy

Our strategy for deciding which values are allocated to registers and which
registers they are allocated to is as follows.

Code is generated and values are allocated to registers in a forward traver-
sal of each sub-expression of the program.

Whenever a value is used it is allocated to a register; we do not have a
concept of values allocated to memory, i.e., values that reside in memory and
are loaded every time they are needed. This is only a conceptual difference,
for in our scheme, a value might also have to be loaded each time it is needed
if it is used so seldom that it is always thrown out of its register before it is
used the next time. Not having values allocated to memory allows accesses
of values to be treated in a more uniform way. (If the target machine were a
Complex Instruction Set Computer (CISC) instead of a RISC, there would
be a real difference, for a CISC can access a value in memory directly without
first loading it to a register, and then it might be worth having a concept of
values allocated to memory.)

We keep track of which registers contain which values in a descriptor
0 € A. Consider figure 20 again:

(bg T
g e

o T
oSS

o e R R
Ghg T
by - S I S

Fig. 20. from p. 58 once again

When a register is needed to hold a value v, we choose a register with these
objectives in mind:

1. Preferably choose a register that v is naturally produced in. E.g., when
choosing a register for z of let & = e; in ey, preferably choose the
natural destination register of e; (cf. section 6.2).

2. Avoid choosing registers that are known to be destroyed while v is live.
E.g., when choosing a register for b in the figure, we want to avoid ¢
and ¢9, because they will be destroyed while b is live, viz. when A5 is
called.

85

We say that v is hostile to ¢ at a given program point iff ¢ is known to
be destroyed after that program point while v is live. E.g., b is hostile
to ¢1 and ¢4 at all program points before the call to As.

To know which registers v is hostile to at a given program point, we
need a hostility analysis.

3. Avoid choosing registers that contain live values. E.g., when choosing
a register for b, just after the call to A4, we want to avoid picking ¢~
and ¢g, because they contain the live values a and c. The descriptor §
tells us that ¢7 and ¢g contain a and c, respectively. To know that a
and c are live, we need a liveness analysis. This analysis must decide,
for each program point, which values will be needed further on.

4. Preferably choose the register with the smallest number that is known
to be destroyed by the current strongly connnected component (recall
section 5.10). E.g., in figure 20, prefer ¢4 to ¢g, because ¢4 will be
destroyed anyway by As.

Objectives 2 and 4 are the two general goals (i) and (77) from the preceding
chapter (p. 59). Objectives 1 and 3 are more specific to the particular way
we have chosen to do the per-function register allocation.

Before we discuss in greater detail how to choose registers, let us discuss
the liveness and hostility analyses needed for objectives 2 and 3.

6.5 Liveness and hostility analyses

The purpose of the liveness analysis is to decide for each program point
which values are live. The purpose of the hostility analysis is to decide for
each program point the set of registers to which the values that are live at
that program point are hostile. Both analyses are per-function analyses.

The two analyses can be done at the same time. Define w-information
to be a map,

weQ = VS PO,

from the live values at a given program point to sets of registers that those
values are hostile to. Hence, a value v is live at a program point with w-
information w iff v € Dmw, and in that case, wv is the set of registers that
v is hostile to.

Tlhe w-analysis translates an expression to an w-annotated expression

¢ € E, where

*

F = qgXqg
‘ QletX=E inE*Q

| qletregion Pin F ¢

86

and so on in the same fashion. Each construct has two w’s annotated, which
we will call the w-information before and after the construct, respectively.
As an example, the expression

1etx=é’xink?5+x

will be translated to an w-annotated expression with the form

<1etx = wéxwé in < (k%%Swg) /-I—wﬁxwé))
w1 w3 \W4 Wy wh o

1

Since x is not live before or after the whole expression, x € Dmw; and x ¢
Dmw]. Since x is needed after the application of k, it will be in, e.g., Dm wy
and Dm wg. Furthermore, if the application of k destroys ¢, through ¢, these
w’s will record that x is hostile to these registers, i.e., {¢1,...,¢7} C wyx,
etc. One would expect that wy = wh = Wwi.

We shall always give w-information after an expression a ’. The imple-
mentation of the w-analysis is explained in section 8.1.

6.6 Choosing a register for a value

Given an w-annotated expression, we can now explain more specifically how
a register is chosen with the four objectives in section 6.4 in mind. We do this
by completing the definition of [[let 2 = e; in es]]
“find a register, ¢, to contain z” (p. 82).

In the following, it is assumed that w-information is annotated on all ex-
pressions, but to avoid cluttering the picture, the annotations will be omitted
and only mentioned when needed.

Given the w-information, w, at a specific program point and a descriptor,
0, telling which registers contain which values at that program point, we can
choose a register for a value while pursuing the objectives 1-4 above (p. 85).
We use a heuristic function to pick a register: choose (ﬁqﬁ&wé yields a good
choice of register, given (i) a set, @, of registers that must not be chosen,
(i) a register, &, we would prefer chosen, (iii) a set, ¢, of registers we would
prefer not chosen, (iv) w-information w, and (v) the current descriptor .
Hence,

rai 1.€., we explain how to

choose € PP — &, - PP - Q- A — 0.

The usefulness of these parameters will become more apparent shortly. Typ-
ically, (25 is the natural destination register of an expression, while ¢ will be
used to tell choose which registers a given value is hostile to, and the set ¢
is used when we want to prevent specific registers from being touched.

The heuristic choose uses $ to live up to objective 1, ¢ to live up to
objective 2, § and w to live up to objective 3, and § to live up to objective
4. The implementation of choose is described in the next section.

Using choose we can now define the register allocation for let £ = e; in es.
While translating an expression, we must keep track of which registers con-
tain which values in §, i.e., the translation function [[e]] , is modified to

87

take an in-flowing —the descriptor describing the contents of the registers
when entering the code to evaluate e—, and return an out-flowing d—the
descriptor at the ezit of the same code:

(5aftera lea /6) = |:|:6:|:| ra 6before-

Thus, now [[-], € E = A= Ax ®, x B, and [[let z =¢; in ey]],, of
p- 82 becomes

|I1et T =e1 in 82:|:| ra 5beforee
let (5after e1s ¢1a ﬁl) = |:|:61:|:|ra 5bef0ree

the register allocation part of the translation:
¢ =choose a register to contain x

Obefore e, =0aftere, changed to record that ¢, contains z.

(5after e $2a 52) = |:|:62:|:| ra 5bef0re e
B = Ao. ﬁ}% s Badh
in (6afterega ¢27 ﬂ)

Notice how the flow of ¢’s simulates (at compile-time) the run-time control
flow.

How should we choose the register, ¢, for x7 Preferably, we want to
choose the natural destination register, &1, of e1, (and hence avoid a register-
to-register move). We also want to avoid registers that are known to be
destroyed while z is live, i.e. registers that z is hostile to according to the
w-information, wy, before eq, i.e. the set wox. Therefore, we pick ¢, with
choose @q?)l(wgm)wyi. The first argument is &, because there are no registers
that must not be chosen.

Using ra (¢ — v)d to denote d updated to record that the value v has been
allocated to the register phy, we can define the auxiliary function [[-]| def tO
do as prescribed in the box above:

[vﬂdef ddws = let ¢, = choose (]Béﬁ(wv)wé
0 =ra(py — v)d

in (0, ¢y).

Le., [vﬂdef ééﬁwd chooses a register for v and updates ¢ accordingly (the
arguments ¢ and ¢ are simply passed on to choose). Then,

[let 2 =¢ in ey]] ,0 = let

B = Ap. Bids ; Bodb
in (67 ¢27 ﬂ)a

88

where wy is the w-information before ey (i.e. annotated on the left side of
e9). (We have quit using qualifications on the §’s, because a § always refers
to the last § defined.) When reading this code, one can profitably ignore
the 0’s that are passed around and regard the operations on the §’s as side
effects. Intuitively, [[z]] def(fﬁéw reads “find a register for x, given that a
good candidate is (25, the descriptor is 4, and the information about the code
following is w.” The [[- [] s appears between [[e]] , and [[es]],, because z
“becomes live” between the code for e¢; and that for es.

Alternatively to viewing [[-]],, as a function that translates an expres-
sion to some code () with a hole in it for the destination register, one can
view [[-]],, as a two-phase translation consisting of 1. register allocation,
followed by 2. intermediate code generation. The first phase in the case for
let z = ey in ey is when |I-I|ra traverses ej; the register, ¢,, for x is chosen;
and [[-:Hm traverses ey. The second phase is when all the (3’s are applied.
This is only after the whole of the current function has been traversed by
[-ﬂra. It is the “A¢.” in front of the (’s that delays the actual generation
of the code till the 3’s are applied and thus splits the translation process
into two stages. We could have formulated [-ﬂra explicitly as two phases:
The result of the first phase, in the case of let z = e; in ey, would be to
annotate the let-expression with ¢,; and then the second phase would use
this annotation to generate the code for the let-expression. The way we
do it, ¢, is an “implicit annotation”: ¢, is a free variable in the 3 for the
let-expression it “annotates”.

6.7 Heuristic for choosing a register

In this section, we describe how choose chooses a register for a value. The
register returned by choose ¢p¢p pwd must not be in ¢, and, it should be chosen
with the objectives from p. 85, which we recap here:

1. preferably choose $,
2. preferably avoid choosing registers from ¢,

3. preferably avoid choosing registers that contain live values according
to w and ¢,

4. preferably choose the register with the smallest number that is known
to be destroyed by the current strongly connnected component.

These objectives are put into effect in the following way:

1. Using a heuristic function, heur, (described below) we first obtain a
register ¢ according to objectives 2-4. Ifqz@ is not allowable (i.e., qz@ € (f)) or
there is no register (i.e. qg = reglster) we choose ¢ and not (fS Otherwise, if
qz@ is not in ¢, we choose ¢, thereby satisfying both 1 and 2. If, on the other
hand, ¢ is in ¢ while ¢ is not, we elect to satisfy 2 and choose ¢. If both are
in ¢, we cannot satisfy 2 and might as well satisfy 1 by choosing qu Thus,
choose is defined:

89

choose ééﬁ@wé = let ¢ = heur ppwd in
if e Vv
(25 = T register \

<25€(Z>/\¢¢¢3 then¢else$.

1. We make heur ¢pgwd yield a register that is not in ¢ while trying to
satisfy objectives 2-3 above as follows:

1° Remove the set of forbidden registers ¢ from the set of candidates.

2° Divide the set of remaining registers into subsets (illustrated in figure
26) that correspond to objectives 2-3 and choose a register from the best
non-empty subset in the following way:

(i) Aiming at objective 2, divide the registers into two subsets, according
to whether they are in ¢ or not (the horizontal line in the figure).

(7i) Aiming at objective 3, divide the registers into two subsets, according
to whether they contain live values or not (the thick vertical line in the figure).

(#i1) Aiming at objective 4, divide the registers that do not contain live
values according to whether they will be destroyed anyway or not (¢g;,, and
Deleans Tespectively, in the figure). (How to approximate the set of registers
that will be destroyed anyway is described in section 5.10.)

(iv) Finally, observe that when we are forced to evict a live value from
its register (because all registers contain live values), it is better to evict a
value that is in a register it is hostile to, than one that is in a register which
it is not hostile to. Therefore we divide the registers that contain live values
according to whether they contain malplaced or wellplaced values (¢,,, and
Dwell, TESPectively, in the figure): A value is malplaced iff it is in a register
it is hostile to, and wellplaced otherwise.

90

registers containing registers containing

no values live values
¢ = registers that
Dclean Prmal are hostile to the
Dirt T Dell variable or
lry o5 o bs temporary that we
o . . are about to choose
4 registers registers

. a register for
registers registers containing | containing &

previously | not values that | values that
used previously | are hostile |are not hostile

¢1 used to them to them registers that are
not hostile to the
¢3 ¢2 ¢6 variable or
[temporary that we

are about to choose
a register for

Fig. 26. The division of registers. The numbers of the subsets indicate the order
in which registers are chosen, i.e., heur first tries to choose a register from ¢, (=
Dairty \@); if this set is empty, it tries to choose a register from ¢y (= @, \@);
etc.

3° Now we have a division of the registers into pairwise disjoint subsets.
In the figure these subsets are numbered in the order we prefer to choose
registers from them. For instance, we prefer a register from ¢; to one from
¢4, because the registers in ¢; do not contain live values, which the registers
in ¢ do. Choose the lowest numbered register from the lowest numbered,
non-empty subset.

Some comments on our choice of ordering of the subsets:

Choosing a register in ¢y = @iy \ @ re-uses a register in an attempt to
minimise the total number of used registers.

If ¢, is empty, a register in ¢y = @1 \ @ is chosen. The value in this
register is going to be spilled anyway, and the value that is going to be placed
in the register is not hostile to it, so it can profitably be replaced by another
value.

Choosing a register in ¢35 = @cjean N\ evicts no live value but uses a
hitherto unused register.

The next two candidate sets are ¢4 = @gjriy N ¢, and b5 = Pclean N 0.
The registers in these sets will be destroyed at some later point in the pro-
gram, but they do not contain live values.

Choosing a register in ¢g = ¢ o \@ will evict a value that already
resides in a register, but at least the value that we are choosing a register for
is not hostile to this register.

The heuristic presented here can be refined in numerous ways; for in-
stance, it could take use counts into account.

91

6.8 Which values are spilled

When there are not enough registers for all values, we must spill, i.e., put
some of them in memory. The three main questions are

(a) which values are spilled?
(b) where should we place the store code that stores a value in memory?
(¢) where should we place the load code that loads a value from memory?

This section discusses (a). The following discuss (b) and (c).

If we choose always to leave it to the function choose, described in the
previous section, to choose a register, the answer to (a) is given. When
choose is asked to find a register to hold a value v and it picks a register
that holds some other value v/, it effectively evicts v’ from its register. If
v’ is needed later, it must be loaded from memory. In other words, the
combination of first evicting v' and later discovering that it is needed again
is an implicit decision to spill v'.

This is a crude way to decide which values are spilled compared with the
sophistication in other register allocators. Most are, however, based on graph
colouring and the choice of which values to spill is intimately connected with
how this graph colouring is done.

It is, however, perhaps of lesser importance in our register allocator than
in others which values are spilled. To see this, consider the imperative lan-
guage (Pascal) example

b

n:=n—117;

while n < 86681582 do begin
n:=n-+a

end;
b

A smart register allocator allocates the variables used in the loop to registers,
i.e., n and a rather than b. In our register allocator, it is only possible to
a lesser degree to be that smart, since loops are recursive functions and we
do not allocate free variables to registers. In our source language, the loop
above could be expressed

letrec while n = if n<86681582 then while (n+a)
else n
at r119 in - b --- while (n-117) -+ b ---.

The one value used in the loop, a, is a free variable of while and hence has
no chance of remaining in a register throughout the loop; it must be fetched
from the closure in each iteration. The other value used in the loop, n, is the
argument of while and will always be allocated to a register. In either case,
our register allocator does not have an opportunity to choose otherwise.

92

Summing up, when deciding which values to spill, we make a locally
optimal choice. This may result in choices that are not globally optimal,
but this is perhaps less important in our register allocator, which has less
freedom of choice anyway, because free variables are always fetched from the
closure when first used within each function.

6.9 Placing the spill code

The subject of placing the spill code should not be neglected for the benefit of,
e.g., the issues of packing values in as few registers as possible and choosing
which values to spill. In this section, we first try to analyse how spill code
should ideally be placed; then we discuss practical ways to do it.

In imperative languages, there is a concept of a current value of a variable.
At each program point, the current value is kept either in a register or in
memory. At transitions between a program point where the current value is
in memory and a program point where it is in a register, the current value
must be loaded. Conversely, at transitions between a program point where
the current value is in a register and one where it is in memory, it must be
stored.

This is different in a functional language: because variables cannot be
updated, there is no concept of a current value that must be stored at every
transition from a program point where it is in a register to a program point
where it is not. The value need only be stored at most once: If there are
sufficiently many registers the value is never stored in memory; otherwise, ex-
actly one store is required. It must be loaded at all transitions from program
points where it is not in a register to program points where it is. (Remember
references are also simply values, and the memory cell the reference references
is not eligible for allocation to a register.)

A framework for discussing spill code placement

One main goal when placing spill code is to place it such that it will be
executed infrequently at run-time. We investigate how this is done by giving
rules that describe the fundamental ways in which the execution frequency
of spill code can be reduced by moving the spill code from one program point
to another. The rules afford a framework in which to discuss how to place
spill code; they do not provide an algorithm.

We will not discuss how to estimate, at compile-time, the execution fre-
quency of a given program point. The spill code can also be placed with
respect to other criteria than the execution frequency. It might, e.g., be
profitable to place the load code as far from the use as possible because of
load latency. This we will not do anything about (beyond hoping that in-
struction scheduling will help). Nor will we attempt placing spill code so as
to free up registers; we assume the allocation of values to registers has been
decided and will not be changed when the spill code is placed. A fourth dis-
cussion that we will not delve into is how the spill code placement influences
the memory usage (moving spill code into a recursive function may make the

93

program use more memory). Fifth, the code size is affected by how much
spill code is inserted; this is, however, clearly a problem of inferior impor-
tance compared with the importance of reducing the execution frequency of
the spill code.

For brevity, we will only discuss where to place store code. The corre-
sponding discussion for load code is similar in many aspects.

At control flow forks, this placement of store code

store

is better than
store

Fig. 27. The fork rule.

The first placement of the store code is better, because the store is only exe-
cuted in the case control flows right, whereas it is executed in both cases with
the second placement. Moving the store code is of course only permissible in
some situations, e.g., if the left branch never accesses the stored value, or it
stays unharmed in some register.

At straight-line control flow, this placement of store code

store

store is better than

store

Fig. 28. The straight-line rule.

It is clearly not necessary to store the same value twice.
At control flow meets, this placement of store code

store
is better than

store

Fig. 29. The meet rule.

Analogously to the fork rule, it is profitable to push the store code into a
part of the control flow graph that is executed less frequently at run-time.

94

These rules describe the only benefits with respect to execution frequency
that can be gained by moving store code; all other moving of store code is
only profitable insofar as it allows the subsequent application of some of
the three rules above. The straight-line rule reduces the number of stores
executed at run-time by reducing the number of (static) stores in the code.
The fork and meet rules reduce the number of (dynamic) stores executed at
run-time by moving the store code into less frequently executed parts of the
code.

We have deliberately not said when it is permissible to apply a rule; this
depends on the concrete situation. There are some examples below.

Using the framework

To stress that this framework can also be used to discuss how to place store
code inter-procedurally, we have complicated the examples below with func-
tions. In practice, moving store code for a register ¢ inter-procedurally is
done by changing ¢’s caller-save/callee-save status in the convention for the
function: Store code is moved into A (down in the call graph) by changing ¢
from a caller-save to a callee-save register for A. Moving the store code out of
A (up in the call graph) is, dually, achieved by changing ¢ from a callee-save
to a caller-save.
An example of a control flow fork is the code for an if-expression:

pN

Fig. 30. An if-expression inside a function. The upper horizontal lines
are the control flow in the caller, before and after the call, respectively.
The lower lines are the control flow within the callee.

Assume the store code is at the program point pp. A better placement is
obtained by moving it into the function and then, using the fork rule above,
moving it into one of the forks, to pp'.

This moving of store code is permissible if the register is only destroyed
in one of the forks and it is not already destroyed at pp’.

As an example of an application of the straight-line rule, consider this
control flow, where two functions are called sequentially.

95

pp

bp2
pp1

Fig. 31. The store code is better placed at pp’ than at both pp; and pps.

Here it is profitable to move the store code at pp; out of the fork (contrary
to the advice of the fork rule) and up from the function, and likewise, move
the store code at pps up, for then the two stores can be collapsed according
to the straight-line rule; i.e., we need only store at pp'.

Notice the better store code placement is here obtained by, locally, moving
store code unoptimally. The rules are local in the sense that applying a rule
will locally improve the placement, but it may hinder further applications of
rules that might have given a better placement overall.

The move of store code above is only permissible if the register contains
the right value at pp'.

Function calls, where control flows from the callers to the called function,
provide a pregnant example of a control flow meet:

bp

Fig. 32. An example of the application of the meet rule. A function calls
itself recursively and is called from two other applications.

The store code is profitably moved from pp to pp'; especially in this example,
where it implies moving the store code out of a loop.

As in the previous examples, the moving of store code is only permissible
if certain conditions are met. The reason it is permissible here might be that
only one of the callers wants the register preserved after the call.

96

These three examples capture the situations we should consider. We will
not consider the rather complicated control flow entailed by exceptions; it is
discussed in section 8.10.

To conclude, the guidelines for placing store code are that it should be
moved as deeply into if-expressions as possible and thereby into infrequently
executed branches, and it should be moved as high in the call graph as
possible thereby moving it out of loops or collapsing it with other store code.

To learn more exactly how to achieve this informal goal, we consider two
questions: an intra-procedural question: how should we move store code into
if-expressions within a function; and an inter-procedural question: when
should we move store code up in the call graph, and when down.

6.10 Placing spill code intra-procedurally

The approach of (Chow, 1988) to moving store code into if-expressions
within a function is a technique called shrink wrapping, which basically is
using the fork rule as much as possible. Here is an example of how Chow
places store code:

bp1

bp2
¢1 ®1, P2

Fig. 33. Chow’s shrink wrapping. The “¢1,¢5” at the right fork indicates
that these two registers are destroyed in that fork, etc. Chow saves ¢, at
ppe, because it is only destroyed by the rightmost fork. In comparison,
he saves ¢ at pp; because it is destroyed in both forks.

Chow inserts the store code at the earliest program point where the reg-
ister must inevitably be saved in all possible execution paths leading from
that point.

An uncertain effect of the shrink wrapping is that it may increase the
number of (static) stores in the code, i.e., do the opposite of the straight-line
rule above:

97

store

store

store

Fig. 34. Depending on the actual execution frequencies of the forks,
the shrink wrapping may here improve, preserve, or worsen the execution
time of the code.

(Because his language is imperative, Chow can have loops inside a func-
tion. If he does not want to move store code inside a loop, he cannot ruth-
lessly shrink wrap all store code; he must explicitly disallow that store code
shrink wraps into a loop. This would not be a concern of ours, if we were
to apply shrink wrapping inside functions, as loops are inter-procedural phe-
nomena in our language.)

The lazy-save store code placement strategy of (Burger et al., 1995),
seems to do about the same as Chow’s shrink wrapping, since both insert the
store code at the earliest program point where the register must inevitably be
saved in all possible execution paths leading from that point. A difference is
that their source language is functional (it is Scheme), as ours, where Chow’s
is imperative, with the implications discussed above (p. 93).

One of the main goals of Callahan and Koblenz (1991) was to place spill
code in a smart way as we discussed in section 6.1; see also section 6.13.

6.11 Placing spill code inter-procedurally

When should we move store code down in the call graph, hoping that it
will eventually end up within some infrequently executed branch of an if-
expression, and when should it be moved up in the call graph, hoping that
it will move out of a loop?

Some guidelines can be given for when a register should be caller-save and
when it should be callee-save: Registers that are destroyed in all control flow
paths through the code of A (as ¢; in figure 33 above) should be caller-save
for A; for in that case we might as well leave it to the callers of the function
to save the register, hoping that this will move the store code out of a loop.

98

Registers that are not destroyed in any control flow path through A (as ¢3
in figure 33) should be callee-save.

The problem is the registers that are destroyed in some but not all control
flow paths through A: should ¢ in figure 33 be callee-save or caller-save in
the convention for \?

Chow chooses the former: registers that are only destroyed in some con-
trol flow paths through the function (as ¢,) will be callee-save registers. This
he implements by shrink wrapping store code as much as possible in the cur-
rent function and then making the registers that are still stored outermost
caller-save; all other registers are callee-save.

The disadvantage of this is that the storing of ¢o, although it is only
done in some execution paths through A, might still be done more efficiently
higher up in the call graph. Figure 31 above provides an example where the
caller is able to do better than the two callees.

The other solution, to make all registers that may be destroyed in some
execution path through A caller-save, is simpler than the first, for it means
that all responsibility of saving registers is pushed onto the caller—the callee-
save registers of A are simply the registers that are not destroyed in any
execution path through A.

The disadvantage is that store code will never be moved inside forks.

The best strategy would be something in between the two extremes above:
make ¢ a caller-save register if the callers of A could place the store code
better, and make it a callee-save register otherwise. The problem with this
is first of all that inter-procedural information is needed. In our register allo-
cator, for instance, inter-procedural information about callers is not readily
available since the callees are usually processed before the callers. Second,
in general, it is not clear exactly when it is more profitable to let the caller,
rather than the callee, save the register, although figure 31 provides an ex-
ample where it is obvious. Third, since A\ may have more than one caller,
the inter-procedural information might be inconclusive: some callers might
prefer ¢o as a callee-save register, while others might prefer the opposite.

From these three alternatives, numerous combinations can be concocted;
e.g., take one of the extremes but combine it with the third strategy in certain
easily handled situations.

Chow’s experiments show only a small improvement from the shrink
wrapping and moving of spill code up the call graph, but this is perhaps
because his languages are imperative. In a functional language, where inter-
procedural register allocation is expected to give relatively larger improve-
ments, this optimisation might yield more.

Santhanam and Odnert also move spill code between functions. They
divide the call graph into clusters. Roughly, a cluster is a sub-graph of the
call graph which has a cluster root node (function) through which all paths
to functions in the cluster must pass. The idea in dividing the call graph into
clusters is that the responsibility for saving a register can be moved upwards
in the call graph from the functions within the cluster to the cluster root
function. Deciding how to divide the call graph into clusters then means

99

deciding where to place spill code. Santhanam and Odnert use estimations
of call frequencies to decide how to divide the call graph into clusters: if the
cluster root node is called less frequently than functions within the cluster,
the spill code will be executed less frequently.

We shall choose the simplest of all proposed strategies: to always make
all registers that could possibly be destroyed by A caller-save registers of .
This means that there will be no moving store code into forks. With this
approach, the register allocation of each function is selfish in the following
sense: it takes care of its own values by trying to put them in registers that
are not destroyed by the functions it calls, and if this is not possible, it saves
them on the stack. It does not save registers merely for the benefit of its
callers. (There is, however, one extenuating circumstance: it does try to use
as few registers in all as possible.)

This strategy favours the lowest nodes in the call graph. We assume many
programs will spend most of the time in the lower parts of the call graph.

6.12 Our spill code placement strategies
Having discussed some of the problems in placing spill code, we will decide
and explain the exact way we choose to do it in the following.

Placing store code: the producer-saves strategy

We choose the following way to place the store code, which is particularly
simple in our register allocator. If z of 1let x = e; in ey is spilled in ey, we
generate the following code:

o ::‘ code to evaluate e; ‘ i push ¢y 5 @ ::‘ code to evaluate eqy ‘ ; pop.

The value = can only be used in ey; so after the evaluation of es, the value
saved on the stack is not needed any more, and it is discarded with a pop (it
is not restored with a pop ¢,).

The main advantage of this strategy for placing store code is its simplicity:
it leaves the responsibility of storing a spilled value exactly one place, namely
with the producer of the value, and we will call it a producer-saves store code
placement strategy. The producer of a value can be a sub-expression of the
program. For instance, let x = e; in ey is the producer of the value x. The
spill code can simply be inserted when we generate code for the producer,
instead of in a separate phase. Because the code to allocate and deallocate
memory for a spilled value is inserted around the code for a sub-expression,
it will obey a stack discipline.

The disadvantage is that this strategy violates many of the concerns dis-
cussed above. The store code is inserted at a program point without regard
to the probable execution frequency of that program point; it might, for in-
stance, be placed in a loop. The producer-saves strategy, however, at least
ensures that the store code always appears only once in the control flow
graph.

100

See also the case study of the producer-saves store code placement strat-
egy in the Fibonacci function in the assessment section 11.9.

We use the producer-saves strategy for other kinds of values as well. For
instance, the producer of a g is a letregion-expression; the producer of a y
is a A-abstraction; the producer of an f is a letrec-expression.

Saving registers because of recursion

There are two known schemes for saving registers when there is recursion.

e
>\3 ¢3:¢4
save ¢
b1, 02, P3, P4 AL
save ¢
A2 ¢
save
. , save ¢1
(i) Wall’s scheme o1 A3 01,02
save
¢1 9 ¢2
A2
é1

(i) Steenkiste’s scheme

Fig. 35. Schemes for saving registers at recursion. The registers beside a A
indicate which registers are destroyed by that \; edges are annotated with the set
of registers that are saved at calls.

In Wall’s scheme, all registers used by A’s in the strongly connnected
component are saved at back edges in the call graph.

In Steenkiste’s scheme, each A saves the registers it uses. The disad-
vantage is that one pays for the use of recursion at all calls in the strongly
connected component although it might be seldom that the program actu-
ally recurses. In Wall’s scheme, chances are greater that registers are only
saved when recursion occurs: Control might flow through all the A’s above
without any of them calling each other recursively, and then no registers will
be saved in Wall’s scheme, whereas registers will be unnecessarily saved in
Steenkiste’s.

On the other hand, also Wall’s scheme may save more registers than
necessary: If A; and Ay keep calling each other recursively, ¢3 and ¢4 are
saved unnecessarily each time A9 calls Aj.

Wall’s source languages are imperative, and he actually chooses this
scheme, rather than one resembling Steenkiste’s, on the assumption that

101

many apparently recursive programs are so only in exceptional cases. We
assume the opposite is the case in our functional language.

In Steenkiste’s scheme, the total use of registers in the component can
be smaller (two registers in the example, where Wall uses four): The same
registers can be used in the different A’s in the component, as the registers
are saved at recursive calls anyway.

We choose Steenkiste’s scheme, because it meshes nicely with the produ-
cer-saves store code placement strategy. All potentially recursive applications
are treated the same way: they destroy all registers containing live values.
Then, the producer’s responsibility of saving the value it produces will also
take care of saving the values that must be saved because of recursion. If
we used Wall’s scheme, the producer-saves mechanism could not handle the
saving necessary at the back-edge calls.

Placing load code: the user-loads strategy

The considerations concerning where to place load code are similar in many
aspects to the considerations above concerning where to place store code.
This will not be explored in depth here. We only remark the following:
First, in the cases where one wants the storing and loading to obey a stack
discipline, one will want the placement of load code to mirror the placement
of the store code. Second, in the cases where this is not a concern (e.g., when
placing the load code for a spilled let-bound value z), one may try to place
the load code at the earliest possible program point where it is inevitable
that the value must be loaded—dually to when placing store code. Burger et
al., (1995), nevertheless, suggest an “eager” reloading scheme, where a value
is instead loaded at the first program point from which some execution path
leads to a use of the value. Although this means that values are sometimes
loaded unnecessarily, their experiments show that it is as good as the other
load code placement strategy. They explain this by conjecturing that the
cost of unnecessary reloads is offset by the reduced effect of memory latency.

As with the store code placement strategy, we will not attempt the fancy
solution. We will also place the load code in the way that is simplest in our
register allocator: the code to reload a spilled value is placed at the uses
where the value is not in a register.

When generating code for a use of = in ey of let x = e; in ey, we confer
with the current ¢ to see whether x is allocated to some register. If z has
been thrown out of its register (because the register was needed for something
else), we have to reload z. So the translation of a use of x is

[z]],,6 = if z is in some ¢, according to §
then (0, ¢z, A@. (¢:=¢z))
else [xﬂ load @ ~register WO,

where w is the w-information before the expression x, and the optional move
is defined

(p:=¢') = if ¢ =¢ then eelse ¢p:=¢',

102

and [[z]] load Will return code to reload x.

A value x is loaded in e if it is used at a point in e where it is not in
a register according to the § at that point. Hence, it can be determined
during register allocation of e whether a value is loaded in e: z is loaded iff

-ﬂload was called with 2. We extend § to also have a component, §” C X,
that records the set of values that are loaded; i.e., = is loaded according to ¢
iff z € 6*. Denote with [[v]].c beentoadeq 0 the d updated to record that =z is
loaded.

The expression [[x]] load $$w5 will at first pick a register, ¢, for z, and
update § to record that ¢, from now on contains x. This is just what
2] ot ¢ dwd, which we have already defined (p. 88), does—intuitively a point
in the code where a value is reloaded is like a definition of that value. Fur-
thermore, [xﬂload éqﬁwé records in ¢ that x is loaded and returns code to
load x:

1E21 Gdws = let (6, ¢g) = 2] o Pdws
§ = [[«]] has-been-loaded O
8= Ao. ¢q ::‘ code to access z in memory | ;
(¢:=a)
in (6, ¢z,).

Notice that the code does not simply load the value into the destination
register, ¢, provided by the context. Rather, the value is loaded into the cho-
sen register, ¢,, and then moved into ¢. This is because we expect choose’s
choice of register (¢,) to be more farsighted than the context’s choice (¢).
Chances are bigger that we do not have to reload x if it is put in ¢, than if
it is put in ¢, because ¢, has been chosen specially for x; and we prefer the
extra cost of the move instruction ¢ := ¢, to the potential cost of a reload.

Code is generated with respect to a stack shape

To keep track, at compile-time, of the position on the stack of values that
are loaded, each expression is compiled with respect to a stack shape ¢ =
(¢®,sP) € S. This contains a compile-time stack pointer, ¢ € I, and an
environment ¢* € V' — I that maps values to their stack position.

If x of let £ = e; in ey is loaded in eq, the code for ey is generated with
respect to a stack shape in which z has been pushed: If the code for the
whole let-expression is generated with respect to a stack shape ¢ = (¢®,cP),
the code for es is generated with respect to the stack shape

(C+A{zx =P}, P+ 1),

This reflects that the stack at the entry to the code for es has changed com-
pared to what it was at the entry to the code for the whole let-expression.
One element, z, has been pushed, hence the ¢P 4+ 1, and it resides at offset
¢P, hence the z — ¢P.

103

When generating code to load x in some sub-expression of es, one can find
x’s offset on the stack using the stack shape (¢*', ¢P’') at that point. The offset
is the difference between the compile-time stack pointer, ¢P’, at that point
and the compile-time stack pointer, <P, at the point when code was generated
for pushing z on the stack. The latter is accessible as ¢®’z. Thus, the
‘code to access in memory | above is m[gsp —¢], where ¢ = [[¢P" — ¢¥'2]];_,.

Summing up, the code we generate must be abstracted over a stack shape
(and not only over the destination register), i.e., the 3’s are abstracted over
(¢®, sP). The 3 for let x = e; in ey where x is loaded in ey is

B = M. Xs. Brdes ; push ¢y Bacd(s® + {x = ¢P}, P+ 1) ; pop.

The code (¢, for e is translated with respect to the same stack shape ¢
as the whole let-expression, while the code (B¢ for ey is translated with a
stack shape that reflects that x is pushed around that code.

