
Compiling a Higher-Order Call-by-ValueFunctional Programming Language to a RISCUsing a Stack of Regionsmartin kochmyth@diku.dk tommy h�jfeld olesenhojfeld@diku.dkDepartment of Computer ScienceUniversity of CopenhagenOctober 11, 1996



Abstract. We describe an SML-to-PA-RISC compiler. The maintopic is inter-procedural register allocation. We use the known tech-nique of processing the functions in bottom-up order in the call graph.Each function is processed with a fundamentally intra-procedural algo-rithm, but inter-procedural information is employed. We get consider-able speed-up by allowing functions to have individual linking conven-tions.The per-function part of the register allocator works on the sourcelanguage, rather than the target language: It runs before the code gen-eration, and directs the code generation. Measurements suggest thatthis method can compete with graph-colouring methods. Another goodsign is that this register allocation on the source language encompassesshort-circuit translation of Boolean expressions in a nice way.The compiler also schedules instructions, and it rearranges and du-plicates basic blocks to avoid jumps.Everything is implemented in theML Kit, a compiler based on regioninference, which infers, at compile-time, when memory can be allocatedand deallocated and thus makes garbage collection unnecessary. Ina phase prior to the translation described in this report, the regioninference annotates the source program with allocation and deallocationdirectives. We discuss how to deal with these directives, but regioninference itself is not discussed.We present measurements of the e�ect of di�erent ingredients in ourcompiler. On average, we compile our benchmarks to code that runs in0.57 of the time of the code generated by SML/NJ version 0.93, and in0.75 of the time of the code generated by another version of the ML Kitthat uses an intra-procedural, graph-colouring register allocation.



Contents1 Introduction 51.1 Why register allocation is interesting . . . . . . . . . . . . . 51.2 Limitation of the job . . . . . . . . . . . . . . . . . . . . . . 71.3 Overview of the report . . . . . . . . . . . . . . . . . . . . . 81.4 Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . 91.5 How to avoid reading the whole report . . . . . . . . . . . . 101.6 Thanks to . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101.7 Overview of the compiler . . . . . . . . . . . . . . . . . . . . 101.8 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132 Source language 143 Intermediate language 203.1 RISC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203.2 Administrating regions . . . . . . . . . . . . . . . . . . . . . 214 Intermediate code generation 244.1 Representing data at run-time . . . . . . . . . . . . . . . . . 244.2 Tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274.3 Constructed values . . . . . . . . . . . . . . . . . . . . . . . 284.4 Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314.5 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334.6 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344.7 Recursive and region polymorphic functions . . . . . . . . . 404.8 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 445 Inter-procedural register allocation 555.1 Why register allocation? . . . . . . . . . . . . . . . . . . . . 555.2 Why inter-procedural? . . . . . . . . . . . . . . . . . . . . . 565.3 Our approach to inter-procedural register allocation . . . . 575.4 Exploiting information about registers destroyed by a function 585.5 Exploiting information about parameter registers . . . . . . 605.6 Design decisions conclusion . . . . . . . . . . . . . . . . . . 615.7 Call graph . . . . . . . . . . . . . . . . . . . . . . . . . . . . 625.8 Linking convention . . . . . . . . . . . . . . . . . . . . . . . 645.9 Dealing with recursion . . . . . . . . . . . . . . . . . . . . . 665.10 Processing a strongly connnected component . . . . . . . . 675.11 Revised overall algorithm . . . . . . . . . . . . . . . . . . . 725.12 Relation to other approaches . . . . . . . . . . . . . . . . . 736 Per-function register allocation 776.1 General approach . . . . . . . . . . . . . . . . . . . . . . . . 776.2 Translating an expression . . . . . . . . . . . . . . . . . . . 806.3 What kinds of values can be allocated to registers . . . . . . 822



6.4 Register allocation strategy . . . . . . . . . . . . . . . . . . 856.5 Liveness and hostility analyses . . . . . . . . . . . . . . . . 866.6 Choosing a register for a value . . . . . . . . . . . . . . . . . 876.7 Heuristic for choosing a register . . . . . . . . . . . . . . . . 896.8 Which values are spilled . . . . . . . . . . . . . . . . . . . . 926.9 Placing the spill code . . . . . . . . . . . . . . . . . . . . . . 936.10 Placing spill code intra-procedurally . . . . . . . . . . . . . 976.11 Placing spill code inter-procedurally . . . . . . . . . . . . . 986.12 Our spill code placement strategies . . . . . . . . . . . . . . 1006.13 Comparison with other approaches . . . . . . . . . . . . . . 1057 Development of the inter-procedural part of the algorithm 1107.1 Overview of the back end . . . . . . . . . . . . . . . . . . . 1107.2 Closure analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1117.3 Sibling analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1177.4 Closure representation analysis . . . . . . . . . . . . . . . . 1187.5 Converting functions to functions of several arguments . . . 1207.6 Building the call graph . . . . . . . . . . . . . . . . . . . . . 1237.7 Finding strongly connected components . . . . . . . . . . . 1247.8 Traversing the strongly connnected components graph . . . 1247.9 Finding the equivalence classes of �'s . . . . . . . . . . . . . 1267.10 Potentially recursive applications . . . . . . . . . . . . . . . 1267.11 Approximating the set of registers that will be destroyed bythe code for an expression . . . . . . . . . . . . . . . . . . . 1288 Development of the per-function part of the algorithm 1308.1 The !-analysis . . . . . . . . . . . . . . . . . . . . . . . . . 1318.2 Temporary values . . . . . . . . . . . . . . . . . . . . . . . . 1348.3 The descriptor � . . . . . . . . . . . . . . . . . . . . . . . . 1378.4 Allocating regions . . . . . . . . . . . . . . . . . . . . . . . . 1408.5 De�ning and using values . . . . . . . . . . . . . . . . . . . 1428.6 Put points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1448.7 Control 
ow forks . . . . . . . . . . . . . . . . . . . . . . . . 1498.8 Boolean expressions . . . . . . . . . . . . . . . . . . . . . . 1518.9 Function application . . . . . . . . . . . . . . . . . . . . . . 1578.10 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1648.11 Processing a call graph node, � . . . . . . . . . . . . . . . . 1728.12 The remaining constructs . . . . . . . . . . . . . . . . . . . 1779 Target code generation 1829.1 Linearising the code . . . . . . . . . . . . . . . . . . . . . . 1829.2 Tailoring the back end to a PA-RISC . . . . . . . . . . . . . 1869.3 Instruction scheduling . . . . . . . . . . . . . . . . . . . . . 18710 Implementation notes 19410.1 The correspondence between the report and the code . . . . 1943



10.2 Some deviations from the report in the implementation . . . 19411 Assessment 19711.1 How the measurements were performed . . . . . . . . . . . . 19711.2 Benchmark programs . . . . . . . . . . . . . . . . . . . . . . 19811.3 Speed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20011.4 The importance of the di�erent ingredients of the inter-proce-dural register allocation . . . . . . . . . . . . . . . . . . . . 20111.5 The per-function part of the register allocation . . . . . . . 20311.6 The importance of the number of registers . . . . . . . . . . 20411.7 Linearising the code . . . . . . . . . . . . . . . . . . . . . . 20711.8 Instruction scheduling . . . . . . . . . . . . . . . . . . . . . 21011.9 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . 21011.10 Memory consumption . . . . . . . . . . . . . . . . . . . . . 21311.11 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . 21311.12 Directions from here . . . . . . . . . . . . . . . . . . . . . . 215references 216symbol table 221

4



1 Introduction1.1 Why register allocation is interestingOne reason many programmers do not use higher-level languages is that theyare not implemented as e�ciently as lower-level languages. This project is anattempt to compile a higher-level language e�ciently to a RISC architecture.One of the most important considerations when compiling to a RISC isregister allocation. A RISC has a �nite number of registers to hold data anda set of operations (instructions) that work on these registers. There is alsoa memory with a, conceptually, in�nite number of memory cells that canhold data when the registers do not su�ce. Before a value in a memory cellcan be used, it must be transfered (loaded) to a register, and this takes along time. Transfering values from registers to memory cells (storing) alsotakes a long time.Register allocation is the job of deciding which values are put in whichregisters and at which points in the program values are loaded and stored.The goal is to produce a RISC program that loads and stores as seldom aspossible.Values that are not \live" at the same time can share the same register.So to some extent register allocation is a problem of packing as many valuesas possible in the registers.In most cases there will, however, be points in the program where thereare more live values than registers, and then some values must reside inmemory. Hence, the register allocation problem is also a problem of decidingwhich values are kept in registers and which are kept in memory.Since it takes a long time to access the memory, it is the least frequentlyused values that should be placed in memory. A value can be used frequentlyin two ways: it can be used at many points in the program, and it can beused in a part of the program that is executed frequently (e.g., a loop).A value may, however, be used frequently in one part of the program andinfrequently in another. Consequently, it would be nice to be able to havea value in a register in some parts of the program and in memory in otherparts.Thus, the register allocation problem in all its generality is: to decide,for each value, and for every point in the program, whether that value is inmemory or in a register, and in the latter case, in which register. This shouldbe done in such a way that a value is always in a register when it is used,and such that as few loads and stores as possible need be executed.Devising an algorithm that solves this problem optimally for any programand in a reasonable amount of time is out of the question. We must contentourselves with a solution that \does well" on \many" programs.Furthermore, it is a problem of such generality that one must break it intosimpler sub-problems to �nd a solution. Therefore, in practice, the registerallocation problem gives rise to a proliferation of problems.There is no single, correct way to split the general problem into simpler5



sub-problems, and the resulting sub-problems can be attacked in many ways.Thus, register allocation is a problem with much room for inventiveness, andsince it is so important, there is much to gain in run-time of the compiledprograms from a good solution. This makes it a fun problem.A common way of splitting the general register allocation problem intosimpler sub-problems is as follows: Pack the values in registers as well aspossible (using some heuristic). Values that do not get a register in thisprocess are kept in memory and loaded every time they are used. Thus,after this process, it is almost completely decided which values are in whichregisters at each point in the program. There is some freedom still, however:a value in memory must be loaded before it is used, but it does not have tobe loaded right before the use. In a �nal phase, this freedom is utilized toplace loads and stores bene�cially, e.g., if possible, outside instead of insidea loop.As far as we know, all register allocators that divide the general registerallocation problem this way have used a framework called graph colouring.They have varied the heuristic used to \colour the graph", the heuristic usedto decide which values do not get a register, and the way the �nal phaseplaces the loads and stores.The graph-colouring framework is conceptually nice, but the graph maybecome big, it may take a long time to colour it, and a value is either allocatedto a register for all of its life or not at all. We have tried another way ofsplitting the general register allocation problem than the graph-colouringframework. Roughly, we choose registers for values while generating thecode.This way we avoid some of the disadvantages with graph colouring. Onthe other hand, our strategy may be worse at packing values in registers thana graph-colouring register allocator.Another respect in which the general register allocation problem is nor-mally simpli�ed is to consider only small parts of the program at a time.A common approach is to split the program into whole functions or intosequences of instructions without jumps, and then perform the register allo-cation independently for each part of the program.An advantage of processing the program in small parts is that control
ow is less complicated. Another is that it will allow the same value to beput in a register in some parts of the program and in memory in other parts(even though the graph-colouring framework is used). Finally, processing theprogram in small parts is necessary if the register allocation algorithm runsin time that is quadratic in the size of its input, as these algorithms oftendo. The big disadvantage is that, at the boundaries of each program part, allvalues must be in speci�c places, often in memory.It is especially important in a functional language, where function callsare very frequent, that these are implemented e�ciently. Therefore, we havenot con�ned our register allocator to work only on one function at a time: wehave developed an inter-procedural register allocation. It is not practically6



possible, however, to consider the whole program in one go, so the inter-procedural register allocation actually considers the functions of the programone at a time, but the register allocation is done for each function usinginformation about the register allocation of other functions.1.2 Limitation of the jobThe setting of this project is more speci�c than the title.First, the source language is Standard ML (SML) (Milner et al., 1990,Milner and Tofte, 1991).Second, our translation is only one of many phases; the input programhas already been parsed, type-checked, etc., so our source language is notreally SML, but rather an intermediate, functional language.Third, the main topic is inter-procedural register allocation. We will alsoimplemente instruction scheduling and a few other things that seem relevant.There are many other relevant issues with which we will not try to deal: clo-sure representation analysis is important because our source language is ahigher-order functional language; data representation analysis is relevant be-cause the language is polymorphically typed; many other issues that arerelevant in compilers for imperative languages are also relevant (e.g., com-mon sub-expression elimination, constant propagation, loop invariant codemotion, strength reduction, and peep-hole optimisations).Fourth, programs in SML use memory in a way such that the memorycannot be allocated on a stack, as it can in, e.g., Pascal or C. This is a pity,as memory management with a stack is cheap, both in run-time and memoryconsumption. Instead, SML is normally implemented using a heap withgarbage collection (e.g. the Standard ML of New Jersey compiler (SML/NJ)(Appel, 1992)). This takes more time at run-time and makes the memoryconsumption of programs comparatively large. A di�erent approach is regioninference (Tofte and Talpin, 1993, 1994), which, to some extent, forces thememory usage of SML into the stack model.Region inference infers, at compile-time, when memory can be allocatedand deallocated. This happens in a phase prior to the translation describedin this report, and our source language contains directives from the regioninference telling when to allocate and deallocate a region, and in what regiona given data object is to be placed. We discuss how to deal with thesedirectives, but region inference itself is not discussed.Fifth, we do not actually implement all of SML: we omit Modules, in-cremental compilation, and real numbers. We do not discuss the run-timesystem; it is implemented by Elsman and Hallenberg (1995).Sixth, the target machine is Hewlett-Packard's PA-RISC 1.1 (Hewlett-Packard, 1992).Although the setting thus is rather speci�c, some aspects are of moregeneral interest. The parts of the translation and register allocation dealingwith the region annotations in the source language are, of course, region infer-ence speci�c, but the translation and register allocation of other constructs7



in the language should be generally applicable in compiling higher-order,call-by-value functional languages. The register allocation and translationto the intermediate RISC language is almost independent of the concreteRISC architecture chosen. The same goes for the basic block ordering andduplication. The instruction scheduling can to some extent be re-tailored toother architectures.We have speci�ed our algorithms formally, and they have been imple-mented in the ML Kit, which is a region-inference-based compiler (Birkedalet al., 1996), and we have also carried out measurements of the e�ect ofdi�erent ingredients in our algorithms.1.3 Overview of the reportThe report can be divided in four parts: introductory material (chapters1{2), design discussions (chapters 4{6), development of formal speci�cationsof the algorithms (chapters 7{9), and assessment (chapter 11). After thisoverview of the report, there is an overview of the ML Kit and a section onnotation. Notice the table of symbols at the end of the report.Chapter 2 explains our source language, the region-annotated intermedi-ate functional language of the ML Kit.Chapter 3 explains the intermediate language.Chapter 4 discusses what intermediate code to generate for each con-struct in the language. Since we want to concentrate on register allocation,we choose simple solutions in this chapter; there is, e.g., no closure repre-sentation analysis or data representation analysis. Except for the exceptionconstructs, we have made the same design decisions as Lars Birkedal in theexisting intermediate-code generator, compile-lambda (partly documentedin (Birkedal, 1994)).Chapter 5 discusses how to make inter-procedural register allocation. Ourinter-procedural strategy uses the idea of (Steenkiste and Hennessy, 1989) ofprocessing the functions in the call graph in bottom-up order. Each functionis processed with some fundamentally intra-procedural register allocation al-gorithm, but because the call graph is processed bottom-up, inter-proceduralinformation about the callees of the function being processed will be availableand can be exploited. The chapter discusses what inter-procedural informa-tion can be exploited and how it can be exploited. It is also discussed how thecall graph can be constructed, since this is not straightforward in a higher-order functional language. Another problem with a higher-order functionallanguage is that more than one function can be applied at a given appli-cation. This limits the freedom to treat functions individually. A detailedspeci�cation of the inter-procedural part of our algorithm is developed inchapter 7.Chapter 6 discusses how to do the register allocation of each functionin the call graph, i.e., the per-function part of the register allocation. Themost interesting characteristic of this part is that we use the structure ofthe source language to do the register allocation. The register allocation is8



done before the code generation, and directs the code generation. A moreusual way would be to generate code �rst using \virtual registers", and thenmap these to real registers in the register allocation phase afterwards. Also,we do not use graph colouring as many register allocation algorithms do.Generally, the bene�t from doing the register allocation on a higher-levellanguage is that there is more information available. This chapter discussesthe general issues in making the register allocation on the source language:how the register allocation can direct the code generation, the kinds of valueseligible for allocation to a register, how to choose registers for values, howto decide what values are kept in memory, and how to place the code thattransfers values between registers and memory. The chapter develops theregister allocation for the construct let x = e1 in e2 as an example. Thisshould give an impression of the central ideas in our register allocation; theregister allocation for the other constructs of the source language is developedin chapter 8.Chapter 7 develops the inter-procedural part of the algorithm. Notably,it contains an explanation of the closure analysis which is necessary to buildthe call graph, because functions are values. The closure analysis is basedon the region annotations in the source language, and was invented by oursupervisor, Mads Tofte. The chapter also explains how functions that taketuples as arguments (the way to pass multiple arguments in SML) are imple-mented e�ciently. The introduction to this chapter gives a list of all phasesin the back end. To get an overview, look ahead to this list (p. 110).Chapter 8 describes the per-function part of the algorithm. First, a live-ness analysis is presented; then the register allocation for the di�erent con-structs of the source language is developed. We have developed the registerallocation for, among other things, the constructs that deal with regions, theconstructs that allocate in regions, the exception constructs, and for short-circuit translation of conditional expressions.Chapter 9 concerns the translation from the intermediate language toPA-RISC assembly language. This translation includes reordering and du-plicating basic blocks to avoid jumps, and instruction scheduling.Chapter 11 presents measurements from our implementation. We com-pare with the existing back end in the ML Kit and with SML/NJ. We alsomeasure the importance of di�erent ingredients in our register allocation,and the e�ects of di�erent phases in our back end.1.4 PrerequisitesYou may need basic knowledge of compiler writing for parts of the report.We explain our source language, but only brie
y. It is basically SML,so knowing SML or some other functional language will be a help for thereader. Knowledge of SML corresponding to the level in (Paulson, 1991) isquite su�cient.Knowledge about region inference is a necessary prerequisite for partsof the report. (Tofte and Talpin, 1993) gives the most detailed account.9



Large parts can, however, be read without knowing anything about regioninference.1.5 How to avoid reading the whole reportIf you know SML and what region annotations are (or do not care aboutthem), you can to a great extent skip chapter 2. Likewise, if you can guesswhat a generic RISC language is, you may want to make do with the �rstpart of section 3.2 about the extra instructions for administrating regionsand skip the rest of chapter 3. If you know how to translate SML to a RISC,you can skip chapter 4. A quick tour through that chapter is sections 4.2,4.4, and 4.6.The central chapters 5 and 6 are fairly self-contained. A quick tour is5.4, 5.7, 5.8, 5.9, and 5.11; then 6.2, 6.4{6.6, and 6.12.Chapters 7 and 8 contain all the details and depend on the precedingtwo. If you are shamelessly into quick tours, brutally skip them; or mayberead 7.1, the �rst part of 7.2, 7.5, 7.8, 8.2, 8.5, 8.6, and the �rst part of 8.9.The rest of the report is almost self-contained. A quick tour is the �rstparts of 9.1 and 9.3; then 11.3, 11.4, 11.7, and 11.8.For completeness, we have included a lot of technical detail in the report,especially in chapters 7{9. We have endeavoured to put the more technicalparts in the last part of each section, such that the reader not interested inall the details can skip to the next section when it gets too technical anddetailed.1.6 Thanks toIn connection with this project, we want to thank Finn Schiermer Andersen,Lars Birkedal, Erik Bj�rnager Dam, Martin Elsman, Sasja Frahm, Arne JohnGlenstrup, Niels Hallenberg, Jo Koch, Torben Mogensen, Kristian Nielsen,and Mads Tofte.1.7 Overview of the compilerHere is an overview of the ML Kit compiler, of which we have made the backend. SML front end����������! E region analyses���������������! E back end����������! PFig. 0. Phases in the ML Kit compiler.The simple functional language E is approximately the bare languagesubset of SML in the de�nition (Milner et al., 1990) except that patterns havebeen compiled into simple patterns. Next, E is a similar region annotatedlanguage, and P is PA-RISC assembly language.This report is only about the back end, but we give an overview of thetwo other phases here. 10



The front end comprises the following phases:SML lexicalanalysis��������! parsing��������! in�xresolution����������!typechecking���������! pattern matchcompiling�������������! optimisation������������! EFig. 1. Front end phases.The type checking phase ensures that only type correct E -programs areproduced. The pattern match compiling phase compiles patterns into simplerconstructs. The optimiser performs optimising transformations on E . See(Birkedal et al., 1993) for a description of the front end, although especiallythe optimiser has changed since then.The region analyses are (Birkedal et al., 1996):E regioninference���������! multiplicityinference�����������! storage modeanalysis������������! physical sizeinference������������! EFig. 2. Region analyses.A region is a collection of data objects for which memory may be allocatedat the same time and deallocated at the same time. The region inferencedecides which data objects should be put in the same regions. Expressionsthat create new data objects when they are evaluated are annotated with aregion: (10,4) may be translated into (10,4) at r17, indicating that thepair should be put in region r17. The region inference also decides when aregion should be introduced and discharged. This information is annotatedin the program too: letregion % in edeclares the region % in a sub-expression e of the program, allowingsub-expressions of e to have the annotation \at %". Operationally,letregion % in e introduces a new region, binds % to it, evaluates e, andthen discharges the region. This behaviour implies a last-introduced-�rst-discharged order for regions, i.e., regions can be kept in a stack. Below wediscuss what it means to introduce and discharge a region, and what it meansto put data in a region.Themultiplicity inference decides for each region whether there is a boundon the number of times data will be put into it, when the program is evalu-ated.While evaluating (the useless)letregion r17 in (10,4) at r17;data is only put into r17 once. Therefore the amount of memory needed forr17 can be determined at compile-time, and we say r17 has known size. This11



amount can be allocated, when r17 is introduced and used later when datahas to be put into the region.If, on the other hand, the sub-expression e of letregion % in e builds alist in %, a bound on the number of times data is put into % cannot in generalbe determined at compile-time, because the size of the list cannot in generalbe determined at compile-time. In that case we say % has unknown size, andit is not possible to allocate all the memory needed for % when it is introduced,instead memory must be allocated each time data is put into the region. Forboth types of region, discharging a region amounts to deallocating all thememory that was allocated for it.The physical size inference uses type information to infer the amount ofmemory needed for the regions of known size. Together, the physical sizeinference and the multiplicity inference change each known-size region % ofthe region annotated program into %:i, where i is the number of words neededfor %; each unknown-size region % is changed into %:?. The example abovewill be translated toletregion r17:2 in (10,4) at r17:2;assuming a pair of integers can be accommodated in two words.One must distinguish regions from region variables. The %'s above areregion variables which will be bound to regions at run-time. The distinctionis necessary because a region variable can be bound to di�erent regions atrun-time, namely if the binding letregion-expression is evaluated more thanonce. In this respect a region variable is like any other variable|e.g. x oflet x = e1 in e2 may be bound to di�erent values, during execution of theprogram, if the let-expression is evaluated more than once.The storage mode analysis tries to discover when memory allocated for anunknown-size region can be reused. It will sometimes enable memory to bedeallocated earlier than when regions are discharged. Like the other analyses,the storage mode analysis annotates the program. While the multiplicity andphysical size inferences in
uence the way regions are treated fundamentally,the storage mode analysis is more of an add-on; to keep things simple, wewill ignore the storage mode annotations in this report (they are not ignoredin the implementation).Concerning region inference, see (Tofte and Talpin, 1993, 1994), of whichthe former contains an algorithm. See (Birkedal et al., 1996), for descriptionsof the other region analyses.The back end is what the rest of this report is about:E register allocation andintermediate code generation�����������������������! k PA-RISC assemblycode generation����������������! PFig. 3. Back end.Its source language, E, is the target language of the region analyses, i.e.,it is a functional language with the region annotations sketched above. We12



describe E in the next chapter. The intermediate language k is a RISClanguage described in chapter 3. The �nal assembly language, P, is similarto k, but of course includes many PA-RISC speci�c peculiarities (see section9.2).1.8 NotationAssume M , N and W are sets. Then M � is the set of �nite sequences(tuples) of elements of M ; PM is the set of subsets of M ; M �N is theset of elements in M that are not in N . The empty set is ?. Cartesianproducts of a set are written like this: M 4 =M �M �M �M .M ! N is the set of functions from M to N , and M ?! N is the setof partial functions fromM to N , i.e., M ?!N = S fW ! N j W �M g.A �-abstraction �a:B with formal argument a and body B denotes anameless function; e.g., �a:2 + a is the function that adds 2 to its argument.The body of a �-abstraction extends as far to the right as possible.Function application is denoted by juxtaposition: fg denotes f appliedto g ; parentheses are only used for grouping.We regard a function f 2M ! N as a relation f �M �N : fa = b i�(a; b) 2 f, and use a 7! b as another notation for the pair (a; b). If M is arelation, M ? is the re
exive, transitive closure of M .Function application has the highest precedence and associates left. Cor-respondingly, ! and ?! associate right. Other operators associate right. �takes precedence over !. Thus M ! N � fMN means M ! (N �((f(M ))N )).Assume f and g are functions. Then Dm f denotes the domain of f, andf+g is the function de�ned by f+g = �a:if a 2 Dm g then ga else fa. E.g.,f1 7! 11; 2 7! 0g + f2 7! 12; 3 7! 13g is f(1; 11); (2; 12); (3; 13)g, i.e. thefunction with domain f1; 2; 3g that maps a to a+10. f���W is the restrictionof f to the domain Dm f�W . � is function composition: f � g = �a:f(ga).We abbreviate \if and only if" by \i�".

13



2 Source languageOur source language E is the call-by-value �-calculus, augmented with vari-ous features such as references (updateable variables), exceptions, conditionconstructs, simple and constructed values, primitive operators, and regionannotations. This chapter presents E brie
y.It is implicit in the name of a meta-variable which set it ranges over:e 2 E, e1 2 E, x 2 X, _a 2 _A, ~�� 2 ~�p, etc. The only not obvious below areperhaps: � 2 p, and % 2 r.We use p for the set of region variables, and Y for the set of �-boundvariables. The core of E is the call-by-value �-calculus:E ::= Y j E E j �Y.E at pThe �-abstraction �y.e0 at � with formal argument y and body e0 eval-uates to a nameless function. SML syntax for it is fn y => e0. We willsay that a sub-expression e0 of e is directly within e if it is within e but notwithin any function inside e. E.g., e0 is directly within �y.e0 at r61 butnot directly within �y.�z.e0 at r16 at r60. In the application e1 e2, thefunction e1 is called with e2 as argument. Call by value means that e2 isevaluated before the function is called. This is an important characteristicof the semantics of E|especially for the implementor, as the implementa-tion technology for call-by-need languages (like Haskell or Miranda) is verydi�erent from that for call-by-value languages (see, e.g., (Plasmeijer and vanEekelen, 1993)).As an additional way to de�ne variables, we introduce the let-construct.We use X for the set of let-bound variables.E ::= X j let X = E in EThe expression let x = e1 in e2 is evaluated by evaluating e1 and bindingthe result to x when evaluating e2. This can be expressed with �-abstractionand application (as (�x:e2 at �) e1). But that is ine�cient, so we treatlet X = E in E as an indepent construction.We use I for the set of source language integers, and O for the set ofbinary operators. The language includes these integer constructs:E ::= I j E O EO ::= + j -Next, we introduce constructs to build and consume tuples. We use Ufor the set of unary operators.E ::= (E,: : : ,E) at p j U EU ::= #I 14



The expression (e1, : : : , en) at � is evaluated by evaluating the sub-expres-sions and building a tuple of the resulting values. Correspondingly, #i e2selects the ith component of the tuple e2 evaluates to. Components of a tupleare numbered from zero (SML numbers from one). The front end (�gure 1)has compiled the more general record of SML to a tuple by deciding an orderfor its �elds. E.g., f2=1, 
ag=true, no=3g may compile to (1,true,3)at r4, and then #
ag will compile to #1, and #2 to #0.We use C for the set of constructors, which is split into the nullary con-structors C� and the unary constructors _C. Here are the extensions to E forconstructors:C ::= C� j _CE ::= C� at p j _C E at pj case E of C =>E| : : : |C =>E|- =>EU ::= #A unary constructor _c takes one argument as, e.g., Some, assuming thefollowing (SML) declaration:datatype 'a option = Some of 'aj None.A nullary constructor c� takes no argument (as None).The syntax of E enforces that unary constructors only appear in expres-sions of the form _c1 e2 at �, which build a unary constructed value consistingof the constructor _c and the value e2 evaluates to. Analogously, a nullaryconstructor c� can only occur in expressions of the form c� at �, which builda nullary constructed value.This is di�erent in SML, where constructors can be used as functionvalues: fun pmap f (y1,y2) = (f y1,f y2)val it = pmap Some (1,2).Here Some is used as a function value. To express the equivalent of thatSML-program our front end would �-expand Some:pmap (�y.(Some y at r1) at r2) (1,2) at r3.Assume e0 evaluates to a constructed value. Thencase e0 of c1 => e1| : : : |cn => en|- => en+1inspects the constructor of it and evaluates ei if the constructor is ci, or thedefault expression en+1 if none of the constructors c1; : : : ; cn match. Theargument of the constructed value can be accessed with # e0: #(Kloer 5 at�) will evaluate to 5. 15



Note that the case-construct always has a default expression en+1. Thisis no restriction; a case-expression without a default expression can alwaysbe converted to one with a default expression.In SML, pattern matching is used to check what the constructor of aconstructed value is. The pattern match compiler (�gure 1) has compiledpatterns to case- and # -expressions. For instance, the patterns in the SMLfragment datatype 'a t = Iron of 'a j Maiden of intcase t of Iron a => f aj Maiden i => g i,may be compiled tocase t of Iron => f (# t)| - => g (# t).Boolean expressions and conditional expressions have the syntaxE ::= T j not E j if E then E else ET ::= true j falseO ::= = j <=Unlike the de�nition of SML, we do not treat the if-construct as a derivedform of the case-construct, because we want to deal with Boolean expressionsspecially (section 8.8). The binary operator = is only allowed on integers,Booleans, and references, not, e.g., on tuples.It is an important characteristic of E that it has side e�ects. This is incor-porated by having a special type of value called a reference, which referencesa memory cell that can be updated.E ::= ref E at p U ::= ! O ::= :=The expression ref e1 at � creates a new reference. If e1 evaluates toa reference of a memory cell, ! e1 evaluates to the value in that memorycell, and the memory cell can be updated to the value e2 evaluates to withe1:= e2.With side e�ects, the order of evaluation must be speci�ed to completelydetermine the semantics of E. We specify that the evaluation order is left toright, e.g., in an application, e1 must be evaluated before e2. Together withcall by value this completely determines the evaluation order.Because exceptions give interesting control 
ow, we also want them in E.Analogous to constructors, the set A of exception constructors is split intonullary and unary exception constructors. We extend E:A ::= A� j _AE ::= A� at p j _A E at pj exception A in E j raise E j E handle A =>E16



The expression exception a in e2 binds a fresh exception name to a ine2. (It must be a fresh one each time the exception expression is evaluated;see section 4.8, p. 50.) The expression a� at � evaluates to a nullary exceptionvalue containing the exception name bound to a�, and _a1 e2 at � evaluatesto a unary exception value consisting of the exception name bound to _a andthe value that e2 evaluates to.A raise raise e1, makes control 
ow to the nearest enclosing handle-expression which handles the exception value that e1 evaluates to.The expression e1 handle a => e2 handles a raised exception value, ifthe exception name of the exception value is the same as the exception namebound to a. For reasons of presentation, the handle-construct here is simplerthan SML's. To express the equivalent of the SML fragmente0 handle A1 => e1 j A2 => e2 j A3 => e3;use ((e0 handle A1 => e1) handle A2 => e2) handle A3 => e3:There are only \at �"-annotations on expressions that build new values.These annotations are necessary, because they tell in which region memoryshould be allocated for the new value: to evaluate �y.e0 at �, it is necessaryto allocate memory for the resulting function, and the \at �"-annotationshows that this will be done in region �; to evaluate (e1, : : : , en) at �,memory must be allocated for the tuple that is built; to evaluate _c1 e2 at �,memory must be allocated for the constructed value; etc.Expressions that do not build new values have no \at �"-annotation. Forinstance in let k = �y.y+1 at r13 in (k,k) at r14;the two occurrences of k in (k,k) have no \at �"-annotation, for althoughthey evaluate to functions, they do not build new functions for which memorymust be allocated; they simply reference an already built function.Boolean and integer constants create new values just as, e.g., a tuple does,but these values will �t in a machine word and are therefore best representeddirectly instead of as a pointer into a region. Hence, memory is not allocatedfor the value created by these types of expressions, and consequently, theyhave no \at �"-annotations. (This is technical, but should be clear afterchapter 4.)The letregion-construct declares letregion-bound region variables �p:E ::= letregion �p in EIt introduces a new region, binds it to the region variable, evaluates thesub-expression, and then discharges the region.This is not the only way to declare region variables: E also has regionpolymorphic functions that take regions as arguments, allowing di�erent callsto the same function to use di�erent regions.17



We use �p for the set of formal region variables thus declared.The set B of (bindings of) region polymorphic functions is given byB ::= F ~�pY = E~�p ::= [�p,: : : ,�p] j �where ~�p is the set of tuples of formal region variables, and F is the set ofnames of region polymorphic functions.Finally, we introduceE ::= letrec B � � � B at p in E j F ~pE~p ::= [p,: : : ,p] j �This letrec-construct serves two purposes. First, it is used for declaringregion polymorphic functions. Second, it allows (mutually) recursive func-tions to be de�ned: the region polymorphic functions (or: letrec-functions)b1; : : : ; bm declared in letrec b1 � � � bm at � in em+1 can call each other.A (region polymorphic) application f [�1, : : : , �k] e2 applies the letrec-function named f to the actual region arguments �1; : : : ; �k and (normal)argument e2.A region variable is either letregion-bound or a formal region variable;i.e., p ::= �p j �p. These sets have the form:�p ::= r:I j r:?�p ::= r:	 j r:?We de�ne that � has known size i� � has the form %:i i� it is known atcompile-time that all regions bound to � will have known size, i.e., i� thenumber of words needed for each region is known to be i; � has unknown sizei� � has the form %:?, i.e., i� the number of words needed for the regionsbound to � is not known; and � has variable size i� � has the form %: i�� may be bound to both regions with known size and regions with unknownsize at run-time. Only formal region variables can have variable size. The  is a variable that can be bound to either some i or ? at run-time accordingto the kind of region % is bound to.For instance, inletrec f0[r0:p0]y0 = e0f1[r1:?,r2:?]y1 = e1 at r3in e3the application f1[r0:?,r0:?]y0 may be a sub-expression of e0. Likewise,f0 may be called from e1, or (recursively) from e0. The formal (region)variables are not in scope in the other function: r0 or y0 cannot be used ine1 or e3. While f0 may be applied to regions with either size because the18



size annotation on r0 is :p0, f1 may only be applied to region variables withunknown size because r1 and r2 have :? size annotations.Notice the restriction on region polymorphic function application f ~� e2:The syntax ensures that f is always fully applied (to the actual region argu-ments and the argument). E.g., (f0,f1) at r1 is not a possible expression.To use a letrec-bound function as a value (i.e. to apply it partially), it mustbe �-expanded: (�y.f0[r3:?]y, �y.f1[r3:?,r3:?]y) at r1. (But noticethat these functions are not region polymorphic. For type-checking reasons,region polymorphism is only allowed for letrec-functions.)It is convenient to de�ne the set of variables:Z ::= X j Y j F j p j AIn particular, exception constructors A are regarded as variables.We assume all variables that occur in a binding position (i.e. y in�y.e0 at �, x in let x = e1 in e2, �� in letregion �� in e1, f , ��1; : : : ; ��k,and y in b, and a in exception a in e2) are distinct.Expressions must ML-typecheck (Milner, 1978, Damas and Milner, 1982).For brevity, we omit many constructs in the report: the rest of the prim-itive integer operators (~, abs, *, mod, div, <, >, >=), other primitive op-erators (output, std-in, std-out, open-in, open-out, input, lookahead,close-in, close-out, end-of-stream), strings (implode, explode, size,chr, ord), case-expressions on integers, strings and exception constructors.These are all implemented. In the report, = is allowed on basic types only,but polymorphic equality has been implemented. See chapter 10 concerningdiscrepancies between the implementation and the report.Reals have not been implemented, and neither has Modules.

19



3 Intermediate languageThe intermediate language, k, is the language of a RISC (Hennessy andPatterson, 1990), augmented with facilities for handling regions.3.1 RISCWe write � for a word, i for the set of words, and � for the �nite (small) setof registers, which contain words. We write � for an instruction, and k forthe set of instructions.The intermediate language is a simple three-address language. There areinstructions for putting a constant or the contents of a register in a register:k ::= � :=�� ::= � j i;and for operations on registers:k ::= � :=���� ::= + j {E.g., �1 :=�2 { � subtracts � from �2 and puts the result in �1.There is an in�nite set of memory cells, which contain words, and isindexed by the set of words; i.e., there is a memory which is a map from i toi. The only way to access memory cells is through load and store instructions:k ::= � :=m[�� i] j m[�� i] :=�The load �2 :=m[�1 + �1] changes �2 to be the word in the memory cell withindex �1 + �1. Analogously with the store.We introduce ; for sequencing instructions, and the instruction � thatdoes nothing:k ::= k ; k j �Assume ; is associative.There are also instructions for (conditional) control 
ow:k ::= i :k j goto � j if x then i else i;where the set of conditions isx ::= � � � j �=� j �.i j :x:The label of � is � if � : � occurs in the program, and then the e�ect of thejump goto � is to execute �. Because labels are words, one can jump to thecontents of a register. The conditional jump if � then � else �� jumps to � ifthe condition � is true; otherwise to ��. :� is true i� � is false. The condition�.� tests whether bit number � in the word in � is 0 or 1.The language described so far constitutes the basic intermediate language.All features we add in the following can be described in terms of this language.20



We need a stack, which we will call the k stack to distinguish it fromother stacks. Assume a speci�c register, �sp, is reserved for a stack pointer.It is convenient with some abbreviations: pop � pops a word and puts it in�; pop also pops a word, but does not put it in a register; push � pushes theword in �. These abbreviations are de�nedpop = �sp :=�sp { 1pop � = pop ; � :=m[�sp +0]push � = m[�sp +0] :=� ; �sp :=�sp +1:With these de�nitions, the stack grows upwards in memory, and �sp pointsto the �rst free word on the stack.3.2 Administrating regionsIt will be necessary to introduce and discharge regions, and allocate memoryin them. We introduce the instructions� := letregion endregion �1 := at �2 : � endregions �:A new region is introduced with � := letregion, which assigns to � anidenti�er of the region.If �1 identi�es a region, �2 := at �1 : � allocates � words in that region andsets �2 to point to them.The instruction endregion discharges the most recently introduced region,i.e., it deallocates all memory allocated in that region.As endregions � is needed for a speci�c reason when raising an exception,it will be explained when we discuss how to implement exceptions in section4.8.Implementing the region instructionsNow we explain the semantics of the region instructions in terms of simplerk instructions. You can skip this if you are satis�ed with the less detailedexplanation of these instructions.A region is represented by a list of �xed-size chunks of memory. Theyare kept in a stack:

21



list of free chunks ...
the most recently introduced regionlist of chunksstackofregions

Fig. 4. The conceptual representation of regions: a stack of lists of chunksof memory.The instruction � := letregion pushes a chunk list with one new chunkon this stack, and puts an identi�er of the region into �. The instruction�1 := at �2 : � tries to acquire � words in the last chunk in the region identi�edby �2. If there is not � words free in this chunk, �1 := at �2 : � puts a newchunk at the end of the list of chunks, and acquires its � words there. Theinstruction endregion pops the topmost list of chunks, and they can then bereused. Thus, there is also a list of free chunks.These lists and the stack are implemented as illustrated in this �gure:
2��descriptors: list with three chunks

�sp:

k stack

lastfreeword�rstfreeword78>>>><>>>>:

Fig. 5. The concrete representation of regions. A box depictsa word. In this illustration, 9 words can be allocated in each chunk.22



The lists of chunks are implemented as linked lists: each chunk has apointer to the next chunk. The stack of chunk lists is implemented as alinked list of region descriptors: each region descriptor has a pointer to thenext region descriptor and a pointer to its chunk list. Furthermore, becausewe need to know how much free memory is left in the last chunk in the list,each region descriptor also has pointers to the �rst and last free words in thelast chunk. In �gure 5, two words have been allocated in the last chunk inthe topmost region; seven words are free. The region descriptors are placedin the k stack, and we have assumed a �xed register �descriptors points to thetopmost region descriptor.With this data structure, the k code to implement the region instruc-tions is straightforward, though technical; we give an implementation of� := letregion. Assume a register �free is reserved to point to the �rst chunkin the list of free chunks.� := letregion =� :=�sp ; pointer to region descriptorpush �descriptors ; �descriptors :=� push region descriptorpush �free ; set up pointer to chunk list�tmp :=�free +9 ; push �tmp ; push pointer to last free word�tmp :=�free +1 ; push �tmp ; push pointer to �rst free word�free :=m[�free+0] remove chunk from free list.Instead of expanding the region instructions to simple k instructions,the compiler may choose to implement them as sub-routines or calls to arun-time system. In any case, they will be implemented as pieces of code.One aspect of this is important to the translation presented in this report:It must know which registers are destroyed by these pieces of code. So we let�̂letregion denote the set of registers that are destroyed, when a � := letregion-instruction is executed, and let �̂endregion, �̂endregions, and �̂at denote similarsets for the other instructions. With the implementation of � := letregionabove, �̂letregion = f�tmpg.Here we have reserved speci�c registers �descriptors and �free; the compilermay choose to use memory cells.

23



4 Intermediate code generationIn this chapter we will discuss how each kind of expression in the sourcelanguage is translated to the intermediate language. We will not worry abouthow registers are chosen for values, but merely assume that a register willalways be available to hold the result of a computation. Register allocationis discussed in the following chapters which rely on the design decisions madein this chapter.The constructs of our source language E may be split into two groups:constructs that build values, and constructs that consume values. For eachkind of value, there are constructs to build that kind of value, and constructsto consume it. For example, a tuple is built by (e1, : : : , en) at �, andconsumed by #i e2. A normal function value is built by �y.e0 at �, andconsumed by a (normal) application, e1 e2. letrec-function values are builtby letrec b1 � � � bm at � in em+1, and consumed by f ~� e2. Constructedvalues are built by c� at � and _c1 e2 at �, and they may be consumed byboth # e2 and case e0 of c1 => e1| : : : |cn => en|- => en+1. The remainingconstructs may also be split into constructs that build and constructs thatconsume.Before we can decide what code should be generated for a given construct,we must decide what information the value manipulated by this constructshould comprise at run-time. The general strategy for doing this is as follows:For each kind of value we start by discussing what the constructs that con-sume this kind of value should do. This discussion reveals what informationvalues of this kind must comprise at run-time (e.g. a function value mustcontain the code for the function). After having discussed how the valuesof this kind should be represented at run-time, we can describe what codeshould be generated for the corresponding constructs (e1 e2 and �y.e0 at �in the case of function values).Since we focus on register allocation, the guiding principle in this chapteris to choose a simple solution to problems, and we have made the same designdecisions as in the existing intermediate-code generator compile-lambda.The representation of regions is also as in compile-lambda. It is describedin (Birkedal et al., 1996). The exception is exceptions, which we implementdi�erently from compile-lambda.We start with some general re
ections on how to represent data at run-time.4.1 Representing data at run-timeThe atomic values are the values that can be represented in one word: inte-gers, I, Booleans, T , and constructors, C. We assume there are functions toconvert atomic values to their representation as words, � 2 i:� I!i 2 I ! i� T!i 2 T ! i� C!i 2 C ! i:24



We require that � C!i map di�erent constructors from the same datatype-declaration in the SML source program to di�erent representations, but con-structors from di�erent datatype-declarations can have the same representa-tion; strong typing ensures that there will never be an opportunity to mistakeone for the other. (Our source language does not have a datatype-declara-tion. It just has one set, C, of constructors. The constructors originate fromdatatype-declarations in the original SML program, but this is of no con-cern at this point in the translation; all we need to know is the representationof each individual constructor, and this is provided by � C!i.)One way to naturally represent composite (i.e. non-atomic) values, such astuples, is as consecutive words representing the atomic values that constitutethe composite value. For example, the tuple value (1; (true; 3); 4) is madeup of the atomic values 1, true, 3, and 4, and it can be represented by thewords: 1 I!i true T!i 3 I!i 4 I!i :Here a box denotes a word, and juxtaposition of boxes means that the de-noted words are consecutive.This 
at representation will not work in general, however, because thesource language, E, is type polymorphic. The problem is illustrated by theprogram let p = �y.(y,y) at r2 at r1 inlet d = �yy.#1 yy at r7 ind(d(p(p 2))).The function p makes a pair of its input y. Since y may have any type, p is atype polymorphic function. If we do not want to make specialised versions ofthe code for p, the same code must be able to handle y's of any type, e.g. thevalue 2 and the value (2,2). Using 
at representation, the same code for pshould transform the word 2 I!i to the consecutive words 2 I!i2 I!i , and those it should transform to2 I!i 2 I!i 2 I!i 2 I!i ;when p is called the second time. To do this, p must know the size of the
at representation of its input.The function d takes the second component of a pair of values of anytype. From the words 2 I!i 2 I!i , d should extract the secondword, while it should extract the third and fourth words, when given the rep-resentation 2 I!i 2 I!i 2 I!i 2 I!i of ((2,2),(2,2)).Obviously, d must know the layout of the pair, if we use 
at representation.The solution normally applied in implementations of type polymorphiclanguages is to use a uniformly sized representation of all types of values.This representation is called uniform representation. The size used for alltypes of values is usually one word. Composite values are then representedas a pointer (which will �t in a word). The pointer points to the \actual25



representation" of the composite value, which is like its 
at representation,except that the values that constitute the composite value are themselves rep-resented in uniform representation. For instance, the uniform representationof (1; (true; 3); 4) is
4 I!i1 I!i

true T!i 3 I!iHere fat-edged boxes denote memory cells; other boxes denote words, asbefore. (A memory cell is not the same as a word: a memory cell containsa word. A word may reside in either a memory cell or a register.) The partof the representation of a value that must be in memory (the part in thefat-edged boxes) we will call the actual representation of the value.With this representation, p knows that the size of its input is always oneword, and d knows that it can always �nd the second component of a pair asthe second word of the actual representation of the pair. Another advantageof uniform representation is that it saves memory in cases where values areduplicated: When p is applied to a value, the memory consumption is thetwo words for the pair, regardless of the size of the 
at representation of thevalue. With 
at representation, the memory needed for the pair will be thedouble of the size of the value.Uniform representation is ine�cient for two reasons: It is necessary todereference a pointer whenever a composite value is accessed (e.g. when anelement of a tuple is accessed), and the actual representation must residein memory (one cannot have a pointer to a register). The latter restrictionmakes it impossible to allocate composite values to registers.One remedy to the ine�ciencies introduced by uniform representationuses that it is only necessary to use uniform representation for a value whenit is passed as an argument to type polymorphic functions (as p or d). Withthis method, representation or boxing analysis decides when values must bein uniform representation and when 
at representation can be used (Leroy,1992, Henglein and J�rgensen, 1994, J�rgensen, 1995).A completely di�erent way of handling data representation in the presenceof polymorphism is the intensional type analysis of (Harper and Morrisett,1995) used in the ML compiler TIL (Tarditi et al., 1996). In that approach,26



the type of the argument is passed to type polymorphic functions at run-time,such that a 
at representation can be used instead of the uniform represen-tation. In practice, TIL will often specialise type polymorphic functions andavoid passing types at run-time.These sophisticated solutions are beyond the scope of this project, how-ever; we shall always use uniform representation, although we realise that itwill be a signi�cant limitation on the register allocation that we are not ableto allocate a composite value to a collection of registers.Concerning polymorphic equality and tags, see chapter 10. In this pre-sentation, integers are not tagged, so we may use the function � I!i notonly to generate the run-time representation of source language integers, butalso for, e.g., index numbers.4.2 TuplesWe have already indicated in the previous section how tuples are represented.As an n-tuple will not generally �t in one word, it is represented as a pointerto an actual representation, which is n consecutive words holding the uniformrepresentation of the n values that constitute the tuple.The tuples in the source language, E, represent both tuples and recordsin SML. This also holds for a record with only one �eld: The record fa=7gwill have been translated to the 1-tuple E-expression (7) at �. The uniformrepresentation of a 1-tuple could be one word holding the representation ofthe single value of the tuple, but treating 1-tuples specially would give moretrouble than bene�t.The 0-tuple (the result of () at �) deserves special mentioning, as itis used often in SML: Expressions that are evaluated for their side-e�ects(e1:= e2) evaluate to the 0-tuple, for any expression must evaluate to some-thing. The 0-tuple, which has type unit, need not be represented explicitly,because there is no built-in operation with unit in its input type. (Remem-ber we have assumed equality is not de�ned on tuples in E, p. 16.) Of course,we must build a pair, when evaluating the expression (e1:= e2,e3:= e4) atr5, but the exact contents of the two words of the actual representation ofthe pair is of no concern: although they can be retrieved again from thepair, they cannot be used for anyting. We decide to represent () as any ar-bitrarily chosen value, for then the code for e1:= e2 does not have to botherwith putting some speci�c value representing () in the destination register;it can simply leave any arbitrary value in the register. The code for e1:= e2is developed in section 4.5.The code to build a tuple, i.e. the code for the construct (e1, : : : ,en) at �,must allocate memory for a tuple in region �, evaluate each sub-expression,and store the result into the tuple. We use �1 := code to evaluate e1 as ashorthand for \code to evaluate e1 and put the resulting value in �1".
27



� := code to evaluate (e1, : : : , en) at �= �t := the address of n new cells in � ;�1 := code to evaluate e1 ; m[�t + 0 I!i ] :=�1 ;...�n := code to evaluate en ; m[�t + n� 1 I!i] :=�n ;� :=�t:The code for the construct that consumes tuple values is:� := code to evaluate #i e2 = �2 := code to evaluate e2 ;� :=m[�2 + i I!i]:(Remember that #0 extracts the �rst component which resides at o�set 0 inthe tuple.)4.3 Constructed valuesTwo constructs consume constructed values: Withcase e0 of c1 => e1| : : : |cn => en|- => en+1the constructor of a constructed value can be inspected, and, according towhat it is, the proper sub-expression is evaluated. The argument of a unaryconstructed value can be extracted with # e2. This implies that the run-timerepresentation of a unary constructed value must comprise both the con-structor and the argument. In other words, a unary constructed value is apair, and its representation is like that of a 2-tuple: The uniform represen-tation of a unary constructed value is a pointer to two consecutive words inmemory. The �rst word contains the representation of the constructor, andthe second contains the representation of the argument. The value Some 7will be represented
7 I!iSome C!iThe nullary constructed value that c� at � evaluates to is conceptually a 1-tuple, and it is represented as a 1-tuple, i.e., as a pointer to one word inmemory that contains the representation of the constructor:28



None C!iHere the indirection is necessary, not to achieve uniform representation (thenullary constructor will �t in a word), but rather to ensure that the construc-tor of both unary and nullary constructed values can always be accessed thesame way, namely by dereferencing a pointer. This is needed by the code forcase e0 of Some x => e1| - => e2;as it is not possible to determine at compile-time whether e0 evaluates to aunary or a nullary constructed value.(Notice the distinction between constructors and constructed values: Therepresentation of the nullary constructor None is the word None C!i; therepresentation of the constructed value that to which None at � evaluates isa pointer to a word in memory containing None C!i.)We choose this simple representation of constructed values to limit ourjob. Constructors can be represented more e�ciently by using specialised rep-resentations for special situations: The indirection to the constructed valuecan be avoided if the datatype-declaration only contains nullary construc-tors. If pointers can be distinguished at run-time from integers representingconstructors, all nullary constructed values can be represented without theextra indirection. The illusion of constructors with more than one argu-ment is obtained by putting the arguments in a tuple and then applying theconstructor to this tuple; e.g., the representation of ::(1,::(2,[ ])) is

29



:: 1 I!i :: 2 I!i []This gives another indirection: the pointer to the tuple. This indirectioncan be eliminated by having a special representation of constructed valuesthat contain tuples. There are many more special cases that allow for moree�cient representations. Some are petty optimisations, but, for instance,the one last mentioned implies that lists, which are used extensively in func-tional languages, will be represented signi�cantly better. Cardelli (1984)implemented specialised representations of constructors in his ML compiler.The code for the constructs that build constructed values is quite like thecode for the 2- and 1-tuples (p. 28):� := code to evaluate _c1 e2 at � =�t := the address of 2 new cells in � ;�1 := _c C!i ; m[�t +0] :=�1 ;�2 := code to evaluate e2 ; m[�t +1] :=�2 ;� :=�t;and� := code to evaluate c� at � = �t := the address of 1 new cell in � ;�1 := c� C!i ; m[�t +0] :=�1 ;� :=�t:The code for the consumer constructs of constructed values inspects the�rst and second component, respectively: The code forcase e0 of c1 => e1| : : : |cn => en|- => en+130



jumps to the code for the proper sub-expression. For instance:� := code to evaluatecase e0 of Sex => e1| Drugs => e2| - => e3 = �0 := code to evaluate e0 ;�? :=m[�0 +0] ; fetch constructorif �?= Sex C!i then �1 else ��1 ;��1 : if �? = Drugs C!i then �2 else ��2 ;�1 : � := code to evaluate e1 ; goto �� ;�2 : � := code to evaluate e2 ; goto �� ;��2 : � := code to evaluate e3 ; goto �� ;�� : � :The code to extract the argument from a (unary) constructed value isexactly the code for #1 e2:� := code to evaluate # e2 = �2 := code to evaluate e2 ;� :=m[�2 +1] fetch argument:4.4 RegionsThis section discusses what code to generate to introduce a region, dischargea region, put data in a region, and how to implement region variables andregion size variables at run-time. We follow (Birkedal et al., 1996) in all.Introducing and discharging regionsThe code for letregion �� in e1 must introduce a new region before the codefor e1, and discharge the region again afterwards.Although regions are introduced and discharged in a last-in-�rst-out or-der, they cannot all be allocated on the stack, because the size of some regionscannot be determined at compile-time. This is dealt with by only allocatingmemory on the stack for regions with known size; for regions with unknownsize, memory is allocated in the heap.1. If �� has unknown size, i.e., it has the form %:?, a heap region must becreated and bound to it. The �� := letregion-instruction creates a new regionin the heap and assigns to �� a pointer to a region descriptor, the datastructure necessary for administrating allocations in a region in the heap.This pointer uniquely identi�es the region. The endregion-instruction is usedto deallocate all memory allocated for data in the most recently createdregion in the heap. Thus the code for letregion %:? in e1 is:� := code to evaluate letregion %:? in e1= �� := letregion ;� := code to evaluate e1 ;endregion:31



2. If �� has known size, i.e., it has the form %:i, a region with knownsize must be allocated. The memory needed for this region (i words) can beallocated on the stack when the region is introduced:� := code to evaluate letregion %:i in e1= �sp :=�sp + i I!i ;� := code to evaluate e1 ;�sp :=�sp { i I!i:Region variables and putting data in regionsThis section discusses how to identify regions at run-time, what the code toput data in a region should be, and how to decide whether a given regionhas known or unknown size.To uniquely identify regions at run-time, a region name is assigned toeach region: 1. The region name of a region with unknown size is the addressof its region descriptor. 2. The region name of a region with known size isthe address of the memory allocated for it on the stack.A put point is an expression that has an \at �"-annotation. The code forthis expression will put some data in the region bound to �. To put � wordsin a region, a register, �, must �rst be set to point to an area in memorywhere � words can be stored. Suppose �� contains the region name of theregion. There are two cases: 1. If the region has unknown size, �� points toits region descriptor, and then � words can be allocated with the instruction� := at �� : �. 2. If the region has known size, �� points to memory that hasalready been allocated for it on the stack, i.e., � can be set to point to the �words with the instruction � :=��.How is it decided what the size of the region bound to � is at a speci�cput point? 1. If � has the form %:?, the regions bound to it will alwayshave unknown size. 2. If � has the form %:i, the regions bound to it willalways have known size. 3. If � has the form %: , it can be bound to bothregions with known size and regions with unknown size; it must be checkedat run-time what the size of the region is. Thus, the region name of a regiondoes not, in general, provide enough information to put data in the region;the region size (\known" or \unknown") will also be necessary, if the regioncan be bound to a region variable that has the form %: .The information necessary at run-time to put data in a region is thusa pair consisting of the region name and the region size. How is this pairrepresented at run-time? A region size can be represented in one bit. Aregion name is a word-aligned address (i.e. an integer divisible by 4 on thePA-RISC), hence not all bits of a word are necessary to hold a region name.Therefore, the region-name-and-size pair can be squeezed into one word:0 : : : 30 31The region size is held in the least signi�cant bit, and the region name is32



held in the most signi�cant bits.If the representation of the pair is in ��, the size of the region can bechecked with the instruction if ��.lsb then �unknown else �known, where lsb isthe number of the least signi�cant bit (31 on a PA-RISC). Extracting theregion name from �� amounts to setting the least signi�cant bit in �� to zero.Thus, the code to put � words into �, according to the form of �, is:1: � := the address of � new cells in %:? = �� := code to access %:? ;� := at �� : �2: � := the address of � new cells in %:i = � := code to access %:i :3: � := the address of � new cells in %: =�� := code to access %: ; if ��.lsb then �unknown else �known ;�known : � :=�� ; goto �� ;�unknown : � := at �� : � ; goto �� ; �� : �:Here it is assumed � := at �� : � extracts the region name from the wordin ��, i.e., it is not necessary to generate code to explicitly set the leastsigni�cant bit in �� to zero. Furthermore, it is assumed that �� := letregionwill set the region size bit appropriately in the word it returns in ��.4.5 ReferencesThe construct ref e1 at � creates a reference to the value that e1 evaluatesto. We represent a reference at run-time as the address of a memory cell.Thus, in the declaration let x = ref 7 at r1in e0;the value bound to x is the address of a memory cell where the representationof 7 is stored: �x : // 7Recall that a fat-edged box is a memory cell, while a box with thin edgesis a word. The representation of the reference above can be thought of asbeing \the left-hand box and the arrow". Since an address is one word, thisrepresentation of references is uniform.
33



Thus, the code for ref e1 at � must allocate a new memory cell in �,and return the address of that memory cell. It is exactly the code for theexpression (e1) at � (p. 28):� := code to evaluate ref e1 at � =�t := the address of 1 new cell in � ;�1 := code to evaluate e1 ;m[�t +0] :=�1 ;� :=�t:Notice that only one memory cell is allocated: the values a reference canpoint to use uniform representation.A reference may be dereferenced using the !-operator: evaluating !xyields 7. In general, the code for ! e2 return the word in the memory cell atthe address that e2 evaluates to. It is the same as the code for #0 e2 (p. 28):� := code to evaluate ! e2 = �2 := code to evaluate e2 ;� :=m[�2 +0]:The memory cell addressed by a reference can be updated : evaluatingx:=42 has the side e�ect that the memory cell addressed by the referencenow contains the representation of 42:�x : // 42The reference itself never changes|x is bound to the exact same value; it isthe word in the memory cell that changes.In general, e1:= e2 is evaluated by evaluating e1 to an address of a memorycell and then updating this memory cell to the value to which e2 evaluates:� := code to evaluate e1:= e2 = �1 := code to evaluate e1 ;�2 := code to evaluate e2 ;m[�1 +0] :=�2:This code should return the 0-tuple, which is represented by any word (p. 27).Therefore it is not necessary to put any speci�c value in �.4.6 FunctionsIn this section we discuss functions that are built by �-abstractions,�y.e0 at �, and the corresponding (normal) application construct, e1 e2.letrec-functions is the subject of the next section.In a higher-order functional language, a function is a value that mustbe represented at run-time. Below, we discuss what information a function34



value must contain and how it is represented, and then we can develop thecode for application and �-abstraction. (We use the term \function value" tohint at the similarities with other kinds of values. A function value is oftencalled a closure.)What information must a function value contain?It is not generally known at compile-time which function will be applied ata given application. For instance, two di�erent functions may be called bythe code for the application(if e0 then �y1.y1+v at r2 else �y2.y2-v-w at r2) 7.Therefore, a function value must in some cases contain the code for thefunction.Moreover, having functions as values means that a function may be ap-plied in another environment than the one it is created in. Inlet f = let a = 97 inlet b = 98 inlet g = �y.a+y at r103in gin f 1,the function �y = �y.a+y at r103 is created in an environment that bindsa to 97 and b to 98, but it is applied in an environment, where a and b arenot de�ned. In this situation, �y is said to escape. Therefore, a functionvalue must comprise not just the code for the function but also the values ofthe free variables of the function, a in this case (Landin, 1964).Thus, a function value is a tuple where the �rst component is the codefor the function and the remaining components are the values of the freevariables of the function. E.g., the �rst �-abstraction in the if-expressionabove would evaluate to the function value (\code for �y1.y1+v at r2",\value of v"), while the second might evaluate to the function value (\codefor �y2.y2-v-w at r2", \value of v", \value of w"). (The order of the valuesof the free variables might be di�erent.)More e�cient implementations of functionsThis expensive way of implementing functions is necessary in some cases,because functions are values and might escape. In the average higher-orderfunctional program, though, many (most?) of the functions are not passedaround as values; they are just called like their counterparts in, e.g., Pascal(Welsh and Elder, 1982). When a function is only used \as a Pascal function",it can be implemented in a cheaper fashion, because the function value need
35



not be represented explicitly. If, for instance, the example above readlet a = 97 inlet b = 98 inlet h = �y.a+y at r103in h 1;�y would not escape, i.e., all applications of �y would be in the scope ofits declaration, so �y would only be applied in an environment where allits free variables are available, and the pointer to the code for �y would beknown at compile-time, since it is the only function that can be applied atthe application. Thus, it would not be necessary at all to have an explicitfunction value for �y at run-time.Di�erent de�nitions of what it means that a function is only used \asa Pascal function" can be given. One such is: the identi�er to which thefunction is bound may only appear as e1 in applications e1 e2 (or f in f ~� e2),only in the scope of the free variables of the function, and not under any �.In this case, neither a code pointer, nor the free variables of the function arenecessary, and therefore it is unnecessary to build a closure.More sophisticated, inlet c = 99 inlet k = let d = 100 inlet k = �y.c+y+d at r103in kin k 1;�y is passed as a value and applied in an environment where its free variabled is not de�ned. Thus, we must have a function value at run-time, but itneed not contain the free variable c, as it is available when �y is applied, andit need not contain the code pointer, as �y is the only function that can beapplied.The ORBIT Scheme compiler (Kranz et al., 1986) pioneered the spe-cialised implementation of di�erent kinds of functions. The closure represen-tation analysis of Shao and Appel (1994) can \allocate closures in registers",and functions can share closures. On average, the code generated by SML/NJis 17% faster with this closure representation. Although both ORBIT andSML/NJ are continuation-based compilers, and this work therefore is not im-mediately applicable in our translation, it should be possible to adapt theirmethods.Wand and Steckler (1994) present a transformation that transforms a�-expression to closure-passing style, a �-expression where closures are ma-nipulated explicitly. Function application is replaced by closure application:the �rst component of the closure (a function|the \code pointer") is in-voked on the actual argument and the closure itself. They call their closureconversion selective, because not all applications are converted to closure ap-plications; for instance, h above would not be represented by a closure in their36



scheme, because it does not escape. Some of their closures are lightweight :they do not contain all the free variables of the function; for instance, theclosure for k above would not contain c, because it is available at all theplaces where the closure might be invoked. They have not implemented theclosure conversion, and it is unclear to us how fast it is (they do not explicitlygive an algorithm).Closure representation analysis is a subject in itself and beyond the scopeof this project. We will treat all functions in a uniform manner and alwaysbuild closures for functions. This decision has serious implications for theregister allocation: there will be no allocation of variables to registers acrossfunctions, because the free variables of a function must always be fetched fromits closure in memory. This removes a whole layer of complexity from theregister allocation, for now the free variables of the function can be regardedas local values that are fetched from the closure, and then we only have toworry about putting values local to a function in registers. This limitationthus reduces the complexity of doing inter-procedural register allocation byforcing the register allocator to be less inter-procedural.Representing function values at run-timeFunction values must use uniform representation at run-time, and we rep-resent a function value like we represent other tuples (section 4.2): as theaddress of the actual representation of the tuple.The constituents of the function value must themselves use uniform rep-resentation. The uniform representation of the code for the function is alabel (which will �t in one word), and the actual representation is then thecode labelled with this label.The representation of h will look like this, assuming the label of its codeis �h: h : �h 97The code for an applicationNow we sketch the code for an application, which we will call the linkingcode. At �rst, assume the application is not a tail call. The left-to-rightevaluation order and call-by-value semantics of SML speci�es that the codefor an application e1 e2 must �rst evaluate e1 and then e2. The formerevaluates to a function value. The latter evaluates to the argument, whichmust be passed to the code for the function.When the code for the function is executed, it must have access to the val-ues of the free variables, which are recorded in the function value. Therefore,37



we must also pass these to the code for the function.Furthermore, we must pass to the function a label to which it shouldreturn.Thus, an application can be viewed as a \goto with three parameters":argument, tuple of values of free variables, and return label. (We call themparameters to avoid confusion with argument. The parameters of �y.a+b-yat r1 are: its argument (the value to be bound to y), a tuple of the valuesof its free variables (the values of a and b), and a return label.) The linkingcode sets up the parameters by putting them on the stack or in appropriateregisters: 1. set up closure2. set up argument3. set up return label4. jump5. return code.We will not discuss now how to decide whether a parameter is passed onthe stack or in a register and in which register, and when registers must besaved and restored. This is part of the discussion of register allocation in thefollowing chapters.Notice that by having the code in the �rst component of function values,the code part of a function value can always be accessed in the same manner,and that is necessary because the code for an application must call the codefor di�erent function values. For instance, the code for the application (if� � � ) 7 above does not know whether it is a two- or a three-tuple that isapplied; it simply extracts the code as the �rst component of the tuple.To describe the linking code more speci�cally, assume that the parametersare passed in three di�erent registers: the argument in �arg:, the closure in�clos:, and the return label in �ret:, and that the result is passed in �res:. Thelinking code is: 1: �clos: := code to evaluate e1 ;2: �arg: := code to evaluate e2 ;3: �ret: := � ;4: �t :=m[�clos:+0] ; goto �t ;5: � :� :=�res:;where �t is some temporary register; � is the label of the code the functionshould return to; and � is the register for the result.Some comments on this linking code: We simply pass the closure to thecode for the function body and not just the sub-tuple containing the valuesof the free variables. It could be done simply by adding one to �clos:, butthat would cost an extra instruction and there is no reason to do it.It is best to have part 1 and 2 of the linking code before 3, for if 3 wasbefore 1 and 2, the register �ret: could not be used for other values in thecode for e1 and e2. 38



Like a function call can be viewed as a \goto with three parameters", thereturn can be viewed as a \goto with one parameter". In this sense, a return issimilar to a call. This similarity is explicit when using continuation-passing-style as SML/NJ does (Appel, 1992). An application of a continuation is a\goto with parameters".Tail callsIn case the application is a tail call, there is no return code (5), and the codeto set up the return label (3) is instead�ret: := code to access the return label of the current function :Space forbids a discussion of what conditions make an application qualify asa tail call. Only, note that an application which is a tail call in the originalSML program need not be a tail call in our source language. For instance, theapplication in fn y=> e1e2 is a tail call, but the region analyses may trans-form it to �y.letregion r1 in e01e02 at r2, in which the application wouldnot immediately be considered a tail call because r1 must be discharged afterthe application.Functions of several argumentsIn SML, functions always have one argument. Functions that appear to takeseveral arguments may be implemented as functions that take a tuple asargument. Consider the SML function with \two arguments":fun sumacc (0,n) = n| sumacc (m,n) = sumacc (m�1, m+n).Using the general method of generating code for tuples (explained in section4.2), sumacc builds a tuple before each recursive call, and consumes thetuple again when performing the pattern match. Only the components ofthe tuple are used; the tuple itself is never needed. The generated codewould be more e�cient if we could somehow avoid building the tuple, andinstead pass the individual components of the tuple to sumacc: Therefore,we try to convert a function that takes a tuple as its argument to a functionof several arguments. Instead of having exactly one argument, functions thenhave at least one argument. This gives the following general code to set upthe arguments for a function application:�arg-1 := code to evaluate the �rst argument...�arg-n := code to evaluate the n'th argumentSection 7.5 discusses when a tuple function can be converted to a functionof several arguments. 39



It is not always possible to pass all arguments in registers, for the setof registers is �nite while there is no bound on the number of elements ina tuple. How to handle that is discussed in greater detail when we discussregister allocation of function application in section 8.9.The code for a �-abstractionNow that we have decided that a function value must contain the label of thecode and the value of the free variables, we can present the code for buildinga closure. A closure is a tuple, so the code to build it is much like the code for(e1, : : : , en) at �. Assume the free variables of �y.e0 at � are v1; : : : ; vn:� := code to evaluate �y.e0 at � =�t := the address of n+ 1 new cells in � ;�label := �� ; m[�t +0] :=�label ;�v1 := code to access v1 ; m[�t +1] :=�v1 ;...�vn := code to access vn ; m[�t + n I!i] :=�vn ;� :=�t;where �� is the label of the code for (the body of) �y.e0 at �.4.7 Recursive and region polymorphic functionsRegion polymorphic functions (or, synonymously, letrec-functions) are muchlike the functions discussed in the previous section. Our line of attack is toisolate the di�erences. The strategy is still to keep things as simple as possi-ble. Thus, we will build closures for letrec-functions, for exploiting that aletrec-function never can be applied in an environment where its free vari-ables are not available would complicate our job, as we could not simply fetchfree variables from a closure. We start with region polymorphic application,and then discuss the representation of letrec-functions.Di�erences between region polymorphic and normal applicationRegion polymorphic application f ~� e2 di�ers from normal application inthree respects. Consider the linking code (1{5) (p. 38).First, the code to set up the closure (1) is di�erent. For a normal ap-plication e1 e2, it is �clos: := code to evaluate e1 . In a region polymorphicapplication, there is no e1 that evaluates to a closure; the closure we want topass to the function is the closure for the letrec-function named f . So thecode is \�clos: := somehow get the closure for the function named f". Whatthat is more exactly, we will discuss below.Second, there are more arguments. For a letrec-function there are alsothe arguments �1; : : : ; �k, which too must be passed to the function. Say40



this is to be done in the registers ��1 ; : : : ; ��k , then the code to set up thearguments is �arg-1 := code to evaluate the �rst argument ;...�arg-n := code to evaluate the n'th argument ;��1 := code to access �1 ;...��k := code to access �kThird, the code to jump to the code for the applied function (4) is dif-ferent. At a normal application, the label of the code for the body of thefunction must be extracted from the closure, because it is not known atcompile-time what function will be applied, i.e., the code is�t :=m[�clos:+0] ; goto �t:At a region polymorphic application, it is known at compile-time what func-tion is applied|namely the one named f|and hence we know what labelmust be jumped to. Assuming this label is �f , the code to jump is goto �f .For both kinds of applications, the code to set up the return label (3) isthe same (�ret: := �) and so is the return code (5) (� :� :=�res:). Tail calls aredealt with as they are dealt with at normal applications.The �rst di�erence, how to pass the closure of the letrec-function,touches upon the issue of how to represent letrec-functions at run-time,which is treated now.Representing letrec-functions at run-timeThe relevant situations are captured by this example:letrec f1 y1 = f1 v + f2 y1 + wf2 y2 = f1 y2 + f2 u + w at r17in f1 1 + f2 2Two letrec-functions are declared. Each calls itself and the other recur-sively.To see how to represent letrec-functions at run-time, consider a similarexample with �-abstractions instead of letrec-functions:let x1 = �y1.v+y1+w at r17 inlet x2 = �y2.x1 y2 + u+w at r17in x1 1 + x2 2In the following, �f1 and �f2 denote the two letrec-functions (e.g., �f1= f1 y1 = f1 v + f2 y1 + w), and �x1 and �x2 denote the �-abstractions(e.g., �x1 = �y1.v+y1+w at r17). With let-expressions there can be no41



recursion, because the x bound in let x = e1 in e2 cannot be referencedin e1. Therefore, it is only �x2 that applies �x1 in the second example.According to the discussion about �-abstractions above, the expression isevaluated thus: First a closure is built for �x1 and bound to x1; then aclosure is built for �x2 and bound to x2. As �x1 is applied in �x2, x1 is a freevariable in �x2, and therefore the closure for �x2 contains the closure for �x1.This will be represented this way:
x1��y1��y2f2:f1: v wu vThe representation of the second closure has a link to the representationof the �rst closure, re
ecting that the second function intends to apply the�rst function. At the application x2 y2 the closure that is passed is the onebound to x2.This suggests the following way of implementing the letrec-functionsabove. Treat f1 and f2 as variables that are bound to the closure for thefunction they refer to; e.g., f1 is bound to the closure for �f1. Gettingthe closure for the function named f when a region polymorphic functionis applied is then an access to the variable f ; i.e., number 1 in the linkingcode above is �clos: := code to access f . Then f1 and f2 are free variablesof both �f1 and �f2. Thus, both closures should contain the values boundto f1 and f2; e.g., the closure for �f1 should contain itself (the value boundto f1) and the closure for �f2 (the value bound to f2). The representationwould look like:

f1: wvf2f1��f1��f2 f2f1 u vf2:
The circularity in the representation corresponds to the recursion in theprogram. Each closure points to itself re
ecting that each function mightapply itself, and each closure points to the other re
ecting that each functionmight apply the other. 42



The code for letrec b1 � � � bm at � in em+1 should build the closuresfor the letrec-functions and bind them to the letrec-bound variables, andthen it should evaluate em+1. As the closures are all built at the same time,(Birkedal, 1994) suggests building one shared closure for all functions in theletrec-expression. The representation, which is explained below, will beuf2:f1: v wNow f1 and f2 will both be bound to the shared closure. Their valuesare omitted from the shared closure, because there is no point in saving acouple of pointers to the shared closure in the same shared closure; i.e., weno longer consider f1 and f2 free variables of �f1 and �f2.As region polymorphic applications know the label of the code for theapplied function, it is not necessary to have code pointers in the shared clo-sure. E.g., at the region polymorphic application f1 v, it will always be �f1that is applied. The shared closure could never 
ow to a (normal) applica-tion, and thus make it impossible to syntactically identify what function isbeing applied, because names f of letrec-functions can only appear in theconstruct f ~� e2. An example likelet x = letrec f y = ef at r119in fin x 120where it is actually f that is applied at x 120 is not possible.Note also that the common free variable w of �f1 and �f2 is now storedin memory only once.This shared closure representation of letrec-functions saves space andsimpli�es things. For instance, it is easier to build a shared closure than thetwo circularly linked closures above.The code for letrec b1 � � � bm at � in em+1 is thuscode to build the shared closure for b1; : : : ; bm ;� := code to evaluate em+1 ;where the shared closure for b1; : : : ; bm is simply a tuple containing all thefree variables of the functions b1 : : : bm (excluding the names of the letrec-functions b1 : : : bm).We decided to treat letrec-function names f as variables. How are thesevariables accessed? We say f1; : : : ; fm are siblings, if they are bound in thesame letrec-expression:letrec f1 ~��1 y1 = e1...fm~��mym = em at � in em+143



Accesses to any of f1; : : : ; fm within e1; : : : ; em+1 yield the same value,viz. the shared closure for the letrec-functions with the names f1; : : : ; fm.Therefore, there is no reason to distinguish between accesses to, e.g., f1 andfm.Assume fi 2 ff1; : : : ; fmg. Consider a region polymorphic applicationfi ~� e0 directly within em+1 (i.e. within em+1, but not within the body ofany function in em+1). The code for this application will access fi, and thisaccess to fi should yield the shared closure that has been built by the codepreceding the code for em+1.Now consider a region polymorphic application fi ~� e0 directly within ej 2fe1; : : : ; emg. We call such an occurrence of fi a sibling access. This accesswill occur in the code for the letrec-function named fj, and while executingthat code, the current closure will be the same shared closure that the accessto fi should yield, i.e., within the code for the letrec-function named fj,the code � := code to access fi is simply � := the current shared closure.Finally, consider occurrences of fi that are within, but not directly within,one of e1; : : : ; em, i.e. within another function within one of e1; : : : ; em. Inletrec f y = �y'.fy' at r1 at r2 in e2, f is a free variable of �y'.� � � ,i.e., the application f y' is not a sibling access, f must be fetched from theclosure. The code for the function named f must access f to put it into thisclosure. In that sense, there is a sibling access to f directly within the bodyfor the function named f.4.8 ExceptionsWe call the run-time object that handles an exception a handler, a con-cept we shall postpone de�ning until we have discussed how raise e1 ande1 handle a => e2 work.The stack of active handlersA handler belonging to e1 handle a => e2 should only handle exceptionsraised while evaluating e1. E.g., the handler in(17 handle a => 7) + raise a at r119should not handle anything; it is only active while 17 is evaluated and notwhen a at r119 is raised. At run-time, we must maintain a set of activehandlers. The code for e1 handle a => e2 must install in the set of activehandlers a new handler that will handle a-exceptions. This handler shouldbe installed before e1 is evaluated, and it should be discarded if evaluating e1did not activate it. Thus, the active handlers can be kept in a stack, whichwe will call the stack of active handlers. (Do not confuse this stack with thek stack (the stack in the language k), or with the stack of regions.)
44



Using a => e2 to denote the handler belonging to e1 handle a => e2,� := code to evaluate e1 handle a => e2 = handler-push a => e2 ;� := code to evaluate e1 ;handler-pop:Raising an exception and propagating a raised exceptionAt raise e1, the exception value that e1 evaluates to must be passed to thetopmost handler on the stack of active handlers that can handle the exceptionvalue. Thus,(((raise a' at r119) handle a=>1) handle a'=>2) handle a'=>3should evaluate to 2, for when a' at r119 is raised, the stack of activehandlers will be (starting with the topmost handler):a=>1a'=>2a'=>3and the topmost handler capable of handling a' at r119 is a'=>2. In otherwords, when an exception is raised, handlers are popped from the stack ofactive handlers until a handler capable of handling the exception is found. Wedecide that the responsibility of �nding the proper handler lies with the codefor the handlers: raise e1 simply pops the topmost handler and passes it theexception value. This handler is then expected to deal with the exceptionvalue. A handler deals with an exception value that it cannot handle byraising it again; this way the responsibility of dealing with an exceptionvalue propagates to the next handler on the stack of active handlers. Thisstrategy can be illustrated in SML for the example above:exception A and A';(((raise A') handle A=>1j x =>raise x) handle A'=>2j x =>raise x) handle A'=>3j x =>raise x.Here, each handler deals with any exception it does not \really" want tohandle by explicitly handling it and raising it again.Raised exceptions that are handled by no handler should be reportedas uncaught exceptions and make the program terminate. This is done byhaving a top-level handler that handles any exception. We will not describethis part of the implementation of exceptions further.As it is not known at compile-time which handler will handle a raisedexception value, all handlers and code to raise an exception value must agree45



on how this exception value is passed. We designate some register �raised topass the value in. The code to raise an exception will have the form:� := code to evaluate raise e1 = �raised := code to evaluate e1 ;handler-pop h ;jump to the code for h:In addition, two things must be done when an exception is raised. Con-sider(letregion r17 in(let insignif = (b,b) at r17 in(if b then raise a at r119 else 1)+5)) handle a => 6:The region introduced by the letregion-expression must be dischargedagain. If a at r119 is raised, control will 
ow directly to the handler, skip-ping the rest of the code for the letregion-expression, including the code todischarge that region. Therefore, the code for raise a at r119must explic-itly discharge the region. In general, after e1 handle a => e2 has been evalu-ated, the stack of regions must be as it was right before e1 handle a => e2 wasevaluated, regardless of whether the handler introduced by e1 handle a => e2was activated or not. Therefore, raise e3 must reset the stack of regionsto its state before the topmost handler was pushed, i.e., it must dischargeregions introduced since the topmost handler was pushed.Also the k stack must be reset: above, if the variable insignif waspushed on the k stack, it must be popped when a at r119 is raised.Thus, the code to raise an exception must be� := code to evaluate raise e1 =�raised := code to evaluate e1 ;handler-pop h ;reset the stack of regions and the k stackto what they were before h was pushed ;jump to the code for h:Note that e1 must be evaluated before the handler is popped from the stack ofactive handlers, for e1 might itself raise an exception which should be handledby the handler on the top of the stack of active handlers (as in raise (raisex)), and e1 must also be evaluated before the stacks are reset, because theevaluation might need some of the values that will be deallocated.Resetting stacks at a raiseIt is easy to reset the k stack at a raise: Simply reset �sp to the value it hadbefore the last handler was pushed on the stack of active handlers:46



B(iii)
:�sp

�sp:
B
A
(ii)(i)B

�saved-sp�sp:

Fig. 14. The k stack. �sp always points to the next free word. (i)just before the topmost handler is pushed; (ii) just before an exceptionis raised; (iii) just after the exception is raised.This will also discharge any regions of known size, since they are allocatedon the k stack.Then remain the regions of unknown size, which are allocated in theheap. These regions have region descriptors allocated in the A-part of thek stack. Assuming all region descriptors are in a linked list, we can runthrough this list and discharge (using endregion) all regions whose regiondescriptor is in the A-part of the stack, i.e., those whose region descriptor isabove �saved-sp. Therefore, it is possible to detect what heap regions shouldbe discharged at a raise given �saved-sp of the handler on the top of the stackof active handlers. We will not discuss in further detail how this operationcan be implemented; it is provided by our intermediate language in form ofthe instruction endregions �, where � must contain �saved-sp.Summing up, the only information necessary to reset the (k and region)stacks appropriately when an exception is raised is the contents, �saved-sp, of�sp before the handler on top of the stack of active handlers was pushed. If� = �saved-sp, the k stack can be reset and the appropriate known-size regionsbe discharged with the instruction �sp :=�, and the appropriate regions ofunknown size can be discharged with endregions �.The concept handlerNow we can de�ne the concept handler. A handler is the information neededby the code for raise e1 to do the actual handling and reset the stacks, i.e.,it is a pair (�saved-sp; �handler-code), where �saved-sp is the contents of �sp whenthe handler on top of the stack of active handlers was pushed, and �handler-code47



is the label of some code that deals with an exception. Thus, the code fore1 handle a => e2 is� := code to evaluate e1 handle a => e2 =handler-push (�sp, �a => e2) ;� := code to evaluate e1 ;handler-pop;where �a => e2 is the label of the code for the handler a => e2, and the code forraise e1 is: � := code to evaluate raise e1 =�raised := code to evaluate e1 ;handler-pop (�1, �2) ;endregions �1 ;�sp :=�1 ;goto �2:Implementing the stack of active handlersA handler is represented by a handler element, which contains �saved-sp and�handler-code for the handler it represents. We implement the stack of activehandlers as a linked list of handler elements. A global variable, h , points tothe topmost handler element.h :
...�saved-sp1�saved-sp0 �handler-code0 �previous1�handler-code1�handler-code1Fig. 15. The list of active handlers.Memory for this linked list can be allocated in the k stack, if the pushesand pops of handlers are interleaved with other k stack pushes and pops insuch a way that the stack discipline will be upheld. This turns out to be thecase, as will be apparent after reading this chapter.

48



�sp:

�handler-code1�previous1B
�previous0�handler-code0h : A

Fig. 16. The stack of active handlers allocated on the k stack.Notice that �saved-sp is not in the handler elements in �gure 16: Theposition on the k stack of the handler element itself indicates what �saved-spis. That �saved-sp need not be explicitly saved is an extra bonus from allocatingmemory for the stack of active handlers in the k stackWith this implementation of the stack of active handlers, we can give amore speci�c description of the code for raise e1. If an exception is raisedwith the stack situation in �gure 16, h indicates how much must be peeled o�the stack. The heap regions with region descriptors above h are dischargedwith the endregions-instruction, and �sp is reset to h , e�ectively discardingthe A-part of the k stack. Then, h is reset to �previous0, thereby popping thehandler on the top of the stack of active handlers. After that, control 
ows
49



to the code labelled �handler-code0:� := code to evaluate raise e1 =�raised := code to evaluate e1 ;endregions h ;�sp := h ; ) reset stackspop h ;pop �0 ; )handler-popgoto �0:The code for e1 handle a => e2 creates a new handler element on the kstack, links it to the list of handler elements, evaluates e1, and then it takesthe handler element out of the linked list and removes it from the k stack:� := code to evaluate e1 handle a => e2 =push �a => e2 ;push h ;h := �sp ; 9>>=>>;handler-push� := code to evaluate e1 ;pop h ;pop: )handler-pop(Exactly what the code is depends on how we implement the global variableh , which is discussed when we discuss register allocation (section 8.10). Forinstance, \push h " may not correspond exactly to a push-instruction, whichis the reason we use \push" instead of \push".)Exceptions are generative. Exception namesDespite the name, exception constructors are more like let-bound variablesthan like constructors. At run-time, an exception constructor is a variablebound to an exception name, whereas a constructor c is a constant, viz.the word c C!i. As with constructors, notice the distinction between anexception name (the value bound to a�) and a nullary exception value (thevalue that a� at � evaluates to).The expression exception a in e2 is akin to a let-expression: each timeit is evaluated, a fresh exception name is bound to a. The following example(stolen from (Birkedal and Welinder, 1993)) serves to illustrate the behaviour
50



of exception a in e2:letrec strange y =exception a inif y=0 then raise a at r0else ((strange (y-1)) handle a => 0)at r0in strange 2:The exception raised in the recursive call strange (y-1) will never be han-dled, because the exception name of the handler is of a newer vintage thanthe exception value that is raised: In each recursive call of strange, the ex-ception constructor a is declared anew, and bound to a di�erent exceptionname each time.This perhaps strange semantics of exceptions was designed to ensure thatdi�erent exception declarations that accidentally use the same identi�er forthe exception constructor will indeed give rise to di�erent exceptions (Milnerand Tofte, 1991, p. 19). It has the by-e�ect that we must bind a di�erentexception name to the same exception constructor every time it is declared,although it is declared by the same declaration every time.We represent an exception name as a word, and keep track of what ex-ception names have been used with a global variable n . Here is a sketch ofthe code for exception a in e2:� := code to evaluate exception a in e2 =n := n+1 ;bind a to n in the environment ;� := code to evaluate e2 :Representing exception valuesException values are much like constructed values as illustrated below. Amongother things, we must use a uniform representation of them, as they can beused like any other values.