We use { for code abstracted over a stack shape, ie., (€ Z =S - K
(and then € B=® — 7).

A preserver of ¢ is a function p € Z — 7 that takes some code { and
returns code ¢’ which preserves ¢ on the stack around (:

p¢ = Xs.push ¢ ; C(¢® 4+ {x — P}, P +1); pop.
If p, is a preserver of ¢,, the 3 above can be written

B = Xp. XS, 1< ; pa(Badh)s.

To rid the notation of the stack shape, use ; to glue together (’s as ;
glues together &’s:

C1iG2 = A (16 ; (a6,
Then [is
B = A¢. Bi1¢z;pz(B29).
We can define [[]],; ¢20 to yield a pair (8, p;), where p, is a preserver
of ¢, if x is loaded according to §, and ¢, is § with = removed from the set
of loaded, i.e., 02 = 0" \{z}. If z is not loaded according to 0, p, does not

preserve ¢, i.e., pp = A(.C.
Then, finally,

[letz=e¢; in ey]],, 6 = let (6, g1, B1) =[le]],, 0
(6, bz) [xﬂdef(bldw?
(8, b2, B2) =[[e2]]n 0
(6, pz) [I:mﬂkﬂl P06
B = >\¢ B1¢z ;s pe(B20)
n (4, g2, B).

104

6.13 Comparison with other approaches
Using the structure of the source program

The main difference between the bulk of other register allocators and ours is
that we do not use graph colouring.

We wanted to see whether it was possible to make a good register alloca-
tion and avoid graph colouring by using information in the source language.
That we have developed a translation (in this and the following chapters)
and the measurements in chapter 11 indicate that the approach works. (Ac-
tually, the measurements only indicate that the specific conglomerate of the
inter-procedural register allocation, the source level per-function register al-
location, region inference, etc. found in our compiler works.) In another
sense, however, we did not succeed.

We hoped that, by taking the structure of the program into account, we
could obtain the same global picture of the register allocation problem as
an interference graph gives, and solve the optimisation problem it represents
without explicitly building and colouring an interference graph.

Our inspiration to do this was from Callahan and Koblenz (1991), whose
hierarchical register allocation uses the structure of the program to place
spill code in a smart way and to allow a value to be spilled in some parts of
the program and in registers in other parts and even in different registers in
different parts of the program. They build a tree of “tiles” that cover the
basic blocks of the control flow graph; the tile tree reflects the program’s
hierarchical control structure. Avoiding graph colouring is not their goal:
Registers are allocated for each tile using a standard graph-colouring algo-
rithm. The local allocation and interference information is passed around the
tile tree by first processing it bottom-up and then top-down. Thereby their
register allocation can be sensitive to local usage patterns while retaining a
global perspective.

Our idea was to adapt their algorithm to use the syntax tree of a source
program as the tile tree. Our tiles would then be the nodes of the syntax
tree. Construction and colouring of an interference graph for every tile might
be unnecessary because of the extremely simple structure of our tiles; and
indeed, it would not be practically possible to do graph colouring at every
tile, because we would have so many more tiles than they.

The benefits we hoped to gain by doing this are: 1° avoiding graph colour-
ing but retaining the global picture; 2° reaping the general benefits in their
algorithm mentioned above (smart spill code placement, etc.). The question
is whether their algorithm can be adapted such that it gives as good a result
without graph colouring as with.

We did not succeed in adapting their algorithm; the per-function register
allocation presented in this chapter and chapter 8 simply chooses registers in
a linear traversal of the program. The w-information gives a global picture,
but the linear traversal of the program and not the structure of the program
determines the order in which choices are made.

An example where this algorithm does worse than what a graph-colouring

105

register allocator should be able to do is: If we have more values than registers
and the values are used successively, our register allocator might in principle
accidentally throw out the value needed next each time it fetches a value,
and thus generate code that loads a value every time it is needed. Graph-
colouring register allocation, with its more global perspective, would instead
decide once for all which values to spill, and thus generate code that only
loads as many times as the spilled values are used. On the other hand, our
register allocator has the benefit over graph-colouring register allocation that
values can be in different places in different parts of the program, although
this is not exploited systematically because of the lack of global perspective.

Although one can construct examples where our register allocator does
badly because it does not have the global picture an interference graph gives,
one must remember that building an interference graph does not automati-
cally give a solution; the graph must also be coloured, and the heuristics to
do that will likely also behave badly on some examples. Possibly, our more
simple-minded way of choosing registers for values does as good in practice
as many heuristics for colouring graphs.

Furthermore, basic graph-colouring register allocation gives a way of
choosing registers for values and a way of deciding which values must be
kept in memory, but the things it is not good at (e.g., allocating a value to
different registers in different parts of the program; placing the spill code)
may well influence the quality of the register allocation more.

Thorup (1995) presents an algorithm that, by using the structure of the
program, can “colour the interference graph implicitly”, i.e., without explic-
itly building it. His work concerns the problem of packing values in as few
cells as possible, i.e., not in a fized number of cells (registers); so it is not
the same as register allocation, and he does not consider how to choose what
values to spill and where to place spill code, etc.

Interestingly, his way to the idea of using the structure of the program
is completely different from ours. It goes over the graph theoretic concept
of tree-width: Thorup observes that the control flow graph of a structured
program has small tree-width, and the intersection graph of a control flow
graph with small tree-width (which is the same as the interference graph)
is easier to colour. His algorithm to do it uses the syntax of the program
to assign “colours” to live ranges; an interference graph is never explicitly
built. In this sense, he succeeds in using the structure of the program to
“do interference graph colouring” without explicitly building and colouring
an interference graph.

Thorup proves that his algorithm will colour a graph using at most a
fixed number as many colours as an optimal colouring would use. The fixed
number depends on the tree-width of the control flow graph.

Kannan and Proebsting (1995) also use the structure of the program to
make a better graph colouring heuristic. Thorup’s work is a generalisation
of their work. It seems that the inspiration of Kannan and Proebsting is
neither (Callahan and Koblenz, 1991) nor the concept of tree-width.

Norris and Pollock (1994) investigate another way to adapt the hierar-

106

chical register allocation of Callahan and Koblenz: they use the program
dependence graph as the hierarchy. The program dependence graph repre-
sents both data and control flow dependencies, and it expresses only the
essential partial ordering of statements in a program that must be followed
to preserve the semantics of the program. A benefit from using the program
dependence graph for the hierarchical register allocation is that it can also
be used for other optimisations.

The way the three requirements to an input language to a register allo-
cator are formulated in section 6.1, suggests that they must be satisfied by
making the language sufficiently high-level, especially if the register alloca-
tion is inter-procedural. Wall (1986) has gone in the other direction in his
inter-procedural register allocation. His input language to the register allo-
cator is annotated code. It can be immediately converted to executable code
by throwing away the annotations. The annotations indicate how the code
should be transformed after an (optional) register allocation phase. Here is
an example of his annotations:

$1:=m[p7 +y] remove.y

¢2 i =m|p7 + 2] remove.z
P31 = o + P2 opl.y op2.z result.x
m{p7 + x] 1= ¢3 remove.x

The annotations are actions qualified by variables. They specify how the
instruction should be changed, if the variable is allocated to a register:
“remove.y” means that the instruction should be removed if y is allocated
to a register; and “opl.y” means to replace the first operand of the addition
instruction with the register allocated to y, if y is allocated to a register. Our
third requirement (p. 79), that function calls should be recognisable, Wall
satisfies partly by the annotations and partly by explicitly having the call
graph with the annotated code.

We could have gone the same way, and have devised analogous annota-
tions; e.g., “remove this instruction, if the argument is passed on the stack”.

Eliminating move instructions

Our algorithm tries to avoid register-to-register transfers by letting informa-
tion flow both upwards in the syntax tree (from sub-expression to context)
and downwards (from context to sub-expression) when translating expres-
sions, as described in section 6.2. The method is related to Reynolds’ (1995)
way of deciding when to introduce new temporary variables when he gener-
ates intermediate code.

In register allocators based on graph colouring, register-to-register trans-
fers are traditionally avoided by coalescing live ranges (nodes) in the inter-
ference graph: A move instruction can be eliminated from the program if
there is no edge in the interference graph between its source and destination,
and then the source and destination live ranges in the interference graph can

107

be coalesced into one node. The edges of the coalesced node is the union of
the edges of the two coalesced live ranges.

Chaitin aggressively coalesces as much as possible. This eliminates move
instructions at the cost of making the interference graph harder to colour,
because the coalesced nodes have more edges than the original nodes.

Chaitin’s coalescing strategy is too aggressive in the sense that it can
make a graph that can be coloured with k& colours into a graph that cannot
be coloured with k colours. To mend this, Briggs et al. (1994) introduce
a more conservative strategy, which only coalesces nodes in cases where a
guarantee can be found that the coalescing will not make a colourable graph
uncolourable.

The coalescing strategy of Briggs et al., on the other hand, is too con-
servative, and George and Appel (1995) present a coalescing strategy that
is less conservative than that of Briggs et al., but still not as aggressive as
Chaitin’s. They report an impressive speedup of 4.4% solely from eliminating
moves, and this is over an algorithm that already tries to eliminate moves.
This suggests that eliminating move instructions is important. This improve-
ment, however, is in a compiler that generates many move instructions, unlike
ours.

These ways of eliminating moves are not applicable in our register allo-
cation algorithm, as they are intimately linked with graph colouring.

Chow and Hennessy (1990) go in the opposite direction from eliminating
move instructions: they introduce move instructions in the program to make
the interference graph easier to colour. When a graph is uncolourable, they
try to split a live range (node) that has many edges into smaller live ranges,
each of which has fewer edges than the original live range, thereby increasing
the chances that the interference graph will be colourable.

The very ad hoc way we assign values to registers actually means that
our register allocator allows a value to reside in different places in different
parts of the program; it does not utilise this in any systematic way, however.

Callahan and Koblenz (1991) try to avoid register-to-register transfers by
preferencing values to registers in the bottom-up pass over the tree of tiles.
For instance, a value that is passed as argument to a function is preferenced
to the argument register of the function. Our allocator could be extended to
do this in the w-analysis and the preferencing information could be a part of
the w’s.

Intermediate code generation

We have focused on the issues pertaining to generating code for a higher-
order, strict functional language, and not so much on the general issues that
are always important when generating code, consequently we shall not refer
to the large body of work on general code generation issues.

When compiling an expression to intermediate code in the LISP compiler
EPIC, Kessler et al. (1986) use information about what context that expres-
sion is in, like we use context information to decide what the destination

108

register should be, by applying a 3 to a destination register.

It is standard code generation policy to generate rather naive code, and
rely on an ensuing optimisation phase to tighten up the code (see, e.g.,
(George and Appel, 1995)). We try to avoid generating obviously inefficient
code (e.g. by eliminating redundant moves). Partly this is necessary, because
we do the register allocation before the code generation: If the register al-
location runs after the code generation, the code generator can use as many
temporary variables as it likes; we must economise on the registers. Also,
we think it is conceptually nicer to generate the “right” code right away and
not have to tighten up the code afterwards. In this respect, our approach is
akin to Reynolds’ (1995) generation of efficient intermediate code.

Although we think, e.g., the “4” of our translation—“some code with a
hole in it for the destination register”—and the “optional move”, (¢:=¢'),
are natural concepts, generating efficient code in one go nevertheless com-
plicates the translation. On the other hand, an ensuing optimisation phase
will also be more complicated if it is rigged to fix the shortcomings of a spe-
cific code generator—especially so, if it relies on the fact that the code being
optimised comes from a specific code generator.

Because our translation is so closely coupled to the structure of the pro-
gram, the code we generate evaluates expressions in exactly the order they
appear in the program. To minimise the use of registers for temporary values
it is profitable to reorder the evaluation of expressions (Sethi and Ullman,
1970): If one register is needed by the code for ey, and two are needed by
the code for ey, the code for e;+ey will need three registers in all, because
the result of e; must be held in a third register while ey is being evaluated.
If we could treat the expression as eg+eq, the total need for registers would
only be two, because the result of e; is not live while ey is being evaluated.
Another example is (Burger et al., 1995) which changes the evaluation order
of function arguments to make a good “shuffling” of registers at function
applications.

Since the semantics of SML specifies left-to-right evaluation order, we can
only change the evaluation order of expressions if they do not contain side-
effects, and in SML, even the simplest expressions may contain side-effects;
for instance, 141 contains a potential side-effect: evaluating it may raise a
Sum exception. Therefore, changing the evaluation order can probably not
be done as often in SML as in, e.g., Scheme.

109

7 Development of the inter-procedural part of the
algorithm

7.1 Overview of the back end

The translation [-ﬂcompﬂe € E — B from our source language to PA-RISC
assembly language consists of the following phases:

|:|:':|:|cr . [‘ﬂsa . ['ﬂcg\ sccs

é s B y B s ?

|:|:':|:|ca A |:|:':|:|sib
s B >

H

7 7

T fS K |:|: :I]bbs PB m K |:|: :|:|pa q3 |:|: :I]sched.

[-ﬂca closure analysis—annotate each application with a set A of func-
tions that may be applied.

[-Ily, convert the name f of each letrec-function to its sibling name f.
IR assign offsets in the closure to the free variables for each .
[-1l,, convert functions to functions of several arguments.

[-ﬂcg build the call graph.

sces find strongly connected components in the call graph.

rdfs take care of the actual translation, i.e., the register allocation and
code generation.

['ﬂbbs convert the structured language K to a set of basic blocks.
lin convert a set of basic blocks to straight-line code.
['ﬂpa generate PA-RISC code.

[-ﬂsched. schedule the PA-RISC code.

Because we have chosen to focus on register allocation, the bulk of the
back end is the function rdfs that processes the call graph and performs the
register allocation and code generation. Some of the phases are unimpor-
tant technicalities ([[- [],, and [[- [].,), and some are trivial ([[- [, [+ 1.,
[-ﬂcg, [Tlyhe and |I-I|pa), but, for completeness and such that you can see
this yourself, we describe them briefly in the following.

The rest of this chapter extends the material in chapter 5 and explains
in detail the inter-procedural part of the algorithm, i.e., the phases from E
to K. The next chapter carries on where chapter 6 ended by developing the

110

per-function part of the translation, i.e., the internals of rdfs. The chapter
after that then explains the phases from K to ‘.

Casting a phase of the compilation as a translation from one language into
another, annotated language gives a way to describe precisely and explicitly
the results of the phase. In some situations, however, the annotations can
clutter the picture with unnecessary detail. Therefore, we shall omit annota-
tions that are not of interest in the given situation. For instance, a completely
annotated application has the intimidating appearance , €9 5é1 ,s. If we are
only interested in the set X of A’s that may be applied, we present the appli-
cation as €& ,\gl, with the understanding that the other annotations are also
there. In the same spirit, you may want to ignore the difference between the
different kinds of expressions (¢, ¢é, ¢, etc.); they all denote expressions of the
same underlying structure and only differ in how many kinds of annotations
they carry.

7.2 Closure analysis

The set A of functions is defined
A == AMY.EatP | FPY=E.

The closure analysis translates a program e to a lambda-annotated program
¢ € E that is defined by the same grammar as F, except that all applica-
tions have been annotated with a set A of A’s that can be applied at that
application:
E = FEAzFE | FAPE
where A = ZA, and the rest of the grammar is like that for F.
At applications of the form f g'eq, the function named f will be applied.

At applications of the form e; es, it is not generally decidable at compile-time
which functions may be applied, as we can see from the following example:

(Ak.k x at rl7)
(if ey then Ay.y+y at ri5 else Az.4+z at rilb).

The if-expression may evaluate to Ay.y+y at rilb or Az.4+z at ri5, and
consequently, either of those A’s may be applied at the application k x. We
will have to settle with an analysis that gives an approximation of the set
of X’s that may be applied. The analysis must be safe: it must find at least
each possible A that may be applied. The analysis we present here is based
on the region annotations in the program and has been developed by Mads
Tofte.

Using the region annotations for closure analysis

Every expression has a result region where the value the expression evaluates
to is put. For instance, the result region of the expression Ay.y+y at ri5is
p = r15. Hence, the result region of the expression k (the second k of (A\k.k

111

x at rl7)) must also be r15, because (A\k.k x at ri17) is applied to the
if-expression whose result region is r15. The result region of an expression
is only explicitly stated as an “at p”-annotation when the expression builds
a new value in p, for that is the only case in which it is actually necessary to
know the result region to evaluate the expression; to evaluate an expression
that does not build a new value, it is not necessary to know the result region.

It requires a data flow analysis to find the result region of a given ex-
pression (as was suggested with the expression k above). Luckily, the region
inference, as a by-product, infers the result region for every sub-expression of
the program, and our source language actually has a result region annotation
“: p” on each sub-expression. So far we have ignored the “: p”-annotations
to simplify the exposition. Our source language is really

w= E:P
EFE
FPE
let X=Fin E

E
E

where p of € : p is the region in which the value € evaluates to is put. At put
points, e.g., A\y.egat p : p/, the result region p’ and p are, of course, the same
region variable.

When devising a data flow analysis, one can think of the regions as chan-
nels between expressions in which values flow. To analyse what closures flow
to e; of an application e; es, one must look at all expressions that build a
closure and record in what region the closure is put. Then the closures that
flow to an expression e; can be found as the closures that are put into the
result region of e;. The closure analysis thus has two phases:

1. Record in which regions the \’s are put. For each sub-expression of
the program of this kind

Ay.ep at p,

record that Ay.ey at p flows into the region p, i.e., for each p, maintain a
set, ap, of X’s that flow into that p, and record that (Ay.eq at p) € ap.

Since letrec-functions are named, we do not need regions to find where
they may be applied: For each sub-expression

letrec fip1y1 =€1 *** fmPmYm = €m at pin ey,
record that the A that may be applied at a region polymorphic application
of fi is fipiyi = ei.
2. Annotate applications. At each application

€1 €2,

where e; has the form €; : py, the set X of A’s that may be applied is the set
ap; of X’s that flow into p;.

112

At a region polymorphic function application

fﬁBQa

only one specific A can be applied, viz. the one named f.
Because of region polymorphism this algorithm is not quite sufficient.
Below we modify the algorithm to deal with this.

Dealing with region polymorphism

Because formal region variables can be instantiated to actual region variables
there is an aliasing problem. In

letrec f [r1]ly = .-+ f[r2] ---

the formal region variable r1 is instantiated to the actual region variables r2
and r3, so occurences of r1 might actually stand for r2 or r3. Whenever we
do something with a region variable, we must also do it with all the region
variables it might be aliased with. This complication influences both phases:

1. When we record that a A flows into a formal region variable p, we
must also record that it flows into all actual region variables to which p may
be instantiated. If the body of f above contains A\; = A\y.y at ri, we must
record not only that Ay € a(r1), but also that Ay € a(r2) and Ay € a(r3).

2. Similarly, at an application, where the A\ to be applied flows out of
some formal region variable p, the A’s that may be applied are those that
flow out of all region variables to which p may be instantiated. E.g., in the
body of £ above, at an application e; eo where e; has the form e; : ri, the
set of X’s that may be applied is a(rl) U a(r2) U «a(r3), and not only
a(rl).

This is all there is to the closure analysis; if you understand it, you can
skip the rest of this section.

The algorithm in detail

The closure analysis now consists of three phases:

|:|:6:|:| ca let Y= |:|:6:|] alias
Q= |:|:€:|:| flow ¥

e= |:|:€:|:| annotate pa

in é.

The first phase, [-ﬂalias, collects the aliasing information ¢, which is used
in the following two phases. The next phase, |I-I|ﬂow, records for each p the
set ap of X’s that flow into that p. This information is used in the last phase,
[-ﬂannotate, that annotates each application in the program with the set of
A’s that may be applied at that application.

113

0. Build region flow graph, [-ﬂalias. The region variable aliasing infor-
mation is collected by traversing the program and looking at which region
variables the region polymorphic functions are applied to. This gives a region
flow graph ¢ € Z(P x P), in which there is an edge between a formal region
variable p and a region variable p, i.e., ppp, iff p may be instantiated to p.
E.g., if ¢ were the region flow graph for the example above, we would have
rier2 and ripr3.

Denote by ¢* the reflexive, transitive closure of ¢. A p is aliased with p'
iff p'¢*p. In the example above, the set of region variables aliased with r1,
i.e., the set {p|r1p*p}, is {r1, r2, r3}. The region variables aliased with
r2, ie. {p|r2¢*p}, is {r2}.

While constructing the region flow graph ¢ with|[[-] alias-0> We keep track
of which formal region variables each region polymorphic function has, in an

environment 9 € F = P which maps names to tuples of formal region
variables. Initially, 9 is @:

|:|:6:|:| alias = |:|:6:|:| alias-0 .

At a letrec-expression, the region polymorphic functions are added to
the environment:

[letrec f151y1 =eq - fm;gmym =em at pin em+1:|:|a1ias—0 o=
16t19=19+{f1l—>/31, S mepm}
in |:|:81:|:| alias-0 U - U |:|:€m+1:|:| alias-0 V.

At a region polymorphic application of f we confer with the environment
to see what the formal region variables of f are, and add edges from each
formal region variable to the corresponding actual region variable:

|:|:f (o1s --v s pi] eQﬂalias—Uﬁ =

let [p1, ..., ppl =0f
in { (p1,1); s (Propr) b U [leall apins 0 V-
Other constructs are simply traversed, e.g.:
ler e2llaiaso?® = [erBlanaso? U [eallaiaso?

|:|:CO at p:|:| alias-0 Vo= @

1. Record in which regions the X’s are put, [[- [|4,,- Remember ap is the
set of \'s that flow into p. Use +, to merge a’s, i.e., if ;0" € P — ZA,

1

o'+, " = Mp.dp U .

flow

IfaeP 5 PAisa partial map, denote by ext « the extension of a from
Dm « to the whole of P given by:

exta = (M\p.9) + .

114

The only construct of interest in this phase is Ay.eg at p: we must record
that \y.eg at p flows into all region variables p' aliased with p:

[Dy.eoat pllgne = ext{p = {Xy.eoat p} | pg*p'}
+ﬂ0w |:|:60:|:| flow ¥

Other constructs are simply traversed; e.g.:

[letrec fipiyi = €1 - fmPmYm = €m at pin emit]lgoy ¥ =

= |:|:61:|] flow ¥ +ﬂow o +ﬁow |:|:em+1:|:| flow P
|:|:61 62:|:| flow ¥ = |:|:61:|:| flow # +ﬁow |:|:62:|:| flow #
|:|:f ,(782]] flow P = [[62]] flow ¥

[é at pﬂﬂowgo = A\p. 2.

2. Annotate applications, [-ﬂannotate. An environment @ € F = B is
used for annotating region polymorphic applications. Initially, @ is @:

|:|:e:|:| annotate pa = |:|:e:|:| annotate-0 gooz@.

At an application e es, the set A of \’s that may be applied is the union
of the sets of \’s that flow into the regions that are aliased with the result
region p; of e;. Le., if e; has the form e : py,

|:|:61 62:|:| annotate-0 POW = let A = U{ 04/)’ |)0190*/)’}
1 = |:|:61:|:| annotate-0 POV
€2 = |:|:62:|:| annotate-0 POV
1m e€eq1)e9.

At a region polymorphic application, we assume the one A that may be
applied is recorded in the environment w:

|:|:f ,(782]] annotate-0 PO = let A =wf
ey = |:|:82:|:| annotate-0 POW
in f>\ ﬁég
At a letrec-expression, we must record in o what A each f is bound to. If
bi is fipiyi = e,
[letrec by --- by at pin emﬂﬂannomte_o paw =
let w=w + {fli—>b1, B fml—>bm}

é = |:|:61:|:| annotate-0 POW

€m+1 = I:I:eerl:l:I annotate-0 PO

in letrec fip1y1 = €1 - fmPmYm = ém at pin épyq.

115

The sets {ap' | po*p' } etc. are computed by finding the set of p’’s that
are reachable from p in ¢ using a standard algorithm.

Comparison with other closure analyses and discussion

The closure analysis presented here was invented by Mads Tofte.

Closure analysis algorithms for higher-order functional programming lan-
guages (Scheme) have been developed in (Sestoft, 1992) and (Shivers, 1988).
Sacrificing what may be insignificant accuracy, a closure analysis can be de-
vised with a better worst-case time complexity (Henglein, 1992).

Aiken et al. (1995) present a closure analysis which is also based on region
annotations. They generate a set of constraints using the region annotations
and then solve these constraints.

The closure analysis described here (and closure analyses in general) only
gives a safe approximation of which functions may be applied at each appli-
cation, because it works on the whole program. In other words, it will not
give a safe approximation with separate compilation (compiling parts of the
program separately) or incremental compilation (compiling declarations sep-
arately as the user types them in).

With incremental compilation, the user can type in the SML declaration

fun apply fx = f x;

and then later use apply. The compiler cannot know the applications from
whence apply may be applied, and it cannot know the set of functions that
may be applied at the application f x.

The solution is to use fixed linking conventions for the function apply
and for the application f x, as (Chow, 1988) does. This means an analysis
must find out which functions may be applied from outside, and at which
applications functions from outside may be applied. By making two versions
of functions, one that uses the standard linking convention and one that uses
a specialised one, the penalty of separate compilation can be reduced.

If one wants to avoid using this closure analysis, because of the com-
plexity it adds to the compilation or because of the trouble with separate
compilation or because one does not have a region annotated program, it
should be possible to replace the closure analysis with a simpler one: An-
notate all applications of the form f ges with the function named f, and
all applications of the form e; e with “unknown”, forcing them all to use
the same linking convention. (To deal with separate compilation, this sim-
pler closure analysis will still have to be augmented with an analysis that
determines which named functions may be applied from the outside.)

116

7.3 Sibling analysis

Recall how letrec-functions are treated (section 4.7): A shared closure is
built for the A’s in the letrec-expression:

letrec f1 p1y1 = €1

fmPmYm = €m at p in €4

Because of this, all occurrences of one of the siblings fi, ..., fp, in €1, ...
ém+1 are really uses of the same value, the shared closure. Therefore, we
do not want to distinguish between fi, ..., fp,, and the phase described
here replaces each occurence of any of fi, ..., f, with a new identifier, f,
which we will call a sibling name. As this identifier, we simply use the set of
siblings, i.e., f = {f1, ..., fm}, which is unique.

Formally, a program-wide analysis, |I-I|Sib , translatgs a lambda-annota-
ted program é € E toa sibling-annotated program é € E , defined by

<

E = F\PE \

where F' is the set of sibling names, i.e., F. The rest of the grammar is
similar to that for E. After the sibling analysis, the set Z of variables (p. 19)
is

Z w= X |Y | F|P| A,

i.e., F' replaces F.
The analysis is trivial. It keeps track of sibling names in an environment

Z € F > F that maps a name f to its sibling name f. Initially, .# is &:

[ellgp, = [ellgpo@

[fapeallge # = let & =[[es]] 0 F
f=2f

in fAﬁ§2

117

letrec fi 51 Y1 = €1
. y —
fmgmym=ém at p in épq Sib-0
= let f={f1, ..., fm}
ér =[ellgn0 7

ém-I—l = |:|:ém+1:|:| sib-0 F

in letrec fipi1y1 = é;

kg ° . °
fmPmlYm = €ém at pin €pqq.

Other constructs are simply traversed, e.g.:

[\y.éo at p:|:|sib—0 F = let éy= |:|:é0:|:|sib-0 Z in \y.ég at p,

Teinéallgno# = let ér =[[e1]lgp0F
§2 = I:I:é?:l:l sib-0 F
<

in §1A€2-

7.4 Closure representation analysis

The title of this section is a bit pretentious since the analysis does nothing
more than find the free variables of each A and assign a closure offset to each
free variable.

The closure offset of a free variable of A can be an arbitrary non-negative
number as long as it uniquely identifies the free variable among the other free
variables of that A. We cannot just decide this offset ad hoc when necessary,
though, for the code that builds the closure for a function and the code for
the function must agree on the closure offset of each free variable. Therefore
a program-wide analysis annotates each A with its closure representation.

The closure representation of the function \y.ég at p is a map

Kekx = Z51

that maps the free variables of \y.éq at p to their offsets in the closure. The
closure representation of the functions bq, ..., b, in

letrec b -+ by at pin ém+1

is a map from the combined free variables of the functions to their offsets in
the shared closure.

118

The closure representation analysis [-ﬂcr translates a sibling-annotated
program é € E to a closure-representation-annotated program ¢ € E which
is defined by the same grammar as F , except that all functions and letrec-
expressions have been annotated with their closure representation, K:

E = AY.XE atP
| letrec®B ... B atPin E

B = FPY=KE.

Notice the closure representation of b’s is annotated both on the b’s and on
the letrec-construct itself.

Let [[€]];, denote the free variables of é. There is nothing difficult about
the translation:

[)\y.ég at pﬂcr = let {z1, ..., zn} =[[\y.éo at :OIva
K={zn—1, ..., zp—n}

éo =[é0ll o

in Ay.Xégat p.

Notice the n free variables are numbered from 1 to n; offset 0 is used for the
code pointer (section 4.6).

letrec fi [pi, ... ,ﬁ{] Y1 =€

\ N d . <
Fm pL e pE Tym = ém at pin 44

letf:{fh---,fm} .
{zl, ey Zn}:[[él:ﬂfv U"'U[[ém:ﬂfv \\{.f: /\)%: 72){7 Y1,

cr

p;l""’i)fn’ym}
K={z1-0,..., zp—>n—-1}

é1=[é],

ém+1 — |:|:§m+1:|:| cr
in letrec’Cfl [[)%, ,[)]1] Yy = Key
fm [p}n,. .. ,,bfn]ym =Ke¢, at pin émy1.
Notice the free variables are numbered from 0: there is no code pointer in a

shared closure (section 4.7). The sibling variable f is not considered a free

119

variable within the bodies é, ..., é,, of the \’s; from the point of view of
these \’s, f is the closure parameter.
Other constructs are simply traversed, e.g.:

|I1et x = él in éQﬂcr = let é; = |:|:§1:|:|cr
é2 =[[62]],

in letx= é; in éq,

], = =

7.5 Converting functions to functions of several arguments

When can a function be converted to a function of several arguments? Con-
sider sumacc:

fun sumacc (0,n) = n
| sumacc (m,n) = sumacc (m-1, m+n).

Converted to our source language, it will look something like:

letrec sumaccy =if #0y = O then #1 y
else letregionr4:2 in
sumacc (#0y-1, #0y+ #1y) at r4d:2
at r2:0 in e.

The fact that only the components of the tuple are used is reflected in that
the argument, y, only appears in expressions of the form #:y.

A very simple, sufficient condition for when a A may be converted to a
function of several arguments is:

1. all occurrences of the argument, y, of A must be in the context #:y,
and it must be directly within A; and

2. at each application é1xé9 or fpéo where A may be applied (i.e., where
AEN),

(a) e must have the form (é1, ..., é,) at p

(b) every X' € XA must be a function of several arguments.

The first condition will not allow converting A to a function of several
arguments if y occurs in a A’ within . If y appears free in any X within X,
A contains an implicit use of y, for y is used when the closure is built for \'.
This implicit use is not of the form #iy, and that is the reason we disallow
converting A in that case.

The function sumacc will be converted to a function of several arguments
because it is applied to a tuple expression. If sumacc had instead been

120

fun sumacc (0,n)

n

| sumace (m,n) = let val x = (m-1, m+n)
in ,

sumacc x

end

it could not have been converted to a function of several arguments, because
it is applied to a variable.

We will implement the conversion of functions to functions of several
arguments by converting the closure-representation-annotated program é €
E , to a several-argumented program é € E where the arguments of a function
with several arguments have been made explicit. For example, sumacc above
may be transformed to:

letrec sumacc <yO0, y1> =
if yO = O then yli
else letregion r4:2 in
sumacc <y0-1, yO+yi1>

where y0 and y1 are fresh variables. Note that the memory allocated in r4:2
for the tuple is never used. This unnecessary allocation and deallocation of
memory is not costly (it is done in two K instructions), but indicates that the
conversion to several argument functions should be done before the region
inference. .

The grammar for E is:

E o= <B,.. B>
Y = Y, ..., Y>
B ou= BAL

| FABE

\ AW KXEat P

é = FP)_}=KE

The rest of the grammar is similar to the grammar for E.
The translation [- [],, € E — E consists of two phases:

|:|:6:|:| sa let & = |:|:é:|:|WhiCh
in |:|:€:|:| convert Y=<
First a simple analysis, [-ﬂwhich, traverses ¢ and records which A’s may
be converted to functions of several arguments according to the rules above.

The result is a map # € A — }7, where '\ = <y1, ..., yp> withn > 1
means that A\ is a function of n arguments, and yi,...,y, are the fresh

121

variables that are to be inserted. When %' A = <>, A cannot be converted to
a function of several arguments. Since [-ﬂwhich is straightforward, we will
not describe it further.

Second, [-ﬂconvert traverses the program replacing #iy with the i*" ar-
gument y;, and it converts arguments of functions to their new form. To
replace #iy with y; we need to know the argument y of the current function
and the fresh variables ¥ = <y1, ..., y,> it is replaced with. Therefore
[-ﬂconvert has both %, and y and ¥ as arguments. If the current function
cannot be converted, i is <>.

An application must be converted to pass several arguments, if one (and
thus all) of the functions that may be applied takes several arguments:

I:I:éo{/\l,...,)\m} (éI’ cee s én) at p:I:ICOnvert gyg =
let é9 = |:|:8 U:|:| convert @yzj

én = |:|:€n:|:| convert @yzj
in if \; = <> then ég{)\ly.“’/\m}<(é1, ..., Ep) at p>
else éO{)\l, ...,)\m}<é1 s eee s DL
Notice that also a function that takes a 1-tuple may be converted to a function
of several arguments. If such a function is converted, the argument will have
the form <é1>; if not, the argument will have the form <(é{) at p>.

If the argument é; is not a tuple-expression, only one argument will be
passed:

|:|:é0>\é1:|:| convert @yg = let &g = |:|:60:|:| convert @ygj
é 1= |:|:e 1:|:| convert Q/yg
in égx<éq>.
Region polymorphic function applications are treated similarly.

When a function definition is encountered, the argument is converted if
possible:

[y -0 at pllconers 295" = et é0 = L0l convert Zu(Z (A\y-é0 at p))
in if Z(A\y.égatp)=<yr, .-, Yn>
then A<yy, ..., yp>.égatp
else A<y>. éq at p.

Region polymorphic functions are treated in the same manner.
We replace #iy with y; if possible:

[[#i zﬂconvert B y<yi, ..., yn> = if z =y then y; else #i z.

If the current function does not take several arguments, we do not change
#iy:

|:|:#Z' Z:I] convert @y<> = #z

All other constructs are just traversed.