51



true T!i117
c C!i true T!itrue T!i

118
c C!i
false T!i

Fig. 18. Exception values compared to constructed values. The �gure shows theresult of (f false,f true) at r3 in either of the contextslet f = �y.exception ain (a y at r2) at r1in � and let f = �y.(c y at r2) at r1in � ,assuming the global variable n is initially 116.As the �gure suggests, exception values will be represented like con-structed values, except that the exception value has the representation ofthe exception name of the applied exception constructor where a constructedvalue has the representation of the applied constructor. Likewise, nullary ex-ception values are represented analogously with nullary constructed values.With this representation of exception values, the code for the expressionkinds that make such values resembles that for constructors (p. 30):� := code to evaluate _a1 e2 at � =�t := the address of 2 new cells in � ;� _a := code to access _a ; m[�t +0] :=� _a ;�2 := code to evaluate e2 ; m[�t +1] :=�2 ;� :=�t:
52



� := code to evaluate a� at � =�t := the address of 1 new cells in � ;�a� := code to access a� ; m[�t +0] :=�a� ;� :=�t:The code for a handlerThe code for the handler a => e2 must decide whether it can handle the raisedexception. If it can, it evaluates e2; otherwise it raises the exception again:code for the handler a => e2 =�a => e2 : �a := code to access a ;�a? :=m[�raised+0] ;if �a =�a? then � else �� ; � : � := code to evaluate e2 ; goto �� ;�� : code to raise the exception again.The handler puts the exception name bound to a in �a and the exceptionname of the raised exception into �a?. Remember that the code for a raise-expression puts the raised exception value in �raised (p. 46).If the handler can handle the raised exception, it evaluates e2, and thenit jumps to ��, the code for the expression e1 handle a => e2 that it belongsto. Thus, the code for e1 handle a => e2 (p. 50) must end with the label ��.After e1 handle a => e2 has been evaluated, the exception a may or maynot have been raised, and correspondingly, the result of the expression maystem from e1 or from e2, and thus, the code for e1 and e2 must use the samedestination register, i.e., � above must be the same as the � in the code fore1 handle a => e2 (p. 50).The \code to raise the exception again" is the same as the code for araise-expression except that �raised already contains the raised exceptionvalue.Comparison with other approachesA raise is a transfer of control and of a value, i.e., it is a \goto with ar-gument", i.e., an application of a continuation. Therefore, it is particularlynice to implement exceptions in a continuation-passing style compiler such asSML/NJ (Appel, 1992). There is always a current continuation that shouldbe applied to the result of the expression being computed. The current han-dler (the topmost on the stack of active handlers) is implemented as a handlercontinuation, and all raise does is to apply the handler continuation insteadof the current continuation to the exception value.53



The existing intermediate-code generator, compile-lambda, implementshandlers much like SML/NJ's handler continuation: A handler is imple-mented as a handler function that takes the raised exception as argument.The code for e1 handle a => e2 builds a closure for the handler function butalso saves on the stack the label that the handler function should return to.The code for raise e1 \applies" the current handler function to the value e1evaluates to, except that the return label it gives the handler function is thelabel that was saved when the handler function was created.A raise is like a function application in that it is a transfer of controland of a value, but it is unlike a function application in that it does notreturn. Therefore it is the creator of the handler function (the code fore1 handle a => e2), and not its caller (the code for raise e1), which knowsthe return label.Our approach is better for two reasons: First, compile-lambda's han-dler function will always be applied in an environment where its free variablesare available, and thus it is unnecessary to build a closure for a handler func-tion. Second, it is unnecessary to explicitly manipulate a return label, asthe code for a handler always \returns" to the same program point, namelythe program point just after the expression e1 handle a => e2 it belongs to.These improvements may have no signi�cance in practice: the overheadin compile-lambda's explicit manipulation of return labels should be small;and although we avoid building a closure for a handler function, the variablesused in the handler will often have to be saved on the stack anyway.A region inference based compiler has to control deallocation of mem-ory, and a raise may make it necessary to deallocate some memory, whilea garbage collection based compiler (as SML/NJ) can simply rely on thegarbage collector to clean up. The method we use to deallocate at a raise(including the idea of putting region descriptors on the k stack and havingthe endregions instruction) is due to Lars Birkedal and Mads Tofte, who usedit in compile-lambda.

54



5 Inter-procedural register allocationOur inter-procedural register allocation can be divided in two: the inter-procedural strategy (for processing the functions of the program), and theper-function strategy. This chapter discusses the former; the latter is dis-cussed in the next chapter.We discuss the purpose of register allocation (section 5.1), in particularthe goals of making it inter-procedural (section 5.2), our approach to inter-procedural register allocation (section 5.3), how to exploit inter-proceduralinformation (sections 5.4 and 5.5). Then we discuss the problems in im-plementing our inter-procedural strategy (sections 5.6{): building the callgraph (section 5.7), how to have individual linking conventions for functions(section 5.8), and deal with recursion (sections 5.9 and 5.10). Then the over-all algorithm for the inter-procedural strategy is summarized(section 5.11).We conclude with a comparison with other approaches to inter-proceduralregister allocation (section 5.12).The inter-procedural part of our algorithm, discussed in this chapter, isdeveloped in detail in chapter 7.5.1 Why register allocation?Register allocation is probably the single most important thing when com-piling to a RISC. Its purpose is to reduce the number of load, store and moveinstructions.If the time to execute an operation on the RISC is one unit, each operandthat is not in a register and has to be loaded from memory before performingthe operation will add at least one unit to the execution time. If, furthermore,the result of the operation has to be stored in memory, the execution time willbe increased by at least one unit more. Register allocation will not in generalbe able to eliminate all memory tra�c, but even a simple register allocationwill cut down memory tra�c signi�cantly. In the existing back end, kam, forthe ML Kit, there is a near 50% reduction in execution time when comparingcode that has been register allocated with code that loads the operands frommemory before each operation and stores the result afterwards (Elsman andHallenberg, 1995, p. 40). This is even without retaining values in registersacross basic block boundaries.We will try to reduce the number of register-to-register moves by try-ing to make the producer of a value place the value in the same register asthe consumer wants the value in. It is di�cult to say much about the rela-tive importance of reducing the number of loads and stores, and eliminatingregister-to-register moves. For instance, on the PA-RISC, a load takes oneclock cycle to execute plus one cycle to transfer the value from the cache toa register (assuming a cache hit, for now). If the instruction immediatelyafter the load needs the loaded value, it must wait for one cycle until thevalue arrives. Thus, a load takes one or two clock cycles, where a move al-ways takes only one. So generally, eliminating a load should be preferred to55



eliminating a move, but the importance of eliminating moves should not beunderestimated. George and Appel (1995) report a surprisingly big speedupof 4.4% solely from eliminating moves, and this is even an improvement overan algorithm that already tries to eliminate moves.Traditionally, to simplify the intermediate code generation phase of com-pilers, this phase has been allowed to generate many move instructions, re-lying on the ensuing register allocation to eliminate them, thus making itnecessary for this phase to deal with moves. Alternatively, the code genera-tion can be made smarter (and more complex) and produce fewer moves. Inany case, making code that has as few moves as possible is desirable.The considerations above assume that the loaded value is in the cache.If there is a cache miss, the load will take around 20 clock cycles insteadof one to two (Andersen, 1995). Considering the negligible price of a loadwhen there is a cache hit compared to the penalty for a cache miss, shouldnot the goal of register allocation be to reduce the number of cache missesrather than the number of load and move instructions? We believe not. Sincethere is more room for data in the cache than in the registers, it should notbe possible to reduce the number of cache misses using the registers: anyvalue that is used often enough to be eligible for allocating to a registerwill also be in the cache, assuming the cache is completely associative. Ofcourse, caches are never completely associative, and hence, values that areused often may accidentally be thrown out, but predicting this at compile-time is out of the question. The conclusion is that it is not the job of theregister allocator to avoid cache misses: when doing register allocation, weassume that all values are in the cache, and that the price for a load hence isone or two clock cycles. This assumption increases the relative importanceof eliminating moves compared to that of eliminating loads.5.2 Why inter-procedural?In this section we discuss the merits of inter-procedural register allocationand the bene�ts we expect from it.We assume functions are smaller in programs in functional languages thanin imperative ones, and function calls are more frequent at run-time. Thisis partly a programming style imposed on the programmer by the language(e.g., to loop, one must make a recursive function), and partly, it is our expe-rience that programmers tend to program this way in functional languages.This implies that it is more important that function calls are imple-mented e�ciently in a functional language. One way to do that is withinter-procedural register allocation, for it allows individual function calls tobe implemented in specialised, e�cient ways, rather than in the same general,ine�cient way.The second assumption|that functions are generally smaller|also ren-ders inter-procedural register allocation more important: If the code for eachfunction in many cases only needs a small part of the available registers, anintra-procedural register allocation algorithm will not be able to exploit theregisters fully. 56



5.3 Our approach to inter-procedural register allocationWe see two approaches to inter-procedural register allocation: the trulyinter-procedural approach allocates registers for the whole program at once,whereas the per-function inter-procedural approach extends a basically intra-procedural register allocation to an inter-procedural one by doing the registerallocation on one function at a time but exploiting inter-procedural informa-tion while doing so. The following considerations lead us to choose the secondapproach.Clearly, a truly inter-procedural algorithm could give a better result thanalgorithms using the more restricted, per-function approach, but it is notclear how such an algorithm could be devised.Moreover, a truly inter-procedural algorithm might easily be computa-tionally costly for big programs. It is, e.g., out of the question to build onebig interference graph for the whole program and do graph colouring on it(Steenkiste, 1991, pp. 41{42).If we wanted to allocate free variables of functions to registers acrossfunctions, a truly inter-procedural approach would be necessary. But recallfrom section 4.6 that we have con�ned ourselves from doing this by decidingthat the free variables of a function are passed to it in a tuple in memoryevery time the function is applied. Consequently, when a function body isevaluated, the free variables are fetched from this tuple and not from thecurrent environment. This isolation of functions from the environment theyare applied in harmonises with the per-function approach.Allocating free variables of functions to registers across functions is easierin languages that do not have functions as values. As discussed in section4.6, in Pascal, the free variables of a function need not be kept in a closure,for they will always be available in the environment where the function isapplied. This is because each free variable of a function f is a local variablein some other function that has been called and has not returned yet, andtherefore, the free variable is accessible to f . Hence, in Pascal, allocating thefree variables of f to registers amounts to allocating local variables of otherfunctions to registers across the calls to f . In C (Kernighan and Ritchie,1988), the problem is conceptually even simpler: a variable is either free inall functions (global) or local to a single function.Furthermore, truly inter-procedural register allocation may be problem-atic with separate compilation, because not all functions are available. Withthe per-function approach, functions are processed one at a time, and func-tions in other modules will be no problem except that there is less inter-procedural information about them than about the functions inside the mod-ule. (Currently, our compiler has no separate compilation.)In the following sections, we will discuss how a per-function register al-location can use knowledge about other functions. The basic idea in thealgorithm is from (Steenkiste and Hennessy, 1989).
57



5.4 Exploiting information about registers destroyed by a functionOne useful type of inter-procedural information is what registers are de-stroyed when a given function is applied. Consider the call graph
�7�6

�2�1�3�4 �5Fig. 19. A call graph. The �'s are functions; �2 calls �3 and �7, etc.Suppose we are doing register allocation for �3, and suppose we know whatregisters are destroyed by the calls in �3 to �4, �5, and �6. Figure 20 il-lustrates how this knowledge can be used when allocating registers for thevalues used in �3.

�4 �6b �5�1�2�3�4�5
�6�7�8�9�10 ac

d
Fig. 20. Register allocation for �3. The bottom line symbolises thecode for �3 (we assume there are no jump instructions). The dotted linesrepresent registers �1 through �10. The vertical lines indicate the pointsin the code for �3 where �4, �5, and �6, respectively, are called, andwhich registers will be destroyed by the call. E.g., �4 destroys registers�1 through �4. The horizontal lines a, b, c, and d indicate live ranges ofvalues.We have tried �tting values a, b, c, and d into registers in a good way.For instance, it is better to put b in any of �3 through �10 than in �1 or �2,because the latter are destroyed while b is still live by the call to �5, andthen b would have to be saved elsewhere across that call.58



The �gure shows that �3 will destroy �1 through �7, when it is called.The values could have been placed like this:

�4 �6
b

�5�1�2�3�4�5
�6�7�8�9�10 ac d

but then a call to �3 would destroy 10 registers, instead of 7. To minimisethe total number of registers destroyed when �3 is called, it is best to use�1 through �6 in the body of �3, because these registers will be destroyedanyway when �3 is applied.The example shows that we should pursue two goals when choosing reg-isters for values in a function:(i) If possible, put a value in a register that will not be destroyed by anapplication while the value is live, for then the register need not besaved across that application.(ii) When possible, use the register with the smallest number that willbe destroyed anyway, thereby trying to minimise the total number ofregisters used by the function, and thus leaving more registers for theregister allocation of any caller of this function. Using the registerwith the lowest number will \push the values into the clefts" betweenfunction calls. For example, in �gure 20, d could have been placed in�4, but this would not be as good a choice.These goals are in order of priority, for if the priority was opposite, theregister allocation would be too eager to reuse registers; it would never usemore than one register.Contrast this with what an intra-procedural register allocation will do. Auniform convention for all functions will tell what registers are destroyed by acall. For instance, the convention might be that �1 through �5 are destroyedwhen any function is called. Then the picture would be
59



�4 �6
b

�5�1�2�3�4�5
�6�7�8�9�10 ac

d
Fig. 21. Register allocation for �3 when a uniform convention for whichregisters are destroyed at a function call is assumed.A function that destroys registers other than �1 through �5 (e.g. �6) mustsave them. This more rigid scheme implies worse register allocation: �6 mustsave �6, although it is not used by the caller, �3. The value b cannot residein �3 across the call to �5, because the uniform convention says �5 destroysthat register, although it does not. We must either save b in memory acrossthe call to �5 or put it in one of the caller-saves registers, which must thenin turn be preserved for �3 to comply to the convention.5.5 Exploiting information about parameter registersAnother way inter-procedural information can be utilised is when param-eters are passed to functions, and when functions return their result. Bya linking convention for a function, we mean the information necessary togenerate code to call that function, i.e., how should the argument be passed,etc. With individual linking conventions, di�erent functions can receive theirparameters and return their result in di�erent registers. Thus, a function canreceive its argument and return its result, etc. in the registers that suit itbest, instead of having to move values to and from �xed registers. If, e.g., cin �gure 20, p. 58, indicates the live range of the argument to �3, it is best for�3 to receive its argument in another register than �1 through �4, becausethese are destroyed by the call to �4 while c is still live.Perhaps an even greater advantage with individual linking conventions isachieved alone from using di�erent registers at di�erent function calls, in-stead of always the same: Assume we use a uniform linking convention forall functions such that the closure is passed in �clos., the argument in �arg.,the return label in �ret., and the result is returned in �res.. The code forthe expression f(g 1) + h 2 is in �gure 22. The code to save and restorein that �gure is necessary with a uniform linking convention. With individ-ual linking conventions, it may sometimes be avoidable: Because the resultfrom a function is always returned in the same register, the result of f(g 1)must be saved elsewhere while h 2 is computed. Using individual linking60



conventions, f and h may return their results in di�erent registers, and theresult of f(g 1) can remain in its register, while h 2 is computed (assumingthat h does not destroy that register). Likewise, with the uniform linkingconvention, f and g will both use �clos. to pass the closure in, and then theclosure for f must be saved elsewhere while g is evaluated.�clos. := code to access f ;hsave �clos. for f somewherei ;�clos. := code to access g ;�arg. := 1 ;�ret. := �1 ;code to jump to g ;�1 : �arg. :=�res. ;�ret. := �2 ;
9>>>>>>>=>>>>>>>; save �clos. for f acrosscode for g 1hrestore �clos. for fi ;code to jump to f ;�2 : hsave �res. from fi ;�clos. := code to access h ;�arg. := 2 ;�ret. := �3 ;code to jump to h ; 9>>>=>>>; save �res. from facross code for h 2�3 : � := hrestore �res. from call to fi ;� :=� +�res.Fig. 22. A disadvantage with using a �xed linking convention. The codefor f(g 1) + h 2 assuming the closure is always passed in �clos., theargument in �arg., the return label in �ret., and the result is returnedin �res.. There is saving and restoring of values (the bracketed code),because the registers of the linking convention are \crowded".5.6 Design decisions conclusionTo conclude, we expect to pro�t on inter-procedural register allocation mainlythrough the information it gives about which registers are destroyed by thefunctions called. This will allow us to avoid unnecessary saving of registersacross function calls, and it will enable us to reduce the total number ofregisters a function destroys (by trying to \put live ranges into the clefts (of�gure 20) between function calls"). It is not clear that a uniform caller-saveand callee-save convention will not be almost as good as inter-proceduralregister allocation in this respect. On the other hand, it is very cheap inspace and time to collect and use this inter-procedural information with themethod we propose. The strongest argument against making the registerallocation inter-procedural is that it complicates the algorithm. We also ex-pect to gain something from implementing function calls in individual ways,and not always use the same dedicated linking registers. In this respect, auniform convention cannot compete.The following sections explain in greater detail how the inter-proceduralstrategy presented above can be implemented, and discuss some problems.61



This ends in a sketch of the overall algorithm for the inter-procedural strategyfor translating E to k.Generally, the functions we need inter-procedural information about whendoing register allocation of a function are the functions it might call, i.e. itschildren in the call graph. So, if we do per-function register allocation of thechildren of a function before we do it for the function itself, the informationwill be available. For instance, with the call graph of �gure 19, we wouldprocess (do register allocation and generate code for) �3 and �7 before �2.In other words, we process the nodes in the call graph in bottom-up order.In the following we discuss how to build and process the call graph. As willbe evident, the two main problems are recursion and the fact that functionsare values.5.7 Call graphFunctions appear in the program in two forms: as �-abstractions, �y.e0 at �,and as letrec-functions, f ~�� y = e0. Therefore, we de�ne the set of functions� ::= �Y.E at p j F ~�pY = E:A call graph for a program is then a directed graph of functions � 2 �.To build a call graph, we need information about what functions might beapplied at a given application. Obtaining this is more di�cult in a higher-order functional language than in other languages because functions are val-ues that 
ow in the program like any other types of values. For instance, inthe program let a = �f.(�x.f x at r6) at r5in a (�y.y at r71) 23,it is actually �y.y at r71 that is applied at the application f x.To establish which functions may be applied at an application, a data
ow analysis, called closure analysis, is necessary. Formally, a closure analy-sis translates a program e 2 E to a lambda-annotated program ê 2 Ê, whereÊ is de�ned by the same grammar as E, except that all applications havebeen annotated with a set � � � of functions that can be applied at thatapplication: Ê ::= Ê�Ê j F� ~p Ê j � � �where � =P�. The lambda-annotated version of the program above islet a = �f.(�x.ff�ygx at r6) at r5in af�fg(�y.y at r71)f�xg23,using the abbreviations�x = �x.f x at r6�f = �f.(�x.f x at r6) at r5�y = �y.y at r71.62



Our closure analysis is described in section 7.2.A call graph for a program, e, is a directed graph where the nodes arethe functions of e and where there is an edge from one function to another,if the �rst might call the latter. In the program above, there is an edgefrom �x to �y. Function calls are not necessarily within a function, though.For instance, the application a (�y.y at r71) above, where �f may beapplied, is not within any function. From which call graph node should thecorresponding edge to �f then be? This problem is solved, when makingthe call graph, by pretending that the program is not simply e, but rather�main = �ymain.e at rmain, where ymain 2 Y and rmain 2 p are dummyidenti�ers that do not occur in e. Then, the applications that are not withinany function in e will be inside �main; e.g., the call graph for the exampleprogram will have an edge from �main to �f.More formally, a call graph for e must be de�ned with respect to a closureanalysis: It is a rooted, directed graph,
 = (�cg;E ; �main) 2 � =P��P(�� �)� �;whose nodes, �cg, are the functions of �main = �ymain.e at rmain, and wherethere is an edge from �1 to �2, i.e., (�1; �2) 2 E , i� the closure analysis says�1 might call �2. The root node of the graph is �main.It is trivial to build a call graph from a lambda-annotated program. Thedetails can be found in section 7.6. A call graph for the example program is:�f�y
�main�x

Finally, code is generated for the program by processing each � of thecall graph in bottom-up order; e.g., �rst �f, then �y, �x, and �main.Here is a �rst try at the overall algorithm for translating an expressionto intermediate code:E � ca���������! Ê � cg���������!� rdfs�������!k:The closure analysis, � ca 2 E ! Ê, translates the program, e, to alambda-annotated program, ê. From this, � cg 2 Ê ! � builds the callgraph. The nodes of the call graph are processed in reverse depth-�rst searchorder by rdfs 2 � ! k to produce the code � 2 k for the program. (Fornow, we assume there is no recursion in the program, and hence, the callgraph will be acyclic, and can be processed in a reverse depth-�rst search.Section 5.9 explains how to deal with recursion.) In other words, the functionto translate a program e to � is� compile = rdfs � � cg � � ca :63



During the bottom-up traversal, rdfs must remember inter-proceduralinformation about the �'s that have been processed thus far. For instance,after having processed �y it must be recorded which registers are destroyedby �y (as discussed in section 5.4 above), and what the linking convention for�y is (section 5.5). This is done in an environment, � 2 h that maps �'s totheir inter-procedural information. What this environment exactly recordsis discussed below. The initial environment, �0, maps all �'s to \unknown".The function rdfs starts by processing �main, the root node of 
:rdfs 
 = let (�; �) = rdfs0 �main
�0 in �;where rdfs0 is a function of three arguments: �cur:, the function currentlybeing processed; 
, the call graph; and �, the current environment. rdfs0 �cur:processes the children f�1; : : : ; �lg of �cur: before it processes �cur:. Each �is processed with � donode, which takes �cur: and the current environment,�, and returns the code, �, for �cur: and an environment, �0, updated withinformation for �cur::rdfs0 �cur:
� = let f�1; : : : ; �lg = children �cur:
(�; �1) = rdfs0 �1
�...(�; �l) = rdfs0 �l
�(�; �) = �cur: donode �in (�; � ; �1 ; � � � ; �l):The environment passed to �cur: donode will contain the necessary inter-procedural information for the functions �cur: might call, because they havebeen processed before �cur: is processed.In what follows, we shall modify and re�ne this sketch of the overallalgorithm to take care of the problems encountered.5.8 Linking conventionDi�erent functions can be applied at the same application in a higher-orderfunctional language. Consider the lambda-annotated expressionlet a = �f.(�x.ff�g;�ygx at r1) at r2 inlet b = �g.gf�x;�yg3 at r3 inlet i = �y.y at r7in (af�fgb, bf�ggi, bf�gg(af�fgi)) at r5.�g is shorthand for �g.g 3 at r3, etc. At the application f x, both �yand �g may be applied. Since it is the same code that will be calling thesefunctions (namely the code for f x), �y and �g must use the same linkingconvention. Since also �x and �y can be applied at the same application,64



they too must use the same linking convention, and in e�ect, all three �'shave to use the same linking convention.Generally, if �1 and �2 may be applied at the same application, they mustuse the same linking convention. The relation \must use the same linkingconvention" on the set of �'s in a program is an equivalence relation, andthe set of �'s in a program can be divided into equivalence classes of �'s thatmust use the same linking convention. For the program above, there are twoequivalence classes: f�fg and f�x; �y; �gg.When we process a function and decide the linking convention for it, wemust ensure that all the functions in its equivalence class get the same linkingconvention. This implies that the linking convention for a function may be�xed before the function is processed. If, for instance, we process �y above�rst (and hence decide a linking convention for it), the linking convention for�x and �g will already be decided when we process them.It follows that a linking convention is associated with an equivalenceclass of functions (and not with the individual function). The set of registersthat will be destroyed when the code for a function is called, on the otherhand, is individual to each function. Thus, the inter-procedural environment,�, consists of two maps: �l maps an equivalence class of �'s to its linkingconvention, and �d maps an individual � to the set of registers that will bedestroyed when � is called. Say �y and �x have been processed (in that order),and assume the linking convention decided for �y is ly, that �y destroys theregisters �̂y, and that �x destroys �̂x, then the inter-procedural environmentwill be � = (�l; �d), where�l = f f�x; �y; �gg 7! ly; f�fg 7! ?lc g�d = f �x 7! �̂x; �y 7! �̂y; �f 7! ?; �g 7! ? g;where \�� 7! ?lc" means that the linking convention has not yet been decidedfor the equivalence class ��, and \� 7! ?" means that the set of registersthat will be destroyed by a call to the code for � is not yet known.We modify rdfs from the previous section to �nd the set, ����s 2P(P�),of equivalence classes, �� 2P�, of functions in the program, and to set upthe initial environment, �0, that is passed to rdfs0 to map all equivalenceclasses to ?lc and all functions to ?:�0 = (f�� 7! ?lc j �� 2 ����sg; f� 7! ? j � 2 �cgg):To �nd the set ����s of equivalence classes of functions, rdfs uses a union-�nd algorithm, � uf 2 Ê ! P(P�), described in section 7.9. Assuming
 has the form (�cg; E ; �main), rdfs becomesrdfs 
 = let ����s = �main uf�0 = (f�� 7! ?lc j �� 2 ����sg; f� 7! ? j � 2 �cgg)(�; �) = rdfs0 
�main�0in �: 65



5.9 Dealing with recursionIf there is recursion (Koch and Olesen, 1996) in the program, there can becycles in the call graph: �1���2��










 �� !!CCCCCCCCCCCCCC afbecdEEE||yyy�3X_ŶZ]����??xyz� ~}���������� ��??
�4 FF�5hh !!CCCCCC �6Fig. 23. A call graph with recursion. �4 and �5 are mutually recursive functions.�2 may call itself directly, and it may call �3. Likewise, �3 may call itself directly,and it may call �2.A graph with cycles cannot be traversed bottom-up. We handle this by�nding the strongly connected components of the call graph.1 This gives usanother graph in which the nodes are the strongly connected components ofthe call graph and there is an edge between two strongly connected compo-nents i� there is an edge in the call graph between a call graph node in the�rst strongly connected component and another one in the second:1A subset of the nodes of a graph is a strongly connected component i� it is the biggestsubset such that there is a path from every node in the subset to every other node in thesubset.

66



ONMLHIJKf�1g��������������onmlhijkf�2; �3g ))SSSSSSSSSSSSSSS onmlhijkf�4; �5g $$JJJJJJJ ONMLHIJKf�6gFig. 24. The strongly connnected components graph for the call graph in�gure 23.In contrast to the call graph, the strongly connnected components graphwill be acyclic, and thus, it can be processed bottom-up.Like a call graph, a strongly connnected components graph is a rooted,directed graph:
 = (���	s;S ;�	main) 2 � = P��P(���)��;where � is the set of strongly connnected components, i.e., � =P�. If theroot node of the call graph is �main, the root node, �	main, of the correspondingstrongly connnected components graph will be f�maing.We assume the function sccs 2 � ! � will convert a graph 
 to itsstrongly connnected components graph 
, and we modify rdfs to take a 
instead of a 
, such that� compile = rdfs � sccs � � cg � � ca :Before, rdfs processed each node � of the call graph with � donode 2 �!h ! k � h (p. 65); now it processes each strongly connected component�	 2 � with a similar function do-scc 2 � ! h ! k � h, which in turnuses � donode to process the �'s of each strongly connected component.5.10 Processing a strongly connnected componentRecursion introduces other problems than cycles in the call graph. Considerthe following �gure:
67



�1���2 �{{wwwwwwwwwwwwwwwww �� � ��111111111111 �abcdef��������
�3HOINM̂̂^^^   AAAAAxyz� ~}���������� ��??

�4 FF�5hh ��44444444444 �6Fig. 25. Zooming in on �2 from �gure 23. The fat line symbolises the code for �2.The dots in the code are applications where �3, �4, �5, and �2 are called. Here wehave chosen that �3 and �4 may be applied at the same (�rst) application in �2,while the application of �5 and the recursive application are each from their ownapplication. The code for �2 could look di�erently given the call graph in �gure 23.In the following sections we shall assume we are processing �2. We wantto know which registers will be destroyed by the calls in �2, i.e., we want toform a picture for �2 like that for �3 in �gure 20 (p. 58).Potentially recursive applicationsWe say an application e1�e2 or f� ~� e2 directly within a � in a stronglyconnnected component �	 is potentially recursive i� some �0 that may beapplied at that application is in �	, i.e., i� �\�	 6= ?. In �gure 25, the �rstapplication (dot) in the code for �2 is potentially recursive, since a function(�3) that is in the same strongly connnected component as the caller (�2)may be applied (i.e., f�2; �3g \ f�3; �4g 6= ?). The second application is notpotentially recursive. The third is.When processing applications in later phases, we will want to knowwhether they are potentially recursive or not. Therefore, we annotate eachapplication with \�" or \6�" according to whether it is potentially recursiveor not. E.g., if fib�(n-2) is a potentially recursive application, the anno-tated version is: fib��(n-2). The application (�y.y at r7)f�y.y at r7gfib,which is not potentially recursive, has this annotated version:(�y.y at r7) 6�f�y.y at r7gfib:This annotation of applications is done by the function � ar-� . It trans-lates a lambda-annotated function to a recursiveness-annotated function inwhich all applications are annotated with an r 2 R where R ::= � j 6� ; i.e.,68



after the translation, the expressions areE� ::= E� R�E� j F ~pR�E� j � � �The rest of the grammar is similar to that for Ê.Non-recursive applicationsConsider the second dot in �gure 25 above|the application where �5 maybe applied. This application will destroy the registers that �5 destroys. But�5 may call �4, and thus, calling �5 may also destroy the registers destroyedby �4. In general, calling a function implies that all functions in its stronglyconnnected component �	 may be called and thus that the set of registersthat may be destroyed is the union of the sets of registers destroyed bythe �'s in �	. Although �5 calls �4, the set of registers destroyed by �4 isnot necessarily a subset of the registers that are recorded to be destroyedby �5, for �5 may have been processed before �4, i.e., at a point where itwas still undecided what registers would be destroyed by �4. The set ofregisters destroyed by �6, on the other hand, will be included in the set ofregisters recorded to be destroyed by �5, because �6 is in another stronglyconnected component than �5 and therefore will have been processed when�5 is processed.The essence of this is that the \registers destroyed by ..." concept shouldbe associated with each strongly connnected component rather than witheach function; i.e., the �d-component of the inter-procedural environment �maps strongly connnected components �	 to the set of registers that may bedestroyed when a � 2 �	 is called. For instance, after having processed thestrongly connected components f�6g and f�4; �5g the environment is � =(�l; �d), where �l maps equivalence classes of functions to linking conventionsas before, and �d may be�d = � f�4; �5g 7! f�1; �2; �3; �4; �5g;f�6g 7! f�1; �2; �3g; f�2; �3g 7! ?; f�1g 7! ? 	 :assuming �4 and �5 together destroy �1 through �5, etc., and assumingthat we have yet to process the strongly connnected components f�1g andf�2; �3g. Notice that �df�6g � �df�4; �5g, as one would expect because �5calls �6.Approximating the set of registers that will be destroyed by a functionThere is one �nal aspect to processing a strongly connected component thatwe must consider before we give the �nal description of the algorithm. Re-member the goals (i) and (ii) (p. 59), which should be pursued when choosinga register for a value. Some kind of preliminary analyses will be required toful�l them.Goal (i) requires a liveness analysis on the � currently being processed.This liveness analysis can be done on a per-function basis, as values are not69



live inter-procedurally, for free variables of a function are fetched from itsclosure (p. 37). The liveness analysis will be discussed when we discuss howto process a � (section 6.5).Goal (ii) instructs us to put a value in a register that will be destroyedanyway. To decide which registers will be destroyed anyway, another analysisis needed.At �rst, it may seem natural to do this analysis on a per-function basistoo, i.e., to start the processing of each � by �nding out which registers willbe destroyed by applications in that �. E.g., start processing �3 of �gure20 (p. 58) by discovering that the registers �1 through �7 will be destroyedanyway because they are destroyed by applications in �3.But since calling a function may mean calling the other functions in itsstrongly connnected component, it might be better to do this analysis ona strongly-connected-component basis. Consider the strongly connnectedcomponent f�i; �ii; �iiig:
�ii�i�iiiAssume a per-function approximation of which registers are destroyed any-way says �i, �ii, and �iii will destroy ��i, ��ii, and ��iii, respectively. Since anapplication of, e.g., �i may trigger applications of other �'s in the stronglyconnected component, we might choose to consider the set of registers thatare destroyed anyway by each � as the set ��i [ ��ii [ ��iii.For strongly connected components that represent loops in which sometime will be spent at run-time, the latter approach is the most reasonable:Calling a function in the strongly connected component will make the pro-gram loop through all functions in the strongly connected component. Thus,the registers that will be destroyed anyway in each � in the strongly con-nected component are the registers that will be destroyed by the loop; it isimmaterial that the loop happens to be distributed over many functions.On the other hand, strongly connected components do not necessarilyrepresent loops. Consider the situation where a � only infrequently callsother functions in its strongly connnected component. An example couldbe a function that calls an error handling function when it (very rarely)is applied to an invalid argument. Assume the error function rescues thesituation by calling back its caller with a valid argument. Then the twofunctions will be in a strongly connected component together:70



letrecnext year = if year>99 then erroneous yearelse year+1erroneous year = let x = verbally-abuse-user yearin next (year mod 100)verbally-abuse-user year = hsome expression whose code destroysmany registersi...This example gives rise to the following call graph fragment:...���next}}�erroneous:: ���verbally-abuse-userHere, it is inaccurate to approximate the set of registers that will bedestroyed anyway by �next by the set of registers that is destroyed by all the�'s in the strongly connected component f�next; �erroneousg, for it will destroymany registers because it contains �erroneous, which calls �verbally-abuse-userthat destroys many registers.The two solutions, to approximate per function, and to do it per stronglyconnected component, are equally simple to implement, and it is possible toargue for both solutions. Perhaps the di�erence between them is small inpractice. We choose the latter.Roughly, the approximation of which registers are destroyed anyway by� is the union of the sets of registers that are destroyed by the functions thatmay be applied by �. These sets are known because the functions that maybe applied by � have already been processed (at least in the cases where thereis no recursion). There are, however, other opportunities for predicting whichspeci�c registers will be destroyed by the code for a given expression. Forinstance, we know that the code for letregion %:? in e1 creates a regionin the heap with the instruction � := letregion (section 4.4), and thus thatit will destroy the set of registers destroyed by this speci�c instruction (viz.�̂letregion|cf. chapter 3). We can de�ne a function to approximate the set ofregisters that the code for a � destroys.Given a �� and an inter-procedural environment � 2 h, the function� da-� 2 �� ! h!P�returns an approximation of the set of registers that will be destroyed by thecode for �� . The environment is needed for approximating which registersare destroyed by applications directly within �� .71



The implementation of � da-� is explained in detail in section 7.11.5.11 Revised overall algorithmWe have discussed some necessary modi�cations to the basic bottom-up over-all algorithm. This section presents the revised overall algorithm.rdfs 
 �rst �nds the set ����s of equivalence classes of functions that mustuse the same linking convention, then sets up the initial environment �0, andcalls rdfs0 to process the strongly connected components graph 
 in reverse-depth-�rst search order. Assume 
 has the form (���	s;S ;�	main) and �	mainis f�maing: rdfs 
 = let ����s = �main uf�0 = ( f�� 7!?lc j ��2 ����sg;f�	 7! ? j �	2 ���	sg )(�; �) = rdfs0 
�	main�0in �:The reverse-depth-�rst traversal rdfs0 is almost as before, except that it nowworks on the strongly connected components graph instead of on the callgraph, and hence uses the function do-scc 2 � ! h ! k � h to processeach node, instead of � donode 2 �! h! k�h:rdfs0 
�	cur:� = let f�	1; : : : ;�	l g = children 
�	cur:(�1; �) = rdfs0 
�	1�...(�l; �) = rdfs0 
�	l �(�; �) = do-scc �	cur:�in (� ; �1 ; � � � ; �l; �):Roughly, do-scc �	� uses � donode on all �'s in the current strongly connnectedcomponent �	cur:. See explanations below:do-scc �	cur:� = let f��1; : : : ; ��jg = � � ar-��	cur: �� � 2 �	cur:	�� = ��1 da-� � [ � � � [ ��j da-� �� = (�; ��)(�1; �) = ��1 donode �...(�j ; �) = ��j donode �� = (� l; �d + f�	cur: 7! ���g)in (�1 ; � � � ; �j ; �):72



The arguments of do-scc are the current strongly connected component�	cur: and the current inter-procedural environment, �, and it returns thecode for the functions in �	cur: and an updated inter-procedural environment.Before the functions are processed, all applications in them are annotated by� ar-� , yielding the recursiveness annotated functions f��1; : : : ; ��jg. Fur-thermore, the set, ��, of registers that will be destroyed anyway by �	cur: is ap-proximated. The function � donode takes and returns a strongly connnectedcomponent environment �, which comprises the inter-procedural environment� and the approximation ��: � = (�; ��). We use �� to denote the � in �,and �d to denote the �d in � in �; etc. There is no natural order in which toprocess the �'s in a strongly connnected component; do-scc simply processesthem in arbitrary order.While processing a function, � donode updates the �� in � whenever avalue is allocated to some register. Hence the �� in the � returned by thelast � donode tells which registers will be destroyed when a function inthe strongly connnected component �	cur: is applied. The inter-proceduralenvironment � returned by do-scc is updated to record this.5.12 Relation to other approachesThis section relates our inter-procedural register allocation to others. Seealso (Steenkiste, 1991) for a discussion of inter-procedural register allocationschemes.Per-function inter-procedural register allocationWe have mentioned two approaches to inter-procedural register allocation:truly inter-procedural and per-function inter-procedural (p. 57). All inter-procedural register allocators using the latter approach, including ours, have,to our knowledge, used Steenkiste and Hennessy's (1989) method of process-ing the call graph bottom-up.Theirs is the only inter-procedural register allocation for a call-by-valuefunctional language (Lisp) we have heard of.The main di�erences between our and their inter-procedural strategiesare: We use individual linking conventions for functions. This is more di�-cult in Lisp, especially because of the dynamic environment of Lisp. Theyonly distinguish between applications where a single, known function may beapplied and applications where an unknown function may be applied; we usea closure analysis to approximate the set of functions that can be applied.Chow's (1988) approach to inter-procedural register allocation is alsobased on Steenkiste's idea. As the per-function part of his algorithm, Chowuses priority-based colouring (Chow and Hennessy, 1990). His source lan-guage is imperative. (The register allocator is implemented in a general backend used for a C and a Pascal compiler, among others.)Chow deals in a uniform manner with the situations when the inter-procedural information is not available|at recursive calls, indirect calls andcalls to functions in another module (separate compilation). In all these cases,73



he uses a �xed linking convention with, among other things, a convention forwhich registers are caller- and callee-save registers. This implies that registerswill be preserved properly across recursive calls. This way, he elegantly killsthree birds with one stone. While one does not expect a compiler for animperative language to implement recursion especially e�ciently, it is crucialthat it is in a functional language: we must do better than just use a �xedconvention for recursive calls. Hence his solution is not applicable for us.In our compiler, di�erent functions may be called at the same application:let i = if p then f else g in(f 7, i 9) at r13At i 9, both f and gmay be applied. This is not the case in Chow's compiler.Consider the C fragmentif (p) i=&f; else i=&g;f(7); *i(9);At an application, either one speci�c, named function is called (e.g. f(7);),or a function pointed to by some variable is called (e.g. *i(9);). The latteris called an indirect call, and Chow's compiler does not attempt to determinewhich functions might be called in that case. This is quite reasonable in animperative language, where indirect calls are generally used less frequentlythan functions are used as values in higher-order functional languages. Fur-thermore, �nding out which functions might actually be called at an indirectcall requires an elaborate data-
ow analysis (that would probably not givevery accurate information anyway)|closure analysis is easier in functionallanguages.Thus, in Chow's compiler, at an application, it is either completely un-known which function might be called, or it is known what single functionwill be applied. Therefore, unlike us, Chow does not have to worry aboutfunctions that may be applied at the same application and hence must use thesame linking convention. Consequently, it is also less complicated for Chowthan for us to allow di�erent functions to have di�erent linking conventions.Like our algorithm, Chow's allows a function to pass parameters in morethan one register.Chow measures reductions in executed clock cycles of the generated codefrom �1% to 14% on 13 programs with a geometric mean of about 3%.We explain this slightly discouraging result as follows. First, his languageis imperative and not functional. Second, he compares the inter-proceduralregister allocation with an intra-procedural one with four registers for passingparameters and conventions for which registers are caller-save and callee-saveregisters, and this gives many of the advantages that inter-procedural registerallocation gives; i.e., his baseline is rather good. Third, he counts clock cyclesinstead of measuring actual execution time, so the interaction with the cacheis not in the picture. Fourth, his benchmarks use library routines that donot participate in the inter-procedural register allocation.74



According to Chow, there is a clear tendency that the inter-proceduralregister allocation does better on smaller programs. He conjectures thatthis is because larger programs have deeper call graphs and hence the set ofregisters has been exhausted in the upper regions of the call graph.Truly inter-procedural register allocationThe �rst inter-procedural register allocation that has employed the approachof processing the entire program (truly inter-procedural register allocation)is Wall's (1986).We assume there is no separate compilation and thus that we have thewhole program. Wall deals with separate compilation by postponing theregister allocation to link time, when all modules are linked together to formone object code �le.Doing the register allocation program-wide excludes graph colouring as arealistic method; it will be too costly in time and space. Instead of buildingan interference graph, Wall groups together local variables that will never belive at the same time and thus can share the same register. Wall uses thecall graph, in a way analogous to ours, to see which local variables will belive at the same time. If functions have local variables and call each other asindicated here, �1 = � � � g � � � c � � �
�3 = � � � b � � � g � � ��2 = � � � a � � �a and b can be put in the same group, because they will never be live at thesame time, while a and c cannot because they may be live simultaneously.For each global variable g, a singleton group fgg is created. Now, if there are52 registers, Wall's algorithm picks the 52 groups that have highest priority,and assigns registers to the variables in them. The priority of a group is thesum of some estimate of the usage frequencies of the variables in the group.In comparison, Steenkiste's way of processing the call graph bottom-up willsimply give highest priority to the functions in the lower parts of the callgraph.Wall allocates free variables to registers unlike us. If we wanted to allocatefree variables to registers, we would have to change the decision to fetch allfree variables from a closure (section 4.6). Allocating a free variable to aregister is easier for Wall, because in his source language (C) a variable iseither local to one speci�c function or free in all functions it occurs in, i.e.,global. In SML, a variable can be local in one function and free in another.75



At function calls, Wall allocates space on the stack for the parameters.The function entry code will load the parameters from the stack to their reg-isters. Thus, functions have a uniform linking convention, which is necessarybecause they might be called indirectly. At direct calls, though, the uniformlinking convention is not used; instead the parameters are moved directly totheir registers and the function entry code that loads them from the stack isskipped.Summing up, Wall's inter-procedural register allocation is fundamentallydi�erent from ours in that it is truly inter-procedural, but it uses inter-procedural information akin to our \destroys" information. Functions canuse di�erent linking conventions stating which parameters are passed on thestack, and which in registers, but not in which speci�c register each parameteris passed. Thus, inter-procedural information about which registers to passparameters in, is not used in the register allocation of the function. Wall dealswith indirect calls by, in principle, having two versions of each function: oneconforming to a speci�c, uniform linking convention, and a specialised versionthat takes some of its parameters in registers.The inter-procedural register allocation of Santhanam and Odnert (1990)must also be categorised as truly inter-procedural, because it can allocate aglobal variable (their source language is C) to a register over many functions.The main improvement over Wall's allocation of global variables to registers,is that the global variable does not have to be allocated to a register inall of the program, and the same global variable can even be allocated todi�erent registers in di�erent functions. Santhanam and Odnert do this byidentifying webs in the call graph, where a particular global variable is used.A web is a global variable and a minimal sub-graph of the call graph suchthat the global variable is neither referenced in any ancestor node nor inany descendent node of the sub-graph. They build an interference graph ofwebs, where the nodes are the webs and two webs interfere, i.e., there is anedge between them, if they contain the same call graph node. Then graphcolouring is used to assign registers to webs. If a web does not get a colour,the corresponding global variable is not allocated to a register across functionboundaries in that web, but the global variable may be allocated to registersin other webs.Inter-procedural register allocation for call-by-need languages(Boquist, 1995) describes an inter-procedural register allocation for a higher-order call-by-need language. Note that the implementation technology forcall-by-need languages is very di�erent from that for call-by-value languages.Boquist's approach is truly inter-procedural: he uses graph colouring for thewhole program. This may prove untractable for large programs. Like wedo, Boquist allows individual linking conventions for functions. The nodecoalescing part of the graph-colouring register allocation algorithm (i.e., theelimination of register-to-register moves) decides the individual linking con-ventions. Boquist uses analyses similar to closure analysis to narrow in thepossible control 
ow. 76



6 Per-function register allocationIn the previous chapter we explained how to translate a program e to inter-mediate code � by translating the functions of the program one at a time.This chapter discusses how to translate each function. Since we have alreadydiscussed what intermediate code to generate for each construct of E (chap-ter 4), this chapter is mostly concerned with the register allocation aspectsof the translation.Our general approach is to allocate registers on the source language, beforethe intermediate-code generation, and then let the register allocation directthe intermediate-code generation. The customary approach is the opposite:�rst generate intermediate code, then allocate registers. We motivate ouruncommon approach (section 6.1); then the rest of this chapter discusseshow to implement it. This is done by developing the register allocation andsubsequent intermediate-code generation (from now on: the translation) forthe construct let x = e1 in e2.Developing the translation implies discussing how the register allocationcan direct the intermediate-code generation (section 6.2), what kinds of val-ues there are (section 6.3), and how to allocate values to registers (section6.4). To aid when choosing a register for a value, we use a standard livenessanalysis tailored to our needs (section 6.5). The allocation of values to reg-isters is simple-minded: simply allocate a value to a register when the valueis used during the translation (section 6.6). A heuristic function is used tochoose a register given the liveness information at a given program point (sec-tion 6.7). Before we can �nish developing the translation of let x = e1 in e2,we must discuss what to do when not all values �t in registers: We discusswhich values are spilled, i.e., kept in memory (section 6.8). We give a rudi-mentary framework for discussing where to place spill code, the code thatmoves values between memory and registers (section 6.9). Using this frame-work, we discuss where to place spill code within functions (section 6.10)and caller-save vs. callee-save registers (section 6.11). In the end, we contentourselves with a simple spill code placement strategy, and present the �naltranslation for the let-construct (section 6.12). We conclude by comparingour per-function register allocation with other methods (section 6.13).6.1 General approachGraph colouringRegister allocation by graph colouring is done by building an interferencegraph; the nodes are live ranges of values, and there is an edge betweentwo live ranges if they overlap, i.e., if they must not be allocated to thesame register. Colouring this graph with at most k colours such that no twoneighbouring nodes get the same colour corresponds to assigning the liveranges to at most k registers such that no two overlapping live ranges areput in the same register. 77