122

7.6 Building the call graph

Since our closure analysis annotates every application in the program with
the set, A, of X’s that might be applied at that application, we can build
the call graph, -, easily: for each application annotated with A, add edges
from the A the application is directly within to every X in A. The function,
Il -ﬂcg, that computes the call graph from a lambda-annotated program Amain

is defined via an auxiliary function, [[-]| cg-0” which takes an extra argument,
Acur., the A we are currently directly within. The auxiliary function returns
the unrooted call graph:

[-T, € E —7?
[Do € E—-A— PAxPAxA)
Y= (A8, & Amain) € T =PAx P(AxA)xA

-
\

A = \XWEEatP | FPY =FE.

Initially, |IéI| o turns the program é into a function A\pain, which becomes
the initial Aeyp:

|:|:e:|:| cg = let Amain = >\Ymain P¢ at Tmain
(nga @@) = |:|:>\main:|:| cg-0 Amain
in (X:ga (’)@7 Amain);

where ymain and rpmain do not occur in é, and @ is a dummy closure repre-
sentation.
Let U , denote union of graphs:

(XB,6) U, (X&) = (XEUXH, £U&).

At X-abstractions, I:I:':Hcg—(] records the A-abstraction in X°®, and Acyr. 1S
changed:

[\7.% ¢ at pﬂcg_o Aeur, = ({Agj.’c ég at p}, @)
U(,) [[éo:ﬂcg-ﬂ ()\jlj’c ép at p).

At a letrec-expression, the region polymorphic functions b; of the form
fip;yi = *é; are recorded in X8, and the bodies, é;, are traversed, each with
the proper Acyr.:

|I1etrec’C by --- by at pin ém+1:|:lcg_0 Aeur.
({b1 -y bt @) Uy [eiDegobt Uy oo Uy [emllegobm
U(’) I:I:ém+1:|:|cg_0 >\cur.-

At applications, edges are added from Ay, to all X’s that can be applied:

123

[I:é[]A<é1, B én>:ucg_g >\cur.
(@, {(>‘Cur.a)\)‘)\E)\})
U(’) |:|:é0:|:|cg_0 >‘cur. U(’) e U(’) |:|:én:|:|cg_0 >‘CUI'.5

Similarly with region polymorphic applications.
Other expressions are just traversed, e.g.:

|:|:é1 o é2:|:| cg-0 Acur, = |:|:é 1:|:| cg-0 Acur. U(’) |:|:é 2:|:| cg-0 Acur.
[l g0 Acur. = (2, 9).

7.7 Finding strongly connected components

From the call graph, sccs € 7 — T constructs the strongly connnected com-
ponents graph v € T = ZPA x Z(A x A) x A, where A = FZA. This
can be done with a standard algorithm. The code to find the strongly
connnected components graph, kindly given to us by Kristian Nielsen, is
based on (Launchbury, 1993).

7.8 Traversing the strongly connnected components graph

To some extent, this section repeats section 5.11. It describes rdfs , the overall
algorithm for processing the graph of strongly connnected components, i.e.,
the inter-procedural part of the algorithm. The following chapter is devoted
to developing the functions called by rdfs .

The function rdfs € T' — K first finds the set X=5 of equivalence classes of
A’s that must use the same linking convention, then sets up the initial inter-
procedural environment 79, and calls rdfsy to process the strongly connected
components graph in reverse-depth-first search order. Assume « has the form
(X%, 7, X0) and X 1S {Amain }:

main

rdfs v = let A% = |:|:>\main:|:| uf

o = ({XEm—i | e X=5),
(X0 @ | XeX5Y))

(K.) = rdfsg Y Xm0
n k.

rdfsy uses do-scc to process each node:

124

rdfso YN = let {A],..., X]} = children yA]

cur.

(K1,) = rdfsoyX]n

(K1,) = rdfso YA)n
("f: 77) = do-scc A(gur.n
in (k; KL 5 K, M)

Roughly, do-sce X1 uses [[- [] jonode ©0 all A’s in A%

do-sce X°n = let {X1,... , N} = {{{M]oa X0 | X € X°}
¢ =[Xgann U - U X gann
v=(n, §)
(K1, v) = I:I:X)l]:ldonode v

(Kj’ V) = [XJJ:D donode ¥
n=, vI4+{X = v?})

in (k15K M)

The arguments of do-scc are the strongly connected component A° that
must be processed and the current inter-procedural environment, 7, and
do-scc returns the code for the functions in A° and an updated inter-procedu-
ral environment. Before the functions are processed, all applications in them
are annotated by |I-I|ar_A, which is described below, yielding the recursive-
ness annotated functions {X1,... ,)fj}. Furthermore, the set, @, of regis-
ters that will be destroyed anyway by X° is approximated, using |I-I|da_ A
described below. The function [-ﬂdonode takes and returns a per-strongly-
connnected-component environment v, which comprises the inter-procedural
environment 7 and the approximation ¢: v = (1, ¢). We use 1" to denote
the 7 in v, and v9 to denote the n? in 5 in v; etc. There is no natural order in
which to process the A’s in a strongly connnected component; do-scc simply
processes them in arbitrary order.

While processing a A, [-ﬂdonode updatfs the ¢ in v whenever a value
is allocated to some register. Hence the ¢ in the v returned by the last
[-ﬂdonode tells which registers will be destroyed when a function in the
strongly connnected component A° is applied. The inter-procedural envi-
ronment n returned by do-scc is updated to record this.

The analyses [- [,y and [[- [] 4, are described in the following sections,
and [[- [jop0de 1S the subject of the next chapter.

While processing a A, we have a per-function environment ¢ € E which
comprises the current strongly connnected component environment, v, and
the function, Acy;., currently being processed, i.e., £ = (v, Acyr.). The reason
is that we need to access, e.g., 9 to translate applications; we need to update

125

¢ when a register is destroyed; and we need A.yr. to, e.g., access its closure
representation. Summing up the different environments:

("', nY), @), Acur.)

N . .
n inter-procedural environment
H_/ .
v per-strongly-connnected-component environment
€ per-function environment.

7.9 Finding the equivalence classes of \’s

The analysis, [-ﬂuf, to split the A’s of a program into equivalence classes is
a simple union-find algorithm: Traverse the program and make sure that all
A’s that may be applied at the same application are in the same equivalence
class.

Here is the algorithm in detail. The actual work is done by |I-I|uf_0,
which has an argument, A=* the set of equivalence classes:

[Tueo € B = P(PA) » P(PA)
All[[¢]] ¢ does is to call [[¢]] s, with an empty set of equivalence classes:

Ll = [l

At an application, the equivalence classes of the A\’s that may be applied
are merged:

[éinéalluo X = [éilluro ([éalluro (union {find A= X € A}AT))

where

union { A7, ... , A5

AN 5D U G U UXG)
{)\E, if AEN AN XS

find AN=°2 =
{A}, otherwise.

Region polymorphic application is dealt with analogously. Other kinds of
expressions are simply traversed, e.g.:

[[)\Zjé[] at p:|:|uf = |:|:é0:|:|uf
[I:(él, ""é’ﬂ) at p:|:|llf = |:|:é1:|:|uf0"'0|:|:érn:|:|uf
Tl = A,

7.10 Potentially recursive applications

Recall that we expect each application to be annotated with “O” or “(”
according to whether it is potentially recursive or not (section 5.10). This
annotation of applications is done by the function |I-I|ar. It translates a
several-argumented expression & € E to a recursiveness-annotated expression

126

¢ € FE in which all applications are annotated with an » € R where R ==
O], ie., the target language, E , of the translation is

o

E := ERE | FEPE |

The rest of the grammar is similar to that for E. The translation function,
|I-I|ar, takes as extra argument the strongly connected component X° that
contains the A that the expression being translated is directly within:

[[-]]arEEaA—)E.

The translation simply traverses the expression and annotates each applica-
tion directly within it:

[éoa<éi, ...y én>]],, A% = letr=if AN X° # @ then O else ¢
éo =[[eo]] 0 X°

€n = [é nII ar X
n 600;:(601, ey eon>.
Region polymorphic application is dealt with analogously with normal appli-
cation. Applications that are not directly within the expression are directly
within some other A that may belong to another strongly connected com-
ponent, and these applications must receive their annotation in the context
of that strongly connected component. Therefore, only applications directly
within the expression are annotated, and consequently, |I-I|ar does not tra-
verse bodies of A\’s within the expression:

[A\G.é0 at p[],, A° = Aj.épatp

[letrec b1 -+ by at pin ém+1:|:|ar X0 =

let €Om+1 = I:I:ém+1:|:|ar AO

in letrecby -+« by at pin €,41.
The other constructs are simply traversed, e.g.:

1etx=é1 in ég X° = let élz €1 °
ar ar
€ =[[e2]],, X°

in letz = él in é)Q.

The translation has been defined for expressions; a A is translated simply
by translating its body, i.e., define [-ﬂar_[\ by

[[\7.é0 at pﬂar_A =)\gj’.[égﬂar at p
[[f,b?j= éU:Dar—A = flbgj=|:|:é0:|:|ar'

127

7.11 Approximating the set of registers that will be destroyed by
the code for an expression

This section describes a function that approximates the set of registers that
the code for an expression destroys. This is used by the per-function part of
the register allocation, [[-I|ra , but it is also used in the inter-procedural part
of the algorithm for approximating the set of registers that will be destroyed
anyway by a function, as was described in section 5.10.

Given a recursiveness-annotated expression ¢ and an inter-procedural en-
vironment n € H,

[T, €E »H— 20

must return an approximation of the set of registers that will be destroyed
by the code for €. The inter-procedural environment 7 is needed for approxi-
mating which registers are destroyed by applications in €. At an application,
the set of registers destroyed is the union of the sets of registers destroyed
by the strongly connnected components that may be applied. If the set of
functions that may be applied is A, the strongly connnected components X°
that may be applied are those for which A N A° # @. And thus, the set of
registers that may be destroyed is

destroys An = U{nIX | ANX#3 A X €Dmpd},
and then
|:|:é30 ;\<é31 3 ey éjn>:|:| dan == destmys AT]

U[[éﬂﬂdan U---u [é’nﬂdan

Similarly with region polymorphic applications.

For many constructs there is no way to predict which registers will be
destroyed; the approximation of the set of registers destroyed is simply the
union of the approximations of their sub-expressions:

[vﬂdan = 9

[l gam = 9

[T €2l 4am = [[é2]lgan
[51032]](1377 = [[éﬂdan U [§2ﬂdan

|:|:1et xr = él in é)2:|:|da77 = [I:é)l]:ldan U [[é2ﬂda n'

The code for a put point (an expression that has an “at p”-annotation)
will destroy the set ¢, of registers, if the region being allocated in has un-
known size, because a ¢1 :=at ¢9 : t-instruction is used to allocate in regions
of unknown size (section 4.4) and that instruction destroys ¢a; (chapter 3).
Region variables of the form p:? will always be bound to regions of unknown
size; so define

[I:Q:?:Dda-at = ant-

128

If the size of the region is known, memory has already been allocated, and
no registers will be destroyed by put point code to allocate. Region variables
of the form p:i will always be bound to regions of known size; so define

[Q:i:ﬂda—at = .

Finally, if the region variable has the form p:%, it may be bound to both
regions of known and regions of unknown size. We cannot predict what
registers may be destroyed by the code to allocate in the region bound to p;
we rather arbitrarily define

lo:¥lgan = Par

(We do not require that [[-]| da 8ives a safe approximation in any sense—i.e.,
[€T] 4a 71 does not have to be an approximation that contains at least all the
registers that will actually be destroyed by the code for é—so we could also
have chosen to define [[0:4]] 4, .. = 9.)

Then the approximations for the put point constructs are:

[é1 é2 at pllg,n = [plgaar U Lé2llqan
[(él"" !én) at pﬂdan = |:|:p:|:|da—at U |:|:é)1:|:|dan u---u [é)n:ﬂdan
[Agéjg at p:|:|da77 = |:|:p:|:|da—at

[letrec by -+ by at p in §m+1ﬂdan = I:I:p:l:lda—at U [ém+1ﬂda n,

etc. Notice that, since this is a per-function analysis, \’s within the expres-
sion are not traversed.
Branches of conditional expressions are traversed:

[[if éo then é; else &9l qun = [[€ollgan U U€1llgan U [€2ll4an-

The expression letregion o0:? in ¢; will translate to code that uses
the instructions ¢ := letregion and endregion (section 4.4). These instructions
destroy @etregion and Pendregion, respectively (chapter 3). Hence,

[1etregi0n 0:7in élﬂdaﬁ = (ﬁletregion U éendregion U |:|:é)1:|:|da77-

Memory for regions with known size is allocated on the stack (section 4.4),
i.e., no registers are destroyed (except ¢sp, of course):

[[letregion g:i in élﬂdan = [[élﬂdan.

The analysis has been defined for expressions; a A is analysed simply by
analysing its body, i.e., define [']da-/\ by

[\7-éoat pllgan = [éolaa
[fﬁg=éoﬂda-A = [éoﬂda-

129

8 Development of the per-function part of the
algorithm

This section develops [[-ﬂdonode, the per-function part of the algorithm. Ba-
sically, [-ﬂdonode processes a A by first performing the w-analysis, [[-]|
on it, and then translating its body with [-ﬂra.

We will develop [[- [],,, and[[-]|, before we describe|[] -] jonoqe in detail.
The chapter is organised thus:

Section 8.1 develops the w-analysis [-]|, . Then, the register allocation
[[-1,, is developed for each construct, in the following 9 sections. Con-
fer with chapter 4 regarding what code to generate for each construct; this
chapter only discusses the register allocation for the constructs.

Section 8.2 develops the register allocation of e oey. The interesting issue
in this is how to manage temporary values.

When this has been decided, section 8.3 can finally explain how the de-
scriptor ¢ works.

Section 8.4 develops the translation of letregion p in e;. This involves
the questions how to implement region variables (especially region variables
with known size) and how the register allocation should deal with instructions
that destroy a given set of registers.

Section 8.5 discusses the central question of how to translate definitions
and uses of values.

Section 8.6 develops the translation of (ey, ..., e,) at p. The issue
of interest is how the register allocation should deal with code that allo-
cates. Register-allocation-wise all put points are dealt with basically as this
construct is dealt with.

Section 8.7 develops the translation of the case-construct. The problem
for the register allocation is the unlinear control flow, which must be taken
into account when processing the descriptors, 9.

Section 8.8 develops the translation of if ey then e; else es. This
construct can be treated quite like the case-construct, but it is more fun to
compile it properly, i.e., to short-circuit code. This is more difficult in SML
than in some other languages because the if-construct is an expression,
and in particular, the condition in an if-expression can (and will often in
practice) be an if-expression itself. Translating Boolean expressions to short-
circuit code seems to fit nicely into our method of register allocation and code
generation.

Section 8.9 develops the translation of application. This connects the
per-function part of the algorithm with the inter-procedural part.

Section 8.10 develops the translation of the exception constructs. The
main problem is the irregular control flow exceptions cause.

Section 8.11 wraps up the per-function part of the algorithm by develop-
ing |:|: ' :Hdonode'

The main issues in the register allocation have been covered by the dis-
cussion of the constructs mentioned above. The register allocation of the

oa’

130

remaining constructs presents only minor variations of the already discussed.
For instance, the register allocation of ¢; es at p is similar to that for a pair
(e1,e3) at p. For completeness, section 8.12 briefly presents the translation
of these constructs.

8.1 The w-analysis

Remember that the w-information is a map,
weN = V520,

from live values to sets of registers to which those values are hostile.
Given an inter-procedural environment n € H, the w-analysis

[-ﬂoaeﬁ S HSE

translates a recursiveness-annotated expression ¢ to an w-annotated expres-

.
sion ¢ € E , where

*

EF = qgXqg
| Qéﬁég
| oFRPE
\ QletX=E* inE*Q

| qletregion Pin F ¢

The w-analysis is a straightforward backwards analysis. It traverses the
expression using an auxiliary function

[-ﬂoa_oel% SHoS Q5 QxE,

which takes an expression €, an environment 7, and an in-flowing w' and
yields an out-flowing w and an w-annotated expression ¢. How this works is
illustrated by the binary operation construct:

[€10€a]],.0nw" = let (w2, &) =[[Ea]], .o’
wla 61 |:|:61:|:|0a 071w2

in (wla w1 81 06210’)'

In general, the w-information after the ¢ that |I-I|oa_0 yields (i.e. the
w' annotated on the right of ¢é) is the in-flowing o’ to [[-]|, , and the w-
information before é (i.e. the w annotated on the left of €) is the same as the
out-flowing w from [[-]] ., o-

In the backwards traversal, a variable becomes live the first time it is in
a non-binding position, and it dies when it is in a binding position. Since

131

the w-analysis is used on a by-function basis, values are only bound by the
let-, letregion, letrec-, and exception-constructs. Each time a use of a
value, v, is encountered, it is looked up in w. If v is not in the domain of w,
it is inserted. We define 4, to take care of this:

wt, v = if v € Dmw then welse w+ {v — @},

and then
[zﬂoa_onw' = let w=u +, 2

in (W, u2zu).

The expression let z = €; in € defines z in €s; 7 is not live in the code
for €1, and consequently, it is erased from the w that flows out of €5 and into
o]
€1:

[let z=¢; in €3]], onw’ = let (wo, é2) = [[€2]]), on’
wi = wa \{z}
(w1, €1) [81]]03 0w
in (Wi, o, let z=¢€; in €9),

where w\ v is the restriction of w to the domain Dm w \ v.

The expressions letregion g in €; and exception a in é, are treated
analogously.

At an application which is not potentially recursive, we must take into
account that a number of A\’s may be applied at that point. This is recorded
in the A annotated on the application. Since A’s are processed bottom-up
in the call graph, we will know exactly which registers may be destroyed,
namely destroys An (see section 7.11, p. 128). All variables live across the
application must be made hostile to destroys An. To this end, we introduce
the function antagonise € o — Q — Q:

antagonise pw = {r+— wrU@ |z € Dmw}.
Then

Teo ?<é’1 s €]l o’ = let w), = antagonise (destroys An)w’
(wns én) = [[€nll gaomwn

w0, 60 [60]] 0a-071%1

n (u)o, wo 60 }\<€1, Cee s en>w/).

If the application is potentially recursive, control might flow back to the
same program point. In this case, all values in registers will be destroyed,
and they will have to be reloaded after the call. Therefore the information
about which registers each variable is hostile to is of no relevance to program

132

points before the application, and the w-information for each variable is reset
to @ using the function unantagonise € Q — Q:

unantagonisew = {x— J|z € Dmw},

[§0§<é’1 s €] e’ = let W), = unantagom'sew
wna en |:|:en:|:|oa 077(«0

(an 8[] |:|:eU:|:|oa []77[‘)1
in (Wo, wy€0x<€1s -ovy En>).

The code for an expression that has an “at p”-annotation (i.e. a put
point) will destroy the registers [[p]] 4, .. (section 7.11). Therefore, we intro-

duce [[p]]aar € © — Q to record this in w. A put point is also a use of the
region variable p, and this must also be recorded in w, hence the 4 :

[pﬂoa_atw = antagonise [pﬂda_atw +,a P-

Notice that p is added to w after all the other variables in w have been
antagonise’d to [[pﬂda_at. This is because p is used before the allocation
takes place; it need not be live across the code that does the allocation.

The code for the put point (€1, ..., €,) at p (p. 28) first allocates
memory in p for the tuple. Then the sub-expressions €1, ... , €, are evaluated
(in that order) and the results are stored in memory. Correspondingly, in the
backwards analysis, the sub-expressions are traversed in the order €,, through
é1, and then [[p]],, ., is applied to w:

[(51, ..., Ep) at pﬂoa-onw' = let (wp, €n) I:[enﬂoa o’

(w1, €1) = [élﬂoa_OUWQ
w = |:|:p:|:| oa-at Wi

in (w, » (€1, ..., €n) at puy).

Other put points are treated similarly, e.g.:

|:|:él éJ2 at pﬂoa—ﬂnwl = let wQ’ 62 |:|:62:|:|0a Onw

w = |:|:P:|:| oa—at

in (W, , ¢ €2 at pu).

Only the put point A\ij.* éyat p is a bit different. The code for it allocates
memory for a closure, and stores the free variables of Aij.* égat p in it. This
constitutes a sequence of uses of the free variables, which must be noted in
w as if it were a sequence of normal uses of values:

D75 eyt dlons’ = let (o1, 20} =Dk
w=u +0a 21 +0a +0a Zn
W= I:I:p:l:loa—atw

in (w, w A7.Xépat py).

133

The w-analysis is a per-function analysis, so € is not traversed.

The expression letrec by -+ b, at p in é,,, is treated almost exactly
the same way; the difference is that the sibling name (p. 117) of the letrec-
bound A’s should be removed from w as if it were an x of a let-expression,
and €,,41 should also be traversed.

In if €y then x else y control may flow through either x or y. Both
x and y must be considered live in the w before the if-expression; i.e., the
out-flowing w from [[if €, then x else y]| oa.0 Must tell that both x and y
are live. Therefore the function Lo, to join the two w’s that result from the
branches is defined

wilogwe = {v— wiv U wov |v € Dmwi UDmuws},
and then

[[if €0 then ¢ else é9]], onw’ = let (wa, é2) =[[62]],0onw’
(w1, €1) |:|:el:|:|0a onw’
wo = w1 Uga wa

((AJ(], éﬂ) = [éoﬂoa—onwé
in (wg, w,if € then é; else ég).

Notice that the in-flowing w to both branches is the same.

The expression caseégof ¢c;=>¢1| ... lc, =>é,|-=>€,,1 can be handled
similarly, joining the w’s from the branches €1, ..., €,,11 with L, .

When an exception is raised, control flows to the nearest enclosing
handle-expression, not to the context as usual. Hence, the in-flowing w
to [[raise élﬂoa-o is of no use. This in-flowing w should be the join L,
of the out-flowing w’s of the handlers that could handle a raised exception
from this raise-expression. This would, however, complicate the w-analysis
with more w’s, and it would require a non-trivial control flow analysis to
decide which handle-expressions control might flow to when an exception is
raised. To keep things simple, we choose to make a worse approximation:
the in-flowing w to a raise-expression is &:

[raise é1]], gnw’ = let (w, é1) =[é1]]y 1@
in (w, ,raise €; »).

With this, the central aspects of the w-analysis have been covered.

8.2 Temporary values

In this and the following 8 sections, we carry on the development of the
translation |I-I|ra from where we stopped in chapter 6 with the definition
of [[let x = €1 in es]],. In that chapter, [[e]], took a & as an argument
and returned a resulting 4, but actually it takes and returns a pair (,¢)
containing ¢ and a per-function environment ¢ (p. 125). Le., with M = AxE

[, €E—-M— (Mx®&, xB).

134

The code for ey 0 es has the form

d1 ::‘ code to evaluate ey ‘ o ::‘ code to evaluate es ‘ : [[oﬂo_prim 1P,

where [[o]] o-prim P1¢2¢ translates the primitive operator o to instructions that
compute the result from ¢; and ¢9 and put it in ¢:

|:|:+:|:| o-prim ¢1 ¢2¢ = (;ZS = ¢1 + ¢2
[-Noprim $1026 = d:=d1-¢2
[L:=1loprim P11 6260 m[¢1 + 0] := 2.

Thus, 3 for e; 0 eg is

B = A XS Brdas s Badhas I:I:O:I:Io-prim P1929,

and the register allocation has this form

[eroea]],, (d,6) = let ((), ¢1, B1) =[[er]l,, (5,2)

((6 € 2, |:|:62:|:|ra 9, 8

S Bi616 5 Baas [l i 1620
(5a 5)7 —register ﬁ)

When choosing ¢, we have the following (not always compatible) goals:

=

n

—~

1. To allow the result of e; to stay in ¢ across the code for ey, avoid
registers that are known to be destroyed by es, i.e., avoid the registers
[eal] 4, 7 (section 7.11).

2. To avoid register-to-register moves, prefer the natural destination reg-
ister, ¢1, of ey.

3. Aim at the previously discussed four general objectives (p. 85).

Thus, we can pick ¢; with choose @1 (Teall 4o €") wid, where W} is the w-
information after ey, the point where the temporary value is defined. (Check
the specification of choose, p. 87.)

When choosing ¢9, there are no registers that should preferably not be
chosen; instead there is a register that must not be chosen, viz. ¢;. Thus, we
can pick ¢y with choose {1 }pa@whd, where w) is the w-information after es.

After choosing ¢; and ¢9, we must also record in the descriptor that
they contain new values. An auxﬂlary function, new-tmp, similar in spirit to
L Tger (p- 88), does this: new-tmp dpduw(d,) chooses a register in the same
way choose ¢¢¢w(5 does, but also returns an updated 6 and . Summing up,

should be

((6a 6)7 ¢1) = new—tmp ®$1 ([62:|:|da 5”) w’l(éa 6)7

135

and should be
((0,€), ¢2) = new-tmp {¢1}pa@wh(d,e).

If ¢ is destroyed by the code for ey, it must be preserved around that
code.

Assume kill-tmp § checks whether the value that was last new-tmp’ed has
been thrown out of its register, and returns a preserver p € Z — Z of that
temporary. The idea is that if { is the code that destroys the register ¢
containing the temporary value, then p(is the same code, except that it
does not destroy ¢. Thus, if the temporary value that was last new-tmp’ed
has been thrown out of its register ¢, the preserver will be

p¢ = A% <P). push ¢ ; ((<°, <P +1) ; pop &.
Otherwise, the preserver does nothing;:
p¢ = ¢

kill-tmp 0 must also record in § that ¢ again contains the temporary value.
Then

Teroell,, (6,6) = let ((8,¢), b1, A1) =[erll,, (3,€)
((0,€), ¢1) = new-tmp @(251 ([egﬂda 877) Wi (0,¢€)
((6,2), 2, B2) = [eall, (6,2)
(6,2), b2) = new-tmp {¢1}$22(6,¢)
(0, p2) = kill-tmp 6
(0, p1) = kill-tmp ¢

/6 =)\(b Q. ﬂl¢1§) p1(52¢2)§ ; [I:O:Do—prim ¢1¢2¢
in ((6,€), —register, 3).

The first kill-tmp § corresponds to the new-tmp for ¢9; since ¢ cannot have
been destroyed, the preserver po will not do anything, and we ignore it. The
second kill-tmp § corresponds to the new-tmp for ¢i; the preserver, pq, it
returns is used to save ¢; across (a¢s. Notice that this way of treating
temporary values is only possible because live ranges of temporaries happen
to be nested inside each other.

Intuitively, new-tmp marks the beginning of the live range of a temporary,
and the corresponding kill-tmp marks the end. For instance, the new-tmp
for ¢y is between [[e1]] ., and [[e5]] , because the live range of the result of e;
starts between the code for e; and that for es.

Notice how new-tmp and kill-imp correspond closely to [-ﬂdef (p. 88)
and [[-],y (p- 104), respectively. Their implementation is explained in the
next section.

Expressions ej 0 e do not have a natural destination register. If we
returned, say, ¢o as the natural destination register, the context would be

136

more inclined to choose ¢. This would be unfortunate, since ¢o might
contain a value worth preserving. For instance, choosing ¢2 to hold the
result of a+b in the expression (a+b)-b would evict b from its register and
necessitate a reload of b to compute the subtraction.

A remark on notation: Some meta-functions have discouragingly many
arguments, but many arguments can be ignored. As ¢ records the current
state of the registers, it is passed to and returned from almost every meta-
function. The flow of §’s is only non-trivial where control flow is not linear,
e.g., in if-expressions. You can also ignore the environment e, which is
passed to and returned from any meta-function that may need to access or
update the inter-procedural information, e.g., the set e? of registers that will
be destroyed by Acyr., or the linking conventions map 9. The ¢-argument is
always a set of registers that must not be chosen. The q?)—argument is always
a register that should preferably be chosen. The ¢-argument is always a set
of registers that should preferably be avoided. The w-argument is always
the w-annotation at the appropriate program point. These arguments are
supposed to ultimately end up as arguments to choose, and can to a wide
extent be ignored. The arguments ¢, b, ¢, w, and (0,¢) are always passed
in that order.

8.3 The descriptor ¢

Having explained the treatment of temporaries, we are now in a position to
explain precisely what a descriptor ¢ is, and how exactly the operations on
descriptors work. This explanation can be skipped, as it should be possi-
ble to comprehend the rest of the development of the translation with only
an intuitive understanding of how the descriptor § and, e.g., new-tmp and
kill-tmp works.

The descriptor has the form

5 = (5”,5% 5d).

The component 6 € ® — D maps each register to a description of its
contents. The descriptions D are

D =W | O

W ow=V | —q

V. u= Z | clos | ret

Z == X | Y | F | P | A

(The set V' of values is recalled from section 6.3.) If %) = v € V, then ¢
contains the value v; if §%¢ = —4, then ¢ contains an unnamed value (either
a temporary value or a dead value); otherwise, §¢¢ = [0, meaning that ¢ has
not been touched yet.

If a value bound directly within Mgy, is loaded (p. 103), its producer must
preserve it. We record in §* C V the set of values bound directly within Aqyy.

137

that are loaded. Therefore, [[v]]} . peen-loadeq 0 Which records in § that v is
loaded, is defined:

0]l pas-been-toaded (5va5t’5d> = (51; U{e}, o, 6d> '

And [[v]],;; #9, which checks whether v is loaded according to & and
returns a preserver of ¢, is defined:

|:|:U:|:|kill¢ (5075t=5d)

= ((5” \Jv}, o, 5d> , if v € 0V then preserve ¢ else don’t)

preserve ¢ = A(. A(s%,sP). push ¢ ; ((¢® + {x — <P}, P+ 1) ; pop
don’t = MX(.C.

See [[let z =e; in e5]],, (p. 104) for an example of a use of [[v]] -

The live ranges of temporary values are nested inside each other such that
the currently live temporaries can be kept on a stack: when a temporary value
is introduced in 0 (e.g., using new-tmp) it is pushed on this stack; when it is
killed (using kill-tmp), it is popped. The function kill-tmp returns a preserver
of the register containing the temporary, hence we must also keep a preserver
with each temporary on the stack. More specifically, using P = Z — Z for the
set of preservers, 6! € (® x (W x P))* is a stack of currently live temporaries
of the form ¢ — (w,p), meaning that the register ¢ contains the temporary
value w and is preserved by p.

We use § +, ¢ to introduce the value in ¢ as a temporary. The temporary
value is the value §%¢ currently in ¢, and the preserver should initially not
save ¢; thus d + ¢ should push ¢ — (6%¢, don’t) on &'

6v.64,04) + ¢ = (6%, (¢ — (0%, dont)) - 6", 67),
(58467 4 6 = ()

where - is defined ¢t - (1, ..., t,) = (¢, t1, ..., tm).
Whenever a ¢ containing a temporary value is destroyed, we must change
its preserver to

preserve-tmp ¢ = A A(¢%,¢P). push & ; ((¢®, <P+ 1) ; pop ¢.

(Compare with preserve ¢ above.) We use ¢ ® 0 to change the preserver of
¢ if ¢ occurs in 6!, i.e.,

¢® (o1 = (w1, p1), ..., i = (Wi, pi)s ..y S > (Wi, Pm))
= ((]51 = (wr, 1)y ey O = (wy, preserve-tmp ¢;), ...y Gm = (Wi, pm)) ,
if ¢ = ¢ and ¢ # ¢; for all j < i; if ¢ does not occur in §*, ¢ ® 6" = §".
We use kill-tmp 6 to pop the topmost temporary and return its preserver:
kill-tmp ((5”, (1 = (w1, P1)s -+ s O = (Wi, D)), (5d) =
= (% (62 (w2, p2). - s B> (wmy), 07+ (1w})),

138

Notice that kill-tmp sets 6% to map ¢ to the temporary value, implicitly
assuming that the caller of kill-tmp will ensure that ¢ is preserved, i.e., that
p1 is used appropriately.

The basic operation of the register allocation is to assign some value w
to a register ¢. ra (¢ — w)(d,) yields (d1,21) that records that w has been
assigned to ¢. ra must do three things: 1° the register descriptor 6% must be
updated to map ¢ to w (i.e., 6f¢ = w); 2° if ¢ contained a temporary before
this assignment to ¢, we must take measures to preserve ¢ (i.e., 6! = ¢ ® §');
3° for the benefit of the inter-procedural part of the register allocation we
must record that ¢ will be destroyed by the code for Acyr. (i.e., ¢ € £,9):

(remember ¢ has the form ((7), qzvb),)\cur_))

ra (¢ = w)(<5va 6ta 6d>) ((777 (5)7 Acur.)) =
= (7. 90", 68+ (o w}), (016U {0} Aaur)):

These were the basic operations on §. We now explain some auxiliary
functions that use them.

The translation [[e]] , returns the code 3 for e along with a natural des-
tination register $ Ifqz@ is not —register, this has the interpretation “the code
puts the result of e in (25; if you choose a different destination register ¢, a
move instruction will be inserted”.

This move from $ to ¢ should be reflected in 6. To update §, we define
the function move such that move (6, €) yields (¢', ') where ¢’ records that
¢ contains the same value as qz@ does:

MOVE —register ¢2(5, 5) = T1a (¢2 = _d)((Sa 5)
move ¢1¢2(0, €) = ra (g2 0%¢1)(6,¢).

The function new-tmp is used to find a temporary register in the situation
sketched above, i.e., given a natural destination register (fS It uses choose to
pick a register ¢; move to record in ¢ the potential copying of qg to ¢; and
d + ¢ to record in 4 that ¢, from this point on contains a temporary value:

new-tmp ¢ddduw(s,e) = let ¢ = choose dpdPuwd
(8,€) = move p(6,)
5=04, ¢
in ((9,2), @).
Often a temporary value is kill-tmp’ed right after it has been new-tmp’ed,

viz. when its live range does not extend across the code for any sub-expres-
sion. Therefore, we introduce the shorthand tmp-tmp:

tmp-tmp (f)&u)(é, e) = let ((d,¢), ¢) = new-tmp éqﬁ@w(é, £)
(6, p) = kill-tmp §
in ((0,¢), ¢).

(The preserver p will be don’t because the temporary value cannot have been
evicted.)

139

8.4 Allocating regions

The code for letregion p:? in e; is (p. 31)

¢, = letregion ; @1 ::‘ code to evaluate e; ‘ ; endregion.

Aside from the allocation and deallocation, a letregion-expression is
like a let-expression: Both define a variable in the sub-expression, and the p
of the letregion-expression is treated no differently than the x of the let-
expression. For instance, if p is loaded in ey, it must be pushed on the stack
around the code for e;:

¢, :=letregion ; push ¢, ; ¢1 ::‘code to evaluate e; |; pop ; endregion;

if p is not loaded in ey, just delete push ¢, and pop.