Since Chaitin et al. implemented the �rst register allocator to use graphcolouring (Chaitin, 1982, Chaitin et al., 1981), almost all register allocatorsin the literature have been cast in this framework.A strength of graph-colouring register allocation is that it creates a globalpicture (the interference graph) of the problem and converts the complicatedoptimisation problem of having as much data in registers as possible into aconceptually simpler one|that of colouring a graph. The problem of colour-ing a graph with as few colours as possible is simpler to understand, but notto solve, as it is NP-hard (Garey and Johnson, 1979). An interference graphgives a global picture of the problem, not a solution. A heuristic must beused to solve the problem.A problem with basic graph-colouring register allocation is that a value iseither allocated to a register for all of its live range or not at all; it cannot beput in memory in some parts of its live range and in a register in other parts,or be put in di�erent registers in di�erent parts of its live range. (Extendingthe basic graph-colouring register allocation to do live range splitting (Chowand Hennessy, 1990), may circumvent some of these problems.)Graph colouring captures the problem of deciding which values shouldbe kept in which registers. It does not easily address the problem of whereto place spill code, because there is no connection between the program andthe interference graph.Furthermore, the interference graphs may become very large (Gupta etal., 1994).One way of addressing these shortcomings of basic graph-colouring reg-ister allocation is to take the structure of the program into account, insteadof only looking at the interference graph. Callahan and Koblenz (1991) dothis: they do graph-colouring register allocation on the parts of the programinstead of on the whole program. This means that a value can be in di�erentregisters, etc. in di�erent parts of the program. It also reduces the problemwith the size of interference graphs. When spill code is placed, the structureof the program is used. For instance, the area where a value is not in aregister may be increased in order to move its spill code outside a loop. Theresults of the graph-colouring register allocation of the parts of the programare combined in a way that retains the global perspective. This way they getthe global picture an interference graph for the whole program would give,while avoiding the unfelicities of basic graph-colouring register allocation.We explore the idea of using the structure of the source language forregister allocation in the next section.Using the structure of the source programViewing register allocation as one of many transformations in the compiler,the question arises: What requirements should the input language to theregister allocator satisfy?1. It must be so close to the target machine language that it can be seenwhich registers are needed for the di�erent operations. Our intermediate lan-78



guage k has this property (almost): It is easy to see that, e.g., �1 :=�2 +�3maps to a target machine instruction that will use three registers. (It is onlyalmost, because for instance on the PA-RISC, the instruction m[�1 + �] :=�2will map to instructions that use an auxiliary register if the o�set � is su�-ciently large.)2. Uses of values should appear as such, because it is not known until afterthe register allocation what they should end up as in the target language.Whether a value must be loaded or not depends on whether it is allocatedto a register or not. The form of the code to load the value depends onwhether the value is, e.g., free, let-bound, or an argument to a function.Consequently, it should be possible to see whether a value is, e.g., free, let-bound, or an argument to a function. Our intermediate language does notaccommodate this, but it could be extended with a \use value instruction".3. Function calls should be recognisable or else inter-procedural registerallocation will not be possible. If we extend k with a \function call instruc-tion", it could satisfy this.The usual manner of designing an input language to the register allocatorwould now be to take a language very close to the target machine languageand extend it to satisfy the three requirements. But observe that the sourcelanguage E obviously satis�es the last two requirements and actually alsothe �rst, for we know which registers are needed by the di�erent constructsof the language, because we know what code should be generated for eachconstruct. For instance, the code for e1 + e2 has the form�1 := code to evaluate e1 ; �2 := code to evaluate e2 ; � :=�1+�2 ;where �1 and �2 are registers needed temporarily, and � is the register thatshould hold the result of the expression. Hence, we know that two registersare needed for the construct e1 + e2.By taking the structure of the program into account, Callahan and Kob-lenz address some of the problems that basic graph-colouring register alloca-tion does not consider. We want to experiment by going further and avoidgraph colouring entirely by using source level information. At the same time,we want to explore how much can be retained of the global picture an inter-ference graph would give. Some of this global perspective can be found inthe structure of the source language: Above, the value that e1 evaluates tois live while e2 is evaluated, because it is de�ned by the code for e1 and usedafter e2 has been evaluated when the results of the two sub-expressions areadded together. If we keep the value from e1 in �1, the code for e2 must notchange �1, or alternatively, �1 must be preserved elsewhere across the codefor e2.With this approach, the result of the register allocation is (as normally)to decide which registers should be used and when values should be movedbetween memory and registers. A usual register allocator would modifythe already generated code to incorporate this information, but our registerallocator instead uses the information to direct the generation of code. E.g.,for the expression above, the register allocation would result in a choice of �179



and �2 and maybe a decision to preserve �1 across the code for e2. The codefor the expression would then be generated accordingly, after the registerallocation.It is well-known that it is possible to translate the source language directlyto register allocated code, for this is done by syntax-directed compilers thatkeep track of the contents of the registers in a register descriptor (Waite,1974). What we want to investigate is using source level information tomake good register allocation.Now we give a �rst try at developing the translation of let x = e1 in e2without worrying about exactly how the register allocation is done. We willthen discuss how source-level register allocation of that expression may bedone.6.2 Translating an expressionThe main di�erence between an expression-oriented language and three-address code is that in the latter, (sub)expressions must be designated aspeci�c destination register (except when the expression is a constant). Forinstance, the expression let x = (a+b)+c in e2could be translated to these instructions:�1 :=�a+�b ;�x :=�1+�c ;� := code to evaluate e2 ;where � is the register for the result, �1 is a temporarily used register, and�a; �b; �c, and �x are the registers allocated to a, b, c, and x, respectively.(At �rst, register allocation will not be the issue; we assume all values arein registers.) We only used a temporary register for the sub-expression a + b.If we had introduced a new temporary register for every sub-expression, theinstructions would have been:�1 :=�a ;�2 :=�b ;�3 :=�1+�2 ;�4 :=�c ;�5 :=�3+�4 ;�x :=�5 ;� := code to evaluate e2 :The problem we consider in this section is how to decide when it is necessaryto introduce a new temporary register.80



If an expression \naturally provides a speci�c destination register", it isnot necessary to introduce a new temporary register. This applies to thesub-expressions a, b, and c above, whose natural destination registers arethe registers they are allocated to|�a; �b, and �c, respectively. Therefore,�1, �2, and �4 are not needed. Conversely, �3 is necessary, because theexpression a + b does not naturally provide a speci�c destination register.Also the context of a sub-expression may naturally provide a speci�c des-tination register, and then a new temporary register for that sub-expressionneed not be introduced. For instance, the context let x = � in e2 naturallyprovides a speci�c destination register, viz. the register allocated to x, �x,and therefore the temporary, �5, for the sub-expression (a + b) + c, is notneeded.Summing up, a temporary is needed for a given sub-expression, i� nei-ther the sub-expression, nor its context, naturally provide a speci�c desti-nation register. Hence, we want information to 
ow both upwards (fromsub-expression to context) and downwards (from context to sub-expression),when translating expressions.Consider how to translate the expression let x = e1 in e2. Using �x forthe register allocated to x, the code should be�x := code to evaluate e1 ; � := code to evaluate e2 :When translating the let-expression, we do not know what the destinationregister, �, for the whole let-expression is. To get information to 
ow down-wards, we do not translate an expression to instructions, �, but rather to afunction, �, that will return instructions to evaluate the expression, when itis applied to the result register:� = ��: �x := code to evaluate e1 ; � := code to evaluate e2 :(The body of a �-abstraction extends as far to the right as possible.) Onecan think of � as some code with a hole in it for the destination register. Ifthe sub-expressions e1 and e2 are translated to �1 and �2, respectively, thetranslation of let x = e1 in e2 can be written as� = ��: �1�x ; �2�:The context of the let-expression will be able to decide which register theresult of the expression should be placed in, by applying � to that register.Now the function � ra that translates an expression can be de�ned forthe let-construct: � ra 2 E ! b� 2 b = �! klet x = e1 in e2 ra = let �1 = e1 ra�2 = e2 ra� = ��: �1�x ; �2�in �;81



where �x is the register that should contain x. Notice how information 
owsfrom the context to the sub-expression, when a � is applied to a �.We also wanted information to 
ow the other way|from sub-expressionto context. This is achieved by modifying � ra to return not only a �,but also a natural destination register. Thus, now the result of e ra is apair (�; �), where � is the natural destination register for e. If e does notnaturally have a speci�c destination register, we say its natural destinationregister, �, is ?register. Hence, � ra 2 E ! (�? � b), where �? = � [f?registerg. � always ranges over �?.For let x = e1 in e2, the natural destination register is the same as thenatural destination register of the sub-expression e2:let x = e1 in e2 ra = let (�1; �1) = e1 ra(�2; �2) = e2 ra� = ��: �1�x ; �2�in (�2; �);where �x is the register that should contain x.If we extend � ra to also decide what �x should be, it would be acombined register allocation and code generation for the let-expression:let x = e1 in e2 ra = let (�1; �1) = e1 ra(�2; �2) = e2 rathe register allocation part of the translation:�nd a register, �x, to contain x� = ��: �1�x ; �2�in (�2; �):Summarising, we intend to make the per-function part of the registerallocator work on the source language representation of each function byincorporating the register allocation in the translation function � ra. In therest of this chapter, we develop � ra for the let-construct. The translationis developed for the other constucts in chapter 7.6.3 What kinds of values can be allocated to registersA value is data that may reside in a register at run-time. In this section,we analyse what kinds of values there are. We refer to the function cur-rently being processed with �cur:. The following contrived fragment servesto illustrate the di�erent kinds of values.
82



letregion r5:? inlet x1 = 5 inletrec f1 [r1:?]y1 =letregion r3:3 inletregion r4:? in(y1+x1) +let x2 = (c1 x1 at r5:?,�y3.let x3 = 3in f2 [r3:3] y3 at r1:?) at r3:3in 7f2 [r2:2]y2 = (y2,y2) at r2:p2at r5:?in f2 [r5:?]0In some respects, all values are treated uniformly. E.g., any value iseligible for allocation to a register but also for keeping in memory, albeit indi�erent ways. The kinds of values with respect to �cur: are:1. The argument y of �cur:. (Suppose in the following examples that �cur:is �f1, i.e., the function named f1 in the fragment above. The argumentof �f1 is y1.)2. Region arguments �� of �cur: (r1:?).3. let-bound variables x that are bound by a let-expression directlywithin �cur: (i.e. bound in �cur: but not bound in any � within �cur:)(x2, but not x3, because it is also bound in �y3 inside �cur:).4. known-size letregion-bound variables %:i bound directly within �cur:(r3:3).5. unknown-size letregion-bound variables %:? bound directly within�cur: (r4:?).6. letrec-function names f bound directly within �cur:. (There are nonein the body of �f1, but if we assume for a minute that we are processinga � whose body is the whole fragment, the f2 in the region polymorphicapplication f2 [r5:?] 0 in the last line is an example of a use of aletrec-function name.)7. Exception constructors a bound directly within �cur:. As was discussedin section 4.8, an exception constructor is a variable because it may bebound to di�erent exception names at run-time (unlike a constructor,which is a constant).8. Free variables � of �cur: (x1, f2, and r5:? are free variables of �f).In contrast to the above-mentioned kinds of values, this includes freevariables that do not occur directly within �cur: (e.g., f2). The freevariables will appear as values of the above-mentioned kinds (including83



free variables) when some other � is �cur:, and they will not be ofthe kinds mentioned below. E.g., x1 is a let-bound and r5:? is aletregion-bound, in the � containing the whole fragment.9. Temporary values. In the fragment above, the result of the sub-expres-sion (y1+x1) is called a temporary value. It is needed to evaluate theexpression (y1+x1) + let x2 = � � � but only after the let-expressionhas been evaluated; yet (y1+x1) must be evaluated before the let-expression is evaluated. Thus, the value it evaluates to must be re-membered somewhere while the let-expression is evaluated.10. The closure. The free variables of �cur: must be fetched from the clo-sure, which is one of the parameters that are passed to �cur: when it isapplied.11. The return label is also a value that is passed to �cur: when it is applied.These values except 9, 10, and 11 are named; i.e., they are variables in theprogram. If we worked on some intermediate language (e.g., continuation-passing-closure-passing style (Appel, 1992), instead of directly on the sourcelanguage, the latter kinds of values could also be explicit in the language.We treat the closure like the other values, and it partakes in the registerallocation on equal terms with any other value: it can be kept in memoryin some parts of the function, and it can be put in di�erent registers|even in the same function. A more usual practice would perhaps be the|on the face of it|simpler solution of dedicating a speci�c register to holdthe closure throughout the body of the function. If the same dedicatedregister is used in all functions, this would make it a busy register (but, ofcourse, di�erent registers could be the dedicated closure register in di�erentfunctions). Worse, having dedicated registers complicates the algorithm indi�erent ways, for many of the things that must be taken care of for valuesin normal registers must also be explicitly taken care of for the dedicatedregister: it must be saved across code that destroys it; it must be recordedsomewhere what the dedicated register is so that it can be accessed. (Thesethings were very bothersome in earlier versions of this algorithm, where theclosure was not treated as a value.) By regarding the closure as a value, allof this is taken care of uniformly.The observations about the closure generally also apply to the returnlabel. Often in compilers, the return label is pushed on the stack, which isa reasonable thing to do, for it is only used once and this is at the very endof the function; i.e., the return label is very \spill-worthy". We could havechosen that too, but it seems nicer to also treat the return label like othervalues. Also, when �cur: is small enough to allow the return label to stay ina register until it is needed, this will be more e�cient than having the returnlabel on the stack.Recall that Z is the set of variables (p. 19). We de�ne the set of values:V ::= Z j clos j ret:84



6.4 Register allocation strategyOur strategy for deciding which values are allocated to registers and whichregisters they are allocated to is as follows.Code is generated and values are allocated to registers in a forward traver-sal of each sub-expression of the program.Whenever a value is used it is allocated to a register; we do not have aconcept of values allocated to memory, i.e., values that reside in memory andare loaded every time they are needed. This is only a conceptual di�erence,for in our scheme, a value might also have to be loaded each time it is neededif it is used so seldom that it is always thrown out of its register before it isused the next time. Not having values allocated to memory allows accessesof values to be treated in a more uniform way. (If the target machine were aComplex Instruction Set Computer (CISC) instead of a RISC, there wouldbe a real di�erence, for a CISC can access a value in memory directly without�rst loading it to a register, and then it might be worth having a concept ofvalues allocated to memory.)We keep track of which registers contain which values in a descriptor� 2 �. Consider �gure 20 again:

�4 �6b �5�1�2�3�4�5
�6�7�8�9�10 ac

d
Fig. 20. from p. 58 once againWhen a register is needed to hold a value v, we choose a register with theseobjectives in mind:1. Preferably choose a register that v is naturally produced in. E.g., whenchoosing a register for x of let x = e1 in e2, preferably choose thenatural destination register of e1 (cf. section 6.2).2. Avoid choosing registers that are known to be destroyed while v is live.E.g., when choosing a register for b in the �gure, we want to avoid �1and �2, because they will be destroyed while b is live, viz. when �5 iscalled. 85



We say that v is hostile to � at a given program point i� � is known tobe destroyed after that program point while v is live. E.g., b is hostileto �1 and �2 at all program points before the call to �5.To know which registers v is hostile to at a given program point, weneed a hostility analysis.3. Avoid choosing registers that contain live values. E.g., when choosinga register for b, just after the call to �4, we want to avoid picking �7and �6, because they contain the live values a and c. The descriptor �tells us that �7 and �6 contain a and c, respectively. To know that aand c are live, we need a liveness analysis. This analysis must decide,for each program point, which values will be needed further on.4. Preferably choose the register with the smallest number that is knownto be destroyed by the current strongly connnected component (recallsection 5.10). E.g., in �gure 20, prefer �4 to �8, because �4 will bedestroyed anyway by �3.Objectives 2 and 4 are the two general goals (i) and (ii) from the precedingchapter (p. 59). Objectives 1 and 3 are more speci�c to the particular waywe have chosen to do the per-function register allocation.Before we discuss in greater detail how to choose registers, let us discussthe liveness and hostility analyses needed for objectives 2 and 3.6.5 Liveness and hostility analysesThe purpose of the liveness analysis is to decide for each program pointwhich values are live. The purpose of the hostility analysis is to decide foreach program point the set of registers to which the values that are live atthat program point are hostile. Both analyses are per-function analyses.The two analyses can be done at the same time. De�ne !-informationto be a map, ! 2 
 = V ?!P�;from the live values at a given program point to sets of registers that thosevalues are hostile to. Hence, a value v is live at a program point with !-information ! i� v 2 Dm!, and in that case, !v is the set of registers thatv is hostile to.The !-analysis translates an expression to an !-annotated expressione� 2 E� , where E� ::= 
X 
j 
 let X = E� in E� 
j 
 letregion �p in E� 
... 86



and so on in the same fashion. Each construct has two !'s annotated, whichwe will call the !-information before and after the construct, respectively.As an example, the expressionlet x = e�x in k 6��5 + xwill be translated to an !-annotated expression with the form!1 let x = !2e�x!02 in !3�!4�k 6�� !55!05�!04 + !6x!06�!03!!01Since x is not live before or after the whole expression, x 62 Dm!1 and x 62Dm!01. Since x is needed after the application of k, it will be in, e.g., Dm!4and Dm!6. Furthermore, if the application of k destroys �1 through �7, these!'s will record that x is hostile to these registers, i.e., f�1; : : : ; �7g � !4x,etc. One would expect that !06 = !03 = !01.We shall always give !-information after an expression a 0. The imple-mentation of the !-analysis is explained in section 8.1.6.6 Choosing a register for a valueGiven an !-annotated expression, we can now explain more speci�cally howa register is chosen with the four objectives in section 6.4 in mind. We do thisby completing the de�nition of let x = e1 in e2 ra; i.e., we explain how to\�nd a register, �x, to contain x" (p. 82).In the following, it is assumed that !-information is annotated on all ex-pressions, but to avoid cluttering the picture, the annotations will be omittedand only mentioned when needed.Given the !-information, !, at a speci�c program point and a descriptor,�, telling which registers contain which values at that program point, we canchoose a register for a value while pursuing the objectives 1{4 above (p. 85).We use a heuristic function to pick a register: choose �̂��a!� yields a goodchoice of register, given (i) a set, �̂, of registers that must not be chosen,(ii) a register, �, we would prefer chosen, (iii) a set, �a, of registers we wouldprefer not chosen, (iv) !-information !, and (v) the current descriptor �.Hence, choose 2 P�! �? !P�! 
! �! �:The usefulness of these parameters will become more apparent shortly. Typ-ically, � is the natural destination register of an expression, while �a will beused to tell choose which registers a given value is hostile to, and the set �̂is used when we want to prevent speci�c registers from being touched.The heuristic choose uses � to live up to objective 1, �a to live up toobjective 2, � and ! to live up to objective 3, and � to live up to objective4. The implementation of choose is described in the next section.Using choose we can now de�ne the register allocation for let x = e1 in e2.While translating an expression, we must keep track of which registers con-tain which values in �, i.e., the translation function e ra is modi�ed to87



take an in-
owing �|the descriptor describing the contents of the registerswhen entering the code to evaluate e|, and return an out-
owing �|thedescriptor at the exit of the same code:(�after; �; �) = e ra �before:Thus, now � ra 2 E� ! � ! � � �? � b, and let x = e1 in e2 ra ofp. 82 becomeslet x = e1 in e2 ra �before e =let (�after e1 ; �1; �1) = e1 ra �before ethe register allocation part of the translation:�x =choose a register to contain x�before e2 =�after e1 changed to record that �x contains x.(�after e2 ; �2; �2) = e2 ra �before e2� = ��: �1�x ; �2�in (�after e2 ; �2; �):Notice how the 
ow of �'s simulates (at compile-time) the run-time control
ow.How should we choose the register, �x, for x? Preferably, we want tochoose the natural destination register, �1, of e1, (and hence avoid a register-to-register move). We also want to avoid registers that are known to bedestroyed while x is live, i.e. registers that x is hostile to according to the!-information, !2, before e2, i.e. the set !2x. Therefore, we pick �x withchoose ?�1(!2x)!2�. The �rst argument is ?, because there are no registersthat must not be chosen.Using ra (� 7! v)� to denote � updated to record that the value v has beenallocated to the register phy, we can de�ne the auxiliary function � def todo as prescribed in the box above:v def �̂� !� = let �v = choose �̂�(!v)!�� = ra (�v 7! v)�in (�; �v):I.e., v def �̂�!� chooses a register for v and updates � accordingly (thearguments �̂ and � are simply passed on to choose). Then,let x = e1 in e2 ra � = let (�; �1; �1) = e1 ra �(�; �x) = x def?�1!2�(�; �2; �2) = e2 ra �� = ��: �1�x ; �2�in (�; �2; �);88



where !2 is the !-information before e2 (i.e. annotated on the left side ofe2). (We have quit using quali�cations on the �'s, because a � always refersto the last � de�ned.) When reading this code, one can pro�tably ignorethe �'s that are passed around and regard the operations on the �'s as sidee�ects. Intuitively, x def ��! reads \�nd a register for x, given that agood candidate is �, the descriptor is �, and the information about the codefollowing is !." The � def appears between e1 ra and e2 ra because x\becomes live" between the code for e1 and that for e2.Alternatively to viewing � ra as a function that translates an expres-sion to some code (�) with a hole in it for the destination register, one canview � ra as a two-phase translation consisting of 1. register allocation,followed by 2. intermediate code generation. The �rst phase in the case forlet x = e1 in e2 is when � ra traverses e1; the register, �x, for x is chosen;and � ra traverses e2. The second phase is when all the �'s are applied.This is only after the whole of the current function has been traversed by� ra. It is the \��:" in front of the �'s that delays the actual generationof the code till the �'s are applied and thus splits the translation processinto two stages. We could have formulated � ra explicitly as two phases:The result of the �rst phase, in the case of let x = e1 in e2, would be toannotate the let-expression with �x; and then the second phase would usethis annotation to generate the code for the let-expression. The way wedo it, �x is an \implicit annotation": �x is a free variable in the � for thelet-expression it \annotates".6.7 Heuristic for choosing a registerIn this section, we describe how choose chooses a register for a value. Theregister returned by choose �̂��a!� must not be in �̂, and, it should be chosenwith the objectives from p. 85, which we recap here:1. preferably choose �,2. preferably avoid choosing registers from �a,3. preferably avoid choosing registers that contain live values accordingto ! and �,4. preferably choose the register with the smallest number that is knownto be destroyed by the current strongly connnected component.These objectives are put into e�ect in the following way:i. Using a heuristic function, heur , (described below) we �rst obtain aregister � according to objectives 2{4. If � is not allowable (i.e., � 2 �̂) orthere is no register (i.e., � = ?register), we choose � and not �. Otherwise, if� is not in �a, we choose �, thereby satisfying both 1 and 2. If, on the otherhand, � is in �a while � is not, we elect to satisfy 2 and choose �. If both arein �a, we cannot satisfy 2 and might as well satisfy 1 by choosing �. Thus,choose is de�ned: 89



choose �̂��a!� = let � = heur �̂�a!� inif � 2 �̂ _� = ?register _� 2 �a ^ � 62 �a then � else �:ii. We make heur �̂�a!� yield a register that is not in �̂ while trying tosatisfy objectives 2{3 above as follows:1� Remove the set of forbidden registers �̂ from the set of candidates.2� Divide the set of remaining registers into subsets (illustrated in �gure26) that correspond to objectives 2{3 and choose a register from the bestnon-empty subset in the following way:(i) Aiming at objective 2, divide the registers into two subsets, accordingto whether they are in �a or not (the horizontal line in the �gure).(ii) Aiming at objective 3, divide the registers into two subsets, accordingto whether they contain live values or not (the thick vertical line in the �gure).(iii) Aiming at objective 4, divide the registers that do not contain livevalues according to whether they will be destroyed anyway or not (�dirty and�clean, respectively, in the �gure). (How to approximate the set of registersthat will be destroyed anyway is described in section 5.10.)(iv) Finally, observe that when we are forced to evict a live value fromits register (because all registers contain live values), it is better to evict avalue that is in a register it is hostile to, than one that is in a register whichit is not hostile to. Therefore we divide the registers that contain live valuesaccording to whether they contain malplaced or wellplaced values (�mal and�well, respectively, in the �gure): A value is malplaced i� it is in a registerit is hostile to, and wellplaced otherwise.

90



�4 �5registerspreviouslyused registerscontainingvalues thatare hostileto them
registers containinglive values

registerscontainingvalues thatare not hostileto them�1 �3registersnotpreviouslyused
�8
�6

�7
�2

�clean�dirty �mal �wellregisters containingno values �a = registers thatare hostile to thevariable ortemporary that weare about to choosea register forregisters that arenot hostile to thevariable ortemporary that weare about to choosea register forFig. 26. The division of registers. The numbers of the subsets indicate the orderin which registers are chosen, i.e., heur �rst tries to choose a register from �1 (=�dirty��a); if this set is empty, it tries to choose a register from �2 (= �mal��a);etc.3� Now we have a division of the registers into pairwise disjoint subsets.In the �gure these subsets are numbered in the order we prefer to chooseregisters from them. For instance, we prefer a register from �1 to one from�2, because the registers in �1 do not contain live values, which the registersin �2 do. Choose the lowest numbered register from the lowest numbered,non-empty subset.Some comments on our choice of ordering of the subsets:Choosing a register in �1 = �dirty��a re-uses a register in an attempt tominimise the total number of used registers.If �1 is empty, a register in �2 = �mal��a is chosen. The value in thisregister is going to be spilled anyway, and the value that is going to be placedin the register is not hostile to it, so it can pro�tably be replaced by anothervalue.Choosing a register in �3 = �clean��a evicts no live value but uses ahitherto unused register.The next two candidate sets are �4 = �dirty \ �a, and �5 = �clean \ �a.The registers in these sets will be destroyed at some later point in the pro-gram, but they do not contain live values.Choosing a register in �6 = �well��a will evict a value that alreadyresides in a register, but at least the value that we are choosing a register foris not hostile to this register.The heuristic presented here can be re�ned in numerous ways; for in-stance, it could take use counts into account.91



6.8 Which values are spilledWhen there are not enough registers for all values, we must spill, i.e., putsome of them in memory. The three main questions are(a) which values are spilled?(b) where should we place the store code that stores a value in memory?(c) where should we place the load code that loads a value from memory?This section discusses (a). The following discuss (b) and (c).If we choose always to leave it to the function choose , described in theprevious section, to choose a register, the answer to (a) is given. Whenchoose is asked to �nd a register to hold a value v and it picks a registerthat holds some other value v0, it e�ectively evicts v0 from its register. Ifv0 is needed later, it must be loaded from memory. In other words, thecombination of �rst evicting v0 and later discovering that it is needed againis an implicit decision to spill v0.This is a crude way to decide which values are spilled compared with thesophistication in other register allocators. Most are, however, based on graphcolouring and the choice of which values to spill is intimately connected withhow this graph colouring is done.It is, however, perhaps of lesser importance in our register allocator thanin others which values are spilled. To see this, consider the imperative lan-guage (Pascal) example� � � b � � �n := n� 117;while n < 86681582 do beginn := n+ aend;� � � b � � �A smart register allocator allocates the variables used in the loop to registers,i.e., n and a rather than b. In our register allocator, it is only possible toa lesser degree to be that smart, since loops are recursive functions and wedo not allocate free variables to registers. In our source language, the loopabove could be expressedletrec while n = if n<86681582 then while (n+a)else nat r119 in � � � b � � � while (n-117) � � � b � � � :The one value used in the loop, a, is a free variable of while and hence hasno chance of remaining in a register throughout the loop; it must be fetchedfrom the closure in each iteration. The other value used in the loop, n, is theargument of while and will always be allocated to a register. In either case,our register allocator does not have an opportunity to choose otherwise.92



Summing up, when deciding which values to spill, we make a locallyoptimal choice. This may result in choices that are not globally optimal,but this is perhaps less important in our register allocator, which has lessfreedom of choice anyway, because free variables are always fetched from theclosure when �rst used within each function.6.9 Placing the spill codeThe subject of placing the spill code should not be neglected for the bene�t of,e.g., the issues of packing values in as few registers as possible and choosingwhich values to spill. In this section, we �rst try to analyse how spill codeshould ideally be placed; then we discuss practical ways to do it.In imperative languages, there is a concept of a current value of a variable.At each program point, the current value is kept either in a register or inmemory. At transitions between a program point where the current value isin memory and a program point where it is in a register, the current valuemust be loaded. Conversely, at transitions between a program point wherethe current value is in a register and one where it is in memory, it must bestored.This is di�erent in a functional language: because variables cannot beupdated, there is no concept of a current value that must be stored at everytransition from a program point where it is in a register to a program pointwhere it is not. The value need only be stored at most once: If there aresu�ciently many registers the value is never stored in memory; otherwise, ex-actly one store is required. It must be loaded at all transitions from programpoints where it is not in a register to program points where it is. (Rememberreferences are also simply values, and the memory cell the reference referencesis not eligible for allocation to a register.)A framework for discussing spill code placementOne main goal when placing spill code is to place it such that it will beexecuted infrequently at run-time. We investigate how this is done by givingrules that describe the fundamental ways in which the execution frequencyof spill code can be reduced by moving the spill code from one program pointto another. The rules a�ord a framework in which to discuss how to placespill code; they do not provide an algorithm.We will not discuss how to estimate, at compile-time, the execution fre-quency of a given program point. The spill code can also be placed withrespect to other criteria than the execution frequency. It might, e.g., bepro�table to place the load code as far from the use as possible because ofload latency. This we will not do anything about (beyond hoping that in-struction scheduling will help). Nor will we attempt placing spill code so asto free up registers; we assume the allocation of values to registers has beendecided and will not be changed when the spill code is placed. A fourth dis-cussion that we will not delve into is how the spill code placement in
uencesthe memory usage (moving spill code into a recursive function may make the93



program use more memory). Fifth, the code size is a�ected by how muchspill code is inserted; this is, however, clearly a problem of inferior impor-tance compared with the importance of reducing the execution frequency ofthe spill code.For brevity, we will only discuss where to place store code. The corre-sponding discussion for load code is similar in many aspects.At control 
ow forks, this placement of store code
store is better than store

Fig. 27. The fork rule.The �rst placement of the store code is better, because the store is only exe-cuted in the case control 
ows right, whereas it is executed in both cases withthe second placement. Moving the store code is of course only permissible insome situations, e.g., if the left branch never accesses the stored value, or itstays unharmed in some register.At straight-line control 
ow, this placement of store codestorestoreis better thanstore
Fig. 28. The straight-line rule.It is clearly not necessary to store the same value twice.At control 
ow meets, this placement of store codestore is better than storeFig. 29. The meet rule.Analogously to the fork rule, it is pro�table to push the store code into apart of the control 
ow graph that is executed less frequently at run-time.94



These rules describe the only bene�ts with respect to execution frequencythat can be gained by moving store code; all other moving of store code isonly pro�table insofar as it allows the subsequent application of some ofthe three rules above. The straight-line rule reduces the number of storesexecuted at run-time by reducing the number of (static) stores in the code.The fork and meet rules reduce the number of (dynamic) stores executed atrun-time by moving the store code into less frequently executed parts of thecode.We have deliberately not said when it is permissible to apply a rule; thisdepends on the concrete situation. There are some examples below.Using the frameworkTo stress that this framework can also be used to discuss how to place storecode inter-procedurally, we have complicated the examples below with func-tions. In practice, moving store code for a register � inter-procedurally isdone by changing �'s caller-save/callee-save status in the convention for thefunction: Store code is moved into � (down in the call graph) by changing �from a caller-save to a callee-save register for �. Moving the store code out of� (up in the call graph) is, dually, achieved by changing � from a callee-saveto a caller-save.An example of a control 
ow fork is the code for an if-expression:pp
pp0Fig. 30. An if-expression inside a function. The upper horizontal linesare the control 
ow in the caller, before and after the call, respectively.The lower lines are the control 
ow within the callee.Assume the store code is at the program point pp. A better placement isobtained by moving it into the function and then, using the fork rule above,moving it into one of the forks, to pp0.This moving of store code is permissible if the register is only destroyedin one of the forks and it is not already destroyed at pp0.As an example of an application of the straight-line rule, consider thiscontrol 
ow, where two functions are called sequentially.95



pp0
pp2pp1Fig. 31. The store code is better placed at pp0 than at both pp1 and pp2.Here it is pro�table to move the store code at pp1 out of the fork (contraryto the advice of the fork rule) and up from the function, and likewise, movethe store code at pp2 up, for then the two stores can be collapsed accordingto the straight-line rule; i.e., we need only store at pp0.Notice the better store code placement is here obtained by, locally, movingstore code unoptimally. The rules are local in the sense that applying a rulewill locally improve the placement, but it may hinder further applications ofrules that might have given a better placement overall.The move of store code above is only permissible if the register containsthe right value at pp0.Function calls, where control 
ows from the callers to the called function,provide a pregnant example of a control 
ow meet :

pp
pp0

Fig. 32. An example of the application of the meet rule. A function callsitself recursively and is called from two other applications.The store code is pro�tably moved from pp to pp0; especially in this example,where it implies moving the store code out of a loop.As in the previous examples, the moving of store code is only permissibleif certain conditions are met. The reason it is permissible here might be thatonly one of the callers wants the register preserved after the call.96



These three examples capture the situations we should consider. We willnot consider the rather complicated control 
ow entailed by exceptions; it isdiscussed in section 8.10.To conclude, the guidelines for placing store code are that it should bemoved as deeply into if-expressions as possible and thereby into infrequentlyexecuted branches, and it should be moved as high in the call graph aspossible thereby moving it out of loops or collapsing it with other store code.To learn more exactly how to achieve this informal goal, we consider twoquestions: an intra-procedural question: how should we move store code intoif-expressions within a function; and an inter-procedural question: whenshould we move store code up in the call graph, and when down.6.10 Placing spill code intra-procedurallyThe approach of (Chow, 1988) to moving store code into if-expressionswithin a function is a technique called shrink wrapping, which basically isusing the fork rule as much as possible. Here is an example of how Chowplaces store code:
�1 pp1 pp2�1; �2

Fig. 33. Chow's shrink wrapping. The \�1,�2" at the right fork indicatesthat these two registers are destroyed in that fork, etc. Chow saves �2 atpp2, because it is only destroyed by the rightmost fork. In comparison,he saves �1 at pp1 because it is destroyed in both forks.Chow inserts the store code at the earliest program point where the reg-ister must inevitably be saved in all possible execution paths leading fromthat point.An uncertain e�ect of the shrink wrapping is that it may increase thenumber of (static) stores in the code, i.e., do the opposite of the straight-linerule above:
97



store
store
store

Fig. 34. Depending on the actual execution frequencies of the forks,the shrink wrapping may here improve, preserve, or worsen the executiontime of the code.(Because his language is imperative, Chow can have loops inside a func-tion. If he does not want to move store code inside a loop, he cannot ruth-lessly shrink wrap all store code; he must explicitly disallow that store codeshrink wraps into a loop. This would not be a concern of ours, if we wereto apply shrink wrapping inside functions, as loops are inter-procedural phe-nomena in our language.)The lazy-save store code placement strategy of (Burger et al., 1995),seems to do about the same as Chow's shrink wrapping, since both insert thestore code at the earliest program point where the register must inevitably besaved in all possible execution paths leading from that point. A di�erence isthat their source language is functional (it is Scheme), as ours, where Chow'sis imperative, with the implications discussed above (p. 93).One of the main goals of Callahan and Koblenz (1991) was to place spillcode in a smart way as we discussed in section 6.1; see also section 6.13.6.11 Placing spill code inter-procedurallyWhen should we move store code down in the call graph, hoping that itwill eventually end up within some infrequently executed branch of an if-expression, and when should it be moved up in the call graph, hoping thatit will move out of a loop?Some guidelines can be given for when a register should be caller-save andwhen it should be callee-save: Registers that are destroyed in all control 
owpaths through the code of � (as �1 in �gure 33 above) should be caller -savefor �; for in that case we might as well leave it to the callers of the functionto save the register, hoping that this will move the store code out of a loop.98



Registers that are not destroyed in any control 
ow path through � (as �3in �gure 33) should be callee-save.The problem is the registers that are destroyed in some but not all control
ow paths through �: should �2 in �gure 33 be callee-save or caller-save inthe convention for �?Chow chooses the former: registers that are only destroyed in some con-trol 
ow paths through the function (as �2) will be callee-save registers. Thishe implements by shrink wrapping store code as much as possible in the cur-rent function and then making the registers that are still stored outermostcaller-save; all other registers are callee-save.The disadvantage of this is that the storing of �2, although it is onlydone in some execution paths through �, might still be done more e�cientlyhigher up in the call graph. Figure 31 above provides an example where thecaller is able to do better than the two callees.The other solution, to make all registers that may be destroyed in someexecution path through � caller-save, is simpler than the �rst, for it meansthat all responsibility of saving registers is pushed onto the caller|the callee-save registers of � are simply the registers that are not destroyed in anyexecution path through �.The disadvantage is that store code will never be moved inside forks.The best strategy would be something in between the two extremes above:make �2 a caller-save register if the callers of � could place the store codebetter, and make it a callee-save register otherwise. The problem with thisis �rst of all that inter-procedural information is needed. In our register allo-cator, for instance, inter-procedural information about callers is not readilyavailable since the callees are usually processed before the callers. Second,in general, it is not clear exactly when it is more pro�table to let the caller,rather than the callee, save the register, although �gure 31 provides an ex-ample where it is obvious. Third, since � may have more than one caller,the inter-procedural information might be inconclusive: some callers mightprefer �2 as a callee-save register, while others might prefer the opposite.From these three alternatives, numerous combinations can be concocted;e.g., take one of the extremes but combine it with the third strategy in certaineasily handled situations.Chow's experiments show only a small improvement from the shrinkwrapping and moving of spill code up the call graph, but this is perhapsbecause his languages are imperative. In a functional language, where inter-procedural register allocation is expected to give relatively larger improve-ments, this optimisation might yield more.Santhanam and Odnert also move spill code between functions. Theydivide the call graph into clusters. Roughly, a cluster is a sub-graph of thecall graph which has a cluster root node (function) through which all pathsto functions in the cluster must pass. The idea in dividing the call graph intoclusters is that the responsibility for saving a register can be moved upwardsin the call graph from the functions within the cluster to the cluster rootfunction. Deciding how to divide the call graph into clusters then means99



deciding where to place spill code. Santhanam and Odnert use estimationsof call frequencies to decide how to divide the call graph into clusters: if thecluster root node is called less frequently than functions within the cluster,the spill code will be executed less frequently.We shall choose the simplest of all proposed strategies: to always makeall registers that could possibly be destroyed by � caller-save registers of �.This means that there will be no moving store code into forks. With thisapproach, the register allocation of each function is sel�sh in the followingsense: it takes care of its own values by trying to put them in registers thatare not destroyed by the functions it calls, and if this is not possible, it savesthem on the stack. It does not save registers merely for the bene�t of itscallers. (There is, however, one extenuating circumstance: it does try to useas few registers in all as possible.)This strategy favours the lowest nodes in the call graph. We assume manyprograms will spend most of the time in the lower parts of the call graph.6.12 Our spill code placement strategiesHaving discussed some of the problems in placing spill code, we will decideand explain the exact way we choose to do it in the following.Placing store code: the producer-saves strategyWe choose the following way to place the store code, which is particularlysimple in our register allocator. If x of let x = e1 in e2 is spilled in e2, wegenerate the following code:�x := code to evaluate e1 ; push �x ; � := code to evaluate e2 ; pop :The value x can only be used in e2; so after the evaluation of e2, the valuesaved on the stack is not needed any more, and it is discarded with a pop (itis not restored with a pop �x).The main advantage of this strategy for placing store code is its simplicity:it leaves the responsibility of storing a spilled value exactly one place, namelywith the producer of the value, and we will call it a producer-saves store codeplacement strategy. The producer of a value can be a sub-expression of theprogram. For instance, let x = e1 in e2 is the producer of the value x. Thespill code can simply be inserted when we generate code for the producer,instead of in a separate phase. Because the code to allocate and deallocatememory for a spilled value is inserted around the code for a sub-expression,it will obey a stack discipline.The disadvantage is that this strategy violates many of the concerns dis-cussed above. The store code is inserted at a program point without regardto the probable execution frequency of that program point; it might, for in-stance, be placed in a loop. The producer-saves strategy, however, at leastensures that the store code always appears only once in the control 
owgraph. 100



See also the case study of the producer-saves store code placement strat-egy in the Fibonacci function in the assessment section 11.9.We use the producer-saves strategy for other kinds of values as well. Forinstance, the producer of a �� is a letregion-expression; the producer of a yis a �-abstraction; the producer of an f is a letrec-expression.Saving registers because of recursionThere are two known schemes for saving registers when there is recursion.�1
�2

�1
(i) Wall's scheme

�3 �3,�4save�1; �2; �3; �4 �2 �1
�2

�1 save �1
(ii) Steenkiste's schemesave�1; �2�1 �1,�2�3save�1save�1

Fig. 35. Schemes for saving registers at recursion. The registers beside a �indicate which registers are destroyed by that �; edges are annotated with the setof registers that are saved at calls.In Wall's scheme, all registers used by �'s in the strongly connnectedcomponent are saved at back edges in the call graph.In Steenkiste's scheme, each � saves the registers it uses. The disad-vantage is that one pays for the use of recursion at all calls in the stronglyconnected component although it might be seldom that the program actu-ally recurses. In Wall's scheme, chances are greater that registers are onlysaved when recursion occurs: Control might 
ow through all the �'s abovewithout any of them calling each other recursively, and then no registers willbe saved in Wall's scheme, whereas registers will be unnecessarily saved inSteenkiste's.On the other hand, also Wall's scheme may save more registers thannecessary: If �1 and �2 keep calling each other recursively, �3 and �4 aresaved unnecessarily each time �2 calls �1.Wall's source languages are imperative, and he actually chooses thisscheme, rather than one resembling Steenkiste's, on the assumption that101



many apparently recursive programs are so only in exceptional cases. Weassume the opposite is the case in our functional language.In Steenkiste's scheme, the total use of registers in the component canbe smaller (two registers in the example, where Wall uses four): The sameregisters can be used in the di�erent �'s in the component, as the registersare saved at recursive calls anyway.We choose Steenkiste's scheme, because it meshes nicely with the produ-cer-saves store code placement strategy. All potentially recursive applicationsare treated the same way: they destroy all registers containing live values.Then, the producer's responsibility of saving the value it produces will alsotake care of saving the values that must be saved because of recursion. Ifwe used Wall's scheme, the producer-saves mechanism could not handle thesaving necessary at the back-edge calls.Placing load code: the user-loads strategyThe considerations concerning where to place load code are similar in manyaspects to the considerations above concerning where to place store code.This will not be explored in depth here. We only remark the following:First, in the cases where one wants the storing and loading to obey a stackdiscipline, one will want the placement of load code to mirror the placementof the store code. Second, in the cases where this is not a concern (e.g., whenplacing the load code for a spilled let-bound value x), one may try to placethe load code at the earliest possible program point where it is inevitablethat the value must be loaded|dually to when placing store code. Burger etal., (1995), nevertheless, suggest an \eager" reloading scheme, where a valueis instead loaded at the �rst program point from which some execution pathleads to a use of the value. Although this means that values are sometimesloaded unnecessarily, their experiments show that it is as good as the otherload code placement strategy. They explain this by conjecturing that thecost of unnecessary reloads is o�set by the reduced e�ect of memory latency.As with the store code placement strategy, we will not attempt the fancysolution. We will also place the load code in the way that is simplest in ourregister allocator: the code to reload a spilled value is placed at the useswhere the value is not in a register.When generating code for a use of x in e2 of let x = e1 in e2, we conferwith the current � to see whether x is allocated to some register. If x hasbeen thrown out of its register (because the register was needed for somethingelse), we have to reload x. So the translation of a use of x isx ra � = if x is in some �x according to �then (�; �x; ��: h� :=�xi)else x load??register !�;where ! is the !-information before the expression x, and the optional moveis de�ned h� :=�0i = if � = �0 then � else � :=�0;102



and x load will return code to reload x.A value x is loaded in e if it is used at a point in e where it is not ina register according to the � at that point. Hence, it can be determinedduring register allocation of e whether a value is loaded in e: x is loaded i�� load was called with x. We extend � to also have a component, �v � X,that records the set of values that are loaded; i.e., x is loaded according to �i� x 2 �v . Denote with v has-been-loaded � the � updated to record that x isloaded.The expression x load �̂�!� will at �rst pick a register, �x, for x, andupdate � to record that �x from now on contains x. This is just whatx def �̂�!�, which we have already de�ned (p. 88), does|intuitively a pointin the code where a value is reloaded is like a de�nition of that value. Fur-thermore, x load �̂�!� records in � that x is loaded and returns code toload x:x load �̂�!� = let (�; �x) = x def �̂�!�� = x has-been-loaded �� = ��: �x := code to access x in memory ;h� :=�xiin (�; �x; �):Notice that the code does not simply load the value into the destinationregister, �, provided by the context. Rather, the value is loaded into the cho-sen register, �x, and then moved into �. This is because we expect choose 'schoice of register (�x) to be more farsighted than the context's choice (�).Chances are bigger that we do not have to reload x if it is put in �x than ifit is put in �, because �x has been chosen specially for x; and we prefer theextra cost of the move instruction � :=�x to the potential cost of a reload.Code is generated with respect to a stack shapeTo keep track, at compile-time, of the position on the stack of values thatare loaded, each expression is compiled with respect to a stack shape & =(&e; &p) 2 s. This contains a compile-time stack pointer, &p 2 I, and anenvironment &e 2 V ! I that maps values to their stack position.If x of let x = e1 in e2 is loaded in e2, the code for e2 is generated withrespect to a stack shape in which x has been pushed: If the code for thewhole let-expression is generated with respect to a stack shape & = (&e; &p),the code for e2 is generated with respect to the stack shape(&e + fx 7! &pg; &p + 1):This re
ects that the stack at the entry to the code for e2 has changed com-pared to what it was at the entry to the code for the whole let-expression.One element, x, has been pushed, hence the &p + 1, and it resides at o�set&p, hence the x 7! &p. 103