The § and e are always passed together so we shall use p to stand for
(6,€). As usual, y° then denotes the §-component of y, and P denotes the
D-component of the d-component of u, etc.

When doing register allocation, we must record in (the §-component of)
u that ¢ :=letregion destroys the set, gﬁetregion, of registers, and endregion the
set qgend,egion. This is done with wipe, defined

wipe o = ra (¢ —q)u
wipe {¢p1, ..., dptp = wipe d1(-- - (wipe ppp)---).

Here follows [[letregion 0:7 in e;]] , . Explanations are below.

[letregion 0:71in elﬂra,u =
let p= U)ipe Pretregion

1 6p) = [0 7] er D Dretregion1 1

1 ¢1, B1) =[leill,a p

1y pp) = [Lo: ?luin dpmt

1, bt) = tmp-tmp Pendregiond1' 11

11 = Wipe Pendregion

B=2Xp.Xs. let ¢' = if ¢ € Pendregion then ¢ else ¢ in

¢, = letregion ; p,(B1¢') (%, P + nyq.) ; endregion ;
(p:=¢')

in (u, —registers B),

(
(
(
(

where wy is the w-information before e, and w' is the w-information after the
whole letregion-expression. n, g, is the number of words that ¢, := letregion
pushes on the stack, i.e., the size of a region descriptor (with the implemen-
tation sketched in section 3.2, n; 4. is 4). The sub-expression e; gets a stack
shape that is n, 4. words bigger than the stack shape of its context.

Notice the resemblance with [[let x =e; in 82:|:|ra. The wipe életregionﬂ
is first, because ¢, :=letregion is the first instruction in the code. Then a

140

register for the region variable is found using [[o: ?]| gef » €xactly as if o:? were
a let-bound z. The letregion-instruction will preferably return the pointer
to the region in the register @jetregion. Therefore we pass Gletregion t0 [Q: ?I| def
as the preferred register for p:?, hoping to avoid a move instruction. The
wipe ngendregion,u is last because endregion is last in the code.

We tacitly extend functions that take and return a § (e.g., [[0:?]] iy #p)
to take and return a p. Thus [[o: ?ﬂkm ¢t stands for ([g:?ﬂkm qbp,u‘s, ug).

Why is it necessary to have the temporary register ¢;? The result of the
letregion-expression is the result of e;, hence the result of e; must be in
some register ¢’ at the end of the code for the letregion-expression. This
¢’ must be chosen such that it is not destroyed by the endregion after the
code for ey, i.e., we must choose ¢’ such that ¢ ¢ qﬁendregion. But it is the
context of letregion p:? in e; that decides the destination register, and
the context does not know that it must not choose a register in ngendregion,
and hence, we cannot simply apply (5 to the register to which (3 is applied;
we must take measures to ensure that the result of e; is preserved across
endregion. Thus ¢; is needed to hold the value across endregion. If ¢, the
register to which [is applied, happens not to be destroyed by endregion, we
can avoid using ¢, and hence, avoid the move instruction ¢ := ¢'—but notice
that the tmp-tmp is never avoided, and thus ¢; always appears (in u) to be
changed, even when it is not.

We could have a concept of registers that must not be chosen as destina-
tion registers, and return this set together with a (§ as the translation of an
expression. Then we could demand that a 8 never be applied to a register
in this set. The letregion ¢0:? in e is, however, the only construct whose
code does not compute the result as the last thing, and this single construct
does not warrant such a complication of the whole algorithm.

The code for letregion p:7 in e is (p. 32)

¢sp = ¢sp ‘|‘|IZ:|:| I—1

1 ::‘ code to evaluate e; ‘ ;
¢sp = ¢sp _IIZ']]I%I'

Here the region variable is treated differently from a let-bound variable
in two respects: (1) It is not automatically in a register at the entry to the
code for the sub-expression, because the region is allocated by just changing
the stack pointer. A let-bound zx is automatically in a register, because it
is the result of an expression, and a letregion-bound p with unknown size
is automatically in a register, because the ¢ :=letregion-instruction assigns
it to ¢. (2) It is not necessary to explicitly store a pointer to a region with
known size, since it can always be found at a statically known offset on the
stack. Therefore, the pointer to the region need not be saved on the stack,
although it is spilled in e;, and we need not reserve a register to hold it. Note
that this does not mean that p:7 will never reside in a register—if it first gets
loaded to a register, it might stay there till the next time it is needed.

We keep track of the place of a region on the stack the same way we keep

141

track of variables that are saved on the stack (section 6.12): by recording in
the environment, ¢©, the current (compile-time) stack pointer, <P, when g:i
is allocated on the stack. (So ¢®4 =i can mean two very different things! If
p has the form g:7? or p:1, it means the same as ¢°z = i: that g is a variable
loaded in e, and can be found on the stack at position ¢. If g has the form
0:1, it means that the region itself can be found on the stack at position i.)

[letregion 0:7 in elﬂra,u =
let (u, b1, 1) =[[el], 1
B =X A, <P). dsp:=bop + (i1l 11
Bro(s® + {(0:i) = <P}, P +1);
bsp = bsp—[[1 1] 11
in (1, ¢1, B).

8.5 Defining and using values

Variables are defined by the constructs let z = e; in es, letregion ¢:7 in ey,
letrec by --- by, at p in en41, and exception a in es. In these cases,
[v]] def @wpt is used to find a register for v and update ;i accordingly:

0] got ¢A>$w,u = let ¢, = choose (]B&(wv)wu
p=ra(dy = v)p
in (i, ¢y).

We discussed how to translate a use of a let-bound z on p. 102. Now we
generalise this to uses of any value v.

If v is not in a register, we must reload it (remember that v is in ¢,
according to u iff p4¢, = v):

[0l uso Bbn =
if 3, € Dmpu? : ¢, = v then (1, ¢y, Ap. . (p:=)
else [[v]]paa dowp.

The way v must be loaded depends on its kind. If v is a free variable
in Acyr., it is loaded from the closure: (We explain code after it has been
presented.)

[v]] load ééﬁwu =
if v € Dm K then
let (i, deloss Belos) = [[€los]] . @ —register Wi
(1, ¢o) = [[U:I:Idef ééwu
By = Ap. AS. BelosPelosS ; Pv = M[Pelos + Kv] ; (¢:=)
in (p1, du, Bu)

else - --

142

Here K is the closure representation annotated on Ay, (= pteur). v is a free
variable of A\qyr. iff v € Dm K.

To fetch something from the closure, we need clos. Since clos is a value
like any other, it can be obtained with [[clos]] use-

After that, a register, ¢,, is chosen for v and u is updated accordingly
by [[v]] gef —intuitively a point in the code where a value is loaded is like a
“def” of that value.

Thus, the code to fetch v consists of code BclosPelos that ensures ¢cios
points to a tuple of the free variables, and then code ¢, := m[¢c10s + Kv| that
fetches v from its offset, Kv, in this tuple.

If v is a region variable with known size, i.e., v has the form p:i (and it
is not a free variable in A¢y,.), it is allocated on the stack at an offset that
can be computed at compile-time as follows. If ¢ = (¢% ¢P) is the current
stack shape, i.e., ¢P is the current (compile-time) stack pointer, and ¢®(p:4)
is the stack offset where p:i resides, then the address of the region can be
computed at run-time by subtracting ¢P — ¢®(p:4) from ¢gp:

else if 3(p:i) : v = p:i then
let (1, ¢v) = [[024]] 4o PPwpt

By = A A, cP). by = hop=[[P — <*(e:0) [y, 5 (6:=bo)
in (p, ¢v, Bv)

else ---

Again, this use of g:i is conceptually a “def” of the value, hence the [[o:1]] def -

If v is sibling name f (p. 117), and f is the same as the sibling name
of Acur., 1.e., if Aeyr, has the form fﬁgj’= Keg and f € f, then f is actually
an access to the shared closure built for A.,.. This shared closure is clos,
hence:

-

elseif v=f A pler = (fpi=Fes) N fEF

then [[clos]]| use (Z)qz@wu
else ---

To see that this special case is not an ungraceful, ad hoc optimisation, con-
sider the example

letrec f y = y+fv at rl in f 117.

To evaluate this expression a closure containing v is built and passed to f.
At the recursive call, the function must pass the closure to itself. The special
treatment given to sibling accesses ensures that this is done by simply leaving
clos (=f) in its register. If we did not take care of this special case, we would
have to regard f as a free variable, which is unnatural, and fetch it from the
closure at each recursive call, which is less efficient.

Finally, if none of the situations above apply, v must be bound in Acyy ; it
will be accessible on the stack, and ¢®v gives the stack offset where it resides:

143

else et (11, ¢y) = [[0]] yor PPwpt
= [[0]] has-been-toaded M
By = Ad. A(®,6P). ¢y = m[¢5p_|:[§p — vl (9= y)
in (p, ¢v, Bu).

As always, the reload of v corresponds to a “def”. The stack offset from which
to fetch v is computed exactly like the stack offset of a region on the stack is
computed. The only new thing is that we must record in p that v is loaded,
such that when the producer of v is translated, it will generate code to push
v and record in ¢® the stack offset of v (recall that, e.g., let x = e; in eg is
the producer of x; compare with the translation of that expression, p. 104).

Because we regard function parameters (clos, ret, the arguments y; , ... ,
Yn, and the region arguments p1, ... , pr) and exception constructors as bound
values, the algorithm above also caters for these.

8.6 Put points

This section explains register allocation of put points by developing the trans-
lation of the tuple construct. The code for (e;, ..., e,) at pis (p. 28):

o ::‘the address of n new cells in p | ;

o1 ::‘ code to evaluate e; ‘ ;

migy + 00 ;1] := 1 ;

On ::‘ code to evaluate e, ‘ ;
ml¢¢ +[n — 11 71]:=¢n ;
(bI: ¢t-

An address of the consecutive memory cells supposed to hold the tuple is put
into ¢ (with ¢y ::‘the address of n new cells in p|, which has been explained

previously (p. 33)), and then the values of the tuple are stored at offsets 0
through n — 1 from ¢.

This way of viewing the code to put data in a region is not entirely
correct. If the region has known size, it will be allocated on the stack, and
in some cases (to be made more precise below) it is not necessary to have an
explicit pointer to the region in a register. Instead, the location of the region
is represented by its offset from the stack pointer, which (in those cases) is
known at compile-time. In such a case, the code for (ey, ..., e,) at p will
be

144

01 ::‘ code to evaluate e; ‘ ;

m|esp +|I‘ stack offset of p ‘ +07] I—)I] =y

On ::‘ code to evaluate e, ‘ ;

m[¢Sp -I-|I‘ stack offset of p ‘ +n—1]] I%I] =y ;
¢ = dsp —i—‘ stack offset of p ‘

The differences between the two code fragments are:

1. the register in the store instructions (the indexing register): a tempo-
rary, ¢, in (*); the stack pointer, ¢g,, in (*%);

2. the code to allocate n words in p: ¢, ::‘ the address of n new cells in p‘

in (*); nothing in (#:x);

3. the offset from the indexing register: 0 in (x); ‘stack offset of p ‘ in (*x).

We factor the similarities in allocating in a region into an auxiliary function

['Ilra-at' [pﬂra_at nq@wu will return (p1, ¢, ¢, 0), where

1. ¢, is either some temporary register, ¢, to point into the region or it
is ¢sp.

2. (is code to allocate n words in p. It is abstracted over a stack shape,
because it might be necessary to access p on the stack.

3. ois a function that gives the offset that should be added to the indexing
register, given ¢ and the offset 7 into the newly allocated area. If the
region is on the stack, e.g., at offset —7 (remember the K stack grows
upwards), o¢3 will yield —4, the offset from ¢s, to acces the 3rd word
in the region (counting from 0). If the region is not on the stack, o¢3
will yield 3.

bt [—F—=

4
region 3 4 =03
on stack
2
1
0 =— —7
4
heap 3 <— 3 =053
region 2
1
b [0

145

The ¢-argument to I-1 is a set of registers that ¢, should preferably

ra-at
not be chosen among. The value in ¢, must be preserved across the code for
the sub-expressions ey, ..., e, hence, ¢, should preferably not be chosen
among the set of registers that ey, ..., e, are known to destroy. This set

can be computed by the analysis |I-I|da described in section 7.11, i.e.,

¢ =[lellgun" V- Ullenllga

(Remember p has an e-component which has an 7-component.)
Using [-ﬂm_at, the translation of (ey, ..., e,) at p can be written
generally:

[Cers ..y en) at pﬂm o=
let ¢ = [el]:lda phye U[[en]:ldaﬂ
(Na ¢s, G, O) :|:|:p:|:|ra—at n(z;wlﬂ

(s 61, B1)) =eill,, 1

(1, ¢1) = tmp-tmp {p«}p1;
(1, p1) = kill-tmp p

p=p+ o

process e

(¢na /Bn :[[en:[lraﬂ .
(ks @n) = tmp-tmp {ps}Pnwppt process en,
(1, pn) = kill-tmp p
3= . Xc.
¢S ;
p1(Big1)s ; migs+ 0c0]:= ¢y ;

pn(ﬂn¢n)§ i m[¢* +O§(n - 1)] = n ;

<¢ = ¢* + 0§0>
¢ = if ¢ = bsp then —regisier else .
in (4, 6, B),

where w; is the w-information after e;, and wy is the w-information before
€1.

The results of the sub-expressions are stored into the tuple right after
they have been computed, so the registers ¢, ..., ¢, hold temporary values
that are not live across any sub-expression, and hence they are obtained using
tmp-tmp. As it must be ensured that ¢, is not accidentally chosen as one of
@1, ... , bn, the set of registers that must not be chosen by tmp-tmp is {¢.}.

The indexing register, ¢,, must be preserved across any sub-expression
whose code destroys that register. This is done the same way ¢; was pre-

146

served across the code for ey in |I€1 o 62:|:|ra (section 8.2): If the code for e;
destroys ¢., the corresponding preserver p; returned by kill-tmp p will take
care of saving ¢, across the code for e;. After each kill-tmp (except the last),
¢« is reinstalled as a temporary register using p +, @s.

The optional add instruction (¢:=¢'+ 1) is defined

(p:=¢'+1) = if L =0then (¢p:=¢') else ¢p:=¢ +1.

If the code for (ey, ..., e,) at p has the form (x), (¢ := ¢, + 0s0) will be
(p: =y +0), i.e., (¢:=¢), and hence ¢; is a natural destination register. If
the code has the form (*x), (¢ := ¢ + 0c0) will be ¢ := ¢qp +‘ stack offset of p
and there will be no natural destination register.

Now the auxiliary function [[-]|, ,; is discussed. As mentioned above,
we want to give special treatment to a known-size region when it can be
determined at compile-time that it will always reside at a specific offset from
the stack pointer. Consider

3

letregion r666:2 in let x = (MAy.(3,33) at r666:2) at rl:?
in x(letregion r999:2
in x((6,69) at r999:2))

At the two applications of x, the pair (3,33) must be stored at different
offsets from the stack pointer, because r666:2 is on the top of the stack at
the outer application, while r999:2 is above r666:2 at the inner application.

Generally, regions that are created before A, is applied (as r666:2 is
created before x is applied) do not usually have fixed offsets from the stack
pointer from the point of view of the code for Ac,r.. On the other hand,
regions that are created after M.y is applied have fixed offsets from the
stack pointer that can be decided at compile-time. The latter regions are
exactly the regions bound to region variables by expressions of the form
letregion g:i in e; directly within Ay, i.e., 0:4’s that are not free vari-
ables of Acyr..

In summary, if p has the form p:7 and is not a free variable of A.y;., the
code to put data in the region bound to p is («*): ¢, is ¢sp and the code, ¢, to
allocate is e. This is the then-branch in [Jo:4]] , ,, below. In all other cases,
i.e., when p is a free variable of Ay, (the else-branch in [g:iﬂ raat below) or
has the form p:7? or p:1 (the other case for [-ﬂra_at), the code to put data
in the region bound to p is (x): ¢, is some ¢, and the code, ¢, to allocate is

o ::‘the address of n new cells in p| The form of this code depends on the
form of p; this was explained on p. 33.

147

[o:illaas nbopt =
if (0:1) € DmK then let (= X¢. €
0=X¢. Ai.[[i— P —<%(0:9)] I;;
in (u, ¢sp, ¢ 0)

else let (i, ¢, B,) = [Q:i:[luse & —register WU
(1, @) = new-tmp Sp,Ppwp

C: /Bp¢p
o=Xs. Ai.[[i]]7
in (/.L, ¢ta Ca 0)'

where K is the closure representation annotated on Acyr, = pieur. (0:4) is a
free variable of Acyy. iff (0:4) € Dm K. If an indexing register, ¢, is necessary,
it is chosen with new-tmp , and the preferred choice is ¢, the register chosen
by [-ﬂuse to hold the region variable.

When p has the form p € {p:?, 0:¢}:

I:IZpII ra-at né;w'u‘ =

let (11, @ps By) = [[Pl] yse DDog it
11 = wipe Pag/u
(1, ¢1) = new-tmp @2, pwp
C=Xs. By0,6 5
it Jo: p=op:7
then ¢, :=at ¢, :[[n]l;_;
else if ¢.lsb then tunknown €lse tknown ;
Lknown © (Pt :=p) ; goto I ;
Lunknown : ¢t :=at ¢, :[[n]];_,; goto I ;

L€
0=A¢. M. [[i]];
in (/Ja ¢t7 Ca 0)7

where the labels are fresh.

We tell [[- [] . to preferably put p into ¢y, the register in which the
¢1:=at ¢9: t-instruction prefers its argument. (Remember this instruction
may be implemented on the concrete machine as a sub-routine; then ¢3;, is
the register in which this sub-routine takes its argument.)

Although the instruction ¢ :=at ¢, :[[n]];_,; might not be executed, we
must conservatively assume that it is and set p = wipe ¢arp. The indexing
register ¢, is chosen with new-tmp, and we prefer that new-tmp chooses the

preferred result register ¢2t, of the ¢ :=at ¢9 : t-instruction.

148

8.7 Control flow forks

The code for
case ey of Sex=>e;|Drugs=>ey|_=>e3

must evaluate eg to get the constructed value, fetch the constructor from
this, and, according to what this is, jump to code that evaluates either ey,
ez or ez (p. 31):

o ::‘ code to evaluate ¢ ‘ ;

¢e:=m[po +0] ; (fetch constructor)
if . =[[Sex][|,_.; then ¢y else 7y ;

11 if @ :[Drugsﬂ ¢ then 13 else 7o ;

L1 @ ::‘ code to evaluate e; ‘ ; goto I ;

Lot ¢ ::‘ code to evaluate ey ‘ ; goto 7 ;

la: @ ::‘ code to evaluate e3 ‘ ; goto I ;

U: €.

The forking of control flow must be taken into account when process-
ing the descriptors §, or else they will contain wrong information. For the
example, the §’s must flow as illustrated here:

€1

o' 51

€p if

¢

[

o' €2
5//

if

5// 63

€3

Boxes are code. Edges indicate control flow and the corresponding “flow
of 0’s”: 41 is the 0 resulting from the register allocation of ey, etc. The
code does not destroy any registers, so actually ¢’ = §”. We must decide
what the descriptor, 4, at the point where the control flow paths meet should
be: If ¢/, has been destroyed according to one of the §;’s, then ¢ must be
marked as destroyed in é. If two branches have put different values in ¢/, then

149

we mark ¢ in é as containing some undefined value. We denote by &; My d2
a 0 that will “agree with” d; and d9; how Mg works is described below.

case ¢y of ¢ =>¢q |

(0,¢) =let ((8,¢), do, o) = [[eal],a (9,2)
cn =>en | ((6,2), o) = tmp-tmp Bdow(6,)
—-=>en+1 ra ((5’ 5) ¢c) tmp-tmp & —register w6 (6a 6)
((

51, 2o, B) =[eill (6,2)

((Ons1, €)s Pty Brs1) = [ens1l) e (0,€)
0 =201 Mg+ Mg Opy1

B=Xp. Xs. Bodos i pe:=mlpo+0];
if ¢ =[[c1]]o_,; then ¢y else 7y ;
t1: if @ :[[cﬂ] o1 then 1o else 75 ;
19!

Ini1:if pe=[[en]l oy then ¢y, else tpp ;

t1: B1 ¢s; gotoi;
L9

tnt1: Bay1¢s ; goto i ;
. €

in ((5, 8), ~register) /6)

where w{, is the w-information at the program point after eg, and all labels
are fresh. The result of eg is used right away; it is not live across any sub-
expressions, so tmp-tmp will do to find a register, ¢g, to hold it temporarily.
Likewise with ¢.. By simply applying all 3;’s to ¢ we force all branches to
put the result in the same register.

The details of meeting §’s
To understand the following, you must have read section 8.3. Define Mg by
(7. 01.67) M (03.05,08) = (ovradg, oimedh, o Maof).

The set of values that are loaded in §; Mg do is the union of the sets of
values that are loaded in the two ¢§’s:

My = U.

The register descriptor 6¢ My 64 maps each register to a value if both 6
and 64 map it to that value; otherwise that register is mapped to —g:

5ii ﬂdég = Ao. 5{l¢|_|D5g¢
d1 Mp d2 = if d1 = d2 then d1 else —d-

150

Live ranges of temporaries respect the structure of the source language in
the sense that temporaries are always kill-tmp’ed in the register allocation of
the same expression that it was new-tmp’ed. If a branch in a case-expression
pushes a new temporary on the stack of temporaries it will also pop it again.
Therefore, the stacks of temporaries in §; and do have the same size, and the
registers and the temporary values are the same. Only the preservers may be
different, since one branch may destroy a register the other leaves untouched.
If ¢ should be preserved in &¢ or 6, it must also be preserved in §¢ 1, %

(¢1 = (U)l, pl)a R ¢m = (wma pm))
My (¢1 = (wla p’l)a BN ¢m = (wma p;n))
= (le = (wla |_|P¢1p1p'1), cey O (wma |_|P§bmpmp,m)))
where
Mpepp’ = if p#p' then preserve-tmp ¢ else p.

8.8 Boolean expressions

Boolean expressions can be translated like any other kind of expression. But
generating code that evaluates the expression and puts the result (true or
false) in a register is not necessary when the resulting Boolean value is only
used to decide which of two branches to evaluate.

The expression

if b andalso i<=j then 3 else 666
is a derived form (Milner et al., 1990) of
if (if b then i<=j else false) then 3 else 666.

If we did not want to treat Boolean expressions specially, we could simply
regard true and false as constructors and if eg then e; else ey as a
derived form of case ¢y of true =>¢;|_=>es (as does indeed the definition
of SML). The expression would then be a derived form of the expression

case (case b of true => i<=j | _ => false) of
true => 3 | _ => 666,

and the code for this expression would, according to the discussion in the
previous section, be as in figure 37 (i).

151

if ¢, =1 then ¢ else ¢4 ; if ¢, =1 then ¢q else ¢7 ;

110 if @3 < @y then 1y else 13 ; 110 if g3 < @5 then i else t7 ;
Ly ¢1:=1;

goto t5 ;
t3: ¢1:=0;

goto i3 ;
Ly ¢1:=0;
L5 if 1 =1 then 14 else ¢7 ;
lg: ¢:=3; lg: ¢:=3;

goto (g ; goto (g ;
L7 ¢:=16606 ; L7 ¢:=666 ;
lg: € lg: €

() naive translation (4i) “right” translation

Fig. 37. (i) The generated code if if-expressions are treated as case-
expressions. True is represented as 1 and false as 0. (7¢) This code avoids
explicitly representing the Boolean result from the sub-expressions i<=j
and if b then i<=j else false.

The central idea to avoid the unnecessary manipulation of run-time rep-
resentations of Boolean values is not to translate a Boolean expression into
code 3 that accepts a register, but rather into a selector o that accepts a
pair of labels (1,7) and returns code that evaluates the Boolean expression
and jumps to ¢ if the result is true and to ¢ if it is false: 0 € ¥ = (Ix1) — Z.
(Compare this with 3 € B =& — Z.)

We change the translation function to translate a Boolean expression into
a o € X while expressions of other types are still translated into a 3 € B. In
other words, we introduce 7 € T ::= ¥ | B, and then instead of

[0, €E—-M—= (Mx®, xB)

we have
[J.€E—-M— Mx®, xT).

The code for e; <=e5 should jump to one of two labels according to what
Boolean value the expression evaluates to:

03] ::‘ code to evaluate e; ‘ 9 ::‘ code to evaluate eq ‘ :
if p1 < ¢ then ¢ else 7.

Compare this with the code for e; + ey (section 8.2):

1 ::‘ code to evaluate e ‘ o ::‘ code to evaluate eq ‘ : |I+I|o_prim 1P,

where
|:|:+:|:| 0_prim ¢1 ¢2¢ = ¢ = ¢1 + ¢2
We define [[<=]] o-prim and M=1] o-prim analogously:

|I<=I|o_prim br1do(1,1) = if gy < o thenvelset
|:|:=:|:|0—prim G1p2(1,7) = if p1 = o then v else T.

152

Notice how [[oﬂo_prim ¢p1¢2 is a function of a pair of destination labels
when o is a conditional operator, and a function of the destination register
when o is not a conditional operator. (The translation of = works because
we only allow = on values that can be represented in one word (p. 2).)

Having factored the individual properties of the operators into the func-
tion [-]O_prim, the translation [[e; oegﬂra can be stated generally for all
operators (Boolean as well as others). It is the same as in section 8.2 except
that we use 7 instead of § to indicate that what was previously always a 3
now might also be a o, and £ € £ = ® U (I x I) instead of ¢ where either
a register ¢ or a pair (1,7) of labels may appear:

Teroea]l,an = let (u, é1, B1) _IIBIIIra:“
(i, 1) = new-tmp @qbl ([[82]:Ida ,un) wa
(1 b2, B2) =[[eall a1t
(1. B2) = tmp-tmp {p1 }owhp
(i, p1) = Kill-tmp p

T =M. Bi1is s pr(Bag2)s ; [[ol] g prim P102€

in (p, —registers T)-

(The use of B; rather than 7 and ¢; rather than &, etc. is deliberate: e;
cannot be a Boolean expression; [[e;]],, will never return a o.)

The code for the expressions true and false jump to the true label and
the false label, respectively:

[truel] . u = (1, —registers A(,7). AS. goto 1),

[falsel] .t = (U —registers A(t,7). As. goto I).

For expressions that return a selector the natural destination register is al-
Ways —register- (It really does not make sense to have a natural destination
register for an expression that returns a selector, but it is convenient to define
that the natural destination register for such an expression is —register-)

The selector for the expression not ey is obtained by swapping the labels
of the selector for e;:

[not e]l,apr = let (u, ¢1, 1) =[[er]],q 1
in (1, ¢1, A1, 0). o1(z,1)).

To generate code for if ey then e; else ey the Boolean expression eg is
translated to a selector . This is applied to labels + and ¢ that label the
code for the branches e; and es, respectively:

153

|Iif eg then e else egﬂrau =

let ((do, €), b0, o) = [eall,a (4,
((81,), ¢1, 1) =[ler]], (50,
(82, €), b2,) =[leall,, (d0, €
0 = &1 Mg 09

T = A
o(t,0)s ;1 1€ ; gotoi; i s ;i €
n ((57 8)7 —register 7'),

where the labels are fresh.

It is an important point that also the branches of the if-expression may
translate to ¢’s. Consider the expression if (if 48<=i then i<=57 else
false) then i-48 else O (which in SML has the derived form if 48<=i
andalso i<=57 then i—48 else 0).

The branches of the inner if are translated to the o’s:

Oiczs7 = A(0,1). X¢. ¢p57:=57 ; if p; < ¢57 then ¢ else T,
Ofa1se = A(,0). A¢. gotor

And then the inner if-expression is translated to the following o that will
give code to jump to ¢, if i is between 48 and 57, and to ¢ otherwise:

oir = A1), XS, ag:=48 ; if pag < s then 1ic=57 else iea1se ;
Lic=s7 : @57 : =57 ; if p; < g7 then else ;
Lfalse - gOtO L.

The “...else tfa15e ... tlfa1se: goto ¢” should, of course, be converted
to “...else 77. This is best done in an ensuing phase (section 9.1).

Note that both branches of an if-expression must either translate to o’s
or they must both translate to 3’s.

The branches of a case-expression can be translated to either 3’s or
o’s, as the branches of an if-expression can. So modify the translation of
case ey of c;=>erl ... lcy,=>e,l_=>e,y1 in the previous section by replac-
ing By, ..., Bp with 7y, ..., 7, 8 with 7, and ¢ with &.

Some Boolean expressions do not naturally translate to code that jumps
to labels: The constructs z, #i es, 4 es, and ! eo naturally translate to 3’s.
Applications, e;€y and fpés, also naturally translate to 3’s, for we do not
want to have “Boolean functions” that return by jumping to one of two argu-
ment labels. The code for letregion p in e; must end with code to deallo-
cate the region p, therefore we cannot (easily) translate a letregion p in e
into a selector, although e; translates to one. So we require a letregion-
expression to always translate to a (.

If one of these Boolean expressions occur in a context that needs a o
rather than a 3 (e.g. as ey of if ¢j then ey else e3), the 3 must be converted

154

to a 0. This is done by generating code that checks what truth value the
(3 computes and then jumps to the labels accordingly: coerce g_x» (1, b, B’
converts 3 to a o (assuming qg is the natural destination register for 3, and
p is the appropriate environment, and ' is the relevant w-information):

coerce gz (i, &, B’ = let (i, ¢) = tmp-tmp D'y
o= At,0). Xs. Bos ; if =1 then telse ¢

in (Na ~registers U)-

Conversely, Boolean expressions may appear in contexts that want the
code for the expression to put the resulting value in a register instead of
jumping to labels. For instance in let b=a<=c in e, we want the result of
the expression a<=c as a value in a register.

If an expression is in a context that wants a 3, but it translates to a o,
the o must be converted to a 3. The function coerce 5, gives a that puts
the representation of true or false into the destination register according to
what the selector o chooses:

coerce s (1, ¢, 0) =
let B=Ap.Xs. o(t,0)s ;1 ¢p:=1;gotoi; 1:¢:=0; i:¢€
in (1, ¢, B).

The reason the approach encompasses the special treatment of Boolean
expressions this nicely is that 3’s and o’s are so alike: Both are code ab-
stracted over the destination; in the former case the destination is a destina-
tion register, in the latter it is a pair of destinations in the program.

With this way of translating Boolean expressions, the example from above
will generate the code in figure 37 (i7). A more sophisticated example that
shows the generality of the solution is the SML source language expression

if (b orelse (case d of

Cl _ => true
| C2 _ => false
| C3 => true))

andalso i<j
then 3 else 666

It is translated to the following code (after appropriate removal of superfluous
jumps (section 9.1)):

155

if o =1 then 13 else ¢1 ; (assuming 1 represents true)
110 ¢ :=mlpa+0] ; (fetch constructor)
if o =[[C1]] ,_,; then 3 else 15 ;
v ¢ if ¢ =[[C2]] ,_,; then ¢5 else 13 ;
131 if @5 < 5 then iy else v5 ;
Lg: ¢:=3; goto i ;
l5: ¢: =666 ;

lLg . E.

Comparison with other work

Translating Boolean expressions to “short-circuit code” is a commonplace
way of implementing them. The way we do it is closely related to Reynolds’
(1995). His “selectors” are passed a pair of continuations instead of a pair
of labels, but would probably in an implementation also use labels (to avoid
uncontrollable code duplication). Unlike ours, his source language restricts
the set of language constructs that can have Boolean type. In particular, he
does not allow an if-expression as ey of if eg then e; else es. Consequently,
he cannot treat andalso and orelse as derived forms of nested if-expressions;
they must be treated explicitly.

Like we do, the S-1 Lisp compiler of Brooks et al. (1982) achieves the
“right” short-circuit translation of Boolean expressions without treating an-
dalso and orelse explicitly. They also regard these as derived forms of if-
expressions. They do not let the context pass labels (or continuations) to the
if-expression. Instead they rely on preceding transformations on the source
language to transform an if-expression into one that will be translated to the
right code. An if-expression occuring in ey of if ey then e; else ey will
be “pushed into” the branches e; and es, and that is the essential transfor-
mation for the short-circuiting translation. Other transformations then take
care of the rest. (E.g., constant propagation handles the true introduced
by the derived form of orelse.) (According to them, this way of translating
nested if’s first appeared in (Steele, 1977).) The resulting code should be the
same as ours.

SML/NJ’s “Boolean idiom simplification” (Appel, 1992,) accomplishes
the same efficient translation for primitive Boolean expressions. E.g., if a<b
then e else ey is translated to the same code by us and SML/NJ, but if a
andalso b then e; else e; would not be translated efficiently by SML/NJ.
The existing back end for the ML Kit does the same “Boolean idiom simplifi-
cation”, but on a simple, RISC-like source language (Elsman and Hallenberg,
1995).

156

8.9 Function application
Passing parameters to functions

In this sub-section, we discuss how to pass parameters to functions. This
information is part of the linking convention. How the linking convention is
decided is dealt with in the next sub-section.

At function applications, fp'és and ejés, a closure, a return pointer, at
least one argument, and zero or more region parameters must be passed to
the applied function.

When there are more parameters than registers, some parameters are
passed on the stack. In this case, it might be better to pass, e.g., parameters
that are not always used by the callee, on the stack. However, since the
situation where the number of parameters exceeds the number of available
registers is rare, we will not invest any energy in doing this in a smart way.
The space reserved on the stack for parameters is called a frame.

Evaluating an argument will probably destroy more registers than eval-
uating a region parameter. Each time a parameter that is to be passed in a
register is evaluated, the number of free registers decreases by one. Therefore
arguments are evaluated first, so as few registers as possible will be occupied.

Generating code for a function application becomes more difficult if the
closure and the return label are eligible to be passed on the stack. To keep
things simple, we will always pass them in registers.

As an example of how parameters are passed to a function, consider
the application eg<ey, es, €3, €4, e5>, and assume that the calling convention
dictates that ey, e3, and e5 must be passed on the stack, while e; and e4 are
passed in ¢o and ¢4, respectively. Then the situation just before the jump
to the function will be as in this figure:

<— s |stack pointer

bo: result of es

result of ej

result of es

ba result of ey

result of e | = lframe

Oclos.:| closure

Oret.: | return label

Fig. 38. Passing parameters to functions. igame points to the frame; eq
is passed in the frame at offset 0, es at offset 1, and e5 at offset 2; es
and ey are passed in ¢2 and ¢4; the closure (the result of eg) is passed in
Oclos., and the return label is passed in @,et. .

157

Deciding the linking convention

A linking convention comprises the necessary information to generate code
for an application, and for the entry and exit code for a function. This section
describes what a linking convention is and when it is decided.

A parameter convention is a

mell = TUD.