When generating code to load x in some sub-expression of e2, one can �ndx's o�set on the stack using the stack shape (&e0; &p0) at that point. The o�setis the di�erence between the compile-time stack pointer, &p0, at that pointand the compile-time stack pointer, &p, at the point when code was generatedfor pushing x on the stack. The latter is accessible as &e0x. Thus, thecode to access x in memory above is m[�sp { �], where � = &p0 � &e0x I!i.Summing up, the code we generate must be abstracted over a stack shape(and not only over the destination register), i.e., the �'s are abstracted over(&e; &p). The � for let x = e1 in e2 where x is loaded in e2 is� = ��: �&: �1�x& ; push �x ; �2�(&e + fx 7! &pg; &p + 1) ; pop:The code �1�x for e1 is translated with respect to the same stack shape &as the whole let-expression, while the code �2� for e2 is translated with astack shape that re
ects that x is pushed around that code.We use � for code abstracted over a stack shape, i.e., � 2 z = s ! k(and then � 2 b = �! z).A preserver of � is a function p 2 z ! z that takes some code � andreturns code � 0 which preserves � on the stack around �:p� = �&: push � ; �(&e + fx 7! &pg; &p + 1) ; pop:If px is a preserver of �x, the � above can be written� = ��: �&: �1�x& ; px(�2�)&:To rid the notation of the stack shape, use ; to glue together �'s as ;glues together �'s: �1 ; �2 = �&: �1& ; �2&:Then � is � = ��: �1�x ; px(�2�):We can de�ne x kill �x� to yield a pair (�x; px), where px is a preserverof �x if x is loaded according to �, and �x is � with x removed from the setof loaded, i.e., �vx = �v �fxg. If x is not loaded according to �, px does notpreserve �x, i.e., px = ��:�.Then, �nally,let x = e1 in e2 ra � = let (�; �1; �1) = e1 ra �(�; �x) = x def �1�!2(�; �2; �2) = e2 ra �(�; px) = x kill �x�� = ��: �1�x ; px(�2�)in (�; �2; �):
104



6.13 Comparison with other approachesUsing the structure of the source programThe main di�erence between the bulk of other register allocators and ours isthat we do not use graph colouring.We wanted to see whether it was possible to make a good register alloca-tion and avoid graph colouring by using information in the source language.That we have developed a translation (in this and the following chapters)and the measurements in chapter 11 indicate that the approach works. (Ac-tually, the measurements only indicate that the speci�c conglomerate of theinter-procedural register allocation, the source level per-function register al-location, region inference, etc. found in our compiler works.) In anothersense, however, we did not succeed.We hoped that, by taking the structure of the program into account, wecould obtain the same global picture of the register allocation problem asan interference graph gives, and solve the optimisation problem it representswithout explicitly building and colouring an interference graph.Our inspiration to do this was from Callahan and Koblenz (1991), whosehierarchical register allocation uses the structure of the program to placespill code in a smart way and to allow a value to be spilled in some parts ofthe program and in registers in other parts and even in di�erent registers indi�erent parts of the program. They build a tree of \tiles" that cover thebasic blocks of the control 
ow graph; the tile tree re
ects the program'shierarchical control structure. Avoiding graph colouring is not their goal:Registers are allocated for each tile using a standard graph-colouring algo-rithm. The local allocation and interference information is passed around thetile tree by �rst processing it bottom-up and then top-down. Thereby theirregister allocation can be sensitive to local usage patterns while retaining aglobal perspective.Our idea was to adapt their algorithm to use the syntax tree of a sourceprogram as the tile tree. Our tiles would then be the nodes of the syntaxtree. Construction and colouring of an interference graph for every tile mightbe unnecessary because of the extremely simple structure of our tiles; andindeed, it would not be practically possible to do graph colouring at everytile, because we would have so many more tiles than they.The bene�ts we hoped to gain by doing this are: 1� avoiding graph colour-ing but retaining the global picture; 2� reaping the general bene�ts in theiralgorithm mentioned above (smart spill code placement, etc.). The questionis whether their algorithm can be adapted such that it gives as good a resultwithout graph colouring as with.We did not succeed in adapting their algorithm; the per-function registerallocation presented in this chapter and chapter 8 simply chooses registers ina linear traversal of the program. The !-information gives a global picture,but the linear traversal of the program and not the structure of the programdetermines the order in which choices are made.An example where this algorithm does worse than what a graph-colouring105



register allocator should be able to do is: If we have more values than registersand the values are used successively, our register allocator might in principleaccidentally throw out the value needed next each time it fetches a value,and thus generate code that loads a value every time it is needed. Graph-colouring register allocation, with its more global perspective, would insteaddecide once for all which values to spill, and thus generate code that onlyloads as many times as the spilled values are used. On the other hand, ourregister allocator has the bene�t over graph-colouring register allocation thatvalues can be in di�erent places in di�erent parts of the program, althoughthis is not exploited systematically because of the lack of global perspective.Although one can construct examples where our register allocator doesbadly because it does not have the global picture an interference graph gives,one must remember that building an interference graph does not automati-cally give a solution; the graph must also be coloured, and the heuristics todo that will likely also behave badly on some examples. Possibly, our moresimple-minded way of choosing registers for values does as good in practiceas many heuristics for colouring graphs.Furthermore, basic graph-colouring register allocation gives a way ofchoosing registers for values and a way of deciding which values must bekept in memory, but the things it is not good at (e.g., allocating a value todi�erent registers in di�erent parts of the program; placing the spill code)may well in
uence the quality of the register allocation more.Thorup (1995) presents an algorithm that, by using the structure of theprogram, can \colour the interference graph implicitly", i.e., without explic-itly building it. His work concerns the problem of packing values in as fewcells as possible, i.e., not in a �xed number of cells (registers); so it is notthe same as register allocation, and he does not consider how to choose whatvalues to spill and where to place spill code, etc.Interestingly, his way to the idea of using the structure of the programis completely di�erent from ours. It goes over the graph theoretic conceptof tree-width: Thorup observes that the control 
ow graph of a structuredprogram has small tree-width, and the intersection graph of a control 
owgraph with small tree-width (which is the same as the interference graph)is easier to colour. His algorithm to do it uses the syntax of the programto assign \colours" to live ranges; an interference graph is never explicitlybuilt. In this sense, he succeeds in using the structure of the program to\do interference graph colouring" without explicitly building and colouringan interference graph.Thorup proves that his algorithm will colour a graph using at most a�xed number as many colours as an optimal colouring would use. The �xednumber depends on the tree-width of the control 
ow graph.Kannan and Proebsting (1995) also use the structure of the program tomake a better graph colouring heuristic. Thorup's work is a generalisationof their work. It seems that the inspiration of Kannan and Proebsting isneither (Callahan and Koblenz, 1991) nor the concept of tree-width.Norris and Pollock (1994) investigate another way to adapt the hierar-106



chical register allocation of Callahan and Koblenz: they use the programdependence graph as the hierarchy. The program dependence graph repre-sents both data and control 
ow dependencies, and it expresses only theessential partial ordering of statements in a program that must be followedto preserve the semantics of the program. A bene�t from using the programdependence graph for the hierarchical register allocation is that it can alsobe used for other optimisations.The way the three requirements to an input language to a register allo-cator are formulated in section 6.1, suggests that they must be satis�ed bymaking the language su�ciently high-level, especially if the register alloca-tion is inter-procedural. Wall (1986) has gone in the other direction in hisinter-procedural register allocation. His input language to the register allo-cator is annotated code. It can be immediately converted to executable codeby throwing away the annotations. The annotations indicate how the codeshould be transformed after an (optional) register allocation phase. Here isan example of his annotations:�1 :=m[�7 + y] remove.y�2 :=m[�7 + z] remove.z�3 :=�2 +�2 op1.y op2.z result.xm[�7 +x] :=�3 remove.xThe annotations are actions quali�ed by variables. They specify how theinstruction should be changed, if the variable is allocated to a register:\remove.y" means that the instruction should be removed if y is allocatedto a register; and \op1.y" means to replace the �rst operand of the additioninstruction with the register allocated to y, if y is allocated to a register. Ourthird requirement (p. 79), that function calls should be recognisable, Wallsatis�es partly by the annotations and partly by explicitly having the callgraph with the annotated code.We could have gone the same way, and have devised analogous annota-tions; e.g., \remove this instruction, if the argument is passed on the stack".Eliminating move instructionsOur algorithm tries to avoid register-to-register transfers by letting informa-tion 
ow both upwards in the syntax tree (from sub-expression to context)and downwards (from context to sub-expression) when translating expres-sions, as described in section 6.2. The method is related to Reynolds' (1995)way of deciding when to introduce new temporary variables when he gener-ates intermediate code.In register allocators based on graph colouring, register-to-register trans-fers are traditionally avoided by coalescing live ranges (nodes) in the inter-ference graph: A move instruction can be eliminated from the program ifthere is no edge in the interference graph between its source and destination,and then the source and destination live ranges in the interference graph can107



be coalesced into one node. The edges of the coalesced node is the union ofthe edges of the two coalesced live ranges.Chaitin aggressively coalesces as much as possible. This eliminates moveinstructions at the cost of making the interference graph harder to colour,because the coalesced nodes have more edges than the original nodes.Chaitin's coalescing strategy is too aggressive in the sense that it canmake a graph that can be coloured with k colours into a graph that cannotbe coloured with k colours. To mend this, Briggs et al. (1994) introducea more conservative strategy, which only coalesces nodes in cases where aguarantee can be found that the coalescing will not make a colourable graphuncolourable.The coalescing strategy of Briggs et al., on the other hand, is too con-servative, and George and Appel (1995) present a coalescing strategy thatis less conservative than that of Briggs et al., but still not as aggressive asChaitin's. They report an impressive speedup of 4.4% solely from eliminatingmoves, and this is over an algorithm that already tries to eliminate moves.This suggests that eliminating move instructions is important. This improve-ment, however, is in a compiler that generates many move instructions, unlikeours.These ways of eliminating moves are not applicable in our register allo-cation algorithm, as they are intimately linked with graph colouring.Chow and Hennessy (1990) go in the opposite direction from eliminatingmove instructions: they introduce move instructions in the program to makethe interference graph easier to colour. When a graph is uncolourable, theytry to split a live range (node) that has many edges into smaller live ranges,each of which has fewer edges than the original live range, thereby increasingthe chances that the interference graph will be colourable.The very ad hoc way we assign values to registers actually means thatour register allocator allows a value to reside in di�erent places in di�erentparts of the program; it does not utilise this in any systematic way, however.Callahan and Koblenz (1991) try to avoid register-to-register transfers bypreferencing values to registers in the bottom-up pass over the tree of tiles.For instance, a value that is passed as argument to a function is preferencedto the argument register of the function. Our allocator could be extended todo this in the !-analysis and the preferencing information could be a part ofthe !'s.Intermediate code generationWe have focused on the issues pertaining to generating code for a higher-order, strict functional language, and not so much on the general issues thatare always important when generating code, consequently we shall not referto the large body of work on general code generation issues.When compiling an expression to intermediate code in the LISP compilerEPIC, Kessler et al. (1986) use information about what context that expres-sion is in, like we use context information to decide what the destination108



register should be, by applying a � to a destination register.It is standard code generation policy to generate rather naive code, andrely on an ensuing optimisation phase to tighten up the code (see, e.g.,(George and Appel, 1995)). We try to avoid generating obviously ine�cientcode (e.g. by eliminating redundant moves). Partly this is necessary, becausewe do the register allocation before the code generation: If the register al-location runs after the code generation, the code generator can use as manytemporary variables as it likes; we must economise on the registers. Also,we think it is conceptually nicer to generate the \right" code right away andnot have to tighten up the code afterwards. In this respect, our approach isakin to Reynolds' (1995) generation of e�cient intermediate code.Although we think, e.g., the \�" of our translation|\some code with ahole in it for the destination register"|and the \optional move", h� :=�0i,are natural concepts, generating e�cient code in one go nevertheless com-plicates the translation. On the other hand, an ensuing optimisation phasewill also be more complicated if it is rigged to �x the shortcomings of a spe-ci�c code generator|especially so, if it relies on the fact that the code beingoptimised comes from a speci�c code generator.Because our translation is so closely coupled to the structure of the pro-gram, the code we generate evaluates expressions in exactly the order theyappear in the program. To minimise the use of registers for temporary valuesit is pro�table to reorder the evaluation of expressions (Sethi and Ullman,1970): If one register is needed by the code for e1, and two are needed bythe code for e2, the code for e1+e2 will need three registers in all, becausethe result of e1 must be held in a third register while e2 is being evaluated.If we could treat the expression as e2+e1, the total need for registers wouldonly be two, because the result of e1 is not live while e2 is being evaluated.Another example is (Burger et al., 1995) which changes the evaluation orderof function arguments to make a good \shu�ing" of registers at functionapplications.Since the semantics of SML speci�es left-to-right evaluation order, we canonly change the evaluation order of expressions if they do not contain side-e�ects, and in SML, even the simplest expressions may contain side-e�ects;for instance, 1+1 contains a potential side-e�ect: evaluating it may raise aSum exception. Therefore, changing the evaluation order can probably notbe done as often in SML as in, e.g., Scheme.

109



7 Development of the inter-procedural part of thealgorithm7.1 Overview of the back endThe translation � compile 2 E ! P from our source language to PA-RISCassembly language consists of the following phases:E � ca������! Ê � sib������! E� � cr������! E. � sa������! E � cg������! � sccs����! �� rdfs����! k � bbs�������! PB lin���! k̂ � pa������! P � sched.��������! P� ca closure analysis|annotate each application with a set � of func-tions that may be applied.� sib convert the name f of each letrec-function to its sibling name f .� cr assign o�sets in the closure to the free variables for each �.� sa convert functions to functions of several arguments.� cg build the call graph.sccs �nd strongly connected components in the call graph.rdfs take care of the actual translation, i.e., the register allocation andcode generation.� bbs convert the structured language k to a set of basic blocks.lin convert a set of basic blocks to straight-line code.� pa generate PA-RISC code.� sched. schedule the PA-RISC code.Because we have chosen to focus on register allocation, the bulk of theback end is the function rdfs that processes the call graph and performs theregister allocation and code generation. Some of the phases are unimpor-tant technicalities ( � sib and � cr), and some are trivial ( � sib, � cr,� cg, � bbs and � pa), but, for completeness and such that you can seethis yourself, we describe them brie
y in the following.The rest of this chapter extends the material in chapter 5 and explainsin detail the inter-procedural part of the algorithm, i.e., the phases from Eto k. The next chapter carries on where chapter 6 ended by developing the110



per-function part of the translation, i.e., the internals of rdfs . The chapterafter that then explains the phases from k to P.Casting a phase of the compilation as a translation from one language intoanother, annotated language gives a way to describe precisely and explicitlythe results of the phase. In some situations, however, the annotations canclutter the picture with unnecessary detail. Therefore, we shall omit annota-tions that are not of interest in the given situation. For instance, a completelyannotated application has the intimidating appearance ! e�0 r�~e�1 !0 . If we areonly interested in the set � of �'s that may be applied, we present the appli-cation as e�0�~e�1, with the understanding that the other annotations are alsothere. In the same spirit, you may want to ignore the di�erence between thedi�erent kinds of expressions (e., ê, e�, etc.); they all denote expressions of thesame underlying structure and only di�er in how many kinds of annotationsthey carry.7.2 Closure analysisThe set � of functions is de�ned� ::= �Y.E at p j F ~�pY = E:The closure analysis translates a program e to a lambda-annotated programê 2 Ê that is de�ned by the same grammar as E, except that all applica-tions have been annotated with a set � of �'s that can be applied at thatapplication: Ê ::= Ê�Ê j F� ~p Ê j � � �where � =P�, and the rest of the grammar is like that for E.At applications of the form f ~� e2, the function named f will be applied.At applications of the form e1 e2, it is not generally decidable at compile-timewhich functions may be applied, as we can see from the following example:(�k.k x at r17)(if e0 then �y.y+y at r15 else �z.4+z at r15):The if-expression may evaluate to �y.y+y at r15 or �z.4+z at r15, andconsequently, either of those �'s may be applied at the application k x. Wewill have to settle with an analysis that gives an approximation of the setof �'s that may be applied. The analysis must be safe: it must �nd at leasteach possible � that may be applied. The analysis we present here is basedon the region annotations in the program and has been developed by MadsTofte.Using the region annotations for closure analysisEvery expression has a result region where the value the expression evaluatesto is put. For instance, the result region of the expression �y.y+y at r15 is� = r15. Hence, the result region of the expression k (the second k of (�k.k111



x at r17)) must also be r15, because (�k.k x at r17) is applied to theif-expression whose result region is r15. The result region of an expressionis only explicitly stated as an \at �"-annotation when the expression buildsa new value in �, for that is the only case in which it is actually necessary toknow the result region to evaluate the expression; to evaluate an expressionthat does not build a new value, it is not necessary to know the result region.It requires a data 
ow analysis to �nd the result region of a given ex-pression (as was suggested with the expression k above). Luckily, the regioninference, as a by-product, infers the result region for every sub-expression ofthe program, and our source language actually has a result region annotation\: �" on each sub-expression. So far we have ignored the \: �"-annotationsto simplify the exposition. Our source language is reallyE ::= �E : p�E ::= E Ej F ~pEj let X = E in E...where � of �e : � is the region in which the value �e evaluates to is put. At putpoints, e.g., �y:e0 at � : �0, the result region �0 and � are, of course, the sameregion variable.When devising a data 
ow analysis, one can think of the regions as chan-nels between expressions in which values 
ow. To analyse what closures 
owto e1 of an application e1 e2, one must look at all expressions that build aclosure and record in what region the closure is put. Then the closures that
ow to an expression e1 can be found as the closures that are put into theresult region of e1. The closure analysis thus has two phases:1. Record in which regions the �'s are put. For each sub-expression ofthe program of this kind �y.e0 at �;record that �y.e0 at � 
ows into the region �, i.e., for each �, maintain aset, ��, of �'s that 
ow into that �, and record that (�y.e0 at �) 2 ��.Since letrec-functions are named, we do not need regions to �nd wherethey may be applied: For each sub-expressionletrec f1~��1y1 = e1 � � � fm~��mym = em at � in em+1;record that the � that may be applied at a region polymorphic applicationof fi is fi~��iyi = ei.2. Annotate applications. At each applicatione1 e2;where e1 has the form �e1 : �1, the set � of �'s that may be applied is the set��1 of �'s that 
ow into �1. 112



At a region polymorphic function applicationf ~� e2;only one speci�c � can be applied, viz. the one named f .Because of region polymorphism this algorithm is not quite su�cient.Below we modify the algorithm to deal with this.Dealing with region polymorphismBecause formal region variables can be instantiated to actual region variablesthere is an aliasing problem. Inletrec f [r1] y = � � � f [r2] � � �in � � � f [r3] � � � ;the formal region variable r1 is instantiated to the actual region variables r2and r3, so occurences of r1 might actually stand for r2 or r3. Whenever wedo something with a region variable, we must also do it with all the regionvariables it might be aliased with. This complication in
uences both phases:1. When we record that a � 
ows into a formal region variable ��, wemust also record that it 
ows into all actual region variables to which �� maybe instantiated. If the body of f above contains �y = �y.y at r1, we mustrecord not only that �y 2 �(r1), but also that �y 2 �(r2) and �y 2 �(r3).2. Similarly, at an application, where the � to be applied 
ows out ofsome formal region variable ��, the �'s that may be applied are those that
ow out of all region variables to which �� may be instantiated. E.g., in thebody of f above, at an application e1 e2 where e1 has the form �e1 : r1, theset of �'s that may be applied is �(r1) [ �(r2) [ �(r3), and not only�(r1).This is all there is to the closure analysis; if you understand it, you canskip the rest of this section.The algorithm in detailThe closure analysis now consists of three phases:e ca = let ' = e alias� = e 
ow 'ê = e annotate '�in ê:The �rst phase, � alias, collects the aliasing information ', which is usedin the following two phases. The next phase, � 
ow, records for each � theset �� of �'s that 
ow into that �. This information is used in the last phase,� annotate, that annotates each application in the program with the set of�'s that may be applied at that application.113



0. Build region 
ow graph, � alias. The region variable aliasing infor-mation is collected by traversing the program and looking at which regionvariables the region polymorphic functions are applied to. This gives a region
ow graph ' 2P(p�p), in which there is an edge between a formal regionvariable �� and a region variable �, i.e., ��'�, i� �� may be instantiated to �.E.g., if ' were the region 
ow graph for the example above, we would haver1'r2 and r1'r3.Denote by '? the re
exive, transitive closure of '. A � is aliased with �0i� �0'?�. In the example above, the set of region variables aliased with r1,i.e., the set f� j r1'?� g, is fr1; r2; r3g. The region variables aliased withr2, i.e. f� j r2'?� g, is fr2g.While constructing the region 
ow graph ' with � alias-0, we keep trackof which formal region variables each region polymorphic function has, in anenvironment # 2 F ?! ~�p which maps names to tuples of formal regionvariables. Initially, # is ?:e alias = e alias-0?:At a letrec-expression, the region polymorphic functions are added tothe environment:letrec f1~��1y1 = e1 � � � fm~��mym = em at � in em+1 alias-0 # =let # = #+ ff1 7! ~��1; : : : ; fm 7! ~��mgin e1 alias-0 # [ � � � [ em+1 alias-0 #:At a region polymorphic application of f we confer with the environmentto see what the formal region variables of f are, and add edges from eachformal region variable to the corresponding actual region variable:f [�1, : : : , �k] e2 alias-0 # =let [��1; : : : ; ��k] = #fin f (��1; �1); : : : ; (��k; �k) g [ e2 alias-0 #:Other constructs are simply traversed, e.g.:e1 e2 alias-0 # = e1 alias-0 # [ e2 alias-0 #c� at � alias-0 # = ?:1. Record in which regions the �'s are put, � 
ow. Remember �� is theset of �'s that 
ow into �. Use +
ow to merge �'s, i.e., if �0; �00 2 p!P�,�0+
ow �00 = ��: �0� [ �00�:If � 2 p ?!P� is a partial map, denote by ext� the extension of � fromDm� to the whole of p given by:ext� = (��:?) + �:114



The only construct of interest in this phase is �y.e0 at �: we must recordthat �y.e0 at � 
ows into all region variables �0 aliased with �:�y.e0 at � 
ow ' = extf �0 7! f�y.e0 at �g j �'?�0 g+
ow e0 
ow ':Other constructs are simply traversed; e.g.:letrec f1~��1y1 = e1 � � � fm~��mym = em at � in em+1 
ow ' == e1 
ow ' +
ow � � � +
ow em+1 
ow 'e1 e2 
ow ' = e1 
ow ' +
ow e2 
ow 'f ~� e2 
ow ' = e2 
ow 'c� at � 
ow ' = ��:?:2. Annotate applications, � annotate. An environment $ 2 F ?! B isused for annotating region polymorphic applications. Initially, $ is ?:e annotate '� = e annotate-0 '�?:At an application e1 e2, the set � of �'s that may be applied is the unionof the sets of �'s that 
ow into the regions that are aliased with the resultregion �1 of e1. I.e., if e1 has the form �e1 : �1,e1 e2 annotate-0 '�$ = let � = Sf��0 j �1'?�0 gê1 = e1 annotate-0 '�$ê2 = e2 annotate-0 '�$in ê1�ê2:At a region polymorphic application, we assume the one � that may beapplied is recorded in the environment $:f ~� e2 annotate-0 '�$ = let � = $fê2 = e2 annotate-0 '�$in f� ~� ê2:At a letrec-expression, we must record in $ what � each f is bound to. Ifbi is fi~��iyi = ei,letrec b1 � � � bm at � in em+1 annotate-0 '�$ =let $ = $ + f f1 7! b1; : : : ; fm 7! bm gê1 = e1 annotate-0 '�$...êm+1 = em+1 annotate-0 '�$in letrec f1~��1y1 = ê1 � � � fm~��mym = êm at � in êm+1:115



The sets f��0 j �'?�0 g etc. are computed by �nding the set of �0's thatare reachable from � in ' using a standard algorithm.Comparison with other closure analyses and discussionThe closure analysis presented here was invented by Mads Tofte.Closure analysis algorithms for higher-order functional programming lan-guages (Scheme) have been developed in (Sestoft, 1992) and (Shivers, 1988).Sacri�cing what may be insigni�cant accuracy, a closure analysis can be de-vised with a better worst-case time complexity (Henglein, 1992).Aiken et al. (1995) present a closure analysis which is also based on regionannotations. They generate a set of constraints using the region annotationsand then solve these constraints.The closure analysis described here (and closure analyses in general) onlygives a safe approximation of which functions may be applied at each appli-cation, because it works on the whole program. In other words, it will notgive a safe approximation with separate compilation (compiling parts of theprogram separately) or incremental compilation (compiling declarations sep-arately as the user types them in).With incremental compilation, the user can type in the SML declarationfun apply f x = f x;and then later use apply. The compiler cannot know the applications fromwhence apply may be applied, and it cannot know the set of functions thatmay be applied at the application f x.The solution is to use �xed linking conventions for the function applyand for the application f x, as (Chow, 1988) does. This means an analysismust �nd out which functions may be applied from outside, and at whichapplications functions from outside may be applied. By making two versionsof functions, one that uses the standard linking convention and one that usesa specialised one, the penalty of separate compilation can be reduced.If one wants to avoid using this closure analysis, because of the com-plexity it adds to the compilation or because of the trouble with separatecompilation or because one does not have a region annotated program, itshould be possible to replace the closure analysis with a simpler one: An-notate all applications of the form f ~� e2 with the function named f , andall applications of the form e1 e2 with \unknown", forcing them all to usethe same linking convention. (To deal with separate compilation, this sim-pler closure analysis will still have to be augmented with an analysis thatdetermines which named functions may be applied from the outside.)
116



7.3 Sibling analysisRecall how letrec-functions are treated (section 4.7): A shared closure isbuilt for the �'s in the letrec-expression:letrec f1 ~��1 y1 = ê1...fm~��mym = êm at � in êm+1Because of this, all occurrences of one of the siblings f1; : : : ; fm in ê1; : : :êm+1 are really uses of the same value, the shared closure. Therefore, wedo not want to distinguish between f1; : : : ; fm, and the phase describedhere replaces each occurence of any of f1; : : : ; fm with a new identi�er, f ,which we will call a sibling name. As this identi�er, we simply use the set ofsiblings, i.e., f = ff1; : : : ; fmg, which is unique.Formally, a program-wide analysis, � sib , translates a lambda-annota-ted program ê 2 Ê to a sibling-annotated program e� 2 E� , de�ned byE� ::= F �~pE� j � � �where F is the set of sibling names, i.e., PF . The rest of the grammar issimilar to that for Ê. After the sibling analysis, the set Z of variables (p. 19)is Z� ::= X j Y j F j p j A ;i.e., F replaces F .The analysis is trivial. It keeps track of sibling names in an environmentF 2 F ?! F that maps a name f to its sibling name f . Initially, F is ?:ê sib = ê sib-0?f� ~� ê2 sib-0F = let e�2 = ê2 sib-0Ff = Ffin f� ~� e�2

117



26642664letrec f1 ~��1 y1 = ê1...fm~��mym = êm at � in êm+137753775sib-0F == let f = ff1; : : : ; fmgF = F + ff1 7! f ; : : : ; fm 7! fge�1 = ê1 sib-0F...e�m+1 = êm+1 sib-0Fin letrec f1~��1y1 = e�1...fm~��mym = e�m at � in e�m+1:Other constructs are simply traversed, e.g.:�y.ê0 at � sib-0F = let e�0 = ê0 sib-0F in �y:e�0 at �;ê1�ê2 sib-0F = let e�1 = ê1 sib-0Fe�2 = ê2 sib-0Fin e�1�e�2:7.4 Closure representation analysisThe title of this section is a bit pretentious since the analysis does nothingmore than �nd the free variables of each � and assign a closure o�set to eachfree variable.The closure o�set of a free variable of � can be an arbitrary non-negativenumber as long as it uniquely identi�es the free variable among the other freevariables of that �. We cannot just decide this o�set ad hoc when necessary,though, for the code that builds the closure for a function and the code forthe function must agree on the closure o�set of each free variable. Thereforea program-wide analysis annotates each � with its closure representation.The closure representation of the function �y.e�0 at � is a mapK 2 K = Z ?! Ithat maps the free variables of �y.e�0 at � to their o�sets in the closure. Theclosure representation of the functions b1; : : : ; bm inletrec b1 � � � bm at � in e�m+1is a map from the combined free variables of the functions to their o�sets inthe shared closure. 118



The closure representation analysis � cr translates a sibling-annotatedprogram e� 2 E� to a closure-representation-annotated program e. 2 E. whichis de�ned by the same grammar as E� , except that all functions and letrec-expressions have been annotated with their closure representation, K:E. ::= �Y.KE. at pj letrecKB. � � � B. at p in E....B. ::= F ~�pY = KE. :Notice the closure representation of b's is annotated both on the b's and onthe letrec-construct itself.Let e� fv denote the free variables of e�. There is nothing di�cult aboutthe translation:�y.e�0 at � cr = let fz1; : : : ; zng = �y.e�0 at � fvK = fz1 7! 1; : : : ; zn 7! nge.0 = e�0 crin �y:K e.0 at �:Notice the n free variables are numbered from 1 to n; o�set 0 is used for thecode pointer (section 4.6).26642664letrec f1 [��11, : : : ,��j1] y1 = e�1...fm[��1m,: : : ,��km]ym = e�m at � in e�m+137753775cr =let f = ff1; : : : ; fmgfz1; : : : ; zng = e�1 fv [ � � � [ e�m fv �ff ; ��11; : : : ; ��j1; y1;... ... ...��1m; : : : ; ��km; ym gK = fz1 7! 0; : : : ; zn 7! n� 1ge.1 = e�1 cr...e.m+1 = e�m+1 crin letrecK f1 [��11, : : : ,��j1] y1 = Ke.1...fm[��1m,: : : ,��km]ym = Ke.m at � in e.m+1:Notice the free variables are numbered from 0: there is no code pointer in ashared closure (section 4.7). The sibling variable f is not considered a free119



variable within the bodies e�1; : : : ; e�m of the �'s; from the point of view ofthese �'s, f is the closure parameter.Other constructs are simply traversed, e.g.:let x = e�1 in e�2 cr = let e.1 = e�1 cre.2 = e�2 crin let x = e.1 in e.2;x cr = x:7.5 Converting functions to functions of several argumentsWhen can a function be converted to a function of several arguments? Con-sider sumacc:fun sumacc (0,n) = nj sumacc (m,n) = sumacc (m-1, m+n).Converted to our source language, it will look something like:letrec sumacc y = if #0 y = 0 then #1 yelse letregion r4:2 insumacc (#0 y - 1, #0 y + #1 y) at r4:2at r2:0 in e:The fact that only the components of the tuple are used is re
ected in thatthe argument, y, only appears in expressions of the form #i y.A very simple, su�cient condition for when a � may be converted to afunction of several arguments is:1. all occurrences of the argument, y, of � must be in the context #i y,and it must be directly within �; and2. at each application e.1�e.2 or f�~� e.2 where � may be applied (i.e., where� 2 �),(a) e2 must have the form (e.1, : : : , e.n) at �(b) every �0 2 � must be a function of several arguments.The �rst condition will not allow converting � to a function of severalarguments if y occurs in a �0 within �. If y appears free in any �0 within �,� contains an implicit use of y, for y is used when the closure is built for �0.This implicit use is not of the form #i y, and that is the reason we disallowconverting � in that case.The function sumacc will be converted to a function of several argumentsbecause it is applied to a tuple expression. If sumacc had instead been120



fun sumacc (0,n) = nj sumacc (m,n) = let val x = (m-1, m+n)insumacc xend ,it could not have been converted to a function of several arguments, becauseit is applied to a variable.We will implement the conversion of functions to functions of severalarguments by converting the closure-representation-annotated program e. 2E. , to a several-argumented program e 2 E where the arguments of a functionwith several arguments have been made explicit. For example, sumacc abovemay be transformed to:letrec sumacc <y0, y1> =if y0 = 0 then y1else letregion r4:2 insumacc <y0 - 1, y0 + y1> ,where y0 and y1 are fresh variables. Note that the memory allocated in r4:2for the tuple is never used. This unnecessary allocation and deallocation ofmemory is not costly (it is done in two k instructions), but indicates that theconversion to several argument functions should be done before the regioninference.The grammar for E is: ~E ::= <E , : : : ,E >~Y ::= <Y , : : : , Y >E ::= E� ~Ej F � ~p ~Ej �~Y.KE at p...B ::= F �p ~Y = KE :The rest of the grammar is similar to the grammar for E. .The translation � sa 2 E. ! E consists of two phases:e. sa = let Y = e. whichin e. convert Y ?<>:First a simple analysis, � which, traverses e. and records which �'s maybe converted to functions of several arguments according to the rules above.The result is a map Y 2 � ! ~Y , where Y � = <y1, : : : , yn> with n � 1means that � is a function of n arguments, and y1; : : : ; yn are the fresh121



variables that are to be inserted. When Y � = <>, � cannot be converted toa function of several arguments. Since � which is straightforward, we willnot describe it further.Second, � convert traverses the program replacing #i y with the ith ar-gument yi, and it converts arguments of functions to their new form. Toreplace #i y with yi we need to know the argument y of the current functionand the fresh variables ~y = <y1, : : : , yn> it is replaced with. Therefore� convert has both Y , and y and ~y as arguments. If the current functioncannot be converted, ~y is <>.An application must be converted to pass several arguments, if one (andthus all) of the functions that may be applied takes several arguments:e.0f�1; ::: ; �mg(e.1, : : : , e.n) at � convert Y y~y =let e0 = e.0 convert Y y~y...en = e.n convert Y y~yin if Y �1 = <> then e0f�1; ::: ; �mg<(e1, : : : , en) at �>else e0f�1; ::: ; �mg<e1, : : : , en>:Notice that also a function that takes a 1-tuple may be converted to a functionof several arguments. If such a function is converted, the argument will havethe form <e.1>; if not, the argument will have the form <(e.1) at �>.If the argument e.1 is not a tuple-expression, only one argument will bepassed: e.0�e.1 convert Y y~y = let e0 = e.0 convert Y y~ye1 = e.1 convert Y y~yin e0�<e1>:Region polymorphic function applications are treated similarly.When a function de�nition is encountered, the argument is converted ifpossible:�y.e.0 at � convert Y y0~y 0 = let e0 = e.0 convert Y y(Y (�y.e.0 at �))in if Y (�y.e.0 at �) = <y1, : : : , yn>then �<y1, : : : , yn>. e0 at �else �<y>. e0 at �:Region polymorphic functions are treated in the same manner.We replace #i y with yi if possible:#i z convert Y y<y1, : : : , yn> = if z = y then yi else #i z:If the current function does not take several arguments, we do not change#i y: #i z convert Y y<> = #i z.All other constructs are just traversed.122



7.6 Building the call graphSince our closure analysis annotates every application in the program withthe set, �, of �'s that might be applied at that application, we can buildthe call graph, 
, easily: for each application annotated with �, add edgesfrom the � the application is directly within to every �0 in �. The function,� cg, that computes the call graph from a lambda-annotated program �mainis de�ned via an auxiliary function, � cg-0, which takes an extra argument,�cur:, the � we are currently directly within. The auxiliary function returnsthe unrooted call graph:� cg 2 E ! �� cg-0 2 E ! �!P��P(�� �)
 = (�cg;E ; �main) 2 � =P��P(�� �)� �� ::= �~Y :KE at p j F ~�p~Y = KE :Initially, e cg turns the program e into a function �main, which becomesthe initial �cur:: e cg = let �main = �ymain.?e at rmain(�cg;E ) = �main cg-0 �mainin (�cg;E ; �main);where ymain and rmain do not occur in e , and ? is a dummy closure repre-sentation.Let [(;) denote union of graphs:(�cg;E ) [(;) (�cg 0;E 0) = (�cg [ �cg 0; E [ E 0):At �-abstractions, � cg-0 records the �-abstraction in �cg, and �cur: ischanged:�~y.K e0 at � cg-0 �cur: = �f�~y.K e0 at �g; ?�[(;) e0 cg-0 (�~y.K e0 at �):At a letrec-expression, the region polymorphic functions bi of the formfi~��i~yi = Kei are recorded in �cg, and the bodies, ei, are traversed, each withthe proper �cur::letrecK b1 � � � bm at � in em+1 cg-0 �cur: =( fb1; : : : ; bmg; ?) [(;) e1 cg-0 b1 [(;) � � � [(;) em cg-0 bm[(;) em+1 cg-0 �cur::At applications, edges are added from �cur: to all �'s that can be applied:123



e0�<e1, : : : , en> cg-0 �cur: =�?; f (�cur:; �) j� 2 �g �[(;) e0 cg-0 �cur: [(;) � � � [(;) en cg-0 �cur:;Similarly with region polymorphic applications.Other expressions are just traversed, e.g.:e1 o e2 cg-0 �cur: = e1 cg-0 �cur: [(;) e2 cg-0 �cur:i cg-0 �cur: = (?; ?):7.7 Finding strongly connected componentsFrom the call graph, sccs 2 �! � constructs the strongly connnected com-ponents graph 
 2 � = P� � P(���) � �, where � = P�. Thiscan be done with a standard algorithm. The code to �nd the stronglyconnnected components graph, kindly given to us by Kristian Nielsen, isbased on (Launchbury, 1993).7.8 Traversing the strongly connnected components graphTo some extent, this section repeats section 5.11. It describes rdfs , the overallalgorithm for processing the graph of strongly connnected components, i.e.,the inter-procedural part of the algorithm. The following chapter is devotedto developing the functions called by rdfs .The function rdfs 2 �! k �rst �nds the set ����s of equivalence classes of�'s that must use the same linking convention, then sets up the initial inter-procedural environment �0, and calls rdfs0 to process the strongly connectedcomponents graph in reverse-depth-�rst search order. Assume 
 has the form(���	s;S ;�	main) and �	main is f�maing:rdfs 
 = let ����s = �main uf�0 = ( f�� 7!?lc j ��2 ����sg;f�	 7! ? j �	2 ���	sg )(�; �) = rdfs0 
�	main�0in �:rdfs0 uses do-scc to process each node:
124



rdfs0 
�	cur:� = let f�	1; : : : ;�	l g = children 
�	cur:(�1; �) = rdfs0 
�	1�...(�l; �) = rdfs0 
�	l �(�; �) = do-scc �	cur:�in (� ; �1 ; � � � ; �l; �):Roughly, do-scc �	� uses � donode on all �'s in �	:do-scc �	� = let f��1; : : : ; ��jg = � � ar-��	 j� 2 �		�� = ��1 da-� � [ � � � [ ��j da-� �� = (�; ��)(�1; �) = ��1 donode �...(�j ; �) = ��j donode �� = (� l; �d + f�	 7! ���g)in (�1 ; � � � ; �j ; �):The arguments of do-scc are the strongly connected component �	 thatmust be processed and the current inter-procedural environment, �, anddo-scc returns the code for the functions in �	 and an updated inter-procedu-ral environment. Before the functions are processed, all applications in themare annotated by � ar-�, which is described below, yielding the recursive-ness annotated functions f��1; : : : ; ��jg. Furthermore, the set, ��, of regis-ters that will be destroyed anyway by �	 is approximated, using � da-�,described below. The function � donode takes and returns a per-strongly-connnected-component environment �, which comprises the inter-proceduralenvironment � and the approximation ��: � = (�; ��). We use �� to denotethe � in �, and �d to denote the �d in � in �; etc. There is no natural order inwhich to process the �'s in a strongly connnected component; do-scc simplyprocesses them in arbitrary order.While processing a �, � donode updates the �� in � whenever a valueis allocated to some register. Hence the �� in the � returned by the last� donode tells which registers will be destroyed when a function in thestrongly connnected component �	 is applied. The inter-procedural envi-ronment � returned by do-scc is updated to record this.The analyses � ar-� and � da-� are described in the following sections,and � donode is the subject of the next chapter.While processing a �, we have a per-function environment " 2 e whichcomprises the current strongly connnected component environment, �, andthe function, �cur:, currently being processed, i.e., " = (�; �cur:). The reasonis that we need to access, e.g., �d to translate applications; we need to update125



�� when a register is destroyed; and we need �cur: to, e.g., access its closurerepresentation. Summing up the di�erent environments:(((�l; �d)| {z }� ; ��)| {z }� ; �cur:)| {z }" inter-procedural environmentper-strongly-connnected-component environmentper-function environment.7.9 Finding the equivalence classes of �'sThe analysis, � uf , to split the �'s of a program into equivalence classes isa simple union-�nd algorithm: Traverse the program and make sure that all�'s that may be applied at the same application are in the same equivalenceclass.Here is the algorithm in detail. The actual work is done by � uf-0,which has an argument, ����s, the set of equivalence classes:� uf-0 2 E !P(P�)!P(P�)All e uf does is to call e uf-0 with an empty set of equivalence classes:e uf = e uf-0?At an application, the equivalence classes of the �'s that may be appliedare merged:e1�e2 uf-0����s = e1 uf-0 � e2 uf-0 (union f�nd �����s j� 2 �g����s)� ;whereunion f��1; : : : ;��jg����s = (����s�f��1; : : : ;��jg) [ f��1 [ � � � [ ��jg�nd �����s = ( ��; if � 2 �� ^ �� 2 ����sf�g; otherwise:Region polymorphic application is dealt with analogously. Other kinds ofexpressions are simply traversed, e.g.:�~y.e0 at � uf = e0 uf(e1, : : : , en) at � uf = e1 uf � � � � � en ufi uf = �����s:����s:7.10 Potentially recursive applicationsRecall that we expect each application to be annotated with \�" or \6�"according to whether it is potentially recursive or not (section 5.10). Thisannotation of applications is done by the function � ar . It translates aseveral-argumented expression e 2 E to a recursiveness-annotated expression126



e� 2 E� in which all applications are annotated with an r 2 R where R ::=� j 6� , i.e., the target language, E� , of the translation isE� ::= E� R� ~E� j FR� ~p ~E� j � � �The rest of the grammar is similar to that for E . The translation function,� ar , takes as extra argument the strongly connected component �	 thatcontains the � that the expression being translated is directly within:� ar 2 E ! �! E� :The translation simply traverses the expression and annotates each applica-tion directly within it:e0 �<e1, : : : , en> ar �	 = let r = if � \ �	 6= ? then � else 6�e�0 = e0 ar �	...e�n = en ar �	in e�0 r� <e�1, : : : , e�n>:Region polymorphic application is dealt with analogously with normal appli-cation. Applications that are not directly within the expression are directlywithin some other � that may belong to another strongly connected com-ponent, and these applications must receive their annotation in the contextof that strongly connected component. Therefore, only applications directlywithin the expression are annotated, and consequently, � ar does not tra-verse bodies of �'s within the expression:�~y.e0 at � ar �	 = �~y.e0 at �letrec b1 � � � bm at � in em+1 ar �	 =let e�m+1 = em+1 ar �	in letrec b1 � � � bm at � in e�m+1:The other constructs are simply traversed, e.g.:let x = e1 in e2 ar �	 = let e�1 = e1 ar �	e�2 = e2 ar �	in let x = e�1 in e�2:The translation has been de�ned for expressions; a � is translated simplyby translating its body, i.e., de�ne � ar-� by�~y.e0 at � ar-� = �~y. e0 ar at �f ~��~y = e0 ar-� = f ~��~y = e0 ar :127