If 7 = 4, the parameter must be passed on the stack at offset ¢ in the frame.
If m = ¢, the parameter must be passed in register ¢.
A calling convention is a

Ce€ = (DxII"x®) U {—¢}

If € = —, we say the calling convention is undecided. The other possibility
is explained below.
A returning convention is an

If # = —,, we say the returning convention is undecided. The other possi-
bility is explained below.
A linking convention is a calling convention and a returning convention:

Le¥ = €E€xXA.

The linking convention is divided in a calling and a returning convention
because these are decided at different points in the algorithm.

Linking conventions are associated with equivalence classes A= of A’s.
Define the linking convention for A to be the linking convention for the A=
that contains A. Define the linking convention for an application ejyeo to be
the linking convention for the A= that contains A.

If the calling convention for A is

€ = (¢clos.a (7717 ceey Ty Tidn,y «ov 7rk+n)a ¢ret.),

with n > 1 and k£ > 0, A expects its closure, clos, in ¢cys., the return label,
ret, in ¢pet., its normal argument y; in register/frame position 7;, and any
region argument p; in register/frame position ;. p.

If the returning convention for A is #Z = ¢res., A Will return its result in

¢res. .

The calling convention for an equivalence class, A=, is decided the first
time it is needed, i.e., the first time

1. a XA € X° is processed by |:|:':|:|d0n0de’ or

2. code is generated for an application where a A € A= may be applied.

158

The second case can only occur at potentially recursive applications: at an
application which is not potentially recursive, all \’s that may be applied will
already have been processed, because the call graph is processed bottom-up.

In the first case, we choose a register for each parameter the same way
we choose a register for a value that is defined during the register allocation:
we use [-ﬂdef.

In the second case, there are different approaches to deciding the calling
convention. For instance, if any of the values that are passed happen to
reside in registers at the application, we could decide the calling convention
such that they could remain in their registers. To keep things simple, we
brutally choose arbitrary registers for the parameters.

Analogous to the calling convention, the returning convention for an
equivalence class is decided the first time it is needed.

Translation of function application

At an application, for each parameter, we must generate some code that
computes the parameter and places the result according to the parameter
convention for that parameter.

We factor the similarities of generating code for region-polymorphic and
normal function application into the meta-function app :

[f5pél.n = app £é 5 rA(ce Ap)(re Ap)p
[[el/(é'gﬂrau = app e1€2 L1rA(cc Ap)(re Ap)p.

The first argument g € E' U Fof app is something that evaluates to a closure
(f or e1). The third argument is a tuple of actual region variables (p'if it is a
region polymorphic function application; [] if it is not). Other information
needed to process an application is u, the recursiveness annotation r, the
functions A that may be applied, the calling and returning conventions, ob-
tained with cc Ay and re Ay, respectively. (Remember the linking convention
is part of the inter-procedural information, n, in ¢ in pu.)

We now develop app.

If the calling convention is not decided when app is called (i.e., ¥ = —),
we decide it now and call app again:

app gEPT A —cc £ p =

let%=(¢la (07 cee k+n_(N+1)7 ¢27 BN ¢Nl1)7 ¢N)
in app g€pr ANC Z (set-cc A€),

assuming € = <ey, ..., ep>and p= [p1, ..., pil.

There are k + n + 2 parameters. Only the first N get to be passed in a
register, where N must be at least one less than the number of registers (for
one register is needed by the code to call a function, p. 164). To keep things
simple, the registers ¢1, ... , ¢ are arbitrarily chosen. The closure is passed
in ¢1, the return label in ¢y, etc. Any remaining parameters are passed
on the stack (in frame offsets 0 through & +n — (IV + 1)). The expression

159

set-cc A6 1 yields a u that records that the calling convention for Ay, is €.
(It is, of course, the inter-procedural environment component, 1, of u which
set-cc updates.)

If the returning convention is not decided yet (i.e., Z = —.), we decide
it now. We (rather arbitrarily) choose to put ret in ¢ :

app GEPTANC —rc B =
app g gﬁr AC Gelos. (set—rc)\chlos.,u)a

where ¢¢los. is from € = (¢clos.a (7‘(1, cer s Ty Tldny - v s 7rk+n)a ¢ret.) and
set-re is analogous to set-cc.

Now we come to the case where both the calling and the returning con-
ventions have been decided when app is called. Look at the definition of app
in its entirety on p. 162.

At run-time, the first thing that must be evaluated is the closure, g:

(:U*a Gclos.» ﬁflos.) = |:|:g:|]ra-c105¢clos.wﬂ
u = move ¢clos.¢clos.,u«
1= =+, Pelos.

The function [-ﬂra_dos to translate a ¢ is explained below. To record
in y that the result of g will be moved into ¢.os. We use move q?)dos.qbdos_,u.
p+ @clos. Introduces the value in ¢.jos. as a temporary, and must be matched
by a kill-tmp p later on.

The arguments ey, ... , e, and pi, ... , py are translated using|[] -]
Code, 0;, is generated for each of e;:

ra-arg’

(1, 01) = [le]] aarg mwin

(uv 9“) = [enﬂra—argwnw%u7

where wg is the w after e;. Each 6;is the code to evaluate e; and put the
result where the parameter convention 7; says (i.e., either in some register
or the frame). (A 6 is a (abstracted over the position on the stack of the
frame, i.e., § € I — 7. This abstraction is necessary, because the offset from
the stack pointer to the frame is not known at the time 6 is produced, and 6
may need it to put the parameter in the frame.)

After that, 6’s are generated for the region arguments, also using [[-]|

ra-arg *

(Ma 91+n) = [[plﬂra—argﬂl-l-nw;uu

(s Okn) = okl caarg Thrnwpit-

There is no w-annotation on the p;’s, so we use w),, the w after e,.
Next in the code for an application, the return label is loaded into ¢yet..
This must be recorded in u:

160

p = wipe (bret.:u

If the parameter that e; evaluates to is put in a register that es destroys,
then that register must be saved across ey. Likewise if e3 destroys the result
from ey or e, and so on. We deal with this the standard way: The registers
containing parameters are temporaries, and |I -ﬂra_arg records thisin p. After
all arguments have been translated, we must check for each parameter in a
register whether this register should be saved across the rest of the arguments.
We introduce kill-arg to do this and give a preserver, p;, for each parameter:

(s Prtn) = kill-arg T np

(k, p1) = kill-argm p
(Na pclos.) = kill-arg ¢clos.ﬂ

We now generate code to jump to the applied function:

(Na ’fgoto) = goto)‘¢clos.{7717 cev s Thdn, ¢clos.a¢ret.}wl,u,

where goto Adelos.w' it returns code to jump to the function when the set of
functions that may be applied is X, the closure is passed in ¢eos., and @ is a
set of registers that must not be destroyed by the code to jump.

We are now at the point where the applied function returns. We must
wipe the registers in p that have been destroyed by the callee, i.e., the set
destroys Au. Moreover, if the application is potentially recursive, we must
record in p that all values have been evicted from their registers, such that
all values that are used after the application must be reloaded (p. 102). In
other words, when r = ¢) we must wipe the set { ¢ | u%p # 0 }:

u = wipe (destroys Ay U
if 7 = then {¢ | ute # 0} else @) p.

The space that must be reserved on the stack for the frame is simply the
number of integers among the parameter conventions:

j=|{7‘(1, Ce 7Tk+n}ﬂf‘.

Finally, the code is generated:

B = Ap.As. <¢sp = Qbsp + (571 I~>I> ;
(ﬂclos.@sclos. ’
pclos.(elgp H
p1(02P;

pk+ni1(9k+n§p) T)))
(¢®, 6P +7)
Gret. =1 ; Kgoto

L <¢ = ¢res.>-

161

(¢hsp = ¢psp +[Lj 1] ;1) reserves memory on the stack for for the frame.
Bclos. Pelos. €valuates the closure and puts it in ¢clgs.. Pelos. Preserves @ejos.
accross all the following code. 6i¢P evaluates the first argument, and pq
preserves it across all the following code; and so on. The stack offset of the
frame, ¢P, is passed to all ;’s. The (resulting from all this is applied to the
stack shape (¢®,¢P + j), reflecting that a frame of j words has been put on
the stack.

Here app is in its entirety:

app g <e1,...,ex>lp1, ooy pEl rA

(¢clos.a (7Tla <o 5Ty TMidns -« - 7Tk-|—n)a ¢ret.) Gres. 14 =
let (Ma (ﬁclos.a /Bflos.) = [gﬂra_closqsclos.wu

[= mMove Pclos. Pelos. 1

1= =+ Pelos.

(:u‘a 91) = |:|:81:|:| ra-arg 1 wll:u*

(:U*a en) = |:|:€n:|:| ra-arg ' WnI,U«
(,U, 91+Tl) = I:I:pl:l:l ra-arg 7T1+nwl IU/

(1y Okn) = [pk:ﬂra-arg 7I'k_|_nu_)l K
7 = Wipe Pret. p
(s Ptn) = kill-arg Tpyn p

(1, p1) = kill-arg m 7
(,U*a pclos.) = kill-arg ¢clos. 1%
(Ma "fgoto) = goto A(bclos.{ﬂ'la oy Thtns ¢clos.a¢ret.}w’ﬂ
= wipe (destroys Ay U if r = O then { ¢ | u¢p # O} else @)
j = ‘{7’[’1, Ceay 7Tk+n}ﬂI|
B = Ap. A%, <P).
<¢sp = Psp +|Iﬂ]]—>1> ;
(ﬁclos.¢clos. ;pclos.(91§p D1 (92§p v Pk4n i (ek—l—ngp) T)))
(c® 6P +7);
Gret. =1L ; Kgoto 1
L <¢ = ¢res.>
in (1, bres., 3).
We will now give the definitions of the auxiliary functions used above.
The function [-ﬂra_dos takes ¢ € E U F as its argument. If ¢ is an
expression e, [[- [] . .1os SImply uses [[-]|, to translate it:

|:|:€:|:| ra-closqb(?los-w:u‘ = |:|:€:|:| ra M-

If ¢ is a sibling name, f, the closure is obtained by accessing f:

|:|:f:|:| ra—closqb(?los-w'u‘ = |:|:f:|:| use ®¢0105-w'u“

162

The function [[- | translates an argument « € FUP to a 0. It

uses ['ﬂra-arg-o to translate @ to a (3 that evaluates . If the parameter

ra-arg

convention for @ passed to [-ﬂra_arg is an integer m = ¢, code must be
generated to place the result in the frame at offset i:

[Ce:[lra—arg iwp = let (u, Q;S(g, Be) = |:|:a{|:|ra—arg—0 “register WH
(1y Gu) = tmp-tmp Dgop
0= >\7:frame- >‘(§e, §p)'
ﬂ,gqﬁ,g(ce, §p) ; m[¢sp - |:|:§p — Uframe — ZI|I—>I] = ¢ze
in(p, 0),

where ifame iS the position of the frame on the stack. Otherwise, code is
generated to place the result in the supplied register m = ¢,:

[[de:ﬂra_arg Gewp = let (u, ésaza Be) = [de:ﬂra—arg—(] Pt
W= move Ppeit

=1t de
0 = Aiframe- ﬂmqsw
in (p, 9).

The function [[2[] ra-arg-0 WOrks differently according to the form of «:

|:|:P:|:| ra-arg-0 JSWM = [[P:I] use Q(fﬁwp
|:|:61:|:| ra-arg-0 (ﬁwu = |:|:€1:|:| ra M-

The function kill-arg takes a parameter convention 7 as its argument. If
m is a register ¢, kill-arg mu works like kill-tmp p and returns a preserver p
of ¢:
kill-arg pp = kill-tmp .

If 7 is some 1, i.e., the parameter is passed in the frame, there is no register
to preserve, and kill-arg mp yields the preserver that does nothing (p. 138):

kill-argip = (u, don’t).

Finally, goto Adeios. w' it generates the code to jump to the function being
applied. If only one A may be applied, i.e. if A is the singleton {\}, the code
to jump is simply a goto to the label for that A:

goto {>\}§Zsclos.ﬁzgwl:u = (M: goto |:|:>‘I|A—>I)a

where [[<[], .; € A — I is a function to give a unique label to a A. (\’s can
always be distinguished from each other because a A binds a variable and all
binding occurences of variables are distinct (p. 19).)

If more than one A\ may be applied, i.e., A is not a singleton, we must,
at run-time, fetch the destination label from the closure, and a register ¢, is
needed to hold it temporarily:

163

goto)‘¢clos.$w’ﬂ = let (:U*a ¢t) = tmp-tmp QAS “register WI,U«
in (:U*a bt = m[¢clos. + 0] ; goto ¢t)

The register ¢ must not be chosen amongst any registers used for parameters.
This is why the ¢-argument to goto is needed. It places a restriction on the
number of registers that are used for passing parameters: One register must
be left for ¢;. This is the reason we only used N registers instead of simply
all, when deciding the calling convention above (p. 159).

8.10 Exceptions
Concrete code for raisee;, e; handlea=>es, and a=>e¢ey

What the code to raise and handle exceptions should be was decided in
section 4.8. That code did not specify how the global variable h should
be implemented. This we decide now, and then we can give the concrete
code for the constructs raise e; and e; handle a=>¢ey and for a handler
a=>ey. After that, we discuss how to make the register allocation for these
constructs. The main problem is how to deal with the rather complicated
control flow that exceptions entail.
The code to raise an exception is (p. 50)

10 ::‘ code to evaluate raise e; ‘ =

Oraised ::‘ code to evaluate eq ‘ :

endregions b ;
¢sp == h ;
pop h ;

pop ¢’ ;

goto ¢'.

} deallocate

} handler-pop

Allocating some register to hold the current handler A would reduce the
number of available registers, and k will probably not be used often in many
programs. Therefore we prefer to keep h in a memory cell.

Each global variable in memory is kept at a specific offset from a reserved
register ¢gp. (Using a register for this purpose is necessary in our language
K, for addresses can only be given relative to a register. We could have
included in the language instructions “¢:=m[:]” and “m[i]:=¢” to load from
and store into an absolute address. Actually, in our concrete architecture,
PA-RISC, all addresses are also given relative to registers, and the operating
system demands that a reserved register always points to a global data space.)
Assuming h’s offset from ¢q, is ¢, the code is

164

10) ::‘ code to evaluate raise e; ‘ =

ODraised ::‘ code to evaluate e ‘ :

¢n1 :=m[pgp + tn] ; endregions ¢p1 ; | endregions h

Gsp = m[¢dp + i) Gsp 1= h

POp Pr2 ; M[ddp + Lh) = Pna ; pop h

pop ¢ ; pop label of handler
goto ¢/ jump.

In that code, the same actual register can be used for both ¢p1, ¢pe, and
@', as long as it is different from ¢paiceq. If we always use some fixed register,
Oraise; We can define the instruction raise that raises an exception when the
exception value is in ¢paiseq:

raise = (raise = M[dp + tp] ; endregions ¢raise ; | endregions h
bep :=m[Pap + L] ; Psp = R
pop ¢raise ; m[‘bdp + Lh] = ¢raise ; pop h
POP Praise ; pop label of handler
goto ¢raise jump

where ¢raise # Praisea (i-€., raise is an instruction whose semantics is specified
by defining it in terms of other instructions, as, e.g., push ¢.)
Then

10) ::‘ code to evaluate raise e; ‘ =

Oraised ::‘ code to evaluate ey ‘ ; raise.

The instruction raise includes (the equivalent of) an endregions-instruction
and destroys ¢raise, and hence, the set of registers destroyed by raise is Draise =
{¢raise} U éendregions-

With the decision to keep the global variable h in a memory cell, the
code for a handle-expression is (p. 50):

¢ ::‘ code to evaluate e; handle a=> ey ‘ =

¢ :=t1g=>e, ; push ¢ ; push label of handler
bn1=m[dgp + tn] ; push ¢pi ; | save h
m[¢dp+Lh] ::¢Sp ; h:= ¢sp

[0) ::‘ code to evaluate eq ‘ ;

pop Pr2 ; m[¢dp +Lp) = n2 restore h
pop discard label of handler.

165

The code for a handler is (p. 53)

‘code for a=>e9 ‘ =

?a ::‘ code to access a‘ ;

Ga? = m[¢raised + O] ;

if oo =g then velsev; ¢: ¢ ::‘ code to evaluate eq ‘ ; goto I ;

r: raise,

where ¢ is the ¢ in ¢::‘code to evaluate e; handle a=>ey|, and i is the
meeting label of the code for e; and the code for the handler, i.e., i labels
the code after the code for e; handle a=> es.

Register allocation of raise e; and e; handle a=>¢9

Now the register allocation of the exception constructs is discussed. The
problem is the flow of the descriptors, §, in the function [| -]m in the presence
of the irregular control flow caused by exceptions. Hitherto, the flow of §’s
has not been a problem because the possible control flow has been so simple:
either linear, or forking and then meeting again in if-expressions.

With exceptions, control flow is less structured and there is no single,
clear answer to how ¢’s should flow. In particular,

e what should the § flowing out of e; handle a=>es be? At run-time,
control may simply flow straight through the code for ey, but an ex-
ception may also be raised, causing control to flow through the code
for the handler a=> e,.

e What should the ¢ flowing into the handler be? An exception may be
raised from different places in eq, and it may even be raised in another
function called by e;.

The following is somewhat involved and specific to our use of §’s. Still,
the discussions touch upon issues that may be of general interest, e.g., how
to deal with exception control flow, and what can be assumed at different
program points when exception control flow is in the picture.

We require that the claims made by a § at some point in the translation
are always correct at run-time at the corresponding program point; e.g., if a
0 says that ¢ contains v, then ¢ must always contain v at the corresponding
program point in the code no matter how control flowed to that program
point. Giving a formal definition, let alone proving that the claims made by
the §’s of our algorithm are always correct, is beyond the scope of this report.

It has not before been necessary to discuss the requirements on the d’s,
as they were automatically satisfied because the flow of §’s mimicked the
control flow.

166

Control flow with exceptions

Ideally, the d¢’s should flow as control flows. This would ensure that the
0’s always contained correct information. This section discusses exception
control flow; the next section discusses how to make the corresponding flow
of §’s.

It is generally undecidable what handler will handle a raise from a given
raise-expression, but remember that it will always be the handler on the
top of the stack of handlers that deals with a raised exception (p. 45). In the
following sub-sections we shall refer to the construct e; handle a=>ey. The
handler a => e5 will deal with all raises from raise-expressions in e; that are
not within some other handle-expression in e; (and it will also deal with the
implicit raise that is in any handle-expression within e1). Le., in

((if ey then raise al at ril
else raise a2 at r2) handle al => e,1)
handle a2 => e,,,

the inner handler, al=>e,;, deals with raises from both raise al at ri1
and raise a2 at r2, although it can only handle al. The outer handler,
a2=>e,q, only deals with the raise implicit in the inner handle-expression,
i.e., the re-raise done by the inner handler when it discovers that it cannot
handle a2. Hence the control flow is

raise al

raise a2

and not

raise al a2 =>e,

raise a2 a2 =>e,9

Raises do not come solely from raise-expressions within e;, however;
functions applied within e; may also raise an exception:

167

let rejs = Au.raise (a at r3) at r3
in
(1+4rejs 2+4) handle a => 5.

This we deal with by conservatively regarding every application as a poten-
tial raise. Alternatively, a more elaborate, inter-procedural analysis could be
employed, but it would probably not be worth the effort and added complex-

1ty.

Mimicking the control flow with the flow of §’s

A first try at computing the in-flowing § to the register allocation of the han-
dler a => e could be to collect all out-flowing §’s from the register allocation of
expressions that may raise an exception (i.e. raise-expressions, applications,
and other handle-expressions) in e; that are not within any other handle-
expression in ey, and take the meet (Mg, p. 150) of them. E.g., in the example
above, if the §’s returned by [[raise al at ri]| , and[[raise a2 at r2[| ,
are 01 and d9, respectively, the in-flowing ¢ to the register allocation of the
handler al=>e,; would be §; Mg d2. The in-flowing § to the outer handler,
a2=>e,q, should be the ¢ flowing out from the inner handler, since the in-
ner handler implicitly contains a raise which will be dealt with by the outer
handler.

The resulting ¢ flowing into the handler will likely be very conservative
because every application is regarded as a raise. Our main reason for not
choosing this scheme is, however, that making the flow of §’s more like the
actual control flow when there are exceptions will complicate the algorithm
for all constructs and not just the exception constructs.

The second try at computing the § flowing into the handler is more of a
hack. It does not attempt to follow the exceptional control flow: We let the
0’s flow as if raises did not change control flow. The method is illustrated by
this example

(((1f ejr then ehen + raise a

else eelse) + eendif)
handle a => ehandler) + €after

where ¢’s flow as follows

168

07
a => €handler

€then Hraise a

€endif €after

A § flows from etpen tO €engif, although control could never flow that way. In
effect, we have incorporated the normal and the exceptional control flow in
the same 4, which, of course, makes the information in § less precise. For
instance, the § flowing into eepngif, 1-€-, dthen 15 delses 1S @ WOrse approximation
than the dipen it should have been if the flow of §’s reflected the normal
control flow better.

Also the implicit re-raise in a handler is ignored; thus only one § flows
out from e; handle a=>e,.

When exceptions are not raised, this flow of ¢’s will give correct (although
less accurate) 4’s.

What should flow into the register allocation of the handler a=>ey?
Observe that the raise will come from somewhere within the code for e;j.
We can make a correct § flow into a => ey, by taking the § flowing out from
e1 and making the registers destroyed by e; undefined (with wipe) in that
0. This gives a correct 0 flowing into a=>es because at the entry to the
handler code, a register will actually contain the value this § says it contains
no matter how control flowed to the handler code, for control can only flow
from raises within e;, and they can only have destroyed registers that are
also destroyed by the whole code of e; since they are part of e;.

Notice, however, that this only holds because expressions are selfish when
saving registers: an expression saves a register only if it contains a value
the expression needs and the register is destroyed by a sub-expression; an
expression never saves a register for the benefit of its context.

If expressions were not selfish, an expression might save a register that
was destroyed by a sub-expression, and the context of that expression would
(rightly) believe that the register would not be destroyed. But with the
method sketched above, the nearest enclosing handler would also believe
that the register would not be destroyed, and this would be wrong, for an
exception may be raised from within the sub-expression, where the register
has been destroyed.

169

Notice that if we did not use the producer-saves placement of spill code
strategy, or if we had functions with callee-save registers, the register saving
would not be selfish.

A price is paid in this scheme for mixing the 4’s of the normal control
flow and the exceptional control flow: The code for e; may be less efficient,
because the ¢’s give less accurate information. It is, regrettably, a price
paid also when exceptions are not raised. Nevertheless, we have chosen this
solution to avoid the complication of the first solution.

Furthermore, the ¢ flowing into the handler a=>e; is less accurate: The
values in all registers that are destroyed by e; are assumed to be undefined at
the entry to the code for a =>e5. This means that values used by a => e may
have to be reloaded unnecessarily inside a =>e5. That is quite acceptable, as
it will only occur when an exception is raised. Worse, the values that are
thus reloaded unnecessarily may as a consequence have to be spilled, and this
unnecessary spilling happens regardless of whether an exception is raised or
not. This may, however, still be one of the minor problems, as handlers often
use few values.

Finally, if the 6 flowing into a=>es is unnecessarily conservative, the §
flowing out from a =>es, and thus, the § flowing out from e; handle a =>es,
will be unnecessarily conservative. Consequently, unnecessary saving of val-
ues may occur around e; handle a=>es.

The § flowing out from e; handle a=>ey should be the meet of the
0 flowing out from e; and the § flowing out from a=>es, corresponding
to the meeting of the control flow from the code for e; and the code for
a=>ey. In other words, in the § flowing out from a handle-expression, it is
conservatively assumed that the code for the handler was executed. It would
be more in line with our intention to make the code for a handle-expression
efficient at the price of making a raise (i.e., the handler code) less efficient
if we assumed the opposite: that the handler code was not executed, and
then imposed on the handler the duty of saving the registers it destroys.
However, this strategy does not mesh nicely with the general selfish principle
of the register allocation: that the code for each expression destroys whatever
registers that suit it without saving them. To keep things simple, we therefore
choose not to do it.

170

[[e; handle a=>e,]] a (0,6) =

let ((d, 5) ¢') = tmp-tmp & register w1 (0,¢)

, ¢1, 1) =[lerll,a (6,2)
) 1) = tmp-tmp @¢1w1(5, £)

01, €), ¢") = tmp-tmp {P1} —register W} (9, €)
d,e) = wipe 5‘5(51,5)
5,€), ¢ar Ba) = [[al] yse {Praised } —register w2 (6, €)
0,€), ¢a2) = tmp-tmp {Praiseds Pa} —register w2(J, €)
0, b2, B2) =[leall,a (6,2)
0 €) = wipe Praise (9, €)
09 = 0, Mg 0;
8= Ad. Xc.

@ =lg=>e, ; push ¢ ;

¢’ :=m[pgp +] ; push ¢’ ;

m[¢dp + L] := Psp ;

Big1(s®, <P +2) ;

pop ¢ ; m[pap +] =" ;

pop ; (¢p:=¢1) ; goto [;

La=>es: BaPaS i Pa? = M|[Praised + 0] ;

if oo = oo then velse; 1: PBagps ; goto i ;
L raise ;

(4,
((4,
(

I: €
n (61 |_|6 527 ¢1a ﬁ)

where 14 =5, labels the handler code, and 7 is the meeting label of the code
for e; and the code for the handler, i.e., i labels the code after the code for
e1 handle a=>es.

Notice that the stack for the code for e; is ¢P + 2, reflecting that the
handler has been pushed on the stack before the code for e;. Contrastingly,
the stack for the code for ey is <P, because the handler element has been
removed by raise before the handler code is called.

In the register allocation for the handler, ¢, and ¢,? must not be the same
register as Qraised, for then the handler would destroy the raised exception
value.

Notice that it is ensured that the code for e; and the code for the handler
put the result in the same register, ¢.

171

The translation of a raise is:

B = AP AS. [1PraisedS ; raise
in ((57 8)7 T register: ﬂ)

Notice the 0 which is returned incorporates the information that we want the
0 flowing to the enclosing handler to receive.

Comparison

We have previously compared our way of implementing exceptions with
that of the existing intermediate-code generator, COMPILE-LAMBDA (p. 53).
Now we can compare the two with respect to register allocation aspects.
COMPILE-LAMBDA pushes all registers containing live values just before a
handle-expression. In comparison, we only save those registers that some
approximation says may be destroyed by the handle-expression. As this ap-
proximation has its limitations, this might not make much difference. Our
producer-saves saving strategy means that a value is only saved once and it
is only reloaded when it is actually needed. (This is, of course, a feature of
our producer-saves saving strategy and not something that has specificly to
do with our register allocation of exceptions.) COMPILE-LAMBDA may push
and pop the same value many times across handle-expressions although it is
only used once.

Unlike COMPILE-LAMBDA, we do not build a closure for the handler every
time e; handle a=>egy is evaluated. On the other hand, in our scheme,
if some value used by the handler resides in one of the registers that are
destroyed by ej, its use in the handler will cause it to be spilled, and it will
be saved on the stack by its producer and it will be fetched by the handler.
This is similar to COMPILE-LAMBDA’s use of a closure.

In practice, these differences are likely unimportant. This way of imple-
menting exceptions has been chosen neither because we expected it to give a
big gain in speed compared to COMPILE-LAMBDA nor because we wanted to
squeeze out the last clock cycle (then we would have chosen a more sophisti-
cated solution); mainly, it has been chosen because it was the nicest way we
could see to assimilate exceptions into our register allocation algorithm.

8.11 Processing a call graph node, A

This section discusses how to process a node, A, in the call graph, i.e., it
develops the function [-ﬂdonode (p. 64). From now on, Aqyr. refers to the
function (node) in the call graph currently being processed (i.e., the argument
of [-ﬂdonode) and eqg refers to its body. Processing Ay, chiefly consists of
doing register allocation and code generation ([[- [],,) for the body of Acy..

172

The main problems are: First, the linking convention for A, may or may
not be decided yet. If it is not, we must decide it now, for we need it to
generate code for Acyr.. (In techincal terms, we need to know the calling
convention to be able to set up the initial descriptor é and stack shape g,
and we need to know the returning convention, as it is the register that the
code 3 for Ay, should be applied to.) Second, it may be necessary to store
some of the parameters of A.,., because they may be loaded in eg. In this
respect, the parameters can be treated as if they were let-bound values. For
example, eg of f[p,...,p1<y1, ..., yp> = Keg is treated approximately as
if it were

let clos = “something” in
let y; = “something else” in

let y, = “something third” in
let p; = “something” in

let pr = “something” in
let ret = “something”
in eg.

If, e.g., y1 is loaded in e, [Acurﬂ donode Must ensure that it is accessible on
the stack. If y; is passed to Acyr. on the stack, it will be accessible on the
stack when it is loaded by the code for ey; otherwise—if y; is passed in a
register—the code for A¢y,. must itself push ;.

The code for A¢yr. has the form

[[)\wrﬂ Ay push the parameters {vy, ..., v, } that are
loaded in eg and not passed on the stack ;

0] ::‘ code to evaluate eq ‘ ;

Dret ::‘ code to access ret‘ :

remove the parameters from the stack ;

goto Pret-

where [Acurﬂ/_)l is the unique label for Acyr.; @ is the register A¢yr. returns
its result in according to the returning convention; and ¢ye¢ is a temporarily
used register. Before returning, the parameters on the stack are removed,
including those that were passed on the stack.

The algorithm to process a function, Acyy., is thus

0. perform the w-analysis (section 8.1) on Acyr.;
1. establish entry conditions:

% = the calling convention (if it is undecided as yet, decide it now);

dp = the initial descriptor according to % (e.g., if clos is passed in
register ¢1, 68¢1 = clos);

173

¢ = the initial stack shape according to % (e.g., if y is passed on the
stack at frame offset 2, ¢§y = 2);
2. perform the register allocation of eg;
3. establish the exit condition: ¢ = the returning convention (if it is
undecided as yet, decide it now);
4. perform the register allocation of a use of ret;
5. generate the code sketched above.

More specifically, [[Acur [gonode 15 @S follows. Explanations are below.

|:|:>‘CUF~:|:| donode ¥

let Ay = [[Aeur] 0a V! 0.
€0 = (Va >‘Zur.) L.
((60,€), S0, €) = entry &g
((675)a lea /6) :|:|:é0:|:|r? (5075) 2.
(pres., €) = decide-rc ¢(0,¢) 3.
((0:€); dret: Bret) = [[ret]] o {Pres } —register wp(3,6) 4.
{vi, ..., vm} =0"\Dmg§ 5.

K= [Acurﬂ JURE
|:|:U1:|:| push-arg. (Wﬂ(

|:|:Um:|:| push-arg. %(
[ﬁ¢res. v ﬁret‘lsret:ﬂ zap) te)(0 ;
goto Pret
in (k,).

Remember that the environment v has the form (77, @), where 7 is the
inter-procedural environment and ¢ is the set of registers destroyed by the
current strongly connnected component. The w-analysis [[-] , needs the
inter-procedural environment 7.

The per-function environment ¢, used during register allocation, consists
of the environment v and the current function: € = (v, Acyr.)-

The auxiliary function entry establishes the entry conditions by finding
the calling convention %, the initial descriptor dg, and the initial stack shape
Go. If it was necessary to decide the calling convention, ¢ is updated to record
the decision. This is described in detail below.

¢g is the body of the w-annotated version, A%, , of Acur..

In analogy with entry, the auxiliary decide-rc establishes the returning
convention. This is described in detail below.

The return label is accessed with [retﬂuse {¢res.} —register wy(d,€). The
register used for the return label must not be the same as the result register,
res.; SO Pres. is forbidden. The w after ég is wy.

After the register allocation, & holds the set §” of values that will be
loaded in the body. Of these values, those that are already on the stack

174

because they are passed on the stack (i.e., the parameters Dm ¢ in the initial
stack shape) need not be pushed. Hence, the values that must be pushed are
{vi, ..., vm} = 0"\ Dmg§.

The calling convention ¥ € V SoUT maps each parameter to its pa-
rameter convention: if €v = ¢, v is passed in ¢; if ¥v = i, v is passed on the
stack at frame offset i. (When discussing how to translate an application, we
used a different definition of calling convention; in this situation the present
definition is more convenient. Clearly, it is possible to convert the two kinds
of calling conventions to each other.)

The function [[v]] € € 7 — 7 prepends to its argument, ¢, code
to push v:

push-arg.

(o]l ushoarg, €€ (% 7) = push Gv ; (s + {v > <P}, P +1).

The function [-ﬂzap
reset the stack pointer:

|:|:<:|:|zapg = (<5 (Psp = sp =[P TN 10)-

Meur] donode Must return a v; this is extracted from e.

€ 7Z — 7 appends after its argument, ¢, code to

The details

Now entry and decide-rc are described.

entrye = let 68 = \g.if ¢ € £% then —q else O

do = (2, (), &)
(€, €) = decide-cc (0y, €)
o = (Q’ ()7 56l +<gll|<1>)
6 = Cl{v | gvery
G =H{%v|Cvell}
0 = (s§, <p)

in ((do,€), s, ©).

where wq is the w before eg.

This function first sets up the initial descriptor 9. Remember € contains
an approximation € of the set of registers that will be destroyed anyway
by the current strongly connnected component (p. 72). We let the initial
register descriptor, 58, map these registers to —q, thereby encouraging the
heuristic that chooses registers to use them first (p. 90). Other registers are
mapped to 0. The two other components in dy are initially: /] = @ and
56 = () (“()” is an empty stack of temporaries).

Then entry calls decide-cc (described below) to either get the calling
convention % (from &) or, if it is not decided yet, decide it (and update).

Then the register descriptor, 561, is updated according to the calling con-
vention: if €v is ¢, then 5g¢ should be ». The initial stack environment ¢

175

is set to map the parameters that are passed on the stack to their offsets: if
%v is i, then ¢§v should be i. The initial stack pointer, ¢}, is the number of
parameters passed on the stack.

decide-cc (6,e) = if ccetewre # — then (ccePeure, €) else

let (vi, ..., v;) = params etevr

((57 5)a ¢1) = [Ulﬂ def %) “register wo(é, 6)
((57 5)a ¢2) = [UZ:D def {¢1} “register WU((Sa 5)

((6,€); ¢n) =[onTlger {P15 -+ » IV L1} —register w0 (6, €)
C={vi— d1, ..., vN = dnN,
oNg1 =0, oo,y —(N+1) }
in (€, set-ccervEe).