7.11 Approximating the set of registers that will be destroyed bythe code for an expressionThis section describes a function that approximates the set of registers thatthe code for an expression destroys. This is used by the per-function part ofthe register allocation, � ra , but it is also used in the inter-procedural partof the algorithm for approximating the set of registers that will be destroyedanyway by a function, as was described in section 5.10.Given a recursiveness-annotated expression e� and an inter-procedural en-vironment � 2 h, � da 2 E� ! h!P�must return an approximation of the set of registers that will be destroyedby the code for e�. The inter-procedural environment � is needed for approxi-mating which registers are destroyed by applications in e�. At an application,the set of registers destroyed is the union of the sets of registers destroyedby the strongly connnected components that may be applied. If the set offunctions that may be applied is �, the strongly connnected components �	that may be applied are those for which � \ �	 6= ?. And thus, the set ofregisters that may be destroyed isdestroys �� = S f �d�	 j � \ �	 6= ? ^ �	 2 Dm �d g;and thene�0 r�<e�1, : : : , e�n> da � = destroys ��[ e�0 da � [ � � � [ e�n da �Similarly with region polymorphic applications.For many constructs there is no way to predict which registers will bedestroyed; the approximation of the set of registers destroyed is simply theunion of the approximations of their sub-expressions:v da � = ?i da � = ?u e�2 da � = e�2 da �e�1 o e�2 da � = e�1 da � [ e�2 da �let x = e�1 in e�2 da � = e�1 da � [ e�2 da �:The code for a put point (an expression that has an \at �"-annotation)will destroy the set �̂at of registers, if the region being allocated in has un-known size, because a �1 := at �2 : �-instruction is used to allocate in regionsof unknown size (section 4.4) and that instruction destroys �̂at (chapter 3).Region variables of the form %:? will always be bound to regions of unknownsize; so de�ne %:? da-at = �̂at:128



If the size of the region is known, memory has already been allocated, andno registers will be destroyed by put point code to allocate. Region variablesof the form %:i will always be bound to regions of known size; so de�ne%:i da-at = ?:Finally, if the region variable has the form %: , it may be bound to bothregions of known and regions of unknown size. We cannot predict whatregisters may be destroyed by the code to allocate in the region bound to �;we rather arbitrarily de�ne %: da-at = �̂at:(We do not require that � da gives a safe approximation in any sense|i.e.,e� da � does not have to be an approximation that contains at least all theregisters that will actually be destroyed by the code for e�|so we could alsohave chosen to de�ne %: da-at = ?.)Then the approximations for the put point constructs are:_c1 e�2 at � da � = � da-at [ e�2 da �(e�1,: : : ,e�n) at � da � = � da-at [ e�1 da � [ � � � [ e�n da ��~y.e�0 at � da � = � da-atletrec b1 � � � bm at � in e�m+1 da � = � da-at [ e�m+1 da �;etc. Notice that, since this is a per-function analysis, �'s within the expres-sion are not traversed.Branches of conditional expressions are traversed:if e�0 then e�1 else e�2 da � = e�0 da � [ e�1 da � [ e�2 da �:The expression letregion %:? in e�1 will translate to code that usesthe instructions � := letregion and endregion (section 4.4). These instructionsdestroy �̂letregion and �̂endregion, respectively (chapter 3). Hence,letregion %:? in e�1 da � = �̂letregion [ �̂endregion [ e�1 da �:Memory for regions with known size is allocated on the stack (section 4.4),i.e., no registers are destroyed (except �sp, of course):letregion %:i in e�1 da � = e�1 da �:The analysis has been de�ned for expressions; a � is analysed simply byanalysing its body, i.e., de�ne � da-� by�~y.e�0 at � da-� = e�0 daf ~��~y = e�0 da-� = e�0 da :129



8 Development of the per-function part of thealgorithmThis section develops � donode, the per-function part of the algorithm. Ba-sically, � donode processes a � by �rst performing the !-analysis, � oa ,on it, and then translating its body with � ra.We will develop � oa and � ra, before we describe � donode in detail.The chapter is organised thus:Section 8.1 develops the !-analysis � oa . Then, the register allocation� ra is developed for each construct, in the following 9 sections. Con-fer with chapter 4 regarding what code to generate for each construct; thischapter only discusses the register allocation for the constructs.Section 8.2 develops the register allocation of e1 oe2. The interesting issuein this is how to manage temporary values.When this has been decided, section 8.3 can �nally explain how the de-scriptor � works.Section 8.4 develops the translation of letregion �� in e1. This involvesthe questions how to implement region variables (especially region variableswith known size) and how the register allocation should deal with instructionsthat destroy a given set of registers.Section 8.5 discusses the central question of how to translate de�nitionsand uses of values.Section 8.6 develops the translation of (e1, : : : , en) at �. The issueof interest is how the register allocation should deal with code that allo-cates. Register-allocation-wise all put points are dealt with basically as thisconstruct is dealt with.Section 8.7 develops the translation of the case-construct. The problemfor the register allocation is the unlinear control 
ow, which must be takeninto account when processing the descriptors, �.Section 8.8 develops the translation of if e0 then e1 else e2. Thisconstruct can be treated quite like the case-construct, but it is more fun tocompile it properly, i.e., to short-circuit code. This is more di�cult in SMLthan in some other languages because the if-construct is an expression,and in particular, the condition in an if-expression can (and will often inpractice) be an if-expression itself. Translating Boolean expressions to short-circuit code seems to �t nicely into our method of register allocation and codegeneration.Section 8.9 develops the translation of application. This connects theper-function part of the algorithm with the inter-procedural part.Section 8.10 develops the translation of the exception constructs. Themain problem is the irregular control 
ow exceptions cause.Section 8.11 wraps up the per-function part of the algorithm by develop-ing � donode.The main issues in the register allocation have been covered by the dis-cussion of the constructs mentioned above. The register allocation of the130



remaining constructs presents only minor variations of the already discussed.For instance, the register allocation of _c1 e2 at � is similar to that for a pair(e1,e2) at �. For completeness, section 8.12 brie
y presents the translationof these constructs.8.1 The !-analysisRemember that the !-information is a map,! 2 
 = V ?!P�;from live values to sets of registers to which those values are hostile.Given an inter-procedural environment � 2 h, the !-analysis� oa 2 E� ! h! E�translates a recursiveness-annotated expression e� to an !-annotated expres-sion e� 2 E� , where E� ::= 
X 
j 
E� R� ~E� 
j 
 F R� ~p ~E� 
j 
 let X = E� in E� 
j 
 letregion �p in E� 
...The !-analysis is a straightforward backwards analysis. It traverses theexpression using an auxiliary function� oa-0 2 E� ! h! 
! 
�E� ;which takes an expression e�, an environment �, and an in-
owing !0 andyields an out-
owing ! and an !-annotated expression e�. How this works isillustrated by the binary operation construct:e�1 o e�2 oa-0�!0 = let (!2; e�2) = e�2 oa-0�!0(!1; e�1) = e�1 oa-0�!2in (!1; !1 e�1 o e�2 !0):In general, the !-information after the e� that � oa-0 yields (i.e. the!0 annotated on the right of e�) is the in-
owing !0 to � oa-0, and the !-information before e� (i.e. the ! annotated on the left of e�) is the same as theout-
owing ! from � oa-0.In the backwards traversal, a variable becomes live the �rst time it is ina non-binding position, and it dies when it is in a binding position. Since131



the !-analysis is used on a by-function basis, values are only bound by thelet-, letregion, letrec-, and exception-constructs. Each time a use of avalue, v, is encountered, it is looked up in !. If v is not in the domain of !,it is inserted. We de�ne +oa to take care of this:! +oa v = if v 2 Dm! then ! else !+ fv 7! ?g;and then z oa-0�!0 = let ! = !0 +oa zin (!; ! z !0):The expression let x = e�1 in e�2 de�nes x in e�2; x is not live in the codefor e�1, and consequently, it is erased from the ! that 
ows out of e�2 and intoe�1: let x = e�1 in e�2 oa-0�!0 = let (!2; e�2) = e�2 oa-0�!0!01 = !2���fxg(!1; e�1) = e�1 oa-0�!01in (!1; !1 let x = e�1 in e�2 !0);where !���v is the restriction of ! to the domain Dm!�v .The expressions letregion �� in e�1 and exception a in e�2 are treatedanalogously.At an application which is not potentially recursive, we must take intoaccount that a number of �'s may be applied at that point. This is recordedin the � annotated on the application. Since �'s are processed bottom-upin the call graph, we will know exactly which registers may be destroyed,namely destroys �� (see section 7.11, p. 128). All variables live across theapplication must be made hostile to destroys ��. To this end, we introducethe function antagonise 2P�! 
! 
:antagonise �̂! = fx 7! !x [ �̂ j x 2 Dm!g:Thene�0 6��<e�1, : : : , e�n> oa-0�!0 = let !0n = antagonise (destroys ��)!0(!n; e�n) = e�n oa-0�!0n...(!0; e�0) = e�0 oa-0�!1in (!0; !0 e�0 6��<e�1, : : : , e�n> !0):If the application is potentially recursive, control might 
ow back to thesame program point. In this case, all values in registers will be destroyed,and they will have to be reloaded after the call. Therefore the informationabout which registers each variable is hostile to is of no relevance to program132



points before the application, and the !-information for each variable is resetto ? using the function unantagonise 2 
! 
:unantagonise ! = fx 7! ? jx 2 Dm! g;e�0 ��<e�1, : : : , e�n> oa-0�!0 = let !0n = unantagonise !0(!n; e�n) = e�n oa-0�!0n...(!0; e�0) = e�0 oa-0�!1in (!0; !0 e�0 ��<e�1, : : : , e�n> !0):The code for an expression that has an \at �"-annotation (i.e. a putpoint) will destroy the registers � da-at (section 7.11). Therefore, we intro-duce � oa-at 2 
! 
 to record this in !. A put point is also a use of theregion variable �, and this must also be recorded in !, hence the +oa :� oa-at ! = antagonise � da-at ! +oa �:Notice that � is added to ! after all the other variables in ! have beenantagonise 'd to � da-at. This is because � is used before the allocationtakes place; it need not be live across the code that does the allocation.The code for the put point (e�1, : : : , e�n) at � (p. 28) �rst allocatesmemory in � for the tuple. Then the sub-expressions e�1; : : : ; e�n are evaluated(in that order) and the results are stored in memory. Correspondingly, in thebackwards analysis, the sub-expressions are traversed in the order e�n throughe�1, and then � oa-at is applied to !:(e�1, : : : , e�n) at � oa-0�!0 = let (!n; e�n) = e�n oa-0�!0...(!1; e�1) = e�1 oa-0�!2! = � oa-at !1in (!; ! (e�1, : : : , e�n) at � !0):Other put points are treated similarly, e.g.:_c1 e�2 at � oa-0�!0 = let (!2; e�2) = e�2 oa-0�!0! = � oa-at !2in (!; ! _c1 e�2 at � !0):Only the put point �~y.K e�0at � is a bit di�erent. The code for it allocatesmemory for a closure, and stores the free variables of �~y.K e�0 at � in it. Thisconstitutes a sequence of uses of the free variables, which must be noted in! as if it were a sequence of normal uses of values:�~y.K e�0 at � oa-0�!0 = let fz1; : : : ; zng = DmK! = !0 +oa z1 +oa � � � +oa zn! = � oa-at !in (!; ! �~y.K e�0 at � !0):133



The !-analysis is a per-function analysis, so e�0 is not traversed.The expression letrec b1 � � � bm at � in e�m+1 is treated almost exactlythe same way; the di�erence is that the sibling name (p. 117) of the letrec-bound �'s should be removed from ! as if it were an x of a let-expression,and e�m+1 should also be traversed.In if e�0 then x else y control may 
ow through either x or y. Bothx and y must be considered live in the ! before the if-expression; i.e., theout-
owing ! from if e�0 then x else y oa-0 must tell that both x and yare live. Therefore the function toa to join the two !'s that result from thebranches is de�ned!1 toa !2 = fv 7! !1v [ !2v j v 2 Dm!1 [Dm!2g;and thenif e�0 then e�1 else e�2 oa-0�!0 = let (!2; e�2) = e�2 oa-0�!0(!1; e�1) = e�1 oa-0�!0!00 = !1 toa !2(!0; e�0) = e�0 oa-0�!00in (!0; !0 if e�0 then e�1 else e�2 !0):Notice that the in-
owing ! to both branches is the same.The expression casee�0 of c1 => e�1| : : : |cn => e�n|- => e�n+1 can be handledsimilarly, joining the !'s from the branches e�1; : : : ; e�n+1 with toa .When an exception is raised, control 
ows to the nearest enclosinghandle-expression, not to the context as usual. Hence, the in-
owing !to raise e�1 oa-0 is of no use. This in-
owing ! should be the join toaof the out-
owing !'s of the handlers that could handle a raised exceptionfrom this raise-expression. This would, however, complicate the !-analysiswith more !'s, and it would require a non-trivial control 
ow analysis todecide which handle-expressions control might 
ow to when an exception israised. To keep things simple, we choose to make a worse approximation:the in-
owing ! to a raise-expression is ?:raise e�1 oa-0�!0 = let (!; e�1) = e�1 oa-0�?in (!; ! raise e�1 ?):With this, the central aspects of the !-analysis have been covered.8.2 Temporary valuesIn this and the following 8 sections, we carry on the development of thetranslation � ra from where we stopped in chapter 6 with the de�nitionof let x = e1 in e2 ra . In that chapter, e ra took a � as an argumentand returned a resulting �, but actually it takes and returns a pair (�; ")containing � and a per-function environment " (p. 125). I.e., withm = ��e� ra 2 E !m! (m� �? �b):134



The code for e1 o e2 has the form�1 := code to evaluate e1 ; �2 := code to evaluate e2 ; o o-prim �1�2� ;where o o-prim �1�2� translates the primitive operator o to instructions thatcompute the result from �1 and �2 and put it in �:+ o-prim �1�2� = � :=�1 +�2- o-prim �1�2� = � :=�1 {�2:= o-prim �1�2� = m[�1 +0] :=�2:Thus, � for e1 o e2 is� = ��: �&: �1�1& ; �2�2& ; o o-prim �1�2� ;and the register allocation has this forme1 o e2 ra (�; ") = let ((�; "); �1; �1) = e1 ra (�; ")pick �1((�; "); �2; �2) = e2 ra (�; ")pick �2� = ��: �&: �1�1& ; �2�2& ; o o-prim �1�2�in ((�; "); ?register; �):When choosing �1, we have the following (not always compatible) goals:1. To allow the result of e1 to stay in �1 across the code for e2, avoidregisters that are known to be destroyed by e2, i.e., avoid the registerse2 da "� (section 7.11).2. To avoid register-to-register moves, prefer the natural destination reg-ister, �1, of e1.3. Aim at the previously discussed four general objectives (p. 85).Thus, we can pick �1 with choose ?�1 � e2 da "��!01�, where !01 is the !-information after e1, the point where the temporary value is de�ned. (Checkthe speci�cation of choose , p. 87.)When choosing �2, there are no registers that should preferably not bechosen; instead there is a register that must not be chosen, viz. �1. Thus, wecan pick �2 with choose f�1g�2?!02�, where !02 is the !-information after e2.After choosing �1 and �2, we must also record in the descriptor thatthey contain new values. An auxiliary function, new-tmp, similar in spirit to� def (p. 88), does this: new-tmp �̂��a!(�; ") chooses a register in the sameway choose �̂��a!� does, but also returns an updated � and ". Summing up,pick �1 should be((�; "); �1) = new-tmp?�1 � e2 da "��!01(�; ");135



and pick �2 should be((�; "); �2) = new-tmp f�1g�2?!02(�; "):If �1 is destroyed by the code for e2, it must be preserved around thatcode.Assume kill-tmp � checks whether the value that was last new-tmp'ed hasbeen thrown out of its register, and returns a preserver p 2 z ! z of thattemporary. The idea is that if � is the code that destroys the register �containing the temporary value, then p� is the same code, except that itdoes not destroy �. Thus, if the temporary value that was last new-tmp'edhas been thrown out of its register �, the preserver will bep� = �(&e; &p): push � ; �(&e; &p + 1) ; pop �:Otherwise, the preserver does nothing:p� = �:kill-tmp � must also record in � that � again contains the temporary value.Thene1 o e2 ra (�; ") = let ((�; "); �1; �1) = e1 ra (�; ")((�; "); �1) = new-tmp?�1 � e2 da "��!01(�; ")((�; "); �2; �2) = e2 ra (�; ")((�; "); �2) = new-tmp f�1g�2?!02(�; ")(�; p2) = kill-tmp �(�; p1) = kill-tmp �� = ��: �&: �1�1& ; p1(�2�2)& ; o o-prim �1�2�in ((�; "); ?register; �):The �rst kill-tmp � corresponds to the new-tmp for �2; since �2 cannot havebeen destroyed, the preserver p2 will not do anything, and we ignore it. Thesecond kill-tmp � corresponds to the new-tmp for �1; the preserver, p1, itreturns is used to save �1 across �2�2. Notice that this way of treatingtemporary values is only possible because live ranges of temporaries happento be nested inside each other.Intuitively, new-tmp marks the beginning of the live range of a temporary,and the corresponding kill-tmp marks the end. For instance, the new-tmpfor �1 is between e1 ra and e2 ra because the live range of the result of e1starts between the code for e1 and that for e2.Notice how new-tmp and kill-tmp correspond closely to � def (p. 88)and � kill (p. 104), respectively. Their implementation is explained in thenext section.Expressions e1 o e2 do not have a natural destination register. If wereturned, say, �2 as the natural destination register, the context would be136



more inclined to choose �2. This would be unfortunate, since �2 mightcontain a value worth preserving. For instance, choosing �2 to hold theresult of a+b in the expression (a+b)-b would evict b from its register andnecessitate a reload of b to compute the subtraction.A remark on notation: Some meta-functions have discouragingly manyarguments, but many arguments can be ignored. As � records the currentstate of the registers, it is passed to and returned from almost every meta-function. The 
ow of �'s is only non-trivial where control 
ow is not linear,e.g., in if-expressions. You can also ignore the environment ", which ispassed to and returned from any meta-function that may need to access orupdate the inter-procedural information, e.g., the set "�� of registers that willbe destroyed by �cur:, or the linking conventions map "d. The �̂-argument isalways a set of registers that must not be chosen. The �-argument is alwaysa register that should preferably be chosen. The �a-argument is always a setof registers that should preferably be avoided. The !-argument is alwaysthe !-annotation at the appropriate program point. These arguments aresupposed to ultimately end up as arguments to choose , and can to a wideextent be ignored. The arguments �̂, �, �a, !, and (�; ") are always passedin that order.8.3 The descriptor �Having explained the treatment of temporaries, we are now in a position toexplain precisely what a descriptor � is, and how exactly the operations ondescriptors work. This explanation can be skipped, as it should be possi-ble to comprehend the rest of the development of the translation with onlyan intuitive understanding of how the descriptor � and, e.g., new-tmp andkill-tmp works.The descriptor has the form� = ��v ; �t ; �d� :The component �d 2 � ! D maps each register to a description of itscontents. The descriptions D areD ::= W j �W ::= V j ?dV ::= Z j clos j retZ ::= X j Y j F j p j A:(The set V of values is recalled from section 6.3.) If �d� = v 2 V , then �contains the value v; if �d� = ?d, then � contains an unnamed value (eithera temporary value or a dead value); otherwise, �d� = �, meaning that � hasnot been touched yet.If a value bound directly within �cur: is loaded (p. 103), its producer mustpreserve it. We record in �v � V the set of values bound directly within �cur:137



that are loaded. Therefore, v has-been-loaded �, which records in � that v isloaded, is de�ned:v has-been-loaded ��v ; �t ; �d� = ��v [ fvg; �t ; �d� :And v kill ��, which checks whether v is loaded according to � andreturns a preserver of �, is de�ned:v kill ���v ; �t ; �d� == (��v �fvg; �t ; �d� ; if v 2 �v then preserve � else don't )preserve � = ��: �(&e; &p): push � ; �(&e + fx 7! &pg; &p + 1) ; popdon't = ��: � :See let x = e1 in e2 ra (p. 104) for an example of a use of v kill.The live ranges of temporary values are nested inside each other such thatthe currently live temporaries can be kept on a stack: when a temporary valueis introduced in � (e.g., using new-tmp) it is pushed on this stack; when it iskilled (using kill-tmp), it is popped. The function kill-tmp returns a preserverof the register containing the temporary, hence we must also keep a preserverwith each temporary on the stack. More speci�cally, using P = z! z for theset of preservers, �t 2 (�� (W �P ))� is a stack of currently live temporariesof the form � 7! (w; p), meaning that the register � contains the temporaryvalue w and is preserved by p.We use � +t � to introduce the value in � as a temporary. The temporaryvalue is the value �d� currently in �, and the preserver should initially notsave �; thus � +t � should push � 7! (�d�; don't ) on �t :��v ; �t ; �d� +t � = ��v ; (� 7! (�d�; don't )) � �t ; �d� ;where � is de�ned t � (t 1; : : : ; tm) = (t ; t 1; : : : ; tm).Whenever a � containing a temporary value is destroyed, we must changeits preserver topreserve-tmp � = ��: �(&e; &p): push � ; �(&e; &p + 1) ; pop �:(Compare with preserve � above.) We use �� �t to change the preserver of� if � occurs in �t , i.e.,�� ��1 7! (w1; p1); : : : ; �i 7! (wi; pi); : : : ; �m 7! (wm; pm)�= ��1 7! (w1; p1); : : : ; �i 7! (wi; preserve-tmp �i); : : : ; �m 7! (wm; pm)� ;if � = �i and � 6= �j for all j < i; if � does not occur in �t , �� �t = �t .We use kill-tmp � to pop the topmost temporary and return its preserver:kill-tmp ��v ; (�1 7! (w1; p1); : : : ; �m 7! (wm; pm)); �d� == (��v ; (�2 7! (w2; p2); : : : ; �m 7! (wm; pm)); �d + f�1 7!w1g� ; p1);138



Notice that kill-tmp sets �d to map � to the temporary value, implicitlyassuming that the caller of kill-tmp will ensure that � is preserved, i.e., thatp1 is used appropriately.The basic operation of the register allocation is to assign some value wto a register �. ra (� 7! w)(�; ") yields (�1; "1) that records that w has beenassigned to �. ra must do three things: 1� the register descriptor �d must beupdated to map � to w (i.e., �d1� = w); 2� if � contained a temporary beforethis assignment to �, we must take measures to preserve � (i.e., �t1 = �� �t);3� for the bene�t of the inter-procedural part of the register allocation wemust record that � will be destroyed by the code for �cur: (i.e., � 2 "1 ��):(remember " has the form �(�;��); �cur:�)ra (� 7! w)(��v ; �t ; �d� ;�(�;��); �cur:�) == (��v ; �� �t ; �d + f� 7! wg� ; �(�;�� [ f�g); �cur:� ):These were the basic operations on �. We now explain some auxiliaryfunctions that use them.The translation e ra returns the code � for e along with a natural des-tination register �. If � is not ?register, this has the interpretation \the codeputs the result of e in �; if you choose a di�erent destination register �, amove instruction will be inserted".This move from � to � should be re
ected in �. To update �, we de�nethe functionmove such that move ��(�; ") yields (�0; "0) where �0 records that� contains the same value as � does:move ?register �2(�; ") = ra (�2 7! ?d)(�; ")move �1�2(�; ") = ra (�2 7! �d�1)(�; "):The function new-tmp is used to �nd a temporary register in the situationsketched above, i.e., given a natural destination register �. It uses choose topick a register �; move to record in � the potential copying of � to �; and� +t � to record in � that �, from this point on contains a temporary value:new-tmp �̂��a!(�; ") = let � = choose �̂��a!�(�; ") = move ��(�; ")� = � +t �in ((�; "); �):Often a temporary value is kill-tmp'ed right after it has been new-tmp'ed,viz. when its live range does not extend across the code for any sub-expres-sion. Therefore, we introduce the shorthand tmp-tmp:tmp-tmp �̂�!(�; ") = let ((�; "); �) = new-tmp �̂�?!(�; ")(�; p) = kill-tmp �in ((�; "); �):(The preserver p will be don't because the temporary value cannot have beenevicted.) 139



8.4 Allocating regionsThe code for letregion %:? in e1 is (p. 31)�� := letregion ; �1 := code to evaluate e1 ; endregion:Aside from the allocation and deallocation, a letregion-expression islike a let-expression: Both de�ne a variable in the sub-expression, and the �of the letregion-expression is treated no di�erently than the x of the let-expression. For instance, if � is loaded in e1, it must be pushed on the stackaround the code for e1:�� := letregion ; push �� ; �1 := code to evaluate e1 ; pop ; endregion;if � is not loaded in e1, just delete push �� and pop.The � and " are always passed together so we shall use � to stand for(�; "). As usual, �� then denotes the �-component of �, and �D denotes theD-component of the �-component of �, etc.When doing register allocation, we must record in (the �-component of)� that � := letregion destroys the set, �̂letregion, of registers, and endregion theset �̂endregion. This is done with wipe , de�nedwipe �� = ra (� 7! ?d)�wipe f�1; : : : ; �kg� = wipe �1(� � � (wipe �k�) � � � ):Here follows letregion %:? in e1 ra . Explanations are below.letregion %:? in e1 ra � =let � = wipe �̂letregion�(�; ��) = %:? def?�letregion!1�(�; �1; �1) = e1 ra �(�; p�) = %:? kill ���(�; �t) = tmp-tmp �̂endregion�1!0�� = wipe �̂endregion�� = ��: �&: let �0 = if � 2 �̂endregion then �t else � in�� := letregion ; p�(�1�0)(&e; &p + nr:d:) ; endregion ;h� :=�0iin (�; ?register; �);where !1 is the !-information before e1, and !0 is the !-information after thewhole letregion-expression. nr:d: is the number of words that �� := letregionpushes on the stack, i.e., the size of a region descriptor (with the implemen-tation sketched in section 3.2, nr:d: is 4). The sub-expression e1 gets a stackshape that is nr:d: words bigger than the stack shape of its context.Notice the resemblance with let x = e1 in e2 ra. The wipe �̂letregion�is �rst, because �� := letregion is the �rst instruction in the code. Then a140



register for the region variable is found using %:? def , exactly as if %:? werea let-bound x. The letregion-instruction will preferably return the pointerto the region in the register �letregion. Therefore we pass �letregion to %:? defas the preferred register for %:?, hoping to avoid a move instruction. Thewipe �̂endregion� is last because endregion is last in the code.We tacitly extend functions that take and return a � (e.g., %:? kill ��)to take and return a �. Thus %:? kill ��� stands for � %:? kill ����; �"�.Why is it necessary to have the temporary register �t? The result of theletregion-expression is the result of e1, hence the result of e1 must be insome register �0 at the end of the code for the letregion-expression. This�0 must be chosen such that it is not destroyed by the endregion after thecode for e1, i.e., we must choose �0 such that �0 62 �̂endregion. But it is thecontext of letregion %:? in e1 that decides the destination register, andthe context does not know that it must not choose a register in �̂endregion,and hence, we cannot simply apply �1 to the register to which � is applied;we must take measures to ensure that the result of e1 is preserved acrossendregion. Thus �t is needed to hold the value across endregion. If �, theregister to which � is applied, happens not to be destroyed by endregion, wecan avoid using �t, and hence, avoid the move instruction � :=�0|but noticethat the tmp-tmp is never avoided, and thus �t always appears (in �) to bechanged, even when it is not.We could have a concept of registers that must not be chosen as destina-tion registers, and return this set together with a � as the translation of anexpression. Then we could demand that a � never be applied to a registerin this set. The letregion %:? in e1 is, however, the only construct whosecode does not compute the result as the last thing, and this single constructdoes not warrant such a complication of the whole algorithm.The code for letregion %:i in e1 is (p. 32)�sp :=�sp + i I!i ;�1 := code to evaluate e1 ;�sp :=�sp { i I!i:Here the region variable is treated di�erently from a let-bound variablein two respects: (1) It is not automatically in a register at the entry to thecode for the sub-expression, because the region is allocated by just changingthe stack pointer. A let-bound x is automatically in a register, because itis the result of an expression, and a letregion-bound �� with unknown sizeis automatically in a register, because the � := letregion-instruction assignsit to �. (2) It is not necessary to explicitly store a pointer to a region withknown size, since it can always be found at a statically known o�set on thestack. Therefore, the pointer to the region need not be saved on the stack,although it is spilled in e1, and we need not reserve a register to hold it. Notethat this does not mean that %:i will never reside in a register|if it �rst getsloaded to a register, it might stay there till the next time it is needed.We keep track of the place of a region on the stack the same way we keep141



track of variables that are saved on the stack (section 6.12): by recording inthe environment, &e, the current (compile-time) stack pointer, &p, when %:iis allocated on the stack. (So &e�� = i can mean two very di�erent things! If�� has the form %:? or %: , it means the same as &ex = i: that �� is a variableloaded in e1, and can be found on the stack at position i. If �� has the form%:i, it means that the region itself can be found on the stack at position i.)letregion %:i in e1 ra � =let (�; �1; �1) = e1 ra �� = ��: �(&e; &p): �sp :=�sp + i I!i ;�1�(&e + f(%:i) 7! &pg; &p + i) ;�sp :=�sp { i I!iin (�; �1; �):8.5 De�ning and using valuesVariables are de�ned by the constructs let x = e1 in e2, letregion %:? in e1,letrec b1 � � � bm at � in em+1, and exception a in e2. In these cases,v def �!� is used to �nd a register for v and update � accordingly:v def �̂�!� = let �v = choose �̂�(!v)!�� = ra (�v 7! v)�in (�; �v):We discussed how to translate a use of a let-bound x on p. 102. Now wegeneralise this to uses of any value v.If v is not in a register, we must reload it (remember that v is in �vaccording to � i� �d�v = v):v use �̂�!� =if 9�v 2 Dm�d : �d�v = v then (�; �v ; ��: �&: h� :=�vi)else v load �̂�!�:The way v must be loaded depends on its kind. If v is a free variablein �cur:, it is loaded from the closure: (We explain code after it has beenpresented.)v load �̂�!� =if v 2 DmK thenlet (�; �clos; �clos) = clos use �̂?register !�(�; �v) = v def �̂�!��v = ��: �&: �clos�clos& ; �v :=m[�clos+Kv] ; h� :=�viin (�; �v; �v)else � � � 142



Here K is the closure representation annotated on �cur: (= ��cur:). v is a freevariable of �cur: i� v 2 DmK.To fetch something from the closure, we need clos. Since clos is a valuelike any other, it can be obtained with clos use.After that, a register, �v, is chosen for v and � is updated accordinglyby v def|intuitively a point in the code where a value is loaded is like a\def" of that value.Thus, the code to fetch v consists of code �clos�clos that ensures �clospoints to a tuple of the free variables, and then code �v :=m[�clos+Kv] thatfetches v from its o�set, Kv, in this tuple.If v is a region variable with known size, i.e., v has the form %:i (and itis not a free variable in �cur:), it is allocated on the stack at an o�set thatcan be computed at compile-time as follows. If & = (&e; &p) is the currentstack shape, i.e., &p is the current (compile-time) stack pointer, and &e(%:i)is the stack o�set where %:i resides, then the address of the region can becomputed at run-time by subtracting &p � &e(%:i) from �sp:else if 9(%:i) : v = %:i thenlet (�; �v) = %:i def �̂�!��v = ��: �(&e; &p): �v :=�sp { &p � &e(%:i) I!i ; h� :=�viin (�; �v; �v)else � � �Again, this use of %:i is conceptually a \def" of the value, hence the %:i def .If v is sibling name f (p. 117), and f is the same as the sibling nameof �cur:, i.e., if �cur: has the form f~�� ~y = Ke0 and f 2 f , then f is actuallyan access to the shared closure built for �cur:. This shared closure is clos,hence: else if v = f ^ ��cur: = (f~�� ~y = Ke0) ^ f 2 fthen clos use �̂�!�else � � �To see that this special case is not an ungraceful, ad hoc optimisation, con-sider the example letrec f y = y+f v at r1 in f 117.To evaluate this expression a closure containing v is built and passed to f.At the recursive call, the function must pass the closure to itself. The specialtreatment given to sibling accesses ensures that this is done by simply leavingclos (=f) in its register. If we did not take care of this special case, we wouldhave to regard f as a free variable, which is unnatural, and fetch it from theclosure at each recursive call, which is less e�cient.Finally, if none of the situations above apply, v must be bound in �cur:; itwill be accessible on the stack, and &ev gives the stack o�set where it resides:143



else let (�; �v) = v def �̂�!�� = v has-been-loaded ��v = ��: �(&e; &p): �v :=m[�sp { &p � &ev I!i] ; h� :=�viin (�; �v; �v):As always, the reload of v corresponds to a \def". The stack o�set from whichto fetch v is computed exactly like the stack o�set of a region on the stack iscomputed. The only new thing is that we must record in � that v is loaded,such that when the producer of v is translated, it will generate code to pushv and record in &e the stack o�set of v (recall that, e.g., let x = e1 in e2 isthe producer of x; compare with the translation of that expression, p. 104).Because we regard function parameters (clos, ret, the arguments y1 ; : : : ;yn, and the region arguments ��1; : : : ; ��k) and exception constructors as boundvalues, the algorithm above also caters for these.8.6 Put pointsThis section explains register allocation of put points by developing the trans-lation of the tuple construct. The code for (e1, : : : , en) at � is (p. 28):�t := the address of n new cells in � ;�1 := code to evaluate e1 ;m[�t + 0 I!i] :=�1 ;...�n := code to evaluate en ;m[�t + n� 1 I!i] :=�n ;� :=�t:
(�)

An address of the consecutive memory cells supposed to hold the tuple is putinto �t (with �t := the address of n new cells in � , which has been explainedpreviously (p. 33)), and then the values of the tuple are stored at o�sets 0through n� 1 from �t.This way of viewing the code to put data in a region is not entirelycorrect. If the region has known size, it will be allocated on the stack, andin some cases (to be made more precise below) it is not necessary to have anexplicit pointer to the region in a register. Instead, the location of the regionis represented by its o�set from the stack pointer, which (in those cases) isknown at compile-time. In such a case, the code for (e1, : : : , en) at � willbe
144



�1 := code to evaluate e1 ;m[�sp + stack o�set of � + 0 I!i] :=�1 ;...�n := code to evaluate en ;m[�sp + stack o�set of � + n� 1 I!i] :=�n ;� :=�sp + stack o�set of � : (��)
The di�erences between the two code fragments are:1. the register in the store instructions (the indexing register): a tempo-rary, �t, in (�); the stack pointer, �sp, in (��);2. the code to allocate n words in �: �t := the address of n new cells in �in (�); nothing in (��);3. the o�set from the indexing register: 0 in (�); stack o�set of � in (��).We factor the similarities in allocating in a region into an auxiliary function� ra-at. � ra-at n�a!� will return (�1; ��; �; o), where1. �� is either some temporary register, �t, to point into the region or itis �sp.2. � is code to allocate n words in �. It is abstracted over a stack shape,because it might be necessary to access � on the stack.3. o is a function that gives the o�set that should be added to the indexingregister, given & and the o�set i into the newly allocated area. If theregion is on the stack, e.g., at o�set �7 (remember the k stack growsupwards), o&3 will yield �4, the o�set from �sp to acces the 3rd wordin the region (counting from 0). If the region is not on the stack, o&3will yield 3.

43210 3 = o&3
43210 �7�4 = o&3regionon stack

�sp:
heapregion�t: 145



The �a-argument to � ra-at is a set of registers that �� should preferablynot be chosen among. The value in �� must be preserved across the code forthe sub-expressions e1; : : : ; en, hence, �� should preferably not be chosenamong the set of registers that e1; : : : ; en are known to destroy. This setcan be computed by the analysis � da described in section 7.11, i.e.,�a = e1 da �� [ � � � [ en da ��:(Remember � has an "-component which has an �-component.)Using � ra-at, the translation of (e1, : : : , en) at � can be writtengenerally:(e1, : : : , en) at � ra � =let �a = e1 da �� [ � � � [ en da ��(�; ��; �; o) = � ra-at n�a!1�(�; �1; �1) = e1 ra �(�; �1) = tmp-tmp f��g�1!01�(�; p1) = kill-tmp �� = � +t ��
9>>>>=>>>>;process e1...(�; �n; �n) = en ra �(�; �n) = tmp-tmp f��g�n!0n�(�; pn) = kill-tmp � 9>=>;process en� = ��: �&:�& ;p1 (�1�1)& ; m[��+ o&0] :=�1 ;...pn(�n�n)& ; m[��+ o&(n� 1)] := �n ;h� :=��+ o&0i� = if �� = �sp then ?register else ��in (�; � ; �);where !0j is the !-information after ej , and !1 is the !-information beforee1. The results of the sub-expressions are stored into the tuple right afterthey have been computed, so the registers �1; : : : ; �n hold temporary valuesthat are not live across any sub-expression, and hence they are obtained usingtmp-tmp. As it must be ensured that �� is not accidentally chosen as one of�1; : : : ; �n, the set of registers that must not be chosen by tmp-tmp is f��g.The indexing register, ��, must be preserved across any sub-expressionwhose code destroys that register. This is done the same way �1 was pre-146



served across the code for e2 in e1 o e2 ra (section 8.2): If the code for ejdestroys ��, the corresponding preserver pj returned by kill-tmp � will takecare of saving �� across the code for ej . After each kill-tmp (except the last),�� is reinstalled as a temporary register using � +t ��.The optional add instruction h� :=�0+ �i is de�nedh� :=�0+ �i = if � = 0 then h� :=�0i else � :=�0+ �:If the code for (e1, : : : , en) at � has the form (�), h� :=��+ o&0i will beh� :=�t +0i, i.e., h� :=�ti, and hence �t is a natural destination register. Ifthe code has the form (��), h� :=��+ o&0i will be � :=�sp + stack o�set of � ,and there will be no natural destination register.Now the auxiliary function � ra-at is discussed. As mentioned above,we want to give special treatment to a known-size region when it can bedetermined at compile-time that it will always reside at a speci�c o�set fromthe stack pointer. Considerletregion r666:2 in let x = (�y.(3,33) at r666:2) at r1:?in x(letregion r999:2in x((6,69) at r999:2))At the two applications of x, the pair (3,33) must be stored at di�erento�sets from the stack pointer, because r666:2 is on the top of the stack atthe outer application, while r999:2 is above r666:2 at the inner application.Generally, regions that are created before �cur: is applied (as r666:2 iscreated before x is applied) do not usually have �xed o�sets from the stackpointer from the point of view of the code for �cur:. On the other hand,regions that are created after �cur: is applied have �xed o�sets from thestack pointer that can be decided at compile-time. The latter regions areexactly the regions bound to region variables by expressions of the formletregion %:i in e1 directly within �cur:, i.e., %:i's that are not free vari-ables of �cur:.In summary, if � has the form %:i and is not a free variable of �cur:, thecode to put data in the region bound to � is (��): �� is �sp and the code, �, toallocate is �. This is the then-branch in %:i ra-at below. In all other cases,i.e., when � is a free variable of �cur: (the else-branch in %:i ra-at below) orhas the form %:? or %: (the other case for � ra-at), the code to put datain the region bound to � is (�): �� is some �t, and the code, �, to allocate is�t := the address of n new cells in � . The form of this code depends on theform of �; this was explained on p. 33.
147



%:i ra-at n�a!� =if (%:i) 62 DmK then let � = �&: �o = �&: �i: i� j&p � &e(%:i)j I!iin (�; �sp; �; o)else let (�; ��; ��) = %:i use??register !�(�; �t) = new-tmp ?���a!�� = ����o = �&: �i: i I!iin (�; �t; �; o):where K is the closure representation annotated on �cur: = ��cur: . (%:i) is afree variable of �cur: i� (%:i) 2 DmK. If an indexing register, �t, is necessary,it is chosen with new-tmp , and the preferred choice is ��, the register chosenby � use to hold the region variable.When � has the form �� 2 f%:?; %: g:�� ra-at n�a!� =let (�; ��; ��) = �� use?�atarg.!�� = wipe �̂at�(�; �t) = new-tmp ?�atres.�a!�� = �&: ����& ;if 9% : �� = %:?then �t := at �� : n I!ielse if ��.lsb then �unknown else �known ;�known : h�t :=��i ; goto �� ;�unknown : �t := at �� : n I!i ; goto �� ;�� : �o = �&: �i: i I!iin (�; �t; �; o);where the labels are fresh.We tell � use to preferably put �� into �atarg., the register in which the�1 := at �2 : �-instruction prefers its argument. (Remember this instructionmay be implemented on the concrete machine as a sub-routine; then �atarg. isthe register in which this sub-routine takes its argument.)Although the instruction �t := at �� : n I!i might not be executed, wemust conservatively assume that it is and set � = wipe �̂at�. The indexingregister �t is chosen with new-tmp, and we prefer that new-tmp chooses thepreferred result register �atres. of the �1 := at �2 : �-instruction.148



8.7 Control 
ow forksThe code for case e0 of Sex => e1|Drugs=> e2|-=> e3must evaluate e0 to get the constructed value, fetch the constructor fromthis, and, according to what this is, jump to code that evaluates either e1,e2 or e3 (p. 31): �0 := code to evaluate e0 ;�c :=m[�0 +0] ; (fetch constructor)if �c= Sex C!i then �1 else ��1 ;��1 : if �c= Drugs C!i then �2 else ��2 ;�1 : � := code to evaluate e1 ; goto �� ;�2 : � := code to evaluate e2 ; goto �� ;��2 : � := code to evaluate e3 ; goto �� ;�� : � :The forking of control 
ow must be taken into account when process-ing the descriptors �, or else they will contain wrong information. For theexample, the �'s must 
ow as illustrated here:
�1

�00
�2 �3

��e0 if
if
e1

e2
e3

�0
�00�0

Boxes are code. Edges indicate control 
ow and the corresponding \
owof �'s": �1 is the � resulting from the register allocation of e1, etc. Theif -code does not destroy any registers, so actually �0 = �00. We must decidewhat the descriptor, ��, at the point where the control 
ow paths meet shouldbe: If �0, has been destroyed according to one of the �j 's, then �0 must bemarked as destroyed in ��. If two branches have put di�erent values in �0, then149



we mark �0 in �� as containing some unde�ned value. We denote by �1 u� �2a � that will \agree with" �1 and �2; how u� works is described below.2666426664case e0 of c1 => e1|...cn => en|- => en+13777537775ra(�; ") =let ((�; "); �0; �0) = e0 ra (�; ")((�; "); �0) = tmp-tmp ?�0!00(�; ")((�; "); �c) = tmp-tmp ??register !00(�; ")((�1; "); �1; �1 ) = e1 ra (�; ")...((�n+1; "); �n+1; �n+1) = en+1 ra (�; ")� = �1 u� � � � u� �n+1� = ��: �&: �0�0& ; �c :=m[�0 +0] ;if �c= c1 C!i then �1 else ��1 ;��1 : if �c= c2 C!i then �2 else ��2 ;��2 : ...��n�1 : if �c= cn C!i then �n else �n+1 ;�1 : �1 �& ; goto �� ;�2 : ...�n+1 : �n+1�& ; goto �� ;�� : �in ((�; "); ?register; �):where !00 is the !-information at the program point after e0, and all labelsare fresh. The result of e0 is used right away; it is not live across any sub-expressions, so tmp-tmp will do to �nd a register, �0, to hold it temporarily.Likewise with �c. By simply applying all �i's to � we force all branches toput the result in the same register.The details of meeting �'sTo understand the following, you must have read section 8.3. De�ne u� by��v1 ; �t1; �d1� u� ��v2 ; �t2; �d2� = ��v1 uv �v2 ; �t1 ut �t2; �d1 ud �d2� :The set of values that are loaded in �1 u� �2 is the union of the sets ofvalues that are loaded in the two �'s:uv = [:The register descriptor �d1 ud �d2 maps each register to a value if both �d1and �d2 map it to that value; otherwise that register is mapped to ?d:�d1 ud �d2 = ��: �d1� uD �d2�d1 uD d2 = if d1 = d2 then d1 else ?d:150