The expression cc Ae gives the calling convention for . The parameters of
Acur. are obtained with params Acyr.:

params (A<y1, ..., yn>.Xéy at p) = (clos, ret, yi, ..., yn)

params (fLpy, ... pp1<y1s ooy Yn> = X&)
= (clos, ret, y1, ..., Yn, P1s -+ Pk)-

In case the calling convention is not decided, decide-cc chooses a register
in which to pass each parameter v; using

|:|:Ui:|:| def {¢1a cee (bzll} —register wﬂ(da 8);

which yields a register different from ¢, ..., ¢;11 given wp, the w before
eo (i.e., the w describing the situation at the entry to Acyr.). Only the first
N parameters get to be passed in a register, where N is approximately the
number of registers (at least one register is needed by the code to call a
function, p. 164). Parameters that are not passed in registers are passed on
the stack at offsets 0 through j — (N + 1).

The expression set-cc Aeyr. % e yields a per-function environment ¢’ that
records that the calling convention for A, is €. (It is, of course, the inter-
procedural environment component, £7, of ¢ which is updated.)

Notice that decide-cc can use [[-]| jo; which was introduced to take care
of values declared by let-expressions etc.

The function decide-rc is analogous to decide-cc: If the returning con-
vention is decided, just return it, otherwise, decide what it should be. If
possible, choose the natural destination register $ of eq:

decide-rc $(6,2) = if reetewg # — then (re et e, ¢)
else let ¢res. = choose @éﬁ@w{)é in

(res., S€t-rc erevr rog €).

where rc is analogous to cc and set-re to set-ce, and wj is the w-information
after the body of Acyr..

176

8.12 The remaining constructs

The code for an integer constant, ¢, moves the constant to the destination
register. There is no natural destination register:

[ﬂ]rau = (,U*a “register Ap. As. ¢1:|:|:7::|:|]_)1).

The code for u ey is analogous to that for e; 0 ey (p. 134):

:‘ code to evaluate eq ‘ : |IuI| u-prim b2,

where [Ju] w-prim $2¢ translates the unary operator u to code that computes
the result from ¢ and puts it in ¢:

I:I:#Z:I:I u-prim ¢2¢ = (b =m [¢2 + IIZ:D I%I]

[prim @20 = [#0]] prim P20 = ¢:=mlg+0].
Then
(1, P2, f2) |:|:62:|:|railf
(1y pa) = tmp-tmp Spowpyp
B=Xp.Xs. Bacpos ; [[ull,y_prim P20
n (u,

~register, ﬁ)a

[ueﬂ]ra,u = let

where W) is the w-information after es.
The translation function for ¢; eg at p is very similar to that for a pair.
Compare with the definition of [[(e1, ..., e,) at p]],, (p. 146).

[éresat pl], 0 =
let (11, ¢uy ¢, 0) =[[pll gt 2 (LeaDlga n7) won

(1, ¢1) = tmp-tmp { s} —register Wtk

(s D2, B2) = [eal] a it

(11, b2) = tmp-tmp {$. }powhps

(1, px) = kill-tmp p

B=xp.xe. (s dr=[[ell oy i mlgs +050] ==y ;
P« (B2g2)s : m[ps +051]:= o ;

(¢:= s + 050)
¢ = if ¢y = Pep then —register else o,
(

B).

where wy and W) is the w-information before e; and after eg, respectively. The
“2” is the number of words allocated for the constructor and its argument.

177

The translation function for an application of a nullary constructor is
similar. There is no sub-expression, and we only allocate one word:

|:|:CO at Pﬂraﬂ = let (:ua b4 G, O) = I:[p:ﬂra—at 1Gwp
(Ma ¢1) = tmp-tmp {¢*} —register W,M
(1, ps) = kill-tmp p

B = \. Ac.
¢ o1 :=[¢ll oy i mlgs +0s0]:= ¢y ;
(¢:= s + 0c0)
¢ =if ¢y = ¢sp then —register else ¢,
in (u, ¢, f).

Notice p, is not used.
The translation function for ref e; at p is much like that for ¢, es at p
(p. 177):

[referatplln = let (1, ¢us ¢, 0) = [pll i | (et aan”) wins
(1y &1, 1) =[[e1]) a1
(1, 1) = tmp-tmp {$} 1
(1, ps) = kKill-tmp p
B = \o. .
Cs 5 p(Bidr)s ; ms + 0c0]:= ¢y ;
(¢:= s +050)
¢ = if ¢ = bsp then —regisier else .
in (1, ¢, B).

The code to declare an exception constructor is (p. 51)

[0) ::‘ code to evaluate exceptiona in eg ‘ =

n=n+1;

bind a to n in the environment ;

10 ::‘ code to evaluate e |

Allocating some register to hold n is unreasonable, as this would reduce
the number of available registers, and n will probably not be used often in the
vast majority of programs. Therefore, we choose to keep n in some memory
cell.

Assuming n’s offset from ¢qy, is tn, the code is

[0) ::‘ code to evaluate exceptiona in eg ‘ =

¢a::m[¢dp+bn] y Ga =g+ 1 m[¢dp+bn] = q ;
¢ ::‘ code to evaluate e ‘

178

This is quite similar to the code for a let-expression, and the definition
of [[exception a in ey]| ra 18 almost identical to that of [let 2 =e; in ey]| ra
(compare with p. 104):

[[exception a in ey]] = let (u, = [[a]] def D —register W2l

(y ¢2, B2) = [leall,, 1

(ks = [[all iy dant

ﬁ=>\¢ AS. ¢a:=m|Pdp + Ln] ;
ba:=¢a+1;
M[¢dp + tn] = Pa
pa(ﬂ?‘ﬁ)&'

in (1, b2, B).

The definitions of [[a; e2 at p]], and [[d at p[],, are quite similar to
the definitions of [[¢1 es at p[],, and [[é at p]],,, respectively. See the code
sketches and discussion on p. 52. The only difference is that the exception
constructs represent a use of the exception constructor. We will only give
the definition of [[a; e at pl],,; compare with [[¢; es at p[] ., (p. 177):

fay ez at pll,an =
let (1, ¢s, ¢, 0) = [PII ra-at 2 ([‘32]] da W) wap

(s a, Ba) [dﬂ use 1@} —register W2l

(ks b2, B2) = [[eal],a 1

(1, ¢2) = tmp-tmp {$ }awhp

(1, ps) = kill-tmp p

B=Ap. A (55 Badas; mdx+0s0]:= by

P« (Bad2)s i m[ds +o0c1]:= ¢ ;
(¢:= s + 030)

if ¢, = ¢sp then —iegister else ¢y
é, B).

A \-abstraction \j.* eg at p has annotated a closure representation K €

¢ =
o (u,

7> I, which maps the free variables of A\j.X ey at p to their offsets in the
closure.

The code for letrec® by --- b, at p in eny1 builds a shared closure
(p. 43), and this is much like building a closure for a A-abstraction. We
factor the common parts into a function: build-closure Kpiwp returns the
usual triple (', <5, 3), where 3 is the code to build a closure for the closure
representation K in region p and with code pointer 7€ TU {—1}. If i = —,
no code pointer is stored into the closure. The w-information is w, and (fS is
the natural destination register of the code to build the expression. Now we
can write [[A7.* e at p[] , using this auxiliary function:

[Ag_’C eo at pﬂ it = build-closure }Cp[D\Zj-’C ep at PI| ATYH;

179

where [[Acurﬂ A is the unique label for Ay, and w is the w-information
before Ajj.X ¢g at p.

The code to build a closure (p. 40) is very similar to that for building
a tuple. Instead of storing the values of the n sub-expressions at offsets
0 through n — 1, the label of the code for the A is stored at offset 0, and
the free variables vy, ..., v, are stored at offsets Kvy, ..., Kv,. Accord-
ingly, the register allocation part of build-closure is quite similar to that of

[Cers .-, en) at pl],, (p- 146):

build-closure Kptwy =

let {z1, ..., z,} =DmK
(y ¢, C, 0) = [pﬂra_at (n+if 7= —1 then 0 else 1)@wpu
(ks do) = tmp-tmp {Ps} —register wi
(1, @1, Br) = [[Zlﬂ use {0} —register WH

(s Dns Bn) = [[20]] use {0+ } —register wit
(1, px) = kill-tmp p
8= Xo. Xs. (¢ ;
if /= —1 then €
else ¢g =1 ; m[py + 0s0] := ¢y ;
Bigi< ; migps +0s(Kz1)] =1 ;

Brndns i m[dx +05(Kzy)] = ¢ ;
(¢ 1= s + 050)

(ﬁ =if ¢u = ¢Sp then —register else .
in (u, ¢, B).
Besides building a closure, the construct
letrec flglyl =e .- fmﬁmym =emat pin ey

declares a sibling name f = {f1, ..., fm} (p.- 117) ine;41, just as let x = e
in e9 declares = in es. Accordingly, |I1etrec Kby b, at p in em+1I| s 18
like |I1et T =e1 in 62:|:| ras €xcept it uses build-closure Kpi—jwm41 p instead
of [e1]],,, and f instead of x:

180

|I1etrec fllglyl =€1 fm;mym =em at pin em+1]:|raﬂ
let le{fl’ coos fm}
(s @1, B1) = build-closure K p —1 w1 p
(n, ¢f) = I:[ﬂ:ldefg(;slwm+lﬂ
(s D1y Bmst) = [ems1]] o i
(1, pg) = [f:ﬂkill b

B=Ap. Bidgips(Bms10)
in (:ua ésm-l-la ﬂ)a

where wy, 41 is the w-information before e, 1.

181

9 Target code generation

This chapter describes the last phases in the back end:

|:|:':|:|bbs 2B lin K [[':I]pa P |:|:':|:|sched.,

7 7

9.1 Linearising the code
Viewing the code as basic blocks

One can view K as a control flow graph language. For instance, the code
generated by [-ﬂra for the body of the function

A<b,i,j>.(if b andalso i<=j then 3 else 665)+1 at r299

is something like

if ¢ =1 then 11 else 19

N

t1:if @3 < @y then 1y else u5 Ly : goto iy

; goto g L5 =665 ; goto 14

N

Lg:p:=¢+1; goto dret.

The notion of a control flow graph representation of the code is formalised
by regarding the code as a set of basic blocks.
A basic block b € B has the form

B = I:K;K

where K is the set of jump instructions in K, and K is the set of instructions
in K which do not contain jump or label instructions:

K == gotoY | ifX thenIelsel

K i= &:=04+7T | &:=7
| o=m[@ LI | mOPI]:=
K K | e

Y == & | L

182

(Remember X is the set of conditions (p. 20). As in K, the other instructions
(e.g., pop) can be defined as macros in this language.)

We assume some function, [[-[],,s € K — ZB, can convert the code
generated by |I-I|ra to a set of basic blocks.

Linear code

The control flow graph representation of the code is convenient when gener-
ating code: pieces of code can be glued together using jumping and labelling
instructions. But the assembly language has one sequence of instructions,
and instead of the symmetric if y then ¢ else ¢ it has a conditional jump in-
struction if y then ¢ which falls through to the following instruction if the
condition y is false. Therefore, we define linear code, K, to be like K, except
that the if y then t-construct replaces if x then ¢ else

K == I:K | -+ | gotoY | ifX thenl.

We must translate the set of basic blocks to linear code. Since we do not want
to pay a price at run-time for the convenience of using jumps to glue together
pieces of code, the translation from basic blocks to linear code should try to
generate as few jumps as possible.

For instance, the linear code for the control flow graph above could be:

if ¢ =1 then 1, ;

lp: ¢:=665;
pr=p+1;
goto ¢ret.)

L-p: if gy < @y then iy ;
¢:=3;
pr=p+1;
gOto Pret..

This linear code was obtained by way of the following optimisations:

1. Avoid jumps to jumps. (This avoided s : goto ¢5.)

2. A jump can be avoided by placing the jumpee right after the jumper.
(This avoided jumps to ¢:=665 and ¢:=3.)

3. If the jumpee has already been put somewhere, the jump can still be
avoided by duplicating the jumpee. (The code ¢p:=¢+ 1 ; goto Pyet.
was duplicated to avoid a jump instruction in the branches.) To avoid
an explosion in code size, code should only be duplicated when it is
sufficiently small; and restrictions must also be imposed to ensure ter-
mination.

The first optimisation is a special case of the third if we assume a jump
will be sufficiently small to be duplicated.

183

Making linear code from basic blocks

In the following, we explain the function lin € #B — K which linearises a
set of basic blocks by translating it to a & € K.

During the translation of the set of basic blocks, we keep track of the
status of each basic block in an environment, 7, which maps each label in
the program to the status of the corresponding basic block:

i € I = IiBU{underway}UIA(

If 20 = b, the basic block corresponding to ¢ is b and has not yet been
processed; if 7+ = underway, the basic block corresponding to ¢ is currently
being processed; and if 7. = &, the processing of the basic block correspond-
ing to ¢ has been finished and resulted in the linear code &.

The function [[-]];,,; € B — I — I processes a b and returns an
updated 7 that records the result of processing b, i.e., the resulting code, k.
It first records in 7 that b is underway, and then calls[[-]|, , € B — I —
I:

et &llyqt = ek &l (¢ 4+ {¢ — underway})

The actual work is done by [[b]]. ,i: If b has the form ¢: % ; goto //,
we try to eliminate the goto ¢/ by putting the basic block labelled ¢/ (call
it b') right after . The following situations can arise: 1. If b’ has not
been processed yet (i.e., it/ = b'), we can process it now, and glue the
resulting code onto b. 2. If b’ has been processed (i.e., 1/’ is some &'), we
cannot eliminate goto ¢/, except if the code (k') for b’ is so small that it
is permissible to duplicate it to avoid the jump. 3. If b’ is underway (i.e.,
11/ = underway), we do not eliminate goto ¢:

[[e:k ; goto]]};0% = if 4/ = b’ thenlet 5+ =[[b]]; ;1
inzt+{t— :k;3}
else © +{ ¢ — vih;if 2 =&/ A |R] <42
then [’%’:D relabel
else goto (' },

where “|&'| < 42”7 means that &' is sufficiently small to be duplicated, and
[[&7] relabel 18 @ /& where the labels bound in &' have been replaced by labels
that are not used anywhere else.

Notice that in the case where an already processed &’ is glued onto the
current basic block, we do not continue and try to eliminate the jump in-
struction in the end of &', for if it could be eliminated, it would already have
been when &' was processed.

By keeping track of what basic blocks are underway and not eliminating
jumps to them, we ensure that the algorithm does not loop infinitely when
there are loops among the basic blocks.

Jumps to registers cannot be eliminated:

184

ek goto@ll vt = 5+ {t — v:k;gotod }

The conditional jump instruction if x then ¢/ else ” can be translated to
the linear code if x then ./ ; goto /", but as above, we try to avoid the jump
instruction by putting the basic block labelled " right after the current basic
block. If this is not possible, we pretend the instruction is if —y then " else //
and try to put the basic block labelled ¢/ right after the current basic block.
If neither attempt succeeds, we try to duplicate the code for one of the basic
blocks as above:

[[e: 4 ; if x then ot/ else "] » 5 =
if i/ =2b"thenlet ¢ =[[b"]]; %
ing+{tm— v:k;ifxthen; 2.} else
if i/ =0b'then let s =[[b'])};, %
int4+{tm— w:k;ifoxthen! ; i/} else
if 4" = &" A |#"| < 42 then
i+ {0t~ i ifxthen t [[8") eupe + else
if i/ =& A || <42 then
i+ {v > vk if = then ' [[&] oape T €lse
i+ {t— v:k;if x then / ; goto " }.

The basic blocks of the program are processed by I:I:':Hlin—o €EB—~1—
K — K, which repeatedly calls [-ﬂlin_l until there are no more unprocessed
basic blocks in the environment 7 :

|IL ‘K Ii:l:l lin-0 % Rgo-far =
let & =[[e:k; &l %
Kso-far = Kso-far ; ¢

in if 34 : 4. = b then |:|:b:|:|1in-0 % Rgo-far €1S€ Rso-far

The code for the different basic blocks is accumulated in RKgogar which is
returned when all basic blocks have been processed.

All lin € 2B — K does is to set up the initial 4 and &go.far, and then
call [[- J] ;.o With the first basic block b:

lin(d®U{b}) = (bl 0f{t — ik k| tik;k €b e

Discussion

Shorter jumps are more efficient on many architectures. The algorithm could
be extended to process the basic blocks in an order such that basic blocks
that jump to each other are placed close to each other.

The heuristic for deciding when code can be duplicated could be extended
to take into account the number of jumps to the code and not just its size.

185

A way to eliminate dead code would be to discard basic blocks that are
not jumped to.

A more elaborate algorithm to avoid jumps by duplicating code is given in
(Mueller and Whalley, 1992). Jumps are replaced with a duplicated sequence
of instructions that either reaches a return or falls through to the block that
follows the original jump. The loop structure of the basic blocks is taken
into account and trying to make loops with as few jumps as possible, while
our algorithm is oblivious to the loop structure.

Loop unrolling (Hennessy and Patterson, 1990) is also a more structured
approach than ours where the body of a loop is duplicated to reduce the
number of tests and jumps in the loop.

Inlining functions is a very related optimisation (which the optimiser of
the ML Kit performs) that avoids jumps by duplicating code. Basic block
duplication cannot inline functions and function inlining cannot eliminate
jumps originating from control flow constructs. Furthermore, the optimisa-
tions occur at different stages in the compilation. Thus, it is worth doing
both.

9.2 Tailoring the back end to a PA-RISC

To tailor the back end described in this report to a specific RISC architecture,
one must (1) provide a function that translates the linear code K of the
previous section to the assembly language of that RISC; and (2) specify the
registers used by the register allocator. This section does this for the PA-
RISC.

Our compiler generates assembly language code supposed to be processed
by the PA-RISC assembler as. The target language is

B stw %®,1(%sr0,%P)
Idw 1(%sr0,%®),% P

add %2,%%,%®

etc; see (Mahon et al., 1986, Lee, 1989, Coutant et al., 1986, Pettis and
Buzbee, 1987, and Asprey et al., 1993) or the manuals (Hewlett-Packard,
1992, 1991a and 1991b)). Instructions are read left to right: add %r1,%r2,%r3
puts the sum of registers rl and r2 in r3. The PA-RISC registers are the
same as the registers used in K.

The translation [-ﬂpa e K —» P is a quite simple “macro expan-
sion” translation. An example gives an idea of what the translation does:
m[¢p1 + ¢] := ¢ is translated to a stw-instruction if the offset ¢ will fit in the
14 bits the stw-instruction allows. Otherwise, it is translated to two instruc-
tions, the first of which computes part of the address in register r1, and then
the second instruction stores ¢9 at an offset from rl:

186

[m[p1 +):= ¢2ﬂpa =
if 213 <4..A4-1 <23 then stw Y%do,4 - 1(%sr0,¢;)
else addil 1%4 - —$global$, ¢,
stw %9,r%4 - 1(%sr0,%r1).

The function [-ﬂpa we have almost directly copied from the existing back
end (Elsman and Hallenberg, 1995).
The PA-RISC has 31 registers:

® = {rl, ..., r31}.

The stack pointer is ¢sp= r30; the global data space pointer (p. 164) is ¢qp=
r27; and since rl is used, as above, when a constant is too large to fit in
an instruction, we prohibit its use in the register allocation. This leaves 28
registers at the disposal of the register allocator.

The heavy-weight instructions ¢ :=at ¢ : ¢, ¢ := letregion, etc. are imple-
mented through a combination of translating them to simpler K instructions,
calls to sub-routines, and calls to the run-time system. The register alloca-
tor must know the set of registers destroyed by these instructions. E.g., in
one configuration of the compiler, ¢ :=at ¢ : ¢ and ¢ :=letregion are coded
completely in K instructions, and

Pt = {r1,r20,r21,¢23, ..., r26}
életregion = {rl, r20, r21},

whereas endregions ¢ is implemented as a call to the run-time system, and
thus éendregion is the registers destroyed according to the PA-RISC calling
convention (Hewlett-Packard, 1991b):

Bendregion = {rl,r2,r19, ..., r26, r28, r29, r31}.

Similarly, we must define the natural destination registers and preferred
argument registers of the heavy-weight instructions. For instance, @jetregion=
r28 when ¢ :=letregion is implemented as a call to the run-time system.

9.3 Instruction scheduling

On pipelined processors pipeline interlocks can occur. This happens, for ex-
ample, when a value is loaded from memory to a register and the instruction
immediately after the load instruction uses this register. For example:

p1: Ildw 0(%sr0, %rl), %r3
po: add %r2, %r3, %rd
p3: add %r5, %r6, %r7

187

On the PA-RISC, the time needed to transfer a value between cache and a
register is one cycle, so r3 is not ready by the time ps needs it. This causes
the processor to wait for a cycle until the contents of the memory location
pointed to by rl has reached r3. Since p3 does not use r3, there is no interlock
if the order of the instructions is changed to p1psps. This does not change the
semantics of the program, as ps does not depend on ps. (Since p3 does not
depend on p; either, the sequence p3sp1po would also have the same semantics,
but an interlock would occur.)

The purpose of instruction scheduling is to try to avoid interlocks where
possible, by rearranging instructions to produce a (hopefully) faster program.
In the following, we first discuss a general algorithm for scheduling. Then
specifics concerning the PA-RISC are covered. The main inspiration for the
algorithm stems from (Gibbons and Muchnick, 1986).

The scheduling algorithm

To reorder the instructions in the original program without changing the
semantics of it, it must be recorded how instructions depend on each other,
and a strategy must be chosen to decide on the reordering. The main issue
that should be addressed to solve the first problem is: When is it legal to
swap two instructions?

The scheduling algorithm is used only on basic blocks. This is because
it is not always possible at compile-time to determine where control will
flow at jumps. Completely different dependencies could arise between the
instructions, depending on the flow of control.

In the example above, it is clear that p3 may be executed at any point.
This is because p3 does not use any registers that are destroyed by p; and
po, and it does not destroy any registers that are used by p; and ps.

Consider a basic block consisting of instructions p1,... ,pj,... ,Pk,... . Pn
(1 < 5 <k < n). (In this section, a basic block is a sequence of -
instructions.) The instruction dependencies are:

1. If p; destroys a register that is used by p;, then p; must be executed
before py,.

2. If p; uses a register that is destroyed by pj, then p; must be executed
before py,.

3. If p; destroys a register that pj also destroys, then p; must be executed
before pi. This rule is redundant if there is at least one instruction
p; between p; and p; that uses the register destroyed by p;, because
then, by rule 1, p; must come before p;, and by rule 2, p; must come
before pj. If there are no uses of the register that p; destroys before py,
is reached, then p; could have been safely removed by an optimisation
phase. Since this does not happen in the current implementation, these
instructions must not be swapped, and this rule is necessary. We will
also see other reasons for this rule below.

188

The different kinds of dependencies are illustrated by this basic block:

pa: add %rl,%r2,%r3
ps: add %r3,%r3,%r4
pe: add %r0,%r0,%r3

These instructions cannot be reordered: By rule 1, p4 must be executed
before p5 because p4 destroys r3, which is used by ps. By rule 2, ps must
come before pg because pg destroys r3, which is used by ps. By rule 3, py
must come before pg, but that is already ensured by the two other rules.

It is computationally unwise to consider the n! possible rearrangements
of a given basic block with n instructions to find the optimal scheduling.
Therefore we use a heuristic. We construct a dependency graph (p,d) €
Px Z(Px*P), which is a directed graph that reflects how instructions depend
on each other according to the rules above: ps depends on p; according to
(p.9) iff p1@*ps. Any topological sort of (p,d) will result in a reordered basic
block that is semantically equivalent to the original basic block.? A heuristic
that seeks to minimise the number of interlocks is used to choose a node
among those nodes with no parents at each step in the topological sort.
It is possible to construct pathological heuristics that will produce worse
scheduling than the original program.

The algorithm in detail

The function [-ﬂsched. € P — P schedules a program by converting the
program to basic blocks, scheduling each basic block, and putting the basic
blocks back together:

|:|:p:|:|sched.
let ([11, ceey bm) = I:DJIIbbs’
’1 = [blﬂ sched0

b;ﬂ = [bnﬂ sched0
in
b’l e---0 b;n

where by e by is defined by:

(P1s ooy Pn) @ (Prtts ooy Pm) = (P1s ooy Pm)-

The function [[- [],, is trivial and will not be described further.

The function |:|:':|:|sched0 processes a basic block by making a dependency
graph, (p,?), and then applying the heuristic to produce a sequence of in-
structions with as few interlocks as possible from this graph:

2Topological sort: Choose a node with no parents, and delete it. Continue till the graph
is empty

189

|:|:b:|:| sched0 —

let (p,d)= dependencies b
while (p,d) is not empty
let the candidate set p.=
the set of instructions with no predecessors in (p,9);
apply the heuristic to p., yielding a choice p;
remove p from (p,?);

The next sub-sections explain dependencies and the heuristic.

Building the dependency graph

The set of registers that is used and destroyed by an instruction set is pro-
cessor dependent. This information is recorded in the functions|[] - | q and

|I'I|defd:

use

[T € B 20
I:I:':I:Idefd 6 mi)y(ﬁ

The function [[- [] ,.q computes which registers an instruction uses. Simi-
larly, [[-]] defq cOMputes which registers an instruction destroys. For example:

[[add%r1,%r2,%r3]] = {rl,r2},

used

[add%r1,%r2,%r3]] ;..q = {r3}.

During the processing of a basic block, the values necessary to build the
dependency graph are maintained by maps 2 and %,

2 € &P
»U € d— FU.

The last instruction that destroys ¢ is given by Z¢. Similarly, % ¢ is the
set of instructions that use ¢. The maps Z and % are updated on-the-fly
after each instruction in the basic block is processed. Thus, they only record
information from the beginning of the current basic block to the instruction
currently being processed. When an instruction destroys a register, all later
uses will depend on this definition (rule 1). Therefore the use set, % ¢, of ¢
may be set to @ when ¢ is destroyed.

The functions dependencies and dependenciesy build the dependency
graph. dependenciesy p% 9 is a set 0 consisting of edges representing the
instructions that p depends on, and dependencies produces the dependency
graph for the whole basic block.

190

Dy p1: add %r0,%r0,%r1
po: sub %r2,%r2,%r3
p3: add %r5,%r5,%rl
ps: add %r2,%r2,%r2
ps: add %r3,%r1,%r4

By rule 3 because
r3 is defined by p; and p3

p3 P2

By rule 2 because
r3 is defined by

By rule 1 because p2 and used by ps

rl is defined by
p3 and used by ps

By rule 1 because
r3 is defined by
p2 and used by ps;

Ps P4

Fig. 41. The dependency graph for a program. On each edge is an
explanation of the rule used to insert the edge into the graph.

dependencieso V% 9 =
let 0 ={(p',p) | p' €{P¢ | ¢ €[[p]]ysea } U (rule 1)
(%o |6 ellpllgera } U (rule 2)
{2¢| 6 €[l gera }} (rule 3)

U=U +{¢p— (%pU{p}) | ¢ € [[P]sea }
D=2 +{d = p| ¢ €lpllyera }
U=U +{¢— 2| ¢ €[[pll gea }
in
(% ,92,9)
dependencies (p1, ..., pp) =
let % =@
9 =0
(%, 2,91)= dependenciesy p1 % 9

(%, 2,0,)= dependenciesy pn % 9
in

({pla'-' apn}aal UUDn)

191

As an example of how the algorithm works, consider p5 in the figure
above. The instructions that ps depends on according to rule 1 are:

{@(b ‘ ¢€[p5:|:|used} = {@(r?:),@(rl)} = {anp3}'

The instructions that ps depends on according to rule 2 are:

(¢ | delpsllaa = {#@d)) = o.

The instructions that ps depends on according to rule 3 are:

(26| 6 ellpsllaerat = {208)} = o
Thus the edges returned by dependenciesy (p5, % , 9) are {(p2,ps), (p3,P5)}-

Loads and stores

There are other dependencies than register dependencies. It must be con-
sidered when it is legal to swap loads and stores. Obviously, it is unsafe in
general to swap a load and a store instruction, since they might reference
the same memory location. It is also unsafe to swap two store instructions
because one store may overwrite the other causing later loads from this mem-
ory location to result in the wrong value. Thus it is only safe to rearrange
loads, subject to the same restrictions as there are on all other instructions.
This is elegantly handled by the scheduling algorithm by considering (all of)
the memory as a pseudo-register m. This pseudo-register is destroyed by a
store, and used by a load. E.g.,

[[1dw 0(%sr0, %r1), %r3][] g = {rl,m}
[[stw %r24, 4(%sr0, %r30)]],.; = {m}.

Two loads can be swapped if the rules permit, but a load and a store can
never be swapped because of rules 1 and 2. Rule 3 will ensure that all stores
in the scheduled program will appear in the same order as in the original
program.

Some instructions may set processor flags besides defining a register. For
example, an add instruction may set an overflow flag, on which succeeding
instructions depend. This can be handled by regarding flags as pseudo-
registers. Thus, an instruction may destroy several registers.

Designing a heuristic for the PA-RISC

This and the following section covers the specifics concerning scheduling PA-
RISC code.

The basic principle for the scheduling heuristic is to try to schedule in-
structions that may cause interlocks as early as possible. This gives a better
chance of finding an instruction that will not interlock with the one just
scheduled.

On the PA-RISC, interlocks occur when (Andersen, 1995):

192

e an instruction loads a register, and the next instruction uses that reg-
ister as a source

a load immediately succeeds a store

e a store immediately succeeds a store

a load is followed by an arithmetic/logical instruction or a load/store
with address modification.

This leads to the following heuristic for choosing the next instruction:

if the last instruction was a load then
if there are non-interlocking candidates then
choose a non-interlocking candidate, preferably a load
else
choose an interlocking candidate, preferably a load
else
if the last instruction was a store then
try to schedule a non-load/store instruction
else
choose any candidate, preferably a load or a store.

If there are several equally good candidates, the candidate with most succes-
sors in the dependency graph should be chosen.

Skipping instructions

On the PA-RISC, most instructions can conditionally skip the next instruc-
tion. Consider the program fragment

p1: add,= %rl ,%r2 ,%r3
po : add %713 ,%r3 ,%r4.

Here p; skips po if rl contains the same value as r2. What registers are
destroyed by this sequence? If po is executed, rd is destroyed. If po is not
executed, r4 is not destroyed. Also, the instruction scheduler must not move
po away from pp, as this could result in another instruction being skipped.
We solve the problem by treating p; and po as one compound instruction.
The set of registers destroyed by a compound instruction is the union of the
registers destroyed by each instruction. The same holds for set of registers
used by a compound instruction.

There can be chains of skip instructions. These are handled by treating
the whole chain as one compound instruction.

193

10 Implementation notes

Everything in the report has been implemented. The modules that we have
written from scratch constitute approximately 13000 lines. This chapter
gives some correspondences between the report and the code and lists some
differences between the report and the code.

10.1 The correspondence between the report and the code

In some respects, the implementation is quite as the report. Here is the SML
code for [[let 2 = ey in ey]],, (p. 104)

| ra (LET (lvar,info_lvar,el,e2,info)) d =
let
val (w2,w2’) = get_w_annotated_on e2
val (d,fl1_opt,bl) =rael d
val (d,fx) = def fl_opt (Lvar lvar) d w2
val (d,f2_opt,b2) = ra e2 d
val (d,p) = spilled (Lvar lvar) d
val b = fn f =>bl fx |||| preserve (Lvar lvar) fx p (b2 f)
in
(d,f2_opt,b)

end

LET (lvar,info_lvar,el,e2,info) corresponds to let x = e; in ey. Ev-
ery construct has an “info” field, which is a reference containing annotations.
E.g., the w-information wy and w) annotated on ey can be accessed from the
info field on e2 with get_w_annotated_on e2. Phases that are presented in
the report as translations from one language to another annotated language
are often implemented as phases that update the info fields of the source ex-
pressions. The f-variables are ¢’s; d is d (the e-environment is implemented
with global references); def is [- [] ;.¢; spilled is [[- [}, q; b is 85 ||]] is 5 ete.

10.2 Some deviations from the report in the implementation

Polymorphic equality and tagging

Polymorphic equality allows the programmer to compare arbitrary data ob-
jects for equality if they do not contain functions. The function

fna=> fnb=> a=b

could be applied to any type that allows polymorphic equality. If we want
the same code to be able to work for any type, it is not enough to represent
all types uniformly: Two integers are equal if their representation as words
are equal, but to compare tuples one cannot compare their representation

194

as words, the actual representations in memory must be compared. Thus
the code for the polymorphic equality function must be able to see whether
it is integers or tuples it is comparing, i.e., data must be tagged in our
implementation. Tags are normally also needed by the garbage collector; in
our implementation, the sole reason for having them is polymorphic equality.

According to the report, (), which has type unit, need not be represented
explicitly, because there is no built-in operation with unit in its input type.
This is not the case in the implementation, for the built-in polymorphic
equality function may compare values of type unit: op = : unit * unit
—> bool. Still, this ought not to be a problem, for there is only one value
of type unit, and hence, = will always return true when applied to unit-
values. Therefore, it should be of no concern what the exact value of any
word representing () is. Unhappily, this is not so; because = is polymorphic,
it does not know whether it is applied to a unit-value, and it must always
inspect the representations of the values that are compared. This implies
that () must have a fixed representation. In this presentation, the code for
e1:=eg just lets some arbitrary garbage remain in its destination register; in
the implementation, it must explicitly put the value representing () into the
destination register.

(If unit did not allow polymorphic equality, there would be less trouble.
On the other hand, one single instruction suffices to ensure that expressions
of type unit return the right value.)

Storage mode

The source language in the implementation has “storage mode” annotations
(p. 12) (Birkedal et al., 1996). Sometimes, allocation can safely be made at
the “bottom” of the region (i.e., previously allocated data in the region can
be overwritten), and sometimes it must be made “at the top” of the region.
To keep things simple, these annotations have not been described in the
report, but we have implemented the proper translation of them. The storage
modes complicate the function [-ﬂra_at (which makes the code to allocate in
a region, section 8.6) and puts restrictions on the order allocations must be
done in. Notably, it means that the code for unary constructor application as
presented in the report (p. 177) would be wrong in the implementation (and
at a point, it was): The memory for the constructed value that é¢; ey at p
evaluates to must be allocated after es has been evaluated, or else the storage
mode annotations will be wrong. (To the reader who understands storage
modes: In the expression ::(1,::(2,nil)) the storage mode for nil may indicate
that the region nil and the ::’s are stored in can be overwritten. If the
allocations for the ::’s are performed before the allocation for nil, the latter
will overwrite the former allocations.)

Exceptions

The representation of exceptions in the implementation also comprises the
name of the exception constructor (i.e. a string). This is necessary to report

195

the name of an exception that escapes to the top level.

The region inference currently puts all exceptions in a global region, i.e.,
a region that will be allocated throughout the evaluation of the whole pro-
gram. This means that memory allocated for exceptions will not be deal-
located before the program terminates. To alleviate this problem, the code
for exception a in e and the code for a at p differ in the implementation
from the description in the report: The code for exception a in ey does the
necessary allocation such that the code for d at p does not have to allocate
anything. This gives a reduction in memory consumption for most programs,
because the first kind of expressions usually are evaluated only once, while
the latter often are evaluated many times during execution. The code for
a1 ez at p still allocates memory; hence programs using unary exceptions
will still have bad memory behaviour.

Reals

On the PA-RISC, reals must be aligned when stored in memory. Elsman
and Hallenberg (1995) ensure that this is the case by checking addresses at
run-time. This can be done at compile-time, and it should be especially easy
in our compiler, as it already keeps track of the stack pointer. But to limit
our job, we have not implemented reals. Extending the register allocation to
reals might also be straightforward.

Etc.

In the implementation, letregion binds a sequence of region variables, and
not just one. This is dealt with as if it were a series of nested letregion-
expressions.

A peep-hole optimisation collapses adjacent ¢ := ¢+ -instructions. These
can be generated when, e.g., more than one known-size regions are allocated
in a row, or several spilled values are deallocated right after each other.

196

11 Assessment

We assess our compiler in two ways: we compare the standard configura-
tion of our compiler with other configurations and with two other compilers:
SML/NJ, the best readily available SML compiler known to us, and the ex-
isting ML Kit (which we will call KAM), i.e., the same compiler as ours except
for the back end.

Section 11.3 compares the speed of the code generated by the three com-
pilers. Section 11.4 tries to assess the significance of different ingredients
in the inter-procedural register allocation. It examines the effect of imple-
menting several-argument functions efficiently, and of using inter-procedural
information in the register allocation. Section 11.5 considers the per-function
part of the register allocation. Section 11.6 measures how important the num-
ber of registers is. Section 11.7 looks at the effect of duplicating code to avoid
jumps. Section 11.8 evaluates the effect of instruction scheduling. Section
11.9 is a case study of the translation of the Fibonacci function fib that,
among other things, illustrates a deficiency with the producer-saves store
code placement strategy. Section 11.10 investigates memory consumption.

11.1 How the measurements were performed

KAM also translates to PA-RISC. It uses a graph-colouring register allocation
that works on extended basic blocks; does copy propagation; and uses the
same instruction scheduler as our compiler.?

We compare with version 0.93 of SML/NJ. There are more recent ver-
sions. Notably, the previously discussed (p. 36), successful closure represen-
tation analysis (Shao and Appel, 1994) is not part of version 0.93. This is
perhaps fair, as we do not have a closure representation analysis either.?

In the tables, the first column is the baseline (always 1.00), and the other
columns are normalised with respect to that column. E.g., in figure 42, our
run-time of kkb normalised to SML/NJ is 0.80. Hence, if the execution time
of kkb in SML/NJ is 10s, the execution time in our compiler is 0.80 - 10s =
8s. The first column of a table normally also gives the unnormalised data,
e.g., the run-time in seconds. The final row in a table gives the geometric
mean (geometric because we use normalised results (Fleming and Wallace,
1986)). In a column, — marks the best result and ~ the worst.”?

3We use version 22s of the ML Kit except for the optimiser which is version 25s extended
with an uncurry phase to enable more functions to be converted to functions of several
arguments in our compiler. When we compare with KAM, we have used a version (28g)
that should essentially be like version 22s but with the same optimiser as in our compiler.

4To increase SML/NJ’s possibilities of optimising, we have put each benchmark in a
structure and a let-expression and we have included the code for the built-in functions
(e.g., @). A signature is imposed on the structure so that the only function visible from
the outside of the structure is the benchmark function.

"The experiments were run on an unloaded HP 9000/C100 with 256MB RAM (called
freja). Timing results is the minimum sum of the “user” and “system” time as measured
by Unix time after running the benchmark thrice.

197

11.2 Benchmark programs

The following benchmark programs have been used in all experiments. Ex-
cept for kkb, and life, the benchmarks are toy programs. Benchmarks should
be real programs to be worth much, but time forbids doing better.

1. Real programs.

kkb Knuth-Bendix completion, improved for region inference by Mads
Tofte, i.e., kkb has been written in certain ways that makes its
memory behaviour better in a region inference based compiler (Tofte,
1995, Bertelsen and Sestoft, 1995). Profiling kkb (in SML/NJ),
shows that it uses time in many different functions, which should
increase its value as a benchmark. It uses exceptions.

KAM will not compile kkb when the uncurrying optimisation is
turned on, so all measurements with kkb using KAM have been ob-
tained with this optimisation switched off. This probably gives our
kkb a benetfit.

life The game of life implemented using lists and improved for region
inference. Profiling life shows that it uses half its time in a single
function.

2. Non-sensical programs believed to benefit from inter-procedural register
allocation.

appel Function applications in a row, and simple arithmetic, e.g.:

fun f (g,h,u,v,w) = let val x = g(h,u,v)
val y = g(h,x,w)
val z = g(h,y,x)

in
x+y+z+v+1
end
bappel More of that.
ip A seven-functions-deep call graph within a loop.

plusdyb | A three-functions-deep call graph within a loop.

3. Programs that make many calls.

ack The Ackermann function, a multiple-argument function.

tak The Takeuchi function, a multiple-argument function:

fun t(x,y,z) = if x<=y then z
else t(t(x—1,y,z),t(y—1,2,x),t(z—1,x,y))

fib The Fibonacci function.

198

4. Programs designed to test specific things.

bul

Should benefit from the short-circuit translation of Boolean expres-
sions. Basically, it is a loop containing the expression
if (x<y andalso (case z mod 4 of 0 => true
| 1 => false
|2=>amod2 =1
| _ => a<n))
orelse ae<oe then a-+1 else a—1

fri

A function that uses its free variables many times. It should benefit
because we allocate a free variable to a register once it has been
fetched from the closure whereas KAM fetches it each time it is used.

handle

Introduce handlers often but raise exceptions only exceptionally.

raise

Raise a lot of exceptions.

5. Miscellaneous.

reynolds | Build a big balanced binary tree and traverse it. Designed to exhibit
good behaviour with region inference (Birkedal et al., 1996).
ryenolds | As reynolds, but changed in a way that gives bad memory perfor-
mance with region inference.
church Convert integers to church numerals; multiply and take the power
of them; and convert the result back to integers. Many function
applications, and many fetches of free variables from a closure.
foldr Build and fold a big constant list.
msort Merge sort.
gsort Quick sort.
iter Apply the following function to different functions:
fun iter(x,p,f) =
let fun h(a,r) = if p(a,r) then a else h(f(a),a)
in h(x,1) end

Since we want to assess the inter-procedural register allocation and not
region inference, many of the benchmarks do not use much memory.
We have two major reservations concerning the experiments below: al-
most all benchmarks are toy programs, some of which are designed to make
our register allocation work particularly well. Also, the timing of the bench-
marks may be inaccurate; we have observed fairly large fluctuations between

two runs of the same benchmarks. The number of decimals is not an indica-

tion of the accuracy of the measurements.

199

11.3 Speed

(4) () | (sid) (iv) | (v)

SML/NJ KAM WE KAM WE

kkb 20.41s 1.00 | 1.49 | 0.80 1.00 |-0.54
life 48.24s 1.00 | 0.64 | 0.36 1.00 0.56
appel 16.11s 1.00 | 0.78 | 0.64 1.00 0.83
bappel 27.76s 1.00 | 0.83 | 0.67 1.00 0.81
ip 24.42s 1.00 | 0.56 | 0.36 1.00 0.63
plusdyb | 37.92s 1.00 | 0.45 | 0.38 1.00 0.84
ack 16.87s 1.00 | 0.76 | 0.59 1.00 0.78
fib 98.58s 1.00 | 0.44 | 0.44 1.00 1.00
tak 31.63s 1.00 | 0.96 | 0.64 1.00 0.67
bul 35.78s 1.00 | 0.43 [-0.33 1.00 0.78
fri 10.21s 1.00 | 1.17 | 0.77 1.00 0.66
handle 60.13s 1.00 | 0.55 | 0.46 1.00 0.85
raise 31.28s 1.00 | 0.84 | 0.62 1.00 0.73
ryenolds | 27.32s 1.00 | 0.57 | 0.54 1.00 0.95
reynolds | 28.04s 1.00 [-0.35 | 0.40 1.00 |~1.14
church 39.79s 1.00 | 0.95 | 0.85 1.00 0.90
foldr 47.14s 1.00 | 0.67 | 0.51 1.00 0.77
msort 9.28s 1.00 | 1.25| 0.78 1.00 0.63
gsort 19.01s 1.00 | 1.45 |~1.05 1.00 0.73
iter 15.77s 1.00 |~1.67 | 0.94 1.00 0.56
mean 1.00 | 0.76 | 0.57 1.00 0.75

Fig. 42. Run-time of the compiled benchmarks with the standard config-
uration of the three compilers.

(i)—(ii1) are normalised to SML/NJ. For SML/NJ, raw figures are also
given. Comparing with SML/NJ, we do worse only on gsort. This is
probably because SML/NJ’s garbage collection is better at handling this
benchmark than region inference, for also KAM does worse than SML/NJ
on gsort. On average, our benchmarks run in 0.57 the time of SML/NJ.

(4v)—(v) are normalised to KAM. Comparing with KAM, we do worse
only on reynolds. On average, our benchmarks run in 0.75 the time of
KAM. Strangely, it is not on the inter-procedural benchmarks that we
see the greatest speed-up: the relative run-times of appel, bappel, and
plusdyb, are all larger than the mean.

200

11.4 The importance of the different ingredients of the inter-
procedural register allocation

(4) () | (i) | () || (v) | (vi) | (vii)

no s.a. no s.a., || uniform| uniform
WE, normal no un- | no un- || le’s Le’s, KAM
’ curry | curry caller
saves
kkb 16.28 s 1.00 1.09 1.12 1.20 1.06 1.08 {|~1.86
life 17.40s 1.00 1.00 | 1.08 1.08 1.21 1.35 || 1.78

appel 10.38s 1.00 1.00| 0.99| 1.00 1.01 1.15 || 1.20
bappel 18.64s 1.00 1.03| 1.00| 1.03 1.00 1.14 || 1.23

ip 8.70s 1.00 1.08 | 1.37| 1.42 1.03 1.07 || 1.58
plusdyb | 14.41s 1.00 1.13 | 137 1.37 1.01 0.98 || 1.19
ack 10.00s 1.00 1.16 | 1.00 | 1.15 1.00 1.00 | 1.29
fib 43.31s 1.00 1.00| 1.00| 1.00 | ~0.90 | ~0.92 || 1.00
tak 20.32s 1.00 1.46 | 1.00 | 1.46 0.92 0.98 | 1.49
bul 11.98s 1.00 1.01| 0.99| 1.01 0.99 1.02 | 1.29
fri 7.85s 1.00 1.00| 1.00| 1.01 1.02 1.06 || 1.52
handle 27.93s 1.00 1.11 | ~1.51 1.51 1.01 1.01 | 1.18
raise 19.29s 1.00 1.01| 1.00| 1.01 1.02 1.02 || 1.37

ryenolds | 14.86s 1.00 | 1.13| 1.02| 1.16 1.01 1.01 || 1.05
reynolds | 11.26s 1.00 1.00 | -0.96 | ~0.96 1.05 1.06 ||~0.87
church 34.00s 1.00 | 1.00| 0.99| 0.99 1.06 | 1.12 | 1.11

foldr 24.22s 1.00 1.08| 1.05| 1.11 1.07 1.07 || 1.30
msort 7.26s 1.00 1.08 1.00| 1.08 1.06 1.05 || 1.60
qgsort 20.02s 1.00 1.01| 1.00| 1.01 1.12 1.11 | 1.38
iter 14.76s 1.00 || ~1.57| 1.00| ~1.57| ~1.24| ~1.40| 1.78
mean 1.00 1.09 1.06 | 1.14 1.04 1.07 || 1.33

Fig. 43. Run-time with different parts of the register allocation disabled.

(i) The standard configuration of our compiler.

(i) Disable several-argument functions. This increases the mean run-time to 1.09,
and kkb confirms that.

(i4i) Disable uncurrying. The uncurry phase is not part of our work; we try
disabling it to see whether this inhibits the conversion to several-argument functions.

(iv) Disable both uncurrying and several-argument functions. Apparently there is
little synergism between uncurrying and conversion to several-argument functions:
(iv) is never more than the sum of (i) and (7).

(v) Use a uniform linking convention, i.e., use the same registers at all calls to
pass parameters to functions. This increases the mean run-time to 1.04, and kkb
confirms that.

(vi) Use a uniform linking convention and total caller-saves. There is a further
increase to mean 1.07, which kkb confirms. Thus, using flexible linking conventions
appears to be slightly more important than using flexible conventions for register
saving. This is contrary to what we would expect, as the latter should avoid saves
of registers while the former should only avoid moves (section 5.6).

201

Notice it is a bit unfair to compare our flexible sets of callee-save/caller-save reg-
isters with a total caller-saves convention, for an intra-procedural register allocator
could probably benefit much from having both some caller-save and some callee-
save registers. However, it was easiest to hack our compiler to use a total caller-save
convention.

Offhand, several-argument functions (4i) seem more important than inter-procedu-
ral information (vi). But a part of the benefit from using several-argument functions
may be indirect: several-argument functions should give the inter-procedural register
allocation greater opportunity for doing well. Le., several-argument functions might
not be worth as much if the register allocation was not inter-procedural. It would
be an interesting experiment to turn off both at the same time, i.e., combine (i)
and (vi): if this gives a run-time less than the “sum” 1.16 of 1.09 and 1.07, several-
argument functions and inter-procedural information each increase the importance
of the other. To some extent figure 44 (iv) carries out this experiment: there the
two are turned off and our compiler is maimed in other ways, but the run-time only
decreases to 1.15, which is less than 1.16. This suggests that there is synergism
between the two.

(vii) KAM.

202

11.5 The per-function part of the register allocation

(i) | (v)
) @) | G e |
normal choose | w =@ asigvrg;s prggfs?éléal

kkb 16.28s 1.00 | 1.13 | 1.34 1.15 |~1.86
life 17.40s 1.00 |~1.73 | 2.38 1.34 1.78
appel 10.38s 1.00 | 1.29 | 1.70 1.19 1.20
bappel 18.64s 1.00 | 1.25 | 1.62 1.15 1.23
ip 8.70s 1.00 | 1.56 |~3.02 1.19 1.58
plusdyb | 14.41s 1.00 | 1.20 | 1.47 1.22 1.19
ack 10.00s 1.00 | 1.00 | 1.90 1.16 1.29
fib 43.31s 1.00 [~0.94 | 1.26 ~0.96 1.00
tak 20.32s 1.00 | 1.05 | 1.49 1.61 1.49
bul 11.98s 1.00 | 1.09 | 1.36 1.06 1.29
fri 7.85s 1.00 | 1.32 | 2.88 1.06 1.52
handle 27.93s 1.00 | 1.09 | 1.37 1.10 1.18
raise 19.29s 1.00 | 1.12 | 1.10 1.01 1.37
ryenolds | 14.86s 1.00 | 1.03 | 1.21 0.99 1.05
reynolds | 11.26s 1.00 | 1.02 | -1.08 0.99 |-0.87
church 34.00s 1.00 | 1.05 | 1.28 1.03 1.11
foldr 24.22s 1.00 | 1.23 | 1.54 1.11 1.30
msort 7.26s 1.00 | 1.31 1.57 1.11 1.60
gsort 20.02s 1.00 | 1.37 | 1.70 1.04 1.38
iter 14.76s 1.00 | 1.36 | 1.80 ~2.01 1.78
mean 1.00 | 1.19 | 1.59 1.15 1.33

Fig. 44. Run-time with different heuristics for choosing registers. (i) The normal
heuristic for choosing registers (section 6.7). (77) Same as (i), but ignoring the
w-information. (iii) Always choose the first register not in ¢ according to some
(arbitrary) given order. This (roughly) gives a lower bound on how bad a heuristic
can do, as it does the worst possible: always choose the same register, except when
two values must be in different registers (e.g., because they will be added together).

It seems the heuristic is quite good: (%) is much better than (77), and it seems that
(é4) is not unreasonably bad, for it is much better than the “lower bound”, ().
Take care not to draw rash conclusions, though; setting w = @ might still not be a
fair way to handicap the heuristic.

Comparing with graph colouring. (iv) Attempting to compare our per-function
register allocation with graph colouring, we have tried giving WE the same condi-
tions as KAM: uniform calling convention, total caller-saves convention, no several-
argument functions, no instruction scheduling, no code duplication, and restricting
the set of available registers to approximately what KAM uses. (v) KAM. We do bet-
ter, and it is tempting to conclude that our per-function register allocation is better
than graph colouring, but the experiment does not sustain a conclusion that radi-
cal, as there are other differences between the two compilers than the per-function
register allocation algorithm (e.g., the treatment of exceptions, Boolean expressions,
free variables, saving across function calls).

203

11.6 The importance of the number of registers

We have tried to give the register allocator fewer than the 28 registers avail-
able. One of the goals of inter-procedural register allocation is to utilise the
many registers better. Thus, if our inter-procedural register allocation is
worth anything, one should expect performance to degrade when there are
fewer registers. With an intra-procedural register allocation, which cannot
exploit the many registers as well, performance should degrade less.

We have decided what sets @ of registers to try in the following way: The
most frequently used heavy-weight instructions ¢ :=at ¢ ¢, ¢ = letregion,
and endregion destroy specific sets of registers, ¢A>at, (]3|et,egion, and qgend,egion,
respectively. Since the registers in theavy = gﬁat U $|etregion U éendregion are
destroyed frequently (in programs that allocate) they will probably be used
for values with short live ranges. Therefore, we divide the experiments in
those that include @yg,yy, and those that do not. The set ¢,y is the set of
registers not in @pe,yy-

Dqg, Dog

Py D19

¢rest '1)16

D3

¢heavy

I T T T T T O T T N T O Y W

LI N B B B B B B
ot

Fig. 45. Varying the set ® of registers available to the register allocator.
The markings on the vertical axis are the 28 available registers. Registers
below the thin horizontal line are in ¢y.,.,; those above the line are
in @,.- The vertical lines are experiments. They are named after the
number of registers they contain. There are two different experiments
with 19 registers. For technical reasons, no experiment may have less
than 5 registers from ¢

rest*

204

‘ | D5 Br Dyg Diga | Pz Dig Digp | Dos ‘

kkb 1.28 1.22 1.11 099 1.10 1.04 1.03|1.00 16.28s
life ~1.88 1.72 1.05 1.03| 1.08 1.03 1.01|1.00 17.40s
appel 143 132 1.10 1.01| 1.11 1.05 1.04|1.00 10.38s
bappel 1.37 129 1.10 1.02| 1.11 1.06 1.05|1.00 18.64s
ip 1.26 1.19 1.05 0.98| 1.04 1.03 1.00|1.00 8.70s
plusdyb | 1.28 125 0.97 1.00| 095 0.96 -0.99 | 1.00 14.41s
ack 1.28 1.2v 1.00 1.00| 0.99 0.93 1.00|1.00 10.00s
fib 1.23 1.27 0.93 0.95 |-0.86 -0.90 1.00 | 1.00 43.31s
tak 141 142 097 096 095 092 1.00|1.00 20.32s
bul 1.26 1.17v 1.14 -~1.12| 1.07 1.01 1.01|1.00 11.98s
fri 1.27 1.14 1.05 1.02| 1.05 1.02 1.01|1.00 7.85s
handle 1.05 1.03 1.00 1.01| 1.02 1.02 1.00|1.00 27.93s
raise 1.10 1.09 1.05 1.02| 1.07 1.04 1.03|1.00 19.29s

ryenolds |~0.92 -0.92 -0.84 -0.87| 1.03 1.00 1.00|1.00 14.86s
reynolds | 1.16 1.14 0.95 0.97| 1.07 0.97 1.00|1.00 11.26s
church 1.28 1.12 096 0.98| 1.04 0.98 1.00|1.00 34.00s

foldr 1.36 133 1.11 1.05| 1.07 1.01 1.00|1.00 24.22s
msort 1.44 130 1.07 1.01| 1.13 1.13 1.03|1.00 7.26s
gsort 1.66 1.52 ~1.31 1.03 |~2.73 1.21 1.08|1.00 20.02s
iter 1.85 ~1.88 1.16 0.99| 1.38 ~1.42 ~1.17 | 1.00 14.76s
mean 1.32 126 1.04 1.00| 1.11 1.03 1.02]1.00

Fig. 46. Run-time with the experiments from figure 45 normalised to Pog.

As is to be expected, the gain from adding an extra register to the set of available
registers decreases as the number of registers increases.

The mean of experiment ®1g9, is 1.00, i.e., the benchmarks run just as well with
QPheavy added to the set of registers as without. This suggests the effort we have in-
vested in making many registers participate on equal terms in the register allocation
is somewhat wasted. We could simply have reserved ¢y, for the run-time system
and not allowed these registers to participate in the register allocation.

Since the registers in ¢y, are destroyed by heavy-weight instructions, we expect
that, e.g., experiment ®;9, is faster than ®9;, even though the same number of
registers are available. This is the case (1.00 compared to 1.02). The same effect
can be seen by comparing ®1o9 and ®;3 (1.04 compared to 1.11): experiment ®,5 has
more registers, but many of them are destroyed by the heavy-weight instructions,
and consequently, the benchmarks run faster in ®;9. Naturally, it is the benchmarks
that allocate, and thus use the heavy-weight instructions, that experience decreasing
performance from ®;¢ to ®13: e.g., ryenolds, reynolds, iter, and especially gsort
(kkb is an exception, or perhaps it does not allocate much?). The benchmarks
that do not allocate generally improve from ®q45 to ®13. In P14, we get a mean
performance which is the same as in ®¢; i.e., the numbers say: 10 registers that
are not destroyed by the heavy-weight instructions is as good as 8 registers that are
plus 8 that are not. In other words, the registers in ¢, are not worth much.

205

On the other hand, the difference between experiments ®5 and ®,3 is only that
@heavy has been added, and this gives an improvement in normalised run-time from
1.32 to 1.11, which is hardly negligible. The extra registers for short live ranges are
welcome when there are few registers in all.

In &5, the programs take 32% longer to run. The big performance increase is
gained when going from 7 to 10 registers: already then, the benchmarks are only
4% slower than with all registers.

Surprisingly, fib seems to run fastest using 13 registers; ryenolds runs quite a bit
better with 10 than with 28 registers; and it is even better with only 5 than with 28
registers. Surprises should be expected, since we are using heuristics.

Comparing experiments ®19, and P25, we would expect the benchmarks appel,
bappel, ip, and plusdyb that are designed to benefit from inter-procedural register
allocation to be the ones that improve their performance the most when going from
19 to 28 registers. This is not the case: the improvement from ®9, to $o5 on these
benchmarks is small.

206

11.7 Linearising the code

The algorithm duplicates a basic block to avoid a jump if the number of
instructions in the basic block is less than the duplication limit. We have
tried setting the duplication limit to 0, 4, 10, 23, 42, and 1000. Heavy-
weight instructions count as some fixed amount of light instructions; e.g.,
endregion counts as 9.

(1) (i1) (1i1)

0 | 4 [10 [23 | 42 |1000
kkb 1324 1.00 || 0.43 | 0.00 | 0.03| 0.12 | 0.22 | 0.31| 0.45
life 459 1.00 | 0.34 || 0.00 | 0.03| 0.10 | 0.20 | 0.25 |~0.49
appel 21 1.00 | 0.43 || 0.00 |~0.00 |~0.00 |~0.00 |~0.00 |~0.24
bappel 35 1.00 || 0.34 | 0.00 |~0.00 | 0.06 | 0.06 | 0.06 | 0.43
ip 40 1.00 || 0.40 | 0.00 | 0.03 | 0.07 | 0.07 | 0.07 | 0.30
plusdyb 15 1.00 | 0.27 || 0.00 {~0.00 | 0.07 | 0.20 | 0.20 | 0.27
ack 18 1.00| 0.44 0.00| 0.06 | 0.11 | 0.17 | 0.28 | 0.28
fib 16 1.00 | 0.44 0.00 |~0.00 | 0.12 |~0.25 | 0.25 | 0.25
tak 25 1.00 || 0.44 | 0.00 | 0.04| 0.08 | 0.16 | 0.16 | 0.32
bul 41 1.00 ||~0.46 || 0.00 | 0.02 |~0.17 | 0.22 | 0.29 | 0.39
fri 43 1.00 || 0.40 || 0.00 |~0.00 | 0.05| 0.14 | 0.28 | 0.40
handle 58 1.00 || 0.40 | 0.00 |~0.00 | 0.14 | 0.19 | 0.21 | 0.38
raise 60 1.00 | 0.38 |1 0.00 | 0.03| 0.15| 0.17 | 0.17 | 0.37
ryenolds 42 1.00 || 0.43] 0.00 | 0.02| 0.10 | 0.21 | 0.29 | 0.36
reynolds 47 1.00 | 0.40 | 0.00 | 0.02 | 0.11 | 0.21 |~0.32| 0.32
church 115 1.00 |[~0.17 || 0.00 | 0.01 | 0.07 | 0.20 | 0.28 | 0.33
foldr 44 1.00 || 0.39] 0.00 |~0.00 | 0.11 | 0.23 | 0.25 | 0.34
msort 196 1.00 || 0.42 || 0.00 | 0.04 | 0.12 | 0.20 | 0.30 | 0.46
gsort 80 1.00 || 0.44 | 0.00 | 0.04| 0.09 | 0.14 | 0.23 | 0.40
iter 47 1.00 || 0.43]/ 0.00 {~0.09 | 0.15| 0.19 | 0.26 | 0.28

Fig. 47. Effect of ordering basic blocks and duplication on number of jumps. (i) The
number of basic blocks in the program.

(i4) The number of basic blocks that were put after a basic block that jumps to it,
i.e., the number of jumps eliminated by ordering basic blocks. Ordering basic blocks
succeeds in placing between 0.34 and 0.44 of all basic blocks after a basic block that
jumps to it (except for three benchmarks).

(#4) The number of basic blocks that were duplicated to eliminate a jump, with
the duplication limit set to 0, 4, 10, 23, 42, and 1000 instructions, respectively. With
the duplication limit set to 4 only few extra jumps are avoided by duplication of
basic blocks. With the duplication limit set to 10, up to 0.17 (bul) of the jumps at
the end of basic blocks are avoided by duplicating basic blocks.

207

\ \ 0 | 4 | 10 [23 | 42]1000 |

kkb 28068 1.00 | 1.00 | 1.03 |~1.09 | 1.20 | 1.88
life 13951 1.00 | 1.00 | 1.00 | 1.04 | 1.08 | 2.39
appel 1026 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.57
bappel 1367 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.14
ip 1135 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 2.11
plusdyb 431 1.00 | 1.00 | 1.00 | 1.07 | 1.07 | 1.06
ack 519 1.00 | 1.00 | 1.01 | 1.04 | 1.15 | 1.15
fib 525 1.00 | 1.00 | 1.01 | 1.07 | 1.07 | 1.07
tak 599 1.00 | 1.00 | 1.01 | 1.03 | 1.03 | 1.31
bul 930 1.00 |1.00 | 1.01 | 1.06 |~1.30 | 1.81
fri 1366 1.00 | 1.00 | 1.00 | 1.05 | 1.19 |~2.86
handle 2164 1.00 | 1.00 |~1.04 | 1.05 | 1.06 | 1.53
raise 2441 1.00 | 1.00 | 1.02 | 1.02 | 1.02 | 1.54

ryenolds | 1395 1.00 | 1.00 | 1.00 | 1.04 | 1.10 | 1.23
reynolds | 1292 1.00 | 1.00 | 1.00 | 1.05 | 1.11 | 1.11
church 3271 1.00 | 1.00 | 1.01 |~1.09 | 1.17 | 1.58

foldr 11032 1.00 | 1.00 | 1.00 | 1.01 | 1.01 |~1.04
msort 4384 1.00 | 1.00 | 1.01 | 1.07 | 1.22 | 2.13
gsort 2197 1.00 | 1.00 | 1.00 | 1.03 | 1.13 | 2.48
iter 1119 1.00 | 1.00 | 1.00 | 1.03 | 1.08 | 1.16
mean 1.00 | 1.00 | 1.01 | 1.04 | 1.10 | 1.58

Fig. 48. Effect of duplication on code size. We use the number of lines
in the .s file as a measure of the number of P-instructions. This should
do, because we are studying the increase in code size. The duplication
limit is set as in figure 47. Apparently, there is no code explosion; even
with the duplication limit set unrealistically high, the code size maximally
increases by a factor 2.86.

208

\ 0 | 4 | 10 | 23 [42] 1000
kkb 16.37s 1.00 | 1.00 | 097 | 098 | 0.96 | 0.96
life 17.91s 1.00 | 097 | 096 | 0.98 | 0.98 | 0.98
appel 10.18s 1.00 | 1.00 [~1.01 |~1.01 | 1.00 | 1.01
bappel 18.72s 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.99
ip 8.71s 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97
plusdyb | 14.00s 1.00 |~1.01 | 0.99 | 0.99 | 0.99 | 0.95
ack 10.43s 1.00 [-0.94 |~0.89 |~0.89 | 0.95 | 0.96
fib 41.37s 1.00 | 1.00 | 0.94 | 0.98 | 0.98 | 0.98
tak 20.23s 1.00 {~0.94 | 0.92 | 0.91 |~0.91 [~0.93
bul 11.61s 1.00 | 1.00 | 1.00 |~1.01 | 1.00 | 1.00
fri 7.91s 1.00 [~1.01 | 1.00 | 1.00 | 1.02 | 1.00
handle 28.58s 1.00 |~1.01 | 0.99 | 0.98 | 0.98 | 0.97
raise 19.49s 1.00 | 1.00 | 1.00 | 0.99 | 0.99 | 1.00
ryenolds | 14.87s 1.00 | 1.00 | 1.00 | 0.97 | 1.03 | 1.02
reynolds | 11.61s 1.00 | 1.00 |~1.01 | 0.99 | 1.02 | 1.02
church 34.07s 1.00 |~1.01 | 0.99 |~1.01 | 1.00 | 1.00
foldr 24.46s 1.00 | 1.00 | 0.98 | 0.98 | 0.98 | 0.99
msort 7.30s 1.00 | 1.00 | 098 | 098 | 0.98 | 0.99
gsort 19.66s 1.00 | 0.99 |~1.01 |~1.01 |~1.04 |~1.05
iter 14.95s 1.00 | 1.00 | 0.99 | 0.97 | 0.97 | 0.97
mean 1.00 | 0.99 | 098 | 0.98 | 0.99 | 0.99

Fig. 49. Effect of duplication on run-time. Performance does not seem
to degrade when the code size increases: e.g., at 42, the size of kkb is
scaled with 1.20, at 1000 it is 1.88, but the performance is 0.96 in both

cases.

The mean speed tops at the duplication limits 10 and 23 (it is 0.98).
At these points, the code size (figure 48) has increased to a mere 1.01
and 1.04, respectively, and maximally increases to 1.09. (kkb tops at

duplication limit 42, though, with the speed 0.96 and code size 1.20.)

209

11.8 Instruction scheduling

WE, | WE
no sche-
duling
kkb 1.00 0.98
life 1.00 0.99
appel 1.00 0.99
bappel 1.00 1.00
ip 1.00 1.00
plusdyb 1.00 0.93
ack 1.00 0.91
fib 1.00 |-0.88
tak 1.00 0.91
bul 1.00 0.97
fri 1.00 1.00
handle 1.00 |~1.01
raise 1.00 1.00
ryenolds | 1.00 1.00
reynolds | 1.00 0.99
church 1.00 0.99
foldr 1.00 0.99
msort 1.00 0.99
gsort 1.00 1.00
iter 1.00 0.97
mean 1.00 0.97

Fig. 50. Effect of instruction scheduling. The scheduling gives an overall
slight speedup. One reason that the speedup is relatively small may be
that the generated code has a large percentage of load/store instructions.
For example, approximately 65% of the instructions in the code for kkb
are loads or stores.

11.9 An example

An example illustrates some of the problems with our register allocation.
Consider fib:

fun fib0 =1
| fib1 =1
| fib n = fib(n—1) + fib(n—2)

210

fib: push ¢a4 ; spill n
push ¢ag ; spill clos
push ¢o5 ; spill ret
if ¢24=0 then fib3 else fib4 ; | O
fib3: ¢ := 1 ; goto fib7 ; return 1 in ¢og
fib4: if ¢o4=1 then fib5 else fib6 ; | 1T
fib5: o := 1 ; goto fib7 ; return 1 in ¢og
fib6: o3 =1 ; fib(n—1)
P24 = Paa—23 ;
¢o5 = fibl ; return to fibl
goto fib ;
fibl: push ¢og ; push result of fib(n—1)
b6 1= M[psp—3] ; reload clos
G5 1= m[psp—4] ; reload n
¢24 =2) ﬁb(n—2)
P24 = Pas—P2a ;
o5 = fib2 ; return to fib2
goto fib ;
fib2: (2525 = ¢26)
pop ¢ | pop result of fib(n—1)
26 = (P26t Pas ; return fib(n—1)+fib(n—2) in ¢a4
goto fib7 ;
fib7: das 1= m[pep—1] ; reload ret
Gspi= Psp—3 ; pop n, clos, and ret
goto ¢o5 return.

Fig. 51. The K-code for fib. We use a so-called producer-saves strategy for
placing store code: a spilled value is stored as soon as it has been produced
(section 6.12). This is the earliest possible and has the disadvantage that values
are sometimes stored unnecessarily. fib provides a pregnant example of this: the
parameters to the function are live across the recursive calls and must hence be
saved around these calls. According to the producer-saves strategy, this is done
in the start of the code for fib. At leaf calls to the function (calls with argument
0 or 1), this storing is actually not necessary, and since half the calls at run-time
are leaf calls, half the stores at run-time are superfluous. For fib, a callee-saves
convention is better than our caller-saves convention, because so many of the
recursive calls do not destroy registers. With earlier versions of our compiler,
KAM did better on fib exactly because it always uses a callee-saves convention;
apart from the placement of spill code, the code generated by the two compilers
for fib was almost identical.

There should be no clos parameter for functions that have no free variables
(e.g. fib). It should be straightforward to make this distinction in the calling
convention.

Even though clos were needed, it need not be saved on the stack, for ¢qq, the
register holding it, is never destroyed by the code for fib. clos is nevertheless
saved at each recursive call, as the compiler cannot know that ¢ will not be
destroyed by the recursive calls to fib, because the processing of fib has not yet
been completed. All conceivable solutions to this seem cumbersome.

The clumsy code labelled fib2 is caused by our way of saving temporary values.