Live ranges of temporaries respect the structure of the source language inthe sense that temporaries are always kill-tmp'ed in the register allocation ofthe same expression that it was new-tmp'ed. If a branch in a case-expressionpushes a new temporary on the stack of temporaries it will also pop it again.Therefore, the stacks of temporaries in �1 and �2 have the same size, and theregisters and the temporary values are the same. Only the preservers may bedi�erent, since one branch may destroy a register the other leaves untouched.If � should be preserved in �t1 or �t2, it must also be preserved in �t1 ut �t2:��1 7! (w1; p1); : : : ; �m 7! (wm; pm)�ut ��1 7! (w1; p01); : : : ; �m 7! (wm; p0m)�= ��1 7! (w1; uP�1p1p01); : : : ; �m 7! (wm; uP�mpmp0m)� ;where uP�pp0 = if p 6= p0 then preserve-tmp � else p:8.8 Boolean expressionsBoolean expressions can be translated like any other kind of expression. Butgenerating code that evaluates the expression and puts the result (true orfalse) in a register is not necessary when the resulting Boolean value is onlyused to decide which of two branches to evaluate.The expression if b andalso i<=j then 3 else 666is a derived form (Milner et al., 1990) ofif (if b then i<=j else false) then 3 else 666.If we did not want to treat Boolean expressions specially, we could simplyregard true and false as constructors and if e0 then e1 else e2 as aderived form of case e0 of true => e1|- => e2 (as does indeed the de�nitionof SML). The expression would then be a derived form of the expressioncase (case b of true => i<=j | - => false) oftrue => 3 | - => 666,and the code for this expression would, according to the discussion in theprevious section, be as in �gure 37 (i).
151



if �b =1 then �1 else �4 ; if �b =1 then �1 else �7 ;�1 : if �i � �j then �2 else �3 ; �1 : if �i � �j then �6 else �7 ;�2 : �1 := 1 ;goto �5 ;�3 : �1 := 0 ;goto �5 ;�4 : �1 := 0 ;�5 : if �1 =1 then �6 else �7 ;�6 : � := 3 ; �6 : � := 3 ;goto �8 ; goto �8 ;�7 : � := 666 ; �7 : � := 666 ;�8 : � �8 : �(i) naive translation (ii) \right" translationFig. 37. (i) The generated code if if-expressions are treated as case-expressions. True is represented as 1 and false as 0. (ii) This code avoidsexplicitly representing the Boolean result from the sub-expressions i<=jand if b then i<=j else false.The central idea to avoid the unnecessary manipulation of run-time rep-resentations of Boolean values is not to translate a Boolean expression intocode � that accepts a register, but rather into a selector � that accepts apair of labels (�; ��) and returns code that evaluates the Boolean expressionand jumps to � if the result is true and to �� if it is false: � 2 � = (i� i)! z.(Compare this with � 2 b = �! z.)We change the translation function to translate a Boolean expression intoa � 2 � while expressions of other types are still translated into a � 2 b. Inother words, we introduce � 2 T ::= � j b, and then instead of� ra 2 E !m! (m� �? �b)we have � ra 2 E !m! (m� �? � T):The code for e1 <= e2 should jump to one of two labels according to whatBoolean value the expression evaluates to:�1 := code to evaluate e1 ; �2 := code to evaluate e2 ;if �1 � �2 then � else ��:Compare this with the code for e1 + e2 (section 8.2):�1 := code to evaluate e1 ; �2 := code to evaluate e2 ; + o-prim �1�2� ;where + o-prim �1�2� = � :=�1 +�2:We de�ne <= o-prim and = o-prim analogously:<= o-prim �1�2(�; ��) = if �1 � �2 then � else ��= o-prim �1�2(�; ��) = if �1 = �2 then � else ��:152



Notice how o o-prim �1�2 is a function of a pair of destination labelswhen o is a conditional operator, and a function of the destination registerwhen o is not a conditional operator. (The translation of = works becausewe only allow = on values that can be represented in one word (p. 2).)Having factored the individual properties of the operators into the func-tion � o-prim, the translation e1 o e2 ra can be stated generally for alloperators (Boolean as well as others). It is the same as in section 8.2 exceptthat we use � instead of � to indicate that what was previously always a �now might also be a �, and � 2 � = � [ (i� i) instead of � where eithera register � or a pair (�; ��) of labels may appear:e1 o e2 ra � = let (�; �1; �1) = e1 ra �(�; �1) = new-tmp ?�1 � e2 da ���!2�(�; �2; �2) = e2 ra �(�; �2) = tmp-tmp f�1g�2!02�(�; p1) = kill-tmp �� = ��:�&: �1�1& ; p1(�2�2)& ; o o-prim �1�2�in (�; ?register; �):(The use of �1 rather than �1 and �1 rather than �1, etc. is deliberate: e1cannot be a Boolean expression; e1 ra will never return a �.)The code for the expressions true and false jump to the true label andthe false label, respectively:true ra � = (�; ?register; �(�; ��): �&: goto �);false ra � = (�; ?register; �(�; ��): �&: goto ��):For expressions that return a selector the natural destination register is al-ways ?register. (It really does not make sense to have a natural destinationregister for an expression that returns a selector, but it is convenient to de�nethat the natural destination register for such an expression is ?register.)The selector for the expression not e1 is obtained by swapping the labelsof the selector for e1:not e1 ra � = let (�; �1; �1) = e1 ra �in (�; �1; �(�; ��): �1(��; �)):To generate code for if e0 then e1 else e2 the Boolean expression e0 istranslated to a selector �. This is applied to labels � and �� that label thecode for the branches e1 and e2, respectively:
153



if e0 then e1 else e2 ra � =let ((�0; "); �0; �) = e0 ra (�; ")((�1; "); �1; �1) = e1 ra (�0; ")((�2; "); �2; �2) = e2 ra (�0; ")� = �1 u� �2� = ��:�&:�(�; ��)& ; � : �1�& ; goto �� ; �� : �2�& ; �� : �in ((�; "); ?register; �);where the labels are fresh.It is an important point that also the branches of the if-expression maytranslate to �'s. Consider the expression if (if 48<=i then i<=57 elsefalse) then i-48 else 0 (which in SML has the derived form if 48<=iandalso i<=57 then i�48 else 0).The branches of the inner if are translated to the �'s:�i<=57 = �(�; ��): �&: �57 := 57 ; if �i � �57 then � else ��;�false = �(�; ��): �&: goto ��And then the inner if-expression is translated to the following � that willgive code to jump to �, if i is between 48 and 57, and to �� otherwise:�if = �(�; ��): �&: �48 := 48 ; if �48 � �i then �i<=57 else �false ;�i<=57 : �57 := 57 ; if �i � �57 then � else �� ;�false : goto �� :The \: : : else �false : : : �false : goto ��" should, of course, be convertedto \: : : else ��". This is best done in an ensuing phase (section 9.1).Note that both branches of an if-expression must either translate to �'sor they must both translate to �'s.The branches of a case-expression can be translated to either �'s or�'s, as the branches of an if-expression can. So modify the translation ofcase e0 of c1 => e1| : : : |cn => en|- => en+1 in the previous section by replac-ing �1; : : : ; �n with �1; : : : ; �n, � with � , and � with �.Some Boolean expressions do not naturally translate to code that jumpsto labels: The constructs z, #i e2, # e2, and ! e2 naturally translate to �'s.Applications, e1~e2 and f~�~e2, also naturally translate to �'s, for we do notwant to have \Boolean functions" that return by jumping to one of two argu-ment labels. The code for letregion �� in e1 must end with code to deallo-cate the region �, therefore we cannot (easily) translate a letregion �� in e1into a selector, although e1 translates to one. So we require a letregion-expression to always translate to a �.If one of these Boolean expressions occur in a context that needs a �rather than a � (e.g. as e0 of if e0 then e1 else e2), the � must be converted154



to a �. This is done by generating code that checks what truth value the� computes and then jumps to the labels accordingly: coerce b!�(�; �; �)!0converts � to a � (assuming � is the natural destination register for �, and� is the appropriate environment, and !0 is the relevant !-information):coerce b!�(�; �; �)!0 = let (�; �) = tmp-tmp ?�!0�� = �(�; ��): �&: ��& ; if �=1 then � else ��in (�; ?register; �):Conversely, Boolean expressions may appear in contexts that want thecode for the expression to put the resulting value in a register instead ofjumping to labels. For instance in let b=a<=c in e, we want the result ofthe expression a<=c as a value in a register.If an expression is in a context that wants a �, but it translates to a �,the � must be converted to a �. The function coerce �!b gives a � that putsthe representation of true or false into the destination register according towhat the selector � chooses:coerce �!b(�; �; �) =let � = ��: �&: �(�; ��)& ; � : � := 1 ; goto �� ; �� : � := 0 ; �� : �in (�; �; �):The reason the approach encompasses the special treatment of Booleanexpressions this nicely is that �'s and �'s are so alike: Both are code ab-stracted over the destination; in the former case the destination is a destina-tion register, in the latter it is a pair of destinations in the program.With this way of translating Boolean expressions, the example from abovewill generate the code in �gure 37 (ii). A more sophisticated example thatshows the generality of the solution is the SML source language expressionif (b orelse (case d ofC1 � => truej C2 � => falsej C3 => true))andalso i<jthen 3 else 666 .
It is translated to the following code (after appropriate removal of super
uousjumps (section 9.1)):

155



if �b =1 then �3 else �1 ; (assuming 1 represents true)�1 : �k :=m[�d +0] ; (fetch constructor)if �k = C1 C!i then �3 else �2 ;�2 : if �k = C2 C!i then �5 else �3 ;�3 : if �i � �j then �4 else �5 ;�4 : � := 3 ; goto �6 ;�5 : � := 666 ;�6 : �:Comparison with other workTranslating Boolean expressions to \short-circuit code" is a commonplaceway of implementing them. The way we do it is closely related to Reynolds'(1995). His \selectors" are passed a pair of continuations instead of a pairof labels, but would probably in an implementation also use labels (to avoiduncontrollable code duplication). Unlike ours, his source language restrictsthe set of language constructs that can have Boolean type. In particular, hedoes not allow an if-expression as e0 of if e0 then e1 else e2. Consequently,he cannot treat andalso and orelse as derived forms of nested if-expressions;they must be treated explicitly.Like we do, the S-1 Lisp compiler of Brooks et al. (1982) achieves the\right" short-circuit translation of Boolean expressions without treating an-dalso and orelse explicitly. They also regard these as derived forms of if-expressions. They do not let the context pass labels (or continuations) to theif-expression. Instead they rely on preceding transformations on the sourcelanguage to transform an if-expression into one that will be translated to theright code. An if-expression occuring in e0 of if e0 then e1 else e2 willbe \pushed into" the branches e1 and e2, and that is the essential transfor-mation for the short-circuiting translation. Other transformations then takecare of the rest. (E.g., constant propagation handles the true introducedby the derived form of orelse.) (According to them, this way of translatingnested if's �rst appeared in (Steele, 1977).) The resulting code should be thesame as ours.SML/NJ's \Boolean idiom simpli�cation" (Appel, 1992,) accomplishesthe same e�cient translation for primitive Boolean expressions. E.g., if a<bthen e1 else e2 is translated to the same code by us and SML/NJ, but if aandalso b then e1 else e2 would not be translated e�ciently by SML/NJ.The existing back end for the ML Kit does the same \Boolean idiom simpli�-cation", but on a simple, RISC-like source language (Elsman and Hallenberg,1995).
156



8.9 Function applicationPassing parameters to functionsIn this sub-section, we discuss how to pass parameters to functions. Thisinformation is part of the linking convention. How the linking convention isdecided is dealt with in the next sub-section.At function applications, f~�~e2 and e1~e2, a closure, a return pointer, atleast one argument, and zero or more region parameters must be passed tothe applied function.When there are more parameters than registers, some parameters arepassed on the stack. In this case, it might be better to pass, e.g., parametersthat are not always used by the callee, on the stack. However, since thesituation where the number of parameters exceeds the number of availableregisters is rare, we will not invest any energy in doing this in a smart way.The space reserved on the stack for parameters is called a frame.Evaluating an argument will probably destroy more registers than eval-uating a region parameter. Each time a parameter that is to be passed in aregister is evaluated, the number of free registers decreases by one. Thereforearguments are evaluated �rst, so as few registers as possible will be occupied.Generating code for a function application becomes more di�cult if theclosure and the return label are eligible to be passed on the stack. To keepthings simple, we will always pass them in registers.As an example of how parameters are passed to a function, considerthe application e0<e1; e2; e3; e4; e5>, and assume that the calling conventiondictates that e1, e3, and e5 must be passed on the stack, while e2 and e4 arepassed in �2 and �4, respectively. Then the situation just before the jumpto the function will be as in this �gure: �2:�4: result of e2result of e4
return label�ret::

iframeresult of e5result of e3result of e1 closure�clos::
�sp: stack pointer

Fig. 38. Passing parameters to functions. iframe points to the frame; e1is passed in the frame at o�set 0, e3 at o�set 1, and e5 at o�set 2; e2and e4 are passed in �2 and �4; the closure (the result of e0) is passed in�clos:, and the return label is passed in �ret:.157



Deciding the linking conventionA linking convention comprises the necessary information to generate codefor an application, and for the entry and exit code for a function. This sectiondescribes what a linking convention is and when it is decided.A parameter convention is a� 2 � = I [ �:If � = i, the parameter must be passed on the stack at o�set i in the frame.If � = �, the parameter must be passed in register �.A calling convention is aC 2 CCC = (���� � �) [ f?ccg:If C = ?cc, we say the calling convention is undecided. The other possibilityis explained below.A returning convention is anR 2RRR = � [ f?rcg:If R = ?rc, we say the returning convention is undecided. The other possi-bility is explained below.A linking convention is a calling convention and a returning convention:L 2LLL = CCC �RRR:The linking convention is divided in a calling and a returning conventionbecause these are decided at di�erent points in the algorithm.Linking conventions are associated with equivalence classes �� of �'s.De�ne the linking convention for � to be the linking convention for the ��that contains �. De�ne the linking convention for an application e1�e2 to bethe linking convention for the �� that contains �.If the calling convention for � isC = (�clos:; (�1; : : : ; �n; �1+n; : : : ; �k+n); �ret:);with n � 1 and k � 0, � expects its closure, clos, in �clos:, the return label,ret, in �ret:, its normal argument yi in register/frame position �i, and anyregion argument �j in register/frame position �j+n.If the returning convention for � is R = �res:, � will return its result in�res:.The calling convention for an equivalence class, ��, is decided the �rsttime it is needed, i.e., the �rst time1. a � 2 �� is processed by � donode, or2. code is generated for an application where a � 2 �� may be applied.158



The second case can only occur at potentially recursive applications: at anapplication which is not potentially recursive, all �'s that may be applied willalready have been processed, because the call graph is processed bottom-up.In the �rst case, we choose a register for each parameter the same waywe choose a register for a value that is de�ned during the register allocation:we use � def.In the second case, there are di�erent approaches to deciding the callingconvention. For instance, if any of the values that are passed happen toreside in registers at the application, we could decide the calling conventionsuch that they could remain in their registers. To keep things simple, webrutally choose arbitrary registers for the parameters.Analogous to the calling convention, the returning convention for anequivalence class is decided the �rst time it is needed.Translation of function applicationAt an application, for each parameter, we must generate some code thatcomputes the parameter and places the result according to the parameterconvention for that parameter.We factor the similarities of generating code for region-polymorphic andnormal function application into the meta-function app :f r�~�~e2 ra � = app f ~e2 ~� r�(cc ��)(rc ��)�e1 r�~e2 ra � = app e1~e2[ ]r�(cc ��)(rc ��)�:The �rst argument g 2 E [F of app is something that evaluates to a closure(f or e1). The third argument is a tuple of actual region variables (~� if it is aregion polymorphic function application; [ ] if it is not). Other informationneeded to process an application is �, the recursiveness annotation r, thefunctions � that may be applied, the calling and returning conventions, ob-tained with cc �� and rc ��, respectively. (Remember the linking conventionis part of the inter-procedural information, �, in " in �.)We now develop app.If the calling convention is not decided when app is called (i.e., C = ?cc),we decide it now and call app again:app g~e ~� r�?ccR � =let C = (�1; (0; : : : ; k + n� (N + 1); �2; : : : ; �N�1); �N )in app g~e ~� r�C R (set-cc �C�);assuming ~e = <e1, : : : , en> and ~� = [�1, : : : , �k].There are k + n + 2 parameters. Only the �rst N get to be passed in aregister, where N must be at least one less than the number of registers (forone register is needed by the code to call a function, p. 164). To keep thingssimple, the registers �1; : : : ; �N are arbitrarily chosen. The closure is passedin �1, the return label in �N , etc. Any remaining parameters are passedon the stack (in frame o�sets 0 through k + n � (N + 1)). The expression159



set-cc �C� yields a � that records that the calling convention for �cur: is C .(It is, of course, the inter-procedural environment component, �, of � whichset-cc updates.)If the returning convention is not decided yet (i.e., R = ?rc), we decideit now. We (rather arbitrarily) choose to put ret in �clos::app g~e ~� r�C ?rc � =app g~e ~� r�C �clos: (set-rc ��clos:�);where �clos: is from C = (�clos:; (�1; : : : ; �n; �1+n; : : : ; �k+n); �ret:) andset-rc is analogous to set-cc.Now we come to the case where both the calling and the returning con-ventions have been decided when app is called. Look at the de�nition of appin its entirety on p. 162.At run-time, the �rst thing that must be evaluated is the closure, g :(�; �clos:; �clos.) = g ra-clos�clos:!�� = move �clos:�clos:�� = � +t �clos:The function � ra-clos to translate a g is explained below. To recordin � that the result of g will be moved into �clos: we use move �clos:�clos:�.� +t �clos: introduces the value in �clos: as a temporary, and must be matchedby a kill-tmp � later on.The arguments e1; : : : ; en and �1; : : : ; �k are translated using � ra-arg.Code, �i, is generated for each of ei:(�; �1) = e1 ra-arg �1!01�...(�; �n) = en ra-arg �n!0n�;where !0i is the ! after ei. Each �iis the code to evaluate ei and put theresult where the parameter convention �i says (i.e., either in some registeror the frame). (A � is a � abstracted over the position on the stack of theframe, i.e., � 2 I ! z. This abstraction is necessary, because the o�set fromthe stack pointer to the frame is not known at the time � is produced, and �may need it to put the parameter in the frame.)After that, �'s are generated for the region arguments, also using � ra-arg :(�; �1+n) = �1 ra-arg �1+n!0n�...(�; �k+n) = �k ra-arg �k+n!0n�:There is no !-annotation on the �i's, so we use !0n, the ! after en.Next in the code for an application, the return label is loaded into �ret:.This must be recorded in �: 160



� = wipe �ret:�If the parameter that e1 evaluates to is put in a register that e2 destroys,then that register must be saved across e2. Likewise if e3 destroys the resultfrom e1 or e2, and so on. We deal with this the standard way: The registerscontaining parameters are temporaries, and � ra-arg records this in �. Afterall arguments have been translated, we must check for each parameter in aregister whether this register should be saved across the rest of the arguments.We introduce kill-arg to do this and give a preserver, pi, for each parameter:(�; pk+n) = kill-arg �k+n�...(�; p1) = kill-arg �1 �(�; pclos.) = kill-arg �clos:�We now generate code to jump to the applied function:(�; �goto) = goto ��clos:f�1; : : : ; �k+n; �clos:; �ret:g!0�;where goto ��clos:�̂!0� returns code to jump to the function when the set offunctions that may be applied is �, the closure is passed in �clos:, and �̂ is aset of registers that must not be destroyed by the code to jump.We are now at the point where the applied function returns. We mustwipe the registers in � that have been destroyed by the callee, i.e., the setdestroys ��. Moreover, if the application is potentially recursive, we mustrecord in � that all values have been evicted from their registers, such thatall values that are used after the application must be reloaded (p. 102). Inother words, when r = � we must wipe the set f� j �d� 6= � g:� = wipe (destroys �� [if r = � then f� j �d� 6= � g else ?) �:The space that must be reserved on the stack for the frame is simply thenumber of integers among the parameter conventions:j = jf�1; : : : ; �k+ng \ Ij:Finally, the code is generated:� = ��: �&: h�sp :=�sp + j I!ii ;(�clos.�clos: ;pclos.(�1&p ;p1(�2&p ;. . .pk+n�1(�k+n&p) � � � )))(&e; &p + j) ;�ret: := � ; �goto ;� : h� :=�res:i.161



h�sp :=�sp + j I!ii reserves memory on the stack for for the frame.�clos.�clos: evaluates the closure and puts it in �clos:. pclos. preserves �clos:accross all the following code. �1&p evaluates the �rst argument, and p1preserves it across all the following code; and so on. The stack o�set of theframe, &p, is passed to all �i's. The � resulting from all this is applied to thestack shape (&e; &p + j), re
ecting that a frame of j words has been put onthe stack.Here app is in its entirety:app g <e1,: : : , en>[�1, : : : , �k] r�(�clos:; (�1; : : : ; �n; �1+n; : : : ; �k+n); �ret:) �res: � =let (�; �clos:; �clos.) = g ra-clos�clos:!�� = move �clos:�clos:�� = � +t �clos:(�; �1) = e1 ra-arg �1 !10�...(�; �n) = en ra-arg �n !n0�(�; �1+n) = �1 ra-arg �1+n!0 �...(�; �k+n) = �k ra-arg �k+n!0 �� = wipe �ret: �(�; pk+n) = kill-arg �k+n �...(�; p1) = kill-arg �1 �(�; pclos.) = kill-arg �clos: �(�; �goto) = goto ��clos:f�1; : : : ; �k+n; �clos:; �ret:g!0�� = wipe (destroys �� [ if r = � then f� j �d� 6= � g else ?)�j = jf�1; : : : ; �k+ng \ Ij� = ��: �(&e; &p):h�sp :=�sp + j I!ii ;(�clos.�clos: ; pclos.(�1&p ; p1(�2&p ; � � � pk+n�1(�k+n&p) � � � )))(&e; &p + j) ;�ret: := � ; �goto ;� : h� :=�res:iin (�; �res:; �):We will now give the de�nitions of the auxiliary functions used above.The function � ra-clos takes g 2 E [ F as its argument. If g is anexpression e, � ra-clos simply uses � ra to translate it:e ra-clos�clos:!� = e ra �:If g is a sibling name, f , the closure is obtained by accessing f :f ra-clos�clos:!� = f use?�clos:!�:162



The function � ra-arg translates an argument � 2 E [ p to a �. Ituses � ra-arg-0 to translate � to a � that evaluates �. If the parameterconvention for � passed to � ra-arg is an integer � = i, code must begenerated to place the result in the frame at o�set i:� ra-arg i!� = let (�; ��; ��) = � ra-arg-0 ?register !�(�; ��) = tmp-tmp ?��!�� = �iframe: �(&e; &p):����(&e; &p) ; m[�sp � &p � iframe � i I!i] :=��in (�; �);where iframe is the position of the frame on the stack. Otherwise, code isgenerated to place the result in the supplied register � = ��:� ra-arg ��!� = let (�; ��; ��) = � ra-arg-0 ��!�� = move ������ = � +t ��� = �iframe: ����in (�; �):The function � ra-arg-0 works di�erently according to the form of �:� ra-arg-0 �!� = � use?�!�e1 ra-arg-0 �!� = e1 ra �:The function kill-arg takes a parameter convention � as its argument. If� is a register �, kill-arg �� works like kill-tmp � and returns a preserver pof �: kill-arg �� = kill-tmp �:If � is some i, i.e., the parameter is passed in the frame, there is no registerto preserve, and kill-arg �� yields the preserver that does nothing (p. 138):kill-arg i� = (�; don't ):Finally, goto ��clos:�̂!0� generates the code to jump to the function beingapplied. If only one � may be applied, i.e. if � is the singleton f�g, the codeto jump is simply a goto to the label for that �:goto f�g�clos:�̂!0� = (�; goto � �!i);where � �!i 2 �! i is a function to give a unique label to a �. (�'s canalways be distinguished from each other because a � binds a variable and allbinding occurences of variables are distinct (p. 19).)If more than one � may be applied, i.e., � is not a singleton, we must,at run-time, fetch the destination label from the closure, and a register �t isneeded to hold it temporarily: 163



goto ��clos:�̂!0� = let (�; �t) = tmp-tmp �̂?register !0�in (�; �t :=m[�clos: +0] ; goto �t):The register �t must not be chosen amongst any registers used for parameters.This is why the �̂-argument to goto is needed. It places a restriction on thenumber of registers that are used for passing parameters: One register mustbe left for �t. This is the reason we only used N registers instead of simplyall, when deciding the calling convention above (p. 159).8.10 ExceptionsConcrete code for raise e1, e1 handle a => e2, and a => e2What the code to raise and handle exceptions should be was decided insection 4.8. That code did not specify how the global variable h shouldbe implemented. This we decide now, and then we can give the concretecode for the constructs raise e1 and e1 handle a => e2 and for a handlera => e2. After that, we discuss how to make the register allocation for theseconstructs. The main problem is how to deal with the rather complicatedcontrol 
ow that exceptions entail.The code to raise an exception is (p. 50)� := code to evaluate raise e1 =�raised := code to evaluate e1 ;endregions h ;�sp := h ; )deallocatepop h ;pop �0 ; )handler-popgoto �0:Allocating some register to hold the current handler h would reduce thenumber of available registers, and h will probably not be used often in manyprograms. Therefore we prefer to keep h in a memory cell.Each global variable in memory is kept at a speci�c o�set from a reservedregister �dp. (Using a register for this purpose is necessary in our languagek, for addresses can only be given relative to a register. We could haveincluded in the language instructions \� :=m[�]" and \m[�] :=�" to load fromand store into an absolute address. Actually, in our concrete architecture,PA-RISC, all addresses are also given relative to registers, and the operatingsystem demands that a reserved register always points to a global data space.)Assuming h 's o�set from �dp is �h, the code is
164



� := code to evaluate raise e1 =�raised := code to evaluate e1 ;�h1 :=m[�dp + �h] ; endregions �h1 ; endregions h�sp :=m[�dp + �h] ; �sp := hpop �h2 ; m[�dp + �h] :=�h2 ; pop hpop �0 ; pop label of handlergoto �0 jump.In that code, the same actual register can be used for both �h1, �h2, and�0, as long as it is di�erent from �raised. If we always use some �xed register,�raise, we can de�ne the instruction raise that raises an exception when theexception value is in �raised:raise = �raise :=m[�dp + �h] ; endregions �raise ; endregions h�sp :=m[�dp + �h] ; �sp := hpop �raise ; m[�dp + �h] :=�raise ; pop hpop �raise ; pop label of handlergoto �raise jumpwhere �raise 6= �raised (i.e., raise is an instruction whose semantics is speci�edby de�ning it in terms of other instructions, as, e.g., push �.)Then � := code to evaluate raise e1 =�raised := code to evaluate e1 ; raise:The instruction raise includes (the equivalent of) an endregions-instructionand destroys �raise, and hence, the set of registers destroyed by raise is �̂raise =f�raiseg [ �̂endregions.With the decision to keep the global variable h in a memory cell, thecode for a handle-expression is (p. 50):� := code to evaluate e1 handle a => e2 =�0 := �a => e2 ; push �0 ; push label of handler�h1 :=m[�dp + �h] ; push �h1 ; save hm[�dp + �h] :=�sp ; h := �sp� := code to evaluate e1 ;pop �h2 ; m[�dp + �h] :=�h2 ; restore hpop discard label of handler.165



The code for a handler is (p. 53)code for a => e2 =�a := code to access a ;�a? :=m[�raised +0] ;if �a=�a? then � else �� ; � : � := code to evaluate e2 ; goto �� ;�� : raise ;where � is the � in � := code to evaluate e1 handle a => e2 , and �� is themeeting label of the code for e1 and the code for the handler, i.e., �� labelsthe code after the code for e1 handle a => e2.Register allocation of raise e1 and e1 handle a => e2Now the register allocation of the exception constructs is discussed. Theproblem is the 
ow of the descriptors, �, in the function � ra in the presenceof the irregular control 
ow caused by exceptions. Hitherto, the 
ow of �'shas not been a problem because the possible control 
ow has been so simple:either linear, or forking and then meeting again in if-expressions.With exceptions, control 
ow is less structured and there is no single,clear answer to how �'s should 
ow. In particular,� what should the � 
owing out of e1 handle a => e2 be? At run-time,control may simply 
ow straight through the code for e1, but an ex-ception may also be raised, causing control to 
ow through the codefor the handler a => e2.� What should the � 
owing into the handler be? An exception may beraised from di�erent places in e1, and it may even be raised in anotherfunction called by e1.The following is somewhat involved and speci�c to our use of �'s. Still,the discussions touch upon issues that may be of general interest, e.g., howto deal with exception control 
ow, and what can be assumed at di�erentprogram points when exception control 
ow is in the picture.We require that the claims made by a � at some point in the translationare always correct at run-time at the corresponding program point; e.g., if a� says that � contains v, then � must always contain v at the correspondingprogram point in the code no matter how control 
owed to that programpoint. Giving a formal de�nition, let alone proving that the claims made bythe �'s of our algorithm are always correct, is beyond the scope of this report.It has not before been necessary to discuss the requirements on the �'s,as they were automatically satis�ed because the 
ow of �'s mimicked thecontrol 
ow. 166



Control 
ow with exceptionsIdeally, the �'s should 
ow as control 
ows. This would ensure that the�'s always contained correct information. This section discusses exceptioncontrol 
ow; the next section discusses how to make the corresponding 
owof �'s.It is generally undecidable what handler will handle a raise from a givenraise-expression, but remember that it will always be the handler on thetop of the stack of handlers that deals with a raised exception (p. 45). In thefollowing sub-sections we shall refer to the construct e1 handle a => e2. Thehandler a => e2 will deal with all raises from raise-expressions in e1 that arenot within some other handle-expression in e1 (and it will also deal with theimplicit raise that is in any handle-expression within e1). I.e., in((if eif then raise a1 at r1else raise a2 at r2) handle a1 => ea1)handle a2 => ea2;the inner handler, a1 => ea1, deals with raises from both raise a1 at r1and raise a2 at r2, although it can only handle a1. The outer handler,a2 => ea2, only deals with the raise implicit in the inner handle-expression,i.e., the re-raise done by the inner handler when it discovers that it cannothandle a2. Hence the control 
ow is
raise a1eif raise a2

a2 =>ea1 a2 =>ea2

and not a2 =>ea1
a2 =>ea2eif raise a2

raise a1
Raises do not come solely from raise-expressions within e1, however;functions applied within e1 may also raise an exception:167



let rejs = �u.raise (a at r3) at r3in (1+rejs 2+4) handle a => 5.This we deal with by conservatively regarding every application as a poten-tial raise. Alternatively, a more elaborate, inter-procedural analysis could beemployed, but it would probably not be worth the e�ort and added complex-ity.Mimicking the control 
ow with the 
ow of �'sA �rst try at computing the in-
owing � to the register allocation of the han-dler a => e2 could be to collect all out-
owing �'s from the register allocation ofexpressions that may raise an exception (i.e. raise-expressions, applications,and other handle-expressions) in e1 that are not within any other handle-expression in e1, and take the meet (u�, p. 150) of them. E.g., in the exampleabove, if the �'s returned by raise a1 at r1 ra and raise a2 at r2 raare �1 and �2, respectively, the in-
owing � to the register allocation of thehandler a1=> ea1 would be �1 u� �2. The in-
owing � to the outer handler,a2 => ea2, should be the � 
owing out from the inner handler, since the in-ner handler implicitly contains a raise which will be dealt with by the outerhandler.The resulting � 
owing into the handler will likely be very conservativebecause every application is regarded as a raise. Our main reason for notchoosing this scheme is, however, that making the 
ow of �'s more like theactual control 
ow when there are exceptions will complicate the algorithmfor all constructs and not just the exception constructs.The second try at computing the � 
owing into the handler is more of ahack. It does not attempt to follow the exceptional control 
ow: We let the�'s 
ow as if raises did not change control 
ow. The method is illustrated bythis example (((if eif then ethen + raise aelse eelse) + eendif)handle a => ehandler) + eafterwhere �'s 
ow as follows

168



eif ethen raise a
�?

eendifeelse eafter�else �then
a => ehandler

A � 
ows from ethen to eendif, although control could never 
ow that way. Ine�ect, we have incorporated the normal and the exceptional control 
ow inthe same �, which, of course, makes the information in � less precise. Forinstance, the � 
owing into eendif, i.e., �then u� �else, is a worse approximationthan the �then it should have been if the 
ow of �'s re
ected the normalcontrol 
ow better.Also the implicit re-raise in a handler is ignored; thus only one � 
owsout from e1 handle a => e2.When exceptions are not raised, this 
ow of �'s will give correct (althoughless accurate) �'s.What � should 
ow into the register allocation of the handler a => e2?Observe that the raise will come from somewhere within the code for e1.We can make a correct � 
ow into a => e2, by taking the � 
owing out frome1 and making the registers destroyed by e1 unde�ned (with wipe) in that�. This gives a correct � 
owing into a => e2 because at the entry to thehandler code, a register will actually contain the value this � says it containsno matter how control 
owed to the handler code, for control can only 
owfrom raises within e1, and they can only have destroyed registers that arealso destroyed by the whole code of e1 since they are part of e1.Notice, however, that this only holds because expressions are sel�sh whensaving registers: an expression saves a register only if it contains a valuethe expression needs and the register is destroyed by a sub-expression; anexpression never saves a register for the bene�t of its context.If expressions were not sel�sh, an expression might save a register thatwas destroyed by a sub-expression, and the context of that expression would(rightly) believe that the register would not be destroyed. But with themethod sketched above, the nearest enclosing handler would also believethat the register would not be destroyed, and this would be wrong, for anexception may be raised from within the sub-expression, where the registerhas been destroyed. 169



Notice that if we did not use the producer-saves placement of spill codestrategy, or if we had functions with callee-save registers, the register savingwould not be sel�sh.A price is paid in this scheme for mixing the �'s of the normal control
ow and the exceptional control 
ow: The code for e1 may be less e�cient,because the �'s give less accurate information. It is, regrettably, a pricepaid also when exceptions are not raised. Nevertheless, we have chosen thissolution to avoid the complication of the �rst solution.Furthermore, the � 
owing into the handler a => e2 is less accurate: Thevalues in all registers that are destroyed by e1 are assumed to be unde�ned atthe entry to the code for a => e2. This means that values used by a => e2 mayhave to be reloaded unnecessarily inside a => e2. That is quite acceptable, asit will only occur when an exception is raised. Worse, the values that arethus reloaded unnecessarily may as a consequence have to be spilled, and thisunnecessary spilling happens regardless of whether an exception is raised ornot. This may, however, still be one of the minor problems, as handlers oftenuse few values.Finally, if the � 
owing into a => e2 is unnecessarily conservative, the �
owing out from a => e2, and thus, the � 
owing out from e1 handle a => e2,will be unnecessarily conservative. Consequently, unnecessary saving of val-ues may occur around e1 handle a => e2.The � 
owing out from e1 handle a => e2 should be the meet of the� 
owing out from e1 and the � 
owing out from a => e2, correspondingto the meeting of the control 
ow from the code for e1 and the code fora => e2. In other words, in the � 
owing out from a handle-expression, it isconservatively assumed that the code for the handler was executed. It wouldbe more in line with our intention to make the code for a handle-expressione�cient at the price of making a raise (i.e., the handler code) less e�cientif we assumed the opposite: that the handler code was not executed, andthen imposed on the handler the duty of saving the registers it destroys.However, this strategy does not mesh nicely with the general sel�sh principleof the register allocation: that the code for each expression destroys whateverregisters that suit it without saving them. To keep things simple, we thereforechoose not to do it.

170



e1 handle a => e2 ra (�; ") =let ((�; "); �0) = tmp-tmp ??register !1(�; ")((�; "); �1; �1) = e1 ra (�; ")((�; "); �1) = tmp-tmp ?�1!01(�; ")((�1; "); �00) = tmp-tmp f�1g?register !01(�; ")(�; ") = wipe "��(�1; ")((�; "); �a; �a) = a use f�raisedg?register !2(�; ")((�; "); �a?) = tmp-tmp f�raised; �ag?register !2(�; ")(��; �2; �2) = e2 ra (�; ")(���; ") = wipe �̂raise(�; ")�2 = �� u� ���� = ��: �&:�0 := �a => e2 ; push �0 ;�0 :=m[�dp + �h] ; push �0 ;m[�dp + �h] :=�sp ;�1�1(&e; &p + 2) ;pop �00 ; m[�dp + �h] :=�00 ;pop ; h� :=�1i ; goto �� ;�a => e2 : �a�a& ; �a? :=m[�raised +0] ;if �a =�a? then � else �� ; � : �2�& ; goto �� ;�� : raise ;�� : �in (�1 u� �2; �1; �):where �a => e2 labels the handler code, and �� is the meeting label of the codefor e1 and the code for the handler, i.e., �� labels the code after the code fore1 handle a => e2.Notice that the stack for the code for e1 is &p + 2, re
ecting that thehandler has been pushed on the stack before the code for e1. Contrastingly,the stack for the code for e2 is &p, because the handler element has beenremoved by raise before the handler code is called.In the register allocation for the handler, �a and �a? must not be the sameregister as �raised, for then the handler would destroy the raised exceptionvalue.Notice that it is ensured that the code for e1 and the code for the handlerput the result in the same register, �.
171



The translation of a raise is:raise e1 ra (�; ") = let ((�; "); �1; �1) = e1 ra (�; ")(�; ") = move �1�raised(�; ")(�; ") = wipe �̂raise(�; ")� = ��: �&: �1�raised& ; raisein ((�; "); ?register; �):Notice the � which is returned incorporates the information that we want the� 
owing to the enclosing handler to receive.ComparisonWe have previously compared our way of implementing exceptions withthat of the existing intermediate-code generator, compile-lambda (p. 53).Now we can compare the two with respect to register allocation aspects.compile-lambda pushes all registers containing live values just before ahandle-expression. In comparison, we only save those registers that someapproximation says may be destroyed by the handle-expression. As this ap-proximation has its limitations, this might not make much di�erence. Ourproducer-saves saving strategy means that a value is only saved once and itis only reloaded when it is actually needed. (This is, of course, a feature ofour producer-saves saving strategy and not something that has speci�cly todo with our register allocation of exceptions.) compile-lambda may pushand pop the same value many times across handle-expressions although it isonly used once.Unlike compile-lambda, we do not build a closure for the handler everytime e1 handle a => e2 is evaluated. On the other hand, in our scheme,if some value used by the handler resides in one of the registers that aredestroyed by e1, its use in the handler will cause it to be spilled, and it willbe saved on the stack by its producer and it will be fetched by the handler.This is similar to compile-lambda's use of a closure.In practice, these di�erences are likely unimportant. This way of imple-menting exceptions has been chosen neither because we expected it to give abig gain in speed compared to compile-lambda nor because we wanted tosqueeze out the last clock cycle (then we would have chosen a more sophisti-cated solution); mainly, it has been chosen because it was the nicest way wecould see to assimilate exceptions into our register allocation algorithm.8.11 Processing a call graph node, �This section discusses how to process a node, �, in the call graph, i.e., itdevelops the function � donode (p. 64). From now on, �cur: refers to thefunction (node) in the call graph currently being processed (i.e., the argumentof � donode) and e0 refers to its body. Processing �cur: chie
y consists ofdoing register allocation and code generation ( � ra) for the body of �cur:.172



The main problems are: First, the linking convention for �cur: may or maynot be decided yet. If it is not, we must decide it now, for we need it togenerate code for �cur:. (In techincal terms, we need to know the callingconvention to be able to set up the initial descriptor � and stack shape &,and we need to know the returning convention, as it is the register that thecode � for �cur: should be applied to.) Second, it may be necessary to storesome of the parameters of �cur:, because they may be loaded in e0. In thisrespect, the parameters can be treated as if they were let-bound values. Forexample, e0 of f[��1, : : : ,��k]<y1, : : : , yn> = Ke0 is treated approximately asif it were let clos = \something" inlet y1 = \something else" in. . .let yn = \something third" inlet ��1 = \something" in. . .let ��k = \something" inlet ret = \something"in e0.If, e.g., y1 is loaded in e0, �cur: donode must ensure that it is accessible onthe stack. If y1 is passed to �cur: on the stack, it will be accessible on thestack when it is loaded by the code for e0; otherwise|if y1 is passed in aregister|the code for �cur: must itself push y1.The code for �cur: has the form�cur: �!i : push the parameters fv1; : : : ; vmg that areloaded in e0 and not passed on the stack ;� := code to evaluate e0 ;�ret := code to access ret ;remove the parameters from the stack ;goto �ret:where �cur: �!i is the unique label for �cur:; � is the register �cur: returnsits result in according to the returning convention; and �ret is a temporarilyused register. Before returning, the parameters on the stack are removed,including those that were passed on the stack.The algorithm to process a function, �cur:, is thus0. perform the !-analysis (section 8.1) on �cur:;1. establish entry conditions:C = the calling convention (if it is undecided as yet, decide it now);�0 = the initial descriptor according to C (e.g., if clos is passed inregister �1, �d0�1 = clos);173