211

fib stwm
stwm
stwm
comib,
comib,
addil
Idi
sub
Ido

b

Ido
Idw
Ido
bv

Idi
Idw
Ido
bv

Idi
stwm
Idi
Idw
Idw
sub
addil
Ido

b

Ido
copy
Idwm
add
Idw
Ido
bv
Ido

(fib4)
(fib6)

fib3
(fib7)

fibs
(fib7)

fibl

fib2

(fib7)

Fig. 52. Finally, the P-code for fib. Now integers are tagged: 1 represents 0,
3 represents 1, etc. Remember, ¢so= r30. The basic blocks labelled fib4 and
fib6 have been placed after a jump to them; and the one labelled fib7 has been

%r24, 4(%sr0, %r30)
%r26, 4(%sr0, %r30)
%r25, 4(%sr0, %r30)
=.,n 1, %r24, fib3

=,n 3, %r24, fibs
I'fib1-$global$, %r27

3, %r23

%r24, %r23, %r24
r'fib1-$global$(%r1), %r25
fib

1(%r24), %r24
—4(%sr0, %r30), %r25
-12(%r30), %r30
%r0(%r25)

3, %r26

—4(%sr0, %r30), %r25
-12(%r30), %r30
%r0(%r25)

3, %r26

%r26, 4(%sr0, %r30)
5, %r24

-16(%sr0, %r30), %r25
—12(%sr0, %r30), %r26
%25, %r24, %r24
I'fib2-$global$, %r27
r'fib2-$global$(%r1), %r25
fib

1(%r24), %r24

%126, %r25

—4(%sr0, %r30), %r26
%126, %r25, %r26
—4(%sr0, %r30), %r25
-12(%r30), %r30
%r0(%r25)

-1(%r26), %r26

duplicated to avoid jumps to it.

Instruction scheduling has reordered instructions. E.g., the two Idw’s after fib1
that reload clos and n have been exchanged (compare with figure 51) such that

spill n

spill clos

spill ret

or

1T

put fibl into %r25 (1% part)
fib(n—1)

put fibl into %r25 (2"? part)

reload ret

pop 3 words

return

.. while returning 1 in %r26
reload ret

pop 3 words

return

.. while returning 1 in %r26
push result of fib(n—1)
fib(n—2)

reload n

reload clos

put fib2 into %r25 (1% part)
put fib2 into %r25 (2"? part)

pop result of fib(n—1)
+

reload ret

pop 3 words

return

.. while returning result

n will be ready when the sub-instruction needs it.

The instruction right after a jump instruction (b or bv) is executed “while” the
jump is taken. An optimisation (made by Elsman and Hallenberg (1995)) tries

to take advantage of this. As can be seen, it has succeeded well on fib.
There are some obvious opportunities for peep-hole optimisations.

212

11.10 Memory consumption

SML/NJ KAM WE

tot. res. tot. res. tot. res. tot. res.
kkb 2244k 2164k | 1.00 1.00 | 1.65 1.64 | 2.17 2.22
life 1824k 1744k [1.00 1.00 | 0.21 0.22| 0.25 0.24
appel 1704k 808k | 1.00 1.00 | 0.06 0.12 | 0.05 0.11
bappel 2228k 1072k | 1.00 1.00 | 0.28 0.59 | 0.30 0.63
ip 1904k 1032k [1.00 1.00 | 0.25 0.46 | 0.40 0.75
plusdyb 1700k 1248k | 1.00 1.00 | 0.05 0.07 | 0.05 0.07
ack 2220k 2140k | 1.00 1.00 | 0.15 0.15| 0.18 0.17
fib 1720k 1640k | 1.00 1.00 | 0.05 0.05| 0.05 0.06
tak 1708k 1404k | 1.00 1.00 | 0.05 0.06 | 0.05 0.07
bul 1892k 1156k | 1.00 1.00 | 0.05 0.09 | 0.05 0.08
fri 2136k 1584k | 1.00 1.00 | 0.04 0.06 | 0.04 0.06
handle 1912k 1832k | 1.00 1.00 | 0.05 0.06 | 0.05 0.05
raise 1728k 1632k | 1.00 1.00 | 0.06 0.07 | 0.05 0.06
ryenolds | 1660k 1196k | 1.00 1.00 | 24.10 33.44 | 24.10 25.08
reynolds | 1660k 1296k | 1.00 1.00 | 0.06 0.08 | 0.05 0.07
church 1920k 1840k | 1.00 1.00 | 7.29 7.61 | 7.29 7.07
foldr 1928k 1848k | 1.00 1.00 | 0.88 0.92 | 0.86 0.87
msort 12000k 12000k | 1.00 1.00 | 1.17 1.17| 1.08 0.92
gsort 10000k 10000k | 1.00 1.00 | 2.30 2.30 | 2.20 2.20
iter 1888k 872k | 1.00 1.00 | 1.50 3.25| 0.88 1.90
mean 1.00 1.00 | 0.36 0.36 | 0.27 0.35

Fig. 53. Mazimal memory consumption when the compiled program is
run as seen by Unix top. There are two sizes (man top): tot., “Total
size of the process in kilobytes. This includes text, data, and stack.”,
and: res., “Resident size of the process in kilobytes. The resident size
information is, at best, an approximate value.”

We would expect the memory consumption of KAM and WE to be the
same as both use region inference. For a discussion of memory behaviour
with region inference, see (Birkedal et al., 1996).

Overall, our total memory consumption is slightly better than KAM’s
(0.27 against 0.36 tot.). This is probably because we spill on the stack
while KAM reserves a specific memory cell for each spilled local.

11.11 Conclusions

On average, our compiler compiles the (toy) benchmarks to code that runs
in 0.57 of the time of the code generated by SML/NJ, and in 0.75 of the time
of the code generated by another version of the ML Kit that uses graph-
colouring intra-procedural register allocation.

213

What gives the speed up?

decreases run-time by

mean maz. min.
flexible linking conventions and % 29% —-9%
caller-save/callee-save conventions

(figure 43 (vi))

flexible linking conventions alone 4% 20% —11%
(figure 43 (v))

several-argument functions 8% 36% 0%
(figure 43 (i1))

basic block duplication (figure 49) 2% 11% —-1%
instruction scheduling (figure 50) 3% 2% —-1%

If, e.g., basic block duplication is disabled and all other things are enabled,
enabling basic block duplication as well decreases run-time by 2%. One
cannot add figures to get the effect of the combination of two ingredients.

Conversion to several-argument functions and using inter-procedural in-
formation are clearly the most important ingredients. There are some indi-
cations that there is synergism between them. In comparison, Chow (1988)
measures a reduction in the number of executed clock cycles when using inter-
procedural information (and shrink wrapping) of about 3%. His experiment
is, however, not directly comparable to ours (p. 73).

Basic block ordering will quite consistently place around 40% of the basic
blocks after a basic block that jumps to it.

Basic block duplication is not the most important ingredient. On the
other hand, it appears to be worth having, as there seems to be no problem
with code explosion.

Instruction scheduling is slightly more important than basic block dupli-
cation.

The per-function part of our algorithm that uses the structure of the
source program and not graph colouring to allocate registers in a function
seems successful. The algorithm is a bit complicated, but at least we did
succeed in inventing the register allocation for every construct in the source
language E. It is a good sign that the method extends in a very nice way
to encompass short-circuit translation of Boolean expressions. Comparisons
of object code quality with a graph-colouring register allocator are in our
favour (figure 44 (iv)), but this is not conclusive as the two register alloca-
tors are different in other aspects. There are also other hints that our non-
graph-colouring heuristic is good at keeping values in registers (figure 44 (ii)).
Graph colouring has completely conquered the world of register allocation

214

and it is a conceptually nice method, but it seems that other methods can
compete in terms of efficiency.

11.12 Directions from here

It would be interesting to measure exactly how well a register allocator that
is similar to ours except that it uses graph colouring as the per-function part
of the algorithm would compete. The competitiveness of the inter-procedural
part of our algorithm should be tested more carefully by comparing it with
an intra-procedural register allocator that uses a split caller-save/callee-save
convention instead of the total caller-saves convention that we have tried.
An interesting experiment would be to see how much the inter-procedural
register allocation would suffer from a less sophisticated closure analysis, e.g.,
one that only knows which function may be applied if it is an application of
a specific, named function. Also, it would be interesting to see what could
be won from using a smarter spill code placement strategy.

We have learned that it is very difficult to predict which optimisations
will be effective. We guess the most important ones now are closure represen-
tation analysis (section 4.6) and data representation analysis (section 4.1):
The register allocator cannot remove memory traffic due to accesses to free
variables and accesses to the actual representations of data. Perhaps these
optimisations should have been addressed before register allocation, thereby
increasing the register pressure and thus the gain from register allocation. It
should be feasible to integrate our register allocator with these two optimisa-
tions: closure representation analysis transforms free variables to arguments,
and we already handle several-argument functions; and the data representa-
tion analysis will make functions with several results, which can probably be
handled analogously to several arguments.

How to extend our work to separate/incremental compilation was touched
upon in the end of section 7.2.

215

REFERENCES

Aiken, Alexander, Manuel Fahndrich & Raph Levien (1995): Better static mem-
ory management: Improving region-based analysis of higher-order languages. In
Proceedings of the ACM SIGPLAN ’95 Conference on Programming Language
Design and Implementation (= SIGPLAN Notices 30(6)). San Diego, California.

Andersen, Finn Schiermer (1995): Re: prisen for et miss. E-mail Sep 19 13:00:28
1995.

Appel, Andrew W. (1992): Compiling with Continuations. Cambridge.

Asprey, Tom, Gregory S. Averill, Eric DeLano, Russ Mason, Bill Weiner & Jeff
Yetter (1993): Performance features of the PA7100 microprocessor. IEEE Micro
6, 22-35.

Bertelsen, Peter & Peter Sestoft (1995): Experience with the ML Kit and Region
Inference. Incomplete draft 1 of December 13.

Birkedal, Lars (1994): The ML Kit Compiler— Working Note. Unpublished manu-
script.

Birkedal, Lars, Mads Tofte & Magnus Vejlstrup (1996): From region inference to
von Neumann machines via region representation inference. In Conference Record
of POPL °96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages. St. Petersburg Beach, Florida. 171-183.

Birkedal, Lars & Morten Welinder (1993): Partial Evaluation of Standard ML.
Master’s thesis, Department of Computer Science, University of Copenhagen.
(= Technical Report 93/22).

Birkedal, Lars, Nick Rothwell, Mads Tofte & David N. Turner (1993): The ML Kit
Version 1. Technical Report 93/14. Department of Computer Science, University
of Copenhagen.

Boquist, Urban (1995): Interprocedural register allocation for lazy functional lan-
guages. In Conference Record of FPCA °95: SIGPLAN-SIGARCH-WG@G 2.8 Con-
ference on Functional Programming Languages and Computer Architecture. La
Jolla, California.

Briggs, Preston, Keith D. Cooper & Linda Torczon (1994): Improvements to graph
coloring register allocation. ACM Transactions on Programming Languages and
Systems 16(3), 428-455.

Brooks, Rodney A., Richard P. Gabriel & Guy L. Steele, Jr. (1982): An optimizing
compiler for lexically scoped Lisp. In Proceedings of the SIGPLAN 82 Symposium
on Compiler Construction (= SIGPLAN Notices 17(6)). Boston, Massachusetts.
261-275.

Burger, Robert, Oscar Waddell & R. Kent Dybvig (1995): Register allocation us-
ing lazy saves, eager restores, and greedy shuffling. In Proceedings of the ACM
SIGPLAN ’95 Conference on Programming Language Design and Implementation
(= SIGPLAN Notices 30(6)). La Jolla, California. 130-138.

Callahan, David & Brian Koblenz (1991): Register allocation via hierarchical graph
coloring. In Proceedings of the ACM SIGPLAN ’91 Conference on Programming
Language Design and Implementation (= SIGPLAN Notices 26(6)). 192-203.

Cardelli, Luca (1984): Compiling a functional language. In Conference Record of
the 1984 ACM Symposium on Lisp and Functional Programming. Austin, Texas.
208-217.

216

Chaitin, Gregory J. (1982): Register allocation and spilling via graph coloring. In
Proceedings of the SIGPLAN 82 Symposium on Compiler Construction (= SIG-
PLAN Notices 17(6)). Boston, Massachusetts. 98-105.

Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins & Peter W. Markstein (1981): Register allocation via coloring. Computer
Languages 6, 47-57.

Chow, Fred C. (1988): Minimizing register usage penalty at procedure calls. In
Proceedings of the ACM SIGPLAN ’88 Conference on Programming Language
Design and Implementation (= SIGPLAN Notices 23(7)). Atlanta, Georgia. 85-
94.

Chow, Fred C. & John L. Hennessy (1990): The priority-based coloring approach to
register allocation. ACM Transactions on Programming Languages and Systems
12(4), 501-536.

Coutant, Deborah S., Carol L. Hammond & Jon W. Kelley (1986): Compilers for the
new generation of Hewlett-Packard computers. Hewlett-Packard Journal 37(1), 4—
18.

Damas, Luis & Robin Milner (1982): Principal type-schemes for functional pro-
grams. In Conference Record of the Ninth Annual ACM Symposium on Principles
of Programming Languages. Albuquerque, New Mexico. 207-212.

Elsman, Martin & Niels Hallenberg (1995): An optimizing backend for the ML
Kit using a stack of regions. Student Project. Department of Computer Science,
University of Copenhagen.

Fleming, Philip & John J. Wallace (1986): How not to lie with statistics: the correct
way to summarize benchmark results. Communications of the ACM 29(3), 218—
221.

Garey, M. & D. Johnson (1979): Computers and Intractability - A Guide to the
Theory of NP-Completeness. New York.

George, Lal & Andrew W. Appel (1995): Iterated Register Coalescing. Technical
Report CS-TR-498-95. Department of Computer Science, Princeton University.
Gibbons, Phillip B. and Muchnick, Steven S. (1986): Efficient instruction scheduling
for a pipelined architecture. In Proceedings of the ACM SIGPLAN ’86 Symposium

on Compiler Construction. Palo Alto, California.

Gupta, Rajiv, Mary Lou Soffa & Denise Ombres (1994): Efficient register alloca-
tion via coloring using clique separators. ACM Transactions on Programming
Languages and Systems 16(3), 370-386.

Harper, Robert & Greg Morrisett (1995): Compiling polymorphism using inten-
sional type analysis. In Conference Record of POPL 95: 22nd ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages. San Francisco,
California. 130-141.

Henglein, Fritz (1992): Simple Closure Analysis. DIKU Semantics Report D-193.
Department of Computer Science, University of Copenhagen.

Henglein, Fritz & Jesper Jgrgensen (1994): Formally optimal boxing. In Conference
Record of POPL °94: 21st ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. Portland, Oregon. 213-226.

Hennessy, John L. & David A. Patterson (1990): Computer Architecture: A Quan-
titative Approach. San Mateo, California.

Hewlett-Packard (1991a): Assembly Language Reference Manual, 4th. edn. [Software
Version 92453-03A.08.06].

217

Hewlett-Packard (1991b): PA-RISC Procedure Calling Conventions Reference Man-
ual, 2nd. edn. [HP Part No. 09740-90015].

Hewlett-Packard (1992): PA-RISC 1.1 Architecture and Instruction Set Reference
Manual, 2nd. edn. [HP Part No. 09740-90039].

Jorgensen, Jesper (1995): A Calculus for Boxing Analysis of Polymorphically Typed
Languages. Ph.D. thesis, Department of Computer Science, University of Copen-
hagen. Universitetsparken 1, DK 2100 Copenhagen @.

Kannan, Sampath & Todd Proebsting (1995): Register allocation in structured
programs. In Proceedings of the Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms. 360-368.

Kernighan, Brian W. & Dennis M. Ritchie (1988): The C Programming Language,
2nd. edn. Englewood Cliffs, New Jersey.

Kessler, R. R., J. C. Peterson, H. Carr, G. P. Duggan, J. Knell & J. J. Krohnfeldt
(1986): EPIC — A retargetable, highly optimizing Lisp compiler. In Proceed-
ings of the SIGPLAN ’86 Symposium on Compiler Construction (= SIGPLAN
Notices 21(7)). Palo Alto, California. 118-130.

Koch, Martin & Tommy Hgjfeld Olesen (1996): Compiling a Higher-Order Call-by-
Value Functional Programming Language to a RISC Using a Stack of Regions.
Master’s thesis, Department of Computer Science, University of Copenhagen.

Kranz, David, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin & Nor-
man Adams (1986): ORBIT: An optimizing compiler for Scheme. In Proceedings
of the SIGPLAN ’86 Symposium on Compiler Construction (= SIGPLAN No-
tices 21(7)). Palo Alto, California. 219-233.

Landin, P. J. (1964): The mechanical evaluation of expressions. Computer Journal
6(4), 308-320.

Launchbury, John (1993): Lazy imperative programming. In Proceedings of the
ACM Workshop on State in Programming Languages. Copenhagen.

Lee, Ruby B. (1989): Precision Architecture. Computer 22(1), 78-91.

Leroy, Xavier (1992): Unboxed objects and polymorphic typing. In Conference
Record of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Prin-
ciples of Programming Languages. Albuquerque, New Mexico. 177-188.

Mahon, Michael J., Ruby Bei-Loh Lee, Terrence C. Miller, Jerome C. Huck &
William R. Bryg (1986): Hewlett-Packard Precision Architecture: The Processor.
Hewlett-Packard Journal 37(8), 4-21.

Milner, R. (1978): A theory of type polymorphism in programming. Journal of
Computer and System Sciences 17, 348-375.

Milner, Robin & Mads Tofte (1991): Commentary on Standard ML. Cambridge,
Massachusetts.

Milner, Robin, Mads Tofte & Robert Harper (1990): The Definition of Standard
ML. Cambridge, Massachusetts.

Mueller, Frank & David B. Whalley (1992): Avoiding unconditional jumps by code
replication. In Proceedings of the ACM SIGPLAN 92 Conference on Program-
ming Language Design and Implementation (= SIGPLAN Notices 27(7)). San
Fransisco, California. 322-330.

Norris, Cindy & Lori L. Pollock (1994): Register allocation over the program de-
pendence graph. In Proceedings of the ACM SIGPLAN ’9j Conference on Pro-
gramming Language Design and Implementation (= SIGPLAN Notices 29(6)).
266-277.

218

Paulson, Lawrence C. (1991): ML for the Working Programmer. Cambridge.

Pettis, Karl W. & William B. Buzbee (1987): Hewlett-Packard Precision Architec-
ture compiler performance. Hewlett-Packard Journal 38(3), 29-35.

Plasmeijer, Rinus & Marko van Eekelen (1993): Functional Programming and Par-
allel Graph Rewriting. Workingham.

Reynolds, John C. (1995): Using functor categories to generate intermediate code.
In Conference Record of POPL ’95: 22nd ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. San Francisco, California. 25-36.

Santhanam, Vatsa & Daryl Odnert (1990): Register allocation across procedure and
module boundaries. In Proceedings of the ACM SIGPLAN ’90 Conference on Pro-
gramming Language Design and Implementation (= SIGPLAN Notices 25(6)).
28-39.

Sestoft, Peter (1992): Analysis and Efficient Implementation of Functional Pro-
grams. Ph.D. thesis, Department of Computer Science, University of Copenhagen.
(= Technical Report 92/6).

Sethi, Ravi & J. D. Ullman (1970): The generation of optimal code for arithmetic
expressions. Journal of the ACM 17(4), 715-728.

Shao, Zhong & Andrew W. Appel (1994): Space-efficient closure representations. In
Proceedings of the 1994 ACM Conference on Lisp and Functional Programming
(= LISP Pointers 7(3)). Orlando, Florida. 150-161.

Shivers, Olin (1988): Control-flow analysis in Scheme. In Proceedings of the ACM
SIGPLAN ’88 Conference on Programming Language Design and Implementation
(= SIGPLAN Notices 23(7)). Atlanta, Georgia. 164-174.

Steele, Jr., Guy Lewis (1977): Compiler Optimization Based on Viewing LAMBDA
as Rename plus Goto. Master’s thesis, Artifical Intelligence Laboratory, MIT.
Steenkiste, Peter A. (1991): Advanced register allocation. In Peter Lee (ed.): Topics
in Advanced Language Implementation. Cambridge, Massachusetts. Chap. 2, 25—

45.

Steenkiste, Peter A. & John L. Hennessy (1989): A simple interprocedural reg-
ister allocation algorithm and its effectiveness for Lisp. ACM Transactions on
Programming Languages and Systems 11(1), 1-32.

Tarditi, David, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper & Peter
Lee (1996): TIL: A type-directed optimizing compiler for ML. In Proceedings
of the ACM SIGPLAN 96 Conference on Programming Language Design and
Implementation. Philadelphia, Pennsylvania. 7-7

Thorup, Mikkel (1995): Structured Programs have Small Tree- Width and Good Reg-
ister Allocation. Technical Report 95/18. Department of Computer Science,
University of Copenhagen.

Tofte, Mads (1995): Region-Based Memory Management for the Typed Call-by-Value
Lambda Calculus. Submitted for publication.

Tofte, Mads & Jean-Pierre Talpin (1993): A Theory of Stack Allocation in Poly-
morphically Typed Languages. Technical Report 93/15. Department of Computer
Science, University of Copenhagen.

Tofte, Mads & Jean-Pierre Talpin (1994): Implementation of the typed call-by-value
A-calculus using a stack of regions. In Conference Record of POPL ’9j: 21st
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
Portland, Oregon. 188-201.

219

Waite, W. M. (1974): Code generation. In F. Bauer & J. Eickel (eds.): Compiler
Construction—An Advanced Course (= Lecture Notes in Computer Science 21).
Berlin. Chap. 3E, 302-332.

Wall, David W. (1986): Global register allocation at link time. In Proceedings
of the SIGPLAN ’86 Symposium on Compiler Construction (= SIGPLAN No-
tices 21(7)). Palo Alto, California. 264-275.

Wand, Mitchell & Paul Steckler (1994): Selective and lightweight closure conversion.
In Conference Record of POPL ’94: 21st ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages. Portland, Oregon. 435-445.

Welsh, Jim & John Elder (1982): Introduction to PASCAL, 2nd. edn. Englewood
Cliffs, New Jersey.

220

Symbol table

Order: symbols: L, 4, ...; then alphabetic: a, a, ... |:[-I|m is found under ra, etc.

€ € K, no-operation instruction,
p- 20

—cc € €, undecided calling
convention, p. 158

—4 € D, used register containing no
live value, p. 137

-1, p- 179

—1c = (—ccy —rc) € £, undecided
linking convention, p. 65

—rc € %, undecided returning
convention, p. 158

—register € P 1, N0 register, p. 82

+, function modification, p. 13

4.5 D- 132

+, p. 20

e, sequence two b’s, p. 189

O € R, potentially recursive, p. 127

¢ € R, opposite of O, p. 127

g, empty set, p. 13

®, p. 138

O € D, unused register, p. 137

U)o union of call graphs, p. 123

Uoa, meet w’s, p. 134

Mg, meet §’s after an if, p. 150

Mg, meet 6%’s, p. 150

Mp, meet descriptions d, p. 150

Mp, meet preservers p, p. 151

M;, meet §'’s, p. 151

My, meet 6”’s, p. 150

(p:=¢') = if p = ¢ then e

else ¢:=¢',p. 102

(p:=¢ +1) =if L = 0 then (¢:=¢'),
else ¢p:=¢' + 1., p. 147

i, sequence two k’s, p. 20

i, sequence two (’s, p. 104

\., set difference, p. 13

\\, function restriction, p. 13

M — N, functions from .# to A,
p- 13

M= N , partial functions from .#
to A, p. 13

a— b= (a,b), p. 13

A*, tuples of elements of .Z, p. 13

AM*, reflexive, transitive closure of
M, p. 13

=, p. 20

4, deconstruct value, p. 15

#i, select i*" component, p. 15

A

acA=AU ;1, exception
constructor, p. 16

ac A, unary exception constructor,
p. 16

ae ;1, nullary exception
constructor, p. 16

a, p. 113

antagonise, record in w that a value
is hostile to some registers, p. 132

app, p. 159

[[-1].,.x annotate r’s on
applications pp. 68, 127

[-]ar, annotate r’s on applications,
p. 126

at, p. 11

at, p. 21

B

b € B, (binding of) letrec-function,
p- 18

0 € B=®& — Z, code abstracted
over destination register, pp. 81,
104

b € P*, basic block of
PB-instructions, p. 189

beBu=1:K: K, basic block of
K-instructions, p. 182

[Tihs € K — ZB, convert to
basic blocks, p. 183

build-closure, p. 179

221

C

ceC=CU CO’, constructor, p. 15

¢E C’, unary constructor, p. 15

¢ € C , nullary constructor, p. 15

CeC = (P xIT" xP)U{—c},
calling convention, p. 158

[e]] c_y1> target representation of c,
p. 24

[-ﬂca € E — E, closure analysis,
p. 113

cc, get calling convention, p. 159

[-1. €E — 7, build the call
graph, p. 63

children, find children in a graph,
p. 64

choose, heuristic for choosing a
register, p. 87

clos € V, closure, p. 84

coerce g_,y, convert 3 to o, p. 155

coerce s,_,g, convert o to 3, p. 155

[Teompite € E = B, pp. 110, 63, 67

& .
[-ﬂcr € E — E , annotate closure
representation, p. 119

D

d € D, description of register, p. 137

§ = (0,64, 6% € A, descriptor,
p. 137

slev D, register descriptor,
p. 137

5t € (® x (W x P))*, stack of
temporaries, p. 138

0¥ C V, values that are loaded,
p. 103

0 C P x P, edges in dependency
graph, p. 189

DeEDS B, last instruction to
define a register, p. 190

ell da» guess which registers e
destroys, p. 128

[[A]] da-A» guess which registers A
destroys, p. 129

decide-cc, pp. 176, 175

decide-rc, pp. 176, 174

[Tl geps translate definition of a

value, p. 88

Tp]] defd » Tegisters defined by p,
p- 190

dependencies, build dependency
graph for a basic block, p. 190

destroys, registers destroyed at
application, p. 128

Dm, domain of function, p. 13

[-ﬂdonode, process a call graph
node, i.e. a A, pp. 64, 72, 125

don’t = X(.(, preserver, p. 138

do-scc € X’ — H — K x H, process
scc pp. 67, 125

E

e € E, our source language, i.e.,
region-annotated E, p. 10

¢ € F, lambda-annotated E, p. 62

XS EO, sibling-annotated E, p. 117

é € E’, closure-representation-
annotated E, p. 119

é € F, several-argumented F, p. 121

xS EO, recursiveness-annotated E,
p. 69

e e E*, w-annotated E, p. 86

E, language before region analyses,
p. 10

€ € K, no-operation instruction,
p- 20

e = (v, Acur.) € E, per-function
environment, p. 125

e, n-component of €, p. 64

n = (n',n?) € H, inter-procedural
environment, p. 64

nt e 2(PNA) = ®, environment
recording registers destroyed by
scc of A’s, p. 65

n' e P(PA) — £, environment
recording linking convention for
equivalence class of A’s, p. 65

& C A x A, edges in the call graph,
p. 63

endregion, p. 21

endregions, pp. 47, 21

entry , p. 174

222

F

f € F, letrec-function name, p. 18

f € F=%F, sibling name, p. 117

ZF, p. 117

¢ € P, register, p. 20

®descriptors, P+ 23

¢dp, data pointer, p. 164

¢freea p- 23

Pletregion € P, natural destination of
a letregion-instruction, p. 141

Oraised, handler argument register,
p. 164

?sp, stack pointer, p. 21

¢ €d, =9U {_register}a regiSter to
preferably choose, natural
destination register, p. 82

¢ C ®, registers that must not be
chosen, p. 23

Q@at registers
¢3endregi0n destroyed by
Q?endregions different
Qletregion heavy-weight
éraise instructions

¢heavy = qgat U leetregion U éendregiona
registers destroyed by
heavy-weight instructions, p. 204

(érest = q)\¢heavya p- 204

¢ C ®, registers to avoid choosing,
p. 87

@ C ®, registers to preferably
choose, p. 73

¢.t € K, test bit ¢ of ¢, p. 20

 C P x P, region aliasing
information, p. 113

find, p. 126

ell ¢ free variables of e, p. 119

G
ge EUF, p. 159
v = (X%, &, Amain) € 7, call graph,
p. 63

vy =A%, X .)eT, sces graph,
p. 67
goto, p. 161
H

h, current handler (global variable),
p- 48

H, inter-procedural environments,
p. 64

|:|:':|:|has-been—loaded’ record in ¢ that
some value is loaded, p. 103

heur, p. 90

|
1 € I, source integer, p. 14
Z'ﬁramea p- 163
v € 1, target integer, label, p. 20
Ly, label of h, p. 164
Ly, label of n, p. 178
1 €I,p. 184
71l ;_,1, representation of 4, p. 24

K

K e 7C=Zi>I, closure
representation, p. 118

k € K, intermediate language, p. 20

keKC K, jump instructions in K,
p. 182

k€ K, non-jump instructions, p. 182

k€ K, linear code, p. 183

X € X, condition in K, p. 20

[Ty + give a preserver for a
register if the value it contains is
loaded, p. 104

kill-arg, pp. 163, 161

kill-tmp, mark end of live range of
temporary; the dual of new-tmp,
p- 136

L

A € A, function in F, p. 62

Acur. € A, the X currently being
processed, p. 72

Agur.s w-annotated Aeyp, p. 174

Amain = A¥main - € @t Tmain € A,
whole program; root node in call
graph, p. 63

A€EA=FA, p. 62

X8 C A, nodes in callgraph; the \’s
of Amain, p. 63

X= C A, equivalence class of \’s
having the same linking

223

convention, p. 65

X° C A, sce, node in sces graph,
p. 67

X2, , the scc currently being
processed by do-scc, p. 72

X ain = {Amain}, root node in sccs

graph, p. 67

A= € P(FN), set of equivalence
classes, p. 65

A% € P(LPN), set of sces, p. 67

L e¥ =% x %, linking
convention, p. 158

|I)\I|Aﬁl, unique label for A, p. 163

letregion, p. 17

letregion, p. 21

lin € #B — K, linearise K basic
blocks, p. 184

[[- Tl\oaq: translate load of value,
p. 103

M

m, memory pseudo-register, p. 192

m|-], memory access, p. 20

uw=(0,e) € M, p. 134

u", n-component of u, p. 64

move, record in § that some value is
copied to another register, p. 139

N

N, approximate number of registers,
p- 159

nr.d., size of region descriptor, p. 140

v = (1, @), per-scc environment,
p. 73

n, last exception name (global
variable), p. 51

new-tmp, get register for temporary,
p- 135

0)

o € O, binary operator, p. 14
0e€0=S—>T->1p. 145
|I-I|0a, w-analysis, p. 131
[o]] o-prim » code for o, p. 135

P
p€ P =7 — Z, preserver, p. 138

P, region variables, p. 14

m € 1l = I U ®, parameter
convention, p. 158

w, p- 115

p € B, PA-RISC assembler
language, p. 10

p C B, nodes in dependency graph,
p.- 189

p. € PP, candidates for scheduling,
p- 190

P M, subsets of A, p. 13

[-T,, € K—P.p. 186

params, parameters of a A, p. 176

preserve, give a preserver for a
value, p. 138

preserve-tmp, give a preserver for a
temporary, p. 138

1 € U, region size variable, p. 18

|:|:':|:|push—arg. , P 175
R

r € R={0,{}, recursiveness,
p. 127

0 € R, region variable without size
annotation, p. 18

0:1 € P, variable-size p, p. 18

0:1 € P, known-size p, p. 18

0:7 € P, unknown-size p, p. 18

peEP= PU P, region variable, p. 14

6 € P, letregion-bound p, p. 18

pE P, letrec-bound p, p- 18

pE P:’:, vector of p’s, p. 18

;E 15, vector of p’s, i.e., the region
arguments to a region
polymorphic function, p. 18

Tmain € P, dummy region variable of
>\maina p- 63

K e X =PU{—}, returning
convention, p. 158

ra, record that some value is put in
some register, pp. 88, 139

[-1,., pp. 81-82, 87-89, 102-104

|:|:':|:|ra—arg7 p. 160

[-ﬂra_at, translate allocation in
region, p. 147

|:|: ':|:|ra—clos’ p- 160

224

raise € K, p. 165

rdfs € I' — K, reverse depth-first
traversal of the call graph, pp. 63,
65, 67, 124 R

|:|:':|:|relabel € K— K, p. 184

ret € V, return label, p. 84

S

¢ = (¢%,¢P) € S, stack shape, p. 103

eV S I, compile-time stack
environment mapping values to
stack positions, p. 103

¢P € I, compile-time stack pointer,
p. 103

o €Y =1x1—=7Z, selector, i.e.,
code abstracted over destination
labels, p. 152

S C PN x PA, edges in the sces
graph, p. 67

[-ﬂsa € EF — FE, translate to
functions of several arguments,
p. 121

sces €7 —>T, p. 124

[Tihed. € B — B, instruction
scheduling, p. 189

set-ce, set calling convention, p. 160

set-rc, set returning convention,
p- 160

[Ty € E - l%, convert f’s to
F’s, p. 117

T

t € T, source Boolean, p. 16

TreT=XUB,aooraf,ie., code
abstracted over a destination,
p. 152

el —7Z, p. 160

9, p. 114

t = ¢ +— (w,p), temporary, p. 138

[t1l 7,1, target representation of ¢,
p. 24

tmp-tmp, get register for temporary
with short live range, p. 139

u
u € U, unary operator, p. 14

veY =1uUd, p. 20

U € © — PP, give instructions
that use a certain register, p. 190

[']ufv find equivalence classes, A=5,
p. 126

unantagonise, reset hostility
information in w, p. 133

underway, p. 184

union, p. 126

[Jul] w-prim » code for u, p. 177

[-ﬂuse, translate access to value,
p. 142

Tp]] used » Tegisters used by p, p. 190

Vv
v €V = Z|clos|ret, values, p. 84

w
weW =V |—q,p. 137
wipe, record that some registers are
destroyed, p. 140

X

x € X, let-bound variable, p. 14
¢ e E=1x1U®, destination
(register or labels), p. 153

Y

y €Y, A\-bound variable, i.e.
argument, p. 14

VYmain € Y, dummy argument of
>\maina p. 63

veYT =1uUd, p. 20

y4
z€Zu=X|Y|F|P]|A, variables
(before [[- [l 41,), p- 19
€7 w=X|Y|F|P|A, variables

(after [-]y,), p- 117
(€ Z =S = K, code abstracted

over stack shape, p. 104
[-ﬂzap, p. 175
A

e€ FUP, p. 163
w € Q, w-information, p. 86

225