&0 = the initial stack shape according to C (e.g., if y is passed on thestack at frame o�set 2, &e0y = 2);2. perform the register allocation of e0;3. establish the exit condition: � = the returning convention (if it isundecided as yet, decide it now);4. perform the register allocation of a use of ret;5. generate the code sketched above.More speci�cally, �cur: donode is as follows. Explanations are below.�cur: donode � =let ��cur: = �cur: oa �� 0:"0 = (�; ��cur:) 1:((�0; "); &0; C ) = entry "0((�; "); �; �) = e�0 ra (�0; ") 2:(�res:; ") = decide-rc �(�; ") 3:((�; "); �ret; �ret) = ret use f�res:g?register !00(�; ") 4:fv1; : : : ; vmg = �v �Dm &e0 5:� = �cur: �!i :v1 push-arg. C (. . .vm push-arg. C (��res: ; �ret�ret zap ) � � � )&0 ;goto �retin (�; "�):Remember that the environment � has the form (�; ��), where � is theinter-procedural environment and �� is the set of registers destroyed by thecurrent strongly connnected component. The !-analysis � oa needs theinter-procedural environment �.The per-function environment ", used during register allocation, consistsof the environment � and the current function: " = (�; �cur:).The auxiliary function entry establishes the entry conditions by �ndingthe calling convention C , the initial descriptor �0, and the initial stack shape&0. If it was necessary to decide the calling convention, " is updated to recordthe decision. This is described in detail below.e�0 is the body of the !-annotated version, ��cur:, of �cur:.In analogy with entry , the auxiliary decide-rc establishes the returningconvention. This is described in detail below.The return label is accessed with ret use f�res:g?register !00(�; "). Theregister used for the return label must not be the same as the result register,�res:; so �res: is forbidden. The ! after e�0 is !00.After the register allocation, � holds the set �v of values that will beloaded in the body. Of these values, those that are already on the stack174



because they are passed on the stack (i.e., the parameters Dm &e0 in the initialstack shape) need not be pushed. Hence, the values that must be pushed arefv1; : : : ; vmg = �v �Dm &e0 .The calling convention C 2 V ?! � [ I maps each parameter to its pa-rameter convention: if C v = �, v is passed in �; if C v = i, v is passed on thestack at frame o�set i. (When discussing how to translate an application, weused a di�erent de�nition of calling convention; in this situation the presentde�nition is more convenient. Clearly, it is possible to convert the two kindsof calling conventions to each other.)The function v push-arg. C 2 z ! z prepends to its argument, �, codeto push v:v push-arg. C �(&e; &p) = push C v ; �(&e + fv 7! &pg; &p + 1):The function � zap 2 z ! z appends after its argument, �, code toreset the stack pointer:� zap & = �& ; h�sp :=�sp { &p I!ii:�cur: donode must return a �; this is extracted from ".The detailsNow entry and decide-rc are described.entry " = let �d0 = ��:if � 2 "�� then ?d else ��0 = (?; (); �d0 )(C ; ") = decide-cc (�0; ")�0 = (?; (); �d0 + C�1j�)&e0 = C jfv j C v2Ig&p0 = jfC v j C v 2 I gj&0 = (&e0 ; &p0 )in ((�0; "); &0; C ):where !0 is the ! before e0.This function �rst sets up the initial descriptor �0. Remember " containsan approximation "�� of the set of registers that will be destroyed anywayby the current strongly connnected component (p. 72). We let the initialregister descriptor, �d0 , map these registers to ?d, thereby encouraging theheuristic that chooses registers to use them �rst (p. 90). Other registers aremapped to �. The two other components in �0 are initially: �v0 = ? and�t0 = () (\()" is an empty stack of temporaries).Then entry calls decide-cc (described below) to either get the callingconvention C (from ") or, if it is not decided yet, decide it (and update ").Then the register descriptor, �d0 , is updated according to the calling con-vention: if C v is �, then �d0� should be v. The initial stack environment &e0175



is set to map the parameters that are passed on the stack to their o�sets: ifC v is i, then &e0v should be i. The initial stack pointer, &p0 , is the number ofparameters passed on the stack.decide-cc (�; ") = if cc "�cur:" 6= ?cc then (cc "�cur:"; ") elselet (v1; : : : ; vj) = params "�cur:((�; "); �1) = v1 def??register !0(�; ")((�; "); �2) = v2 def f�1g?register !0(�; ")...((�; "); �N ) = vN def f�1; : : : ; �N�1g?register !0(�; ")C = f v1 7! �1; : : : ; vN 7! �N ;vN+1 7! 0; : : : ; vj 7! j � (N + 1) gin (C ; set-cc "�cur:C "):The expression cc �" gives the calling convention for �. The parameters of�cur: are obtained with params �cur::params (�<y1, : : : , yn>.K e�0 at �) = (clos; ret; y1; : : : ; yn)params (f[��1, : : : ,��k]<y1, : : : , yn> = Ke�0)= (clos; ret; y1; : : : ; yn; ��1; : : : ; ��k):In case the calling convention is not decided, decide-cc chooses a registerin which to pass each parameter vi usingvi def f�1; : : : ; �i�1g?register !0(�; ");which yields a register di�erent from �1; : : : ; �i�1 given !0, the ! beforee0 (i.e., the ! describing the situation at the entry to �cur:). Only the �rstN parameters get to be passed in a register, where N is approximately thenumber of registers (at least one register is needed by the code to call afunction, p. 164). Parameters that are not passed in registers are passed onthe stack at o�sets 0 through j � (N + 1).The expression set-cc �cur:C " yields a per-function environment "0 thatrecords that the calling convention for �cur: is C . (It is, of course, the inter-procedural environment component, "� , of " which is updated.)Notice that decide-cc can use � def which was introduced to take careof values declared by let-expressions etc.The function decide-rc is analogous to decide-cc: If the returning con-vention is decided, just return it, otherwise, decide what it should be. Ifpossible, choose the natural destination register � of e0:decide-rc �(�; ") = if rc "�cur:" 6= ?rc then (rc "�cur:"; ")else let �res: = choose ?�?!00� in(�res:; set-rc "�cur:�res:"):where rc is analogous to cc and set-rc to set-cc, and !00 is the !-informationafter the body of �cur:. 176



8.12 The remaining constructsThe code for an integer constant, i, moves the constant to the destinationregister. There is no natural destination register:i ra � = (�; ?register; ��: �&: � := i I!i):The code for u e2 is analogous to that for e1 o e2 (p. 134):�2 := code to evaluate e2 ; u u-prim �2�;where u u-prim �2� translates the unary operator u to code that computesthe result from �2 and puts it in �:#i u-prim �2� = � :=m[�2 + i I!i]! u-prim �2� = #0 u-prim �2� = � :=m[�2 +0]:Then u e2 ra � = let (�; �2; �2) = e2 ra �(�; �2) = tmp-tmp ?�2!02�� = ��: �&: �2�2& ; u u-prim �2�in (�; ?register; �);where !02 is the !-information after e2.The translation function for _c1 e2 at � is very similar to that for a pair.Compare with the de�nition of (e1, : : : , en) at � ra (p. 146)._c1 e2 at � ra � =let (�; ��; �; o) = � ra-at 2 � e2 da ���!2�(�; �1) = tmp-tmp f��g?register !2�(�; �2; �2) = e2 ra �(�; �2) = tmp-tmp f��g�2!02�(�; p�) = kill-tmp �� = ��: �&: �& ; �1 := _c C!i ; m[��+ o&0] := �1 ;p�(�2�2)& ; m[��+ o&1] := �2 ;h� :=��+ o&0i� = if �� = �sp then ?register else ��in (�; �; �):where !1 and !02 is the !-information before e1 and after e2, respectively. The\2" is the number of words allocated for the constructor and its argument.
177



The translation function for an application of a nullary constructor issimilar. There is no sub-expression, and we only allocate one word:c� at � ra � = let (�; ��; �; o) = � ra-at 1?!�(�; �1) = tmp-tmp f��g?register !0�(�; p�) = kill-tmp �� = ��: �&:�& ; �1 := c� C!i ; m[��+ o&0] :=�1 ;h� :=��+ o&0i� = if �� = �sp then ?register else ��in (�; �; �):Notice p� is not used.The translation function for ref e1 at � is much like that for _c1 e2 at �(p. 177):ref e1 at � ra � = let (�; ��; �; o) = � ra-at 1 � e1 da ���!1�(�; �1; �1) = e1 ra �(�; �1) = tmp-tmp f��g�1!01�(�; p�) = kill-tmp �� = ��: �&:�& ; p�(�1�1)& ; m[��+ o&0] :=�1 ;h� :=��+ o&0i� = if �� = �sp then ?register else ��in (�; � ; �):The code to declare an exception constructor is (p. 51)� := code to evaluate exception a in e2 =n := n+1 ;bind a to n in the environment ;� := code to evaluate e2 :Allocating some register to hold n is unreasonable, as this would reducethe number of available registers, and n will probably not be used often in thevast majority of programs. Therefore, we choose to keep n in some memorycell.Assuming n 's o�set from �dp is �n, the code is� := code to evaluate exception a in e2 =�a :=m[�dp + �n] ; �a :=�a +1 ; m[�dp + �n] :=�a ;� := code to evaluate e2 :178



This is quite similar to the code for a let-expression, and the de�nitionof exception a in e2 ra is almost identical to that of let x = e1 in e2 ra(compare with p. 104):exception a in e2 ra � = let (�; �a) = a def??register !2�(�; �2; �2) = e2 ra �(�; pa) = a kill �a�� = ��: �&: �a :=m[�dp + �n] ;�a :=�a +1 ;m[�dp + �n] :=�a ;pa(�2�)&in (�; �2; �):The de�nitions of _a1 e2 at � ra and a� at � ra are quite similar tothe de�nitions of _c1 e2 at � ra and c� at � ra, respectively. See the codesketches and discussion on p. 52. The only di�erence is that the exceptionconstructs represent a use of the exception constructor. We will only givethe de�nition of _a1 e2 at � ra; compare with _c1 e2 at � ra (p. 177):_a1 e2 at � ra � =let (�; ��; �; o) = � ra-at 2 ( e2 da ��)!2�(�; � _a; � _a) = _a use f��g?register !2�(�; �2; �2) = e2 ra �(�; �2) = tmp-tmp f��g�2!02�(�; p�) = kill-tmp �� = ��: �&: �& ; � _a� _a& ; m[��+ o&0] :=� _ap�(�2�2)& ; m[��+ o&1] :=�2 ;h� :=��+ o&0i� = if �� = �sp then ?register else ��in (�; � ; �):A �-abstraction �~y.K e0 at � has annotated a closure representation K 2Z ?! I, which maps the free variables of �~y.K e0 at � to their o�sets in theclosure.The code for letrecK b1 � � � bm at � in em+1 builds a shared closure(p. 43), and this is much like building a closure for a �-abstraction. Wefactor the common parts into a function: build-closure K�e�!� returns theusual triple (�0; �; �), where � is the code to build a closure for the closurerepresentation K in region � and with code pointer e� 2 i [ f?ig. If e� = ?i,no code pointer is stored into the closure. The !-information is !, and � isthe natural destination register of the code to build the expression. Now wecan write �~y.K e0 at � ra using this auxiliary function:�~y.K e0 at � ra � = build-closure K� �~y.K e0 at � �!i!�;179



where �cur: �!i is the unique label for �cur:, and ! is the !-informationbefore �~y.K e0 at �.The code to build a closure (p. 40) is very similar to that for buildinga tuple. Instead of storing the values of the n sub-expressions at o�sets0 through n � 1, the label of the code for the � is stored at o�set 0, andthe free variables v1; : : : ; vn are stored at o�sets Kv1; : : : ; Kvn. Accord-ingly, the register allocation part of build-closure is quite similar to that of(e1, : : : , en) at � ra (p. 146):build-closure K�e�!� =let fz1; : : : ; zng = DmK(�; ��; �; o) = � ra-at (n+ if e� = ?i then 0 else 1)?!�(�; �0) = tmp-tmp f��g?register !�(�; �1; �1) = z1 use f��g?register !�...(�; �n; �n) = zn use f��g?register !�(�; p�) = kill-tmp �� = ��: �&: �& ;if e� = ?i then �else �0 :=e� ; m[��+ o&0] :=�0 ;�1�1& ; m[��+ o&(Kz1)] :=�1 ;...�n�n& ; m[��+ o&(Kzn)] :=�n ;h� :=��+ o&0i� = if �� = �sp then ?register else ��in (�; �; �):Besides building a closure, the constructletrec f1~��1y1 = e1 � � � fm~��mym = em at � in em+1declares a sibling name f = ff1; : : : ; fmg (p. 117) in em+1, just as let x = e1in e2 declares x in e2. Accordingly, letrecK b1 � � � bm at � in em+1 ra islike let x = e1 in e2 ra, except it uses build-closure K�1?i!m+1 � insteadof e1 ra, and f instead of x:
180



letrec f1~��1y1 = e1 � � � fm~��mym = em at � in em+1 ra � =let f = ff1; : : : ; fmg(�; �1; �1) = build-closure K �?i !m+1 �(�; �f ) = f def?�1!m+1�(�; �m+1; �m+1) = em+1 ra �(�; pf ) = f kill �f�� = ��: �1�f ; pf (�m+1�)in (�; �m+1; �);where !m+1 is the !-information before em+1.

181



9 Target code generationThis chapter describes the last phases in the back end:k � bbs�������! PB lin���! k̂ � pa������! P � sched.��������! P:9.1 Linearising the codeViewing the code as basic blocksOne can view k as a control 
ow graph language. For instance, the codegenerated by � ra for the body of the function�<b,i,j>.(if b andalso i<=j then 3 else 665)+1 at r299is something like

�6 :� :=�+1 ; goto �ret:

if �b=1 then �1 else �2
�4 :� := 3 ; goto �6 �5 :� := 665 ; goto �6

�2 : goto �5�1 : if �i � �j then �4 else �5
The notion of a control 
ow graph representation of the code is formalisedby regarding the code as a set of basic blocks.A basic block b 2 B has the formB ::= i : �k ; �kwhere �k is the set of jump instructions in k, and �k is the set of instructionsin k which do not contain jump or label instructions:�k ::= goto � j if x then i else i�k ::= � :=��� j � :=�j � :=m[�� i] j m[�� i] :=�j �k ; �k j �� ::= � j i: 182



(Remember x is the set of conditions (p. 20). As in k, the other instructions(e.g., pop) can be de�ned as macros in this language.)We assume some function, � bbs 2 k ! PB , can convert the codegenerated by � ra to a set of basic blocks.Linear codeThe control 
ow graph representation of the code is convenient when gener-ating code: pieces of code can be glued together using jumping and labellinginstructions. But the assembly language has one sequence of instructions,and instead of the symmetric if � then � else �� it has a conditional jump in-struction if � then � which falls through to the following instruction if thecondition � is false. Therefore, we de�ne linear code, k̂, to be like k, exceptthat the if � then �-construct replaces if � then � else ��:k̂ ::= i : k̂ j � � � j goto � j if x then i:We must translate the set of basic blocks to linear code. Since we do not wantto pay a price at run-time for the convenience of using jumps to glue togetherpieces of code, the translation from basic blocks to linear code should try togenerate as few jumps as possible.For instance, the linear code for the control 
ow graph above could be:if �b =1 then �:b ;�b : � := 665 ;� :=�+1 ;goto �ret: ;�:b : if :�i � �j then �b ;� := 3 ;� :=�+1 ;goto �ret::This linear code was obtained by way of the following optimisations:1. Avoid jumps to jumps. (This avoided �2 : goto �5.)2. A jump can be avoided by placing the jumpee right after the jumper.(This avoided jumps to � := 665 and � := 3.)3. If the jumpee has already been put somewhere, the jump can still beavoided by duplicating the jumpee. (The code � :=�+1 ; goto �ret:was duplicated to avoid a jump instruction in the branches.) To avoidan explosion in code size, code should only be duplicated when it issu�ciently small; and restrictions must also be imposed to ensure ter-mination.The �rst optimisation is a special case of the third if we assume a jumpwill be su�ciently small to be duplicated.183



Making linear code from basic blocksIn the following, we explain the function lin 2 PB ! k̂ which linearises aset of basic blocks by translating it to a �̂ 2 k̂.During the translation of the set of basic blocks, we keep track of thestatus of each basic block in an environment, i , which maps each label inthe program to the status of the corresponding basic block:i 2 I = i ?! B [ funderwayg [ k̂If i � = b , the basic block corresponding to � is b and has not yet beenprocessed; if i � = underway, the basic block corresponding to � is currentlybeing processed; and if i � = �̂, the processing of the basic block correspond-ing to � has been �nished and resulted in the linear code �̂.The function � lin-1 2 B ! I ! I processes a b and returns anupdated i that records the result of processing b , i.e., the resulting code, �̂.It �rst records in i that b is underway, and then calls � lin-2 2 B ! I !I : � : �� ; �� lin-1 i = � : �� ; �� lin-2 (i + f � 7! underwayg)The actual work is done by b lin-2 i : If b has the form � : �� ; goto �0,we try to eliminate the goto �0 by putting the basic block labelled �0 (callit b 0) right after b . The following situations can arise: 1. If b 0 has notbeen processed yet (i.e., i �0 = b 0), we can process it now, and glue theresulting code onto b . 2. If b 0 has been processed (i.e., i �0 is some �̂0), wecannot eliminate goto �0, except if the code (�̂0) for b 0 is so small that itis permissible to duplicate it to avoid the jump. 3. If b 0 is underway (i.e.,i �0 = underway), we do not eliminate goto �0:� : �� ; goto �0 lin-2 i = if i �0 = b 0 then let i = b 0 lin-1 iin i + f � 7! � : �� ; i �0 gelse i + f � 7! � : �� ; if i �0 = �̂0 ^ j�̂0j < 42then �̂0 relabelelse goto �0 g;where \j�̂0j < 42" means that �̂0 is su�ciently small to be duplicated, and�̂0 relabel is a �̂ where the labels bound in �̂0 have been replaced by labelsthat are not used anywhere else.Notice that in the case where an already processed �̂0 is glued onto thecurrent basic block, we do not continue and try to eliminate the jump in-struction in the end of �̂0, for if it could be eliminated, it would already havebeen when �̂0 was processed.By keeping track of what basic blocks are underway and not eliminatingjumps to them, we ensure that the algorithm does not loop in�nitely whenthere are loops among the basic blocks.Jumps to registers cannot be eliminated:184



� : �� ; goto � lin-2 i = i + f � 7! � : �� ; goto � gThe conditional jump instruction if � then �0 else �00 can be translated tothe linear code if � then �0 ; goto �00, but as above, we try to avoid the jumpinstruction by putting the basic block labelled �00 right after the current basicblock. If this is not possible, we pretend the instruction is if :� then �00 else �0and try to put the basic block labelled �0 right after the current basic block.If neither attempt succeeds, we try to duplicate the code for one of the basicblocks as above:� : �� ; if � then �0 else �00 lin-2 i =if i �00 = b 00 then let i = b 00 lin-1 iin i + f � 7! � : �� ; if � then �0 ; i �00 g elseif i �0 = b 0 then let i = b 0 lin-1 iin i + f � 7! � : �� ; if :� then �00 ; i �0 g elseif i �00 = �̂00 ^ j�̂00j < 42 theni + f � 7! � : �� ; if � then �0 ; �̂00 relabel g elseif i �0 = �̂0 ^ j�̂0j < 42 theni + f � 7! � : �� ; if :� then �00 ; �̂0 relabel g elsei + f � 7! � : �� ; if � then �0 ; goto �00 g:The basic blocks of the program are processed by � lin-0 2 B ! I !k̂! k̂, which repeatedly calls � lin-1 until there are no more unprocessedbasic blocks in the environment i :� : �� ; �� lin-0 i �̂so-far =let i = � : �� ; �� lin-1 i�̂so-far = �̂so-far ; i �in if 9� : i � = b then b lin-0 i �̂so-far else �̂so-farThe code for the di�erent basic blocks is accumulated in �̂so-far which isreturned when all basic blocks have been processed.All lin 2 PB ! k̂ does is to set up the initial i and �̂so-far, and thencall � lin-0 with the �rst basic block b :lin (bbb [ fb g) = b lin-0 f � 7! � : �� ; �� j � : �� ; �� 2 bbb g �:DiscussionShorter jumps are more e�cient on many architectures. The algorithm couldbe extended to process the basic blocks in an order such that basic blocksthat jump to each other are placed close to each other.The heuristic for deciding when code can be duplicated could be extendedto take into account the number of jumps to the code and not just its size.185



A way to eliminate dead code would be to discard basic blocks that arenot jumped to.A more elaborate algorithm to avoid jumps by duplicating code is given in(Mueller and Whalley, 1992). Jumps are replaced with a duplicated sequenceof instructions that either reaches a return or falls through to the block thatfollows the original jump. The loop structure of the basic blocks is takeninto account and trying to make loops with as few jumps as possible, whileour algorithm is oblivious to the loop structure.Loop unrolling (Hennessy and Patterson, 1990) is also a more structuredapproach than ours where the body of a loop is duplicated to reduce thenumber of tests and jumps in the loop.Inlining functions is a very related optimisation (which the optimiser ofthe ML Kit performs) that avoids jumps by duplicating code. Basic blockduplication cannot inline functions and function inlining cannot eliminatejumps originating from control 
ow constructs. Furthermore, the optimisa-tions occur at di�erent stages in the compilation. Thus, it is worth doingboth.9.2 Tailoring the back end to a PA-RISCTo tailor the back end described in this report to a speci�c RISC architecture,one must (1) provide a function that translates the linear code k̂ of theprevious section to the assembly language of that RISC; and (2) specify theregisters used by the register allocator. This section does this for the PA-RISC.Our compiler generates assembly language code supposed to be processedby the PA-RISC assembler as. The target language isP ::= stw %�,i(%sr0,%�)j ldw i(%sr0,%�),%�j add %�,%�,%�...etc; see (Mahon et al., 1986, Lee, 1989, Coutant et al., 1986, Pettis andBuzbee, 1987, and Asprey et al., 1993) or the manuals (Hewlett-Packard,1992, 1991a and 1991b)). Instructions are read left to right: add%r1,%r2,%r3puts the sum of registers r1 and r2 in r3. The PA-RISC registers are thesame as the registers used in k̂.The translation � pa 2 k̂ ! P is a quite simple \macro expan-sion" translation. An example gives an idea of what the translation does:m[�1 + �] :=�2 is translated to a stw-instruction if the o�set � will �t in the14 bits the stw-instruction allows. Otherwise, it is translated to two instruc-tions, the �rst of which computes part of the address in register r1, and thenthe second instruction stores �2 at an o�set from r1:
186



m[�1 + �] :=�2 pa =if 213 � 4 � � ^ 4 � � < 213 then stw %�2,4 � �(%sr0,�1)else addil l%4 � �{$global$,�1stw %�2,r%4 � �(%sr0,%r1):The function � pa we have almost directly copied from the existing backend (Elsman and Hallenberg, 1995).The PA-RISC has 31 registers:� = fr1; : : : ; r31g:The stack pointer is �sp= r30; the global data space pointer (p. 164) is �dp=r27; and since r1 is used, as above, when a constant is too large to �t inan instruction, we prohibit its use in the register allocation. This leaves 28registers at the disposal of the register allocator.The heavy-weight instructions �1 := at �2 : �, � := letregion, etc. are imple-mented through a combination of translating them to simpler k̂ instructions,calls to sub-routines, and calls to the run-time system. The register alloca-tor must know the set of registers destroyed by these instructions. E.g., inone con�guration of the compiler, �1 := at �2 : � and � := letregion are codedcompletely in k̂ instructions, and�̂at = fr1; r20; r21; r23; : : : ; r26g�̂letregion = fr1; r20; r21g;whereas endregions � is implemented as a call to the run-time system, andthus �̂endregion is the registers destroyed according to the PA-RISC callingconvention (Hewlett-Packard, 1991b):�̂endregion = fr1; r2; r19; : : : ; r26; r28; r29; r31g:Similarly, we must de�ne the natural destination registers and preferredargument registers of the heavy-weight instructions. For instance, �letregion=r28 when � := letregion is implemented as a call to the run-time system.9.3 Instruction schedulingOn pipelined processors pipeline interlocks can occur. This happens, for ex-ample, when a value is loaded from memory to a register and the instructionimmediately after the load instruction uses this register. For example:p1: ldw 0(%sr0, %r1), %r3p2: add %r2, %r3, %r4p3: add %r5, %r6, %r7187



On the PA-RISC, the time needed to transfer a value between cache and aregister is one cycle, so r3 is not ready by the time p2 needs it. This causesthe processor to wait for a cycle until the contents of the memory locationpointed to by r1 has reached r3. Since p3 does not use r3, there is no interlockif the order of the instructions is changed to p1p3p2. This does not change thesemantics of the program, as p3 does not depend on p2. (Since p3 does notdepend on p1 either, the sequence p3p1p2 would also have the same semantics,but an interlock would occur.)The purpose of instruction scheduling is to try to avoid interlocks wherepossible, by rearranging instructions to produce a (hopefully) faster program.In the following, we �rst discuss a general algorithm for scheduling. Thenspeci�cs concerning the PA-RISC are covered. The main inspiration for thealgorithm stems from (Gibbons and Muchnick, 1986).The scheduling algorithmTo reorder the instructions in the original program without changing thesemantics of it, it must be recorded how instructions depend on each other,and a strategy must be chosen to decide on the reordering. The main issuethat should be addressed to solve the �rst problem is: When is it legal toswap two instructions?The scheduling algorithm is used only on basic blocks. This is becauseit is not always possible at compile-time to determine where control will
ow at jumps. Completely di�erent dependencies could arise between theinstructions, depending on the 
ow of control.In the example above, it is clear that p3 may be executed at any point.This is because p3 does not use any registers that are destroyed by p1 andp2, and it does not destroy any registers that are used by p1 and p2.Consider a basic block consisting of instructions p1; : : : ; pj; : : : ; pk; : : : ; pn(1 � j < k � n). (In this section, a basic block is a sequence of P-instructions.) The instruction dependencies are:1. If pj destroys a register that is used by pk, then pj must be executedbefore pk.2. If pj uses a register that is destroyed by pk, then pj must be executedbefore pk.3. If pj destroys a register that pk also destroys, then pj must be executedbefore pk. This rule is redundant if there is at least one instructionpl between pj and pk that uses the register destroyed by pj, becausethen, by rule 1, pj must come before pl, and by rule 2, pl must comebefore pk. If there are no uses of the register that pj destroys before pkis reached, then pj could have been safely removed by an optimisationphase. Since this does not happen in the current implementation, theseinstructions must not be swapped, and this rule is necessary. We willalso see other reasons for this rule below.188



The di�erent kinds of dependencies are illustrated by this basic block:p4 : add %r1,%r2,%r3p5 : add %r3,%r3,%r4p6 : add %r0,%r0,%r3These instructions cannot be reordered: By rule 1, p4 must be executedbefore p5 because p4 destroys r3, which is used by p5. By rule 2, p5 mustcome before p6 because p6 destroys r3, which is used by p5. By rule 3, p4must come before p6, but that is already ensured by the two other rules.It is computationally unwise to consider the n! possible rearrangementsof a given basic block with n instructions to �nd the optimal scheduling.Therefore we use a heuristic. We construct a dependency graph (ppp;ddd) 2P�P(P�P), which is a directed graph that re
ects how instructions dependon each other according to the rules above: p2 depends on p1 according to(ppp;ddd) i� p1ddd?p2. Any topological sort of (ppp;ddd) will result in a reordered basicblock that is semantically equivalent to the original basic block.2 A heuristicthat seeks to minimise the number of interlocks is used to choose a nodeamong those nodes with no parents at each step in the topological sort.It is possible to construct pathological heuristics that will produce worsescheduling than the original program.The algorithm in detailThe function � sched. 2 P ! P schedules a program by converting theprogram to basic blocks, scheduling each basic block, and putting the basicblocks back together: p sched. =let (b1; : : : ; bm) = p bbs0b01 = b1 sched0...b0m = bn sched0in b01 � � � � � b0mwhere b1 � b2 is de�ned by:(p1; : : : ; pn) � (pn+1; : : : ; pm) = (p1; : : : ; pm):The function � bbs0 is trivial and will not be described further.The function � sched0 processes a basic block by making a dependencygraph, (ppp;ddd), and then applying the heuristic to produce a sequence of in-structions with as few interlocks as possible from this graph:2Topological sort: Choose a node with no parents, and delete it. Continue till the graphis empty 189



b sched0 =let (ppp;ddd)= dependencies bwhile (ppp;ddd) is not emptylet the candidate set pppc=the set of instructions with no predecessors in (ppp;ddd);apply the heuristic to pppc, yielding a choice p;remove p from (ppp;ddd);The next sub-sections explain dependencies and the heuristic.Building the dependency graphThe set of registers that is used and destroyed by an instruction set is pro-cessor dependent. This information is recorded in the functions � used and� defd : � used 2 P ?!P�� defd 2 P ?!P�The function � used computes which registers an instruction uses. Simi-larly, � defd computes which registers an instruction destroys. For example:add%r1,%r2,%r3 used = fr1; r2g,add%r1,%r2,%r3 defd = fr3g.During the processing of a basic block, the values necessary to build thedependency graph are maintained by maps D and U ,D 2 �! PU 2 �!PP.The last instruction that destroys � is given by D�. Similarly, U � is theset of instructions that use �. The maps D and U are updated on-the-
yafter each instruction in the basic block is processed. Thus, they only recordinformation from the beginning of the current basic block to the instructioncurrently being processed. When an instruction destroys a register, all lateruses will depend on this de�nition (rule 1). Therefore the use set, U �, of �may be set to ? when � is destroyed.The functions dependencies and dependencies0 build the dependencygraph. dependencies0 pU D is a set ddd consisting of edges representing theinstructions that p depends on, and dependencies produces the dependencygraph for the whole basic block.
190



p2: sub %r2,%r2,%r3p3: add %r5,%r5,%r1p4: add %r2,%r2,%r2p5: add %r3,%r1,%r4
By rule 1 because

By rule 3 because

By rule 1 because

p1: add %r0,%r0,%r1

By rule 2 because

p1

p3 and used by p5r1 is de�ned by p2 and used by p5r3 is de�ned by p2 and used by p5r3 is de�ned by
r3 is de�ned by p1 and p3

p4
p2

p5
p3

Fig. 41. The dependency graph for a program. On each edge is anexplanation of the rule used to insert the edge into the graph.dependencies0 pU D =let ddd =f(p0; p) j p0 2fD� j � 2 p used g [fU � j � 2 p defd g [fD� j � 2 p defd gg (rule 1)(rule 2)(rule 3)U =U + f� 7! (U � [ fpg) j � 2 p used gD =D + f� 7! p j � 2 p defd gU =U + f� 7! ? j � 2 p defd gin (U ;D ;ddd)dependencies (p1; : : : ; pn) =let U = ?D = ?(U ;D ;ddd1)= dependencies0 p1U D...(U ;D ;dddn)= dependencies0 pnU Din (fp1; : : : ; png;ddd1 [ � � � [ dddn)191



As an example of how the algorithm works, consider p5 in the �gureabove. The instructions that p5 depends on according to rule 1 are:fD� j � 2 p5 used g = fD(r3);D(r1)g = fp2; p3g:The instructions that p5 depends on according to rule 2 are:fU � j � 2 p5 defd g = fU (r4)g = ?:The instructions that p5 depends on according to rule 3 are:fD� j � 2 p5 defd g = fD(r4)g = ?:Thus the edges returned by dependencies0 (p5;U ;D) are f(p2; p5); (p3; p5)g.Loads and storesThere are other dependencies than register dependencies. It must be con-sidered when it is legal to swap loads and stores. Obviously, it is unsafe ingeneral to swap a load and a store instruction, since they might referencethe same memory location. It is also unsafe to swap two store instructionsbecause one store may overwrite the other causing later loads from this mem-ory location to result in the wrong value. Thus it is only safe to rearrangeloads, subject to the same restrictions as there are on all other instructions.This is elegantly handled by the scheduling algorithm by considering (all of)the memory as a pseudo-register m. This pseudo-register is destroyed by astore, and used by a load. E.g.,ldw 0(%sr0, %r1), %r3 used = fr1;mgstw %r24, 4(%sr0, %r30) defd = fmg:Two loads can be swapped if the rules permit, but a load and a store cannever be swapped because of rules 1 and 2. Rule 3 will ensure that all storesin the scheduled program will appear in the same order as in the originalprogram.Some instructions may set processor 
ags besides de�ning a register. Forexample, an add instruction may set an over
ow 
ag, on which succeedinginstructions depend. This can be handled by regarding 
ags as pseudo-registers. Thus, an instruction may destroy several registers.Designing a heuristic for the PA-RISCThis and the following section covers the speci�cs concerning scheduling PA-RISC code.The basic principle for the scheduling heuristic is to try to schedule in-structions that may cause interlocks as early as possible. This gives a betterchance of �nding an instruction that will not interlock with the one justscheduled.On the PA-RISC, interlocks occur when (Andersen, 1995):192



� an instruction loads a register, and the next instruction uses that reg-ister as a source� a load immediately succeeds a store� a store immediately succeeds a store� a load is followed by an arithmetic/logical instruction or a load/storewith address modi�cation.This leads to the following heuristic for choosing the next instruction:if the last instruction was a load thenif there are non-interlocking candidates thenchoose a non-interlocking candidate, preferably a loadelsechoose an interlocking candidate, preferably a loadelseif the last instruction was a store thentry to schedule a non-load/store instructionelsechoose any candidate, preferably a load or a store.If there are several equally good candidates, the candidate with most succes-sors in the dependency graph should be chosen.Skipping instructionsOn the PA-RISC, most instructions can conditionally skip the next instruc-tion. Consider the program fragmentp1 : add,= %r1 ,%r2 ,%r3p2 : add %r3 ,%r3 ,%r4.Here p1 skips p2 if r1 contains the same value as r2. What registers aredestroyed by this sequence? If p2 is executed, r4 is destroyed. If p2 is notexecuted, r4 is not destroyed. Also, the instruction scheduler must not movep2 away from p1, as this could result in another instruction being skipped.We solve the problem by treating p1 and p2 as one compound instruction.The set of registers destroyed by a compound instruction is the union of theregisters destroyed by each instruction. The same holds for set of registersused by a compound instruction.There can be chains of skip instructions. These are handled by treatingthe whole chain as one compound instruction.
193



10 Implementation notesEverything in the report has been implemented. The modules that we havewritten from scratch constitute approximately 13000 lines. This chaptergives some correspondences between the report and the code and lists somedi�erences between the report and the code.10.1 The correspondence between the report and the codeIn some respects, the implementation is quite as the report. Here is the SMLcode for let x = e1 in e2 ra (p. 104)j ra (LET(lvar,info lvar,e1,e2,info)) d =letval (w2,w2') = get w annotated on e2val (d,f1 opt,b1) = ra e1 dval (d,fx) = def f1 opt (Lvar lvar) d w2val (d,f2 opt,b2) = ra e2 dval (d,p) = spilled (Lvar lvar) dval b = fn f =>b1 fx jjjj preserve (Lvar lvar) fx p (b2 f)in (d,f2 opt,b)endLET(lvar,info lvar,e1,e2,info) corresponds to let x = e1 in e2. Ev-ery construct has an \info" �eld, which is a reference containing annotations.E.g., the !-information !2 and !02 annotated on e2 can be accessed from theinfo �eld on e2 with get w annotated on e2. Phases that are presented inthe report as translations from one language to another annotated languageare often implemented as phases that update the info �elds of the source ex-pressions. The f-variables are �'s; d is � (the "-environment is implementedwith global references); def is � def; spilled is � kill; b is �; jjjj is ; ; etc.10.2 Some deviations from the report in the implementationPolymorphic equality and taggingPolymorphic equality allows the programmer to compare arbitrary data ob-jects for equality if they do not contain functions. The functionfn a=> fn b=> a=bcould be applied to any type that allows polymorphic equality. If we wantthe same code to be able to work for any type, it is not enough to representall types uniformly: Two integers are equal if their representation as wordsare equal, but to compare tuples one cannot compare their representation194



as words, the actual representations in memory must be compared. Thusthe code for the polymorphic equality function must be able to see whetherit is integers or tuples it is comparing, i.e., data must be tagged in ourimplementation. Tags are normally also needed by the garbage collector; inour implementation, the sole reason for having them is polymorphic equality.According to the report, (), which has type unit, need not be representedexplicitly, because there is no built-in operation with unit in its input type.This is not the case in the implementation, for the built-in polymorphicequality function may compare values of type unit: op = : unit � unit�> bool. Still, this ought not to be a problem, for there is only one valueof type unit, and hence, = will always return true when applied to unit-values. Therefore, it should be of no concern what the exact value of anyword representing () is. Unhappily, this is not so; because = is polymorphic,it does not know whether it is applied to a unit-value, and it must alwaysinspect the representations of the values that are compared. This impliesthat () must have a �xed representation. In this presentation, the code fore1:= e2 just lets some arbitrary garbage remain in its destination register; inthe implementation, it must explicitly put the value representing () into thedestination register.(If unit did not allow polymorphic equality, there would be less trouble.On the other hand, one single instruction su�ces to ensure that expressionsof type unit return the right value.)Storage modeThe source language in the implementation has \storage mode" annotations(p. 12) (Birkedal et al., 1996). Sometimes, allocation can safely be made atthe \bottom" of the region (i.e., previously allocated data in the region canbe overwritten), and sometimes it must be made \at the top" of the region.To keep things simple, these annotations have not been described in thereport, but we have implemented the proper translation of them. The storagemodes complicate the function � ra-at (which makes the code to allocate ina region, section 8.6) and puts restrictions on the order allocations must bedone in. Notably, it means that the code for unary constructor application aspresented in the report (p. 177) would be wrong in the implementation (andat a point, it was): The memory for the constructed value that _c1 e2 at �evaluates to must be allocated after e2 has been evaluated, or else the storagemode annotations will be wrong. (To the reader who understands storagemodes: In the expression ::(1,::(2,nil)) the storage mode for nilmay indicatethat the region nil and the ::'s are stored in can be overwritten. If theallocations for the ::'s are performed before the allocation for nil, the latterwill overwrite the former allocations.)ExceptionsThe representation of exceptions in the implementation also comprises thename of the exception constructor (i.e. a string). This is necessary to report195



the name of an exception that escapes to the top level.The region inference currently puts all exceptions in a global region, i.e.,a region that will be allocated throughout the evaluation of the whole pro-gram. This means that memory allocated for exceptions will not be deal-located before the program terminates. To alleviate this problem, the codefor exception a in e2 and the code for a� at � di�er in the implementationfrom the description in the report: The code for exception a in e2 does thenecessary allocation such that the code for a� at � does not have to allocateanything. This gives a reduction in memory consumption for most programs,because the �rst kind of expressions usually are evaluated only once, whilethe latter often are evaluated many times during execution. The code for_a1 e2 at � still allocates memory; hence programs using unary exceptionswill still have bad memory behaviour.RealsOn the PA-RISC, reals must be aligned when stored in memory. Elsmanand Hallenberg (1995) ensure that this is the case by checking addresses atrun-time. This can be done at compile-time, and it should be especially easyin our compiler, as it already keeps track of the stack pointer. But to limitour job, we have not implemented reals. Extending the register allocation toreals might also be straightforward.Etc.In the implementation, letregion binds a sequence of region variables, andnot just one. This is dealt with as if it were a series of nested letregion-expressions.A peep-hole optimisation collapses adjacent � :=���-instructions. Thesecan be generated when, e.g., more than one known-size regions are allocatedin a row, or several spilled values are deallocated right after each other.

196



11 AssessmentWe assess our compiler in two ways: we compare the standard con�gura-tion of our compiler with other con�gurations and with two other compilers:SML/NJ, the best readily available SML compiler known to us, and the ex-isting ML Kit (which we will call kam), i.e., the same compiler as ours exceptfor the back end.Section 11.3 compares the speed of the code generated by the three com-pilers. Section 11.4 tries to assess the signi�cance of di�erent ingredientsin the inter-procedural register allocation. It examines the e�ect of imple-menting several-argument functions e�ciently, and of using inter-proceduralinformation in the register allocation. Section 11.5 considers the per-functionpart of the register allocation. Section 11.6 measures how important the num-ber of registers is. Section 11.7 looks at the e�ect of duplicating code to avoidjumps. Section 11.8 evaluates the e�ect of instruction scheduling. Section11.9 is a case study of the translation of the Fibonacci function �b that,among other things, illustrates a de�ciency with the producer-saves storecode placement strategy. Section 11.10 investigates memory consumption.11.1 How the measurements were performedkam also translates to PA-RISC. It uses a graph-colouring register allocationthat works on extended basic blocks; does copy propagation; and uses thesame instruction scheduler as our compiler.3We compare with version 0.93 of SML/NJ. There are more recent ver-sions. Notably, the previously discussed (p. 36), successful closure represen-tation analysis (Shao and Appel, 1994) is not part of version 0.93. This isperhaps fair, as we do not have a closure representation analysis either.4In the tables, the �rst column is the baseline (always 1.00), and the othercolumns are normalised with respect to that column. E.g., in �gure 42, ourrun-time of kkb normalised to SML/NJ is 0.80. Hence, if the execution timeof kkb in SML/NJ is 10s, the execution time in our compiler is 0.80 � 10s =8s. The �rst column of a table normally also gives the unnormalised data,e.g., the run-time in seconds. The �nal row in a table gives the geometricmean (geometric because we use normalised results (Fleming and Wallace,1986)). In a column, ` marks the best result and a the worst.53We use version 22s of the ML Kit except for the optimiser which is version 25s extendedwith an uncurry phase to enable more functions to be converted to functions of severalarguments in our compiler. When we compare with kam, we have used a version (28g)that should essentially be like version 22s but with the same optimiser as in our compiler.4To increase SML/NJ's possibilities of optimising, we have put each benchmark in astructure and a let-expression and we have included the code for the built-in functions(e.g., @). A signature is imposed on the structure so that the only function visible fromthe outside of the structure is the benchmark function.5The experiments were run on an unloaded HP 9000/C100 with 256MB RAM (calledfreja). Timing results is the minimum sum of the \user" and \system" time as measuredby Unix time after running the benchmark thrice.197



11.2 Benchmark programsThe following benchmark programs have been used in all experiments. Ex-cept for kkb, and life, the benchmarks are toy programs. Benchmarks shouldbe real programs to be worth much, but time forbids doing better.1. Real programs.kkb Knuth-Bendix completion, improved for region inference by MadsTofte, i.e., kkb has been written in certain ways that makes itsmemory behaviour better in a region inference based compiler (Tofte,1995, Bertelsen and Sestoft, 1995). Pro�ling kkb (in SML/NJ),shows that it uses time in many di�erent functions, which shouldincrease its value as a benchmark. It uses exceptions.kam will not compile kkb when the uncurrying optimisation isturned on, so all measurements with kkb using kam have been ob-tained with this optimisation switched o�. This probably gives ourkkb a bene�t.life The game of life implemented using lists and improved for regioninference. Pro�ling life shows that it uses half its time in a singlefunction.2. Non-sensical programs believed to bene�t from inter-procedural registerallocation.appel Function applications in a row, and simple arithmetic, e.g.:fun f (g,h,u,v,w) = let val x = g(h,u,v)val y = g(h,x,w)val z = g(h,y,x)in x+y+z+v+1endbappel More of that.ip A seven-functions-deep call graph within a loop.plusdyb A three-functions-deep call graph within a loop.3. Programs that make many calls.ack The Ackermann function, a multiple-argument function.tak The Takeuchi function, a multiple-argument function:fun t(x,y,z) = if x<=y then zelse t(t(x�1,y,z),t(y�1,z,x),t(z�1,x,y))�b The Fibonacci function.
198



4. Programs designed to test speci�c things.bul Should bene�t from the short-circuit translation of Boolean expres-sions. Basically, it is a loop containing the expressionif (x<y andalso (case z mod 4 of 0 => truej 1 => falsej 2 => a mod 2 = 1j � => a<n))orelse ae<oe then a+1 else a�1fri A function that uses its free variables many times. It should bene�tbecause we allocate a free variable to a register once it has beenfetched from the closure whereas kam fetches it each time it is used.handle Introduce handlers often but raise exceptions only exceptionally.raise Raise a lot of exceptions.5. Miscellaneous.reynolds Build a big balanced binary tree and traverse it. Designed to exhibitgood behaviour with region inference (Birkedal et al., 1996).ryenolds As reynolds, but changed in a way that gives bad memory perfor-mance with region inference.church Convert integers to church numerals; multiply and take the powerof them; and convert the result back to integers. Many functionapplications, and many fetches of free variables from a closure.foldr Build and fold a big constant list.msort Merge sort.qsort Quick sort.iter Apply the following function to di�erent functions:fun iter(x,p,f) =let fun h(a,r) = if p(a,r) then a else h(f(a),a)in h(x,1) endSince we want to assess the inter-procedural register allocation and notregion inference, many of the benchmarks do not use much memory.We have two major reservations concerning the experiments below: al-most all benchmarks are toy programs, some of which are designed to makeour register allocation work particularly well. Also, the timing of the bench-marks may be inaccurate; we have observed fairly large 
uctuations betweentwo runs of the same benchmarks. The number of decimals is not an indica-tion of the accuracy of the measurements.
199



11.3 Speed (i)sml/nj (ii)kam (iii)wekkb 20.41 s 1.00 1.49 0.80life 48.24 s 1.00 0.64 0.36appel 16.11 s 1.00 0.78 0.64bappel 27.76 s 1.00 0.83 0.67ip 24.42 s 1.00 0.56 0.36plusdyb 37.92 s 1.00 0.45 0.38ack 16.87 s 1.00 0.76 0.59�b 98.58 s 1.00 0.44 0.44tak 31.63 s 1.00 0.96 0.64bul 35.78 s 1.00 0.43 `0.33fri 10.21 s 1.00 1.17 0.77handle 60.13 s 1.00 0.55 0.46raise 31.28 s 1.00 0.84 0.62ryenolds 27.32 s 1.00 0.57 0.54reynolds 28.04 s 1.00 `0.35 0.40church 39.79 s 1.00 0.95 0.85foldr 47.14 s 1.00 0.67 0.51msort 9.28 s 1.00 1.25 0.78qsort 19.01 s 1.00 1.45 a1.05iter 15.77 s 1.00 a1.67 0.94mean 1.00 0.76 0.57

(iv)kam (v)we1.00 `0.541.00 0.561.00 0.831.00 0.811.00 0.631.00 0.841.00 0.781.00 1.001.00 0.671.00 0.781.00 0.661.00 0.851.00 0.731.00 0.951.00 a1.141.00 0.901.00 0.771.00 0.631.00 0.731.00 0.561.00 0.75Fig. 42. Run-time of the compiled benchmarks with the standard con�g-uration of the three compilers.(i){(iii) are normalised to SML/NJ. For SML/NJ, raw �gures are alsogiven. Comparing with SML/NJ, we do worse only on qsort. This isprobably because SML/NJ's garbage collection is better at handling thisbenchmark than region inference, for also kam does worse than SML/NJon qsort. On average, our benchmarks run in 0.57 the time of SML/NJ.(iv){(v) are normalised to kam. Comparing with kam, we do worseonly on reynolds. On average, our benchmarks run in 0.75 the time ofkam. Strangely, it is not on the inter-procedural benchmarks that wesee the greatest speed-up: the relative run-times of appel, bappel, andplusdyb, are all larger than the mean.
200



11.4 The importance of the di�erent ingredients of the inter-procedural register allocation(i)we, normal (ii)no s.a. (iii)no un-curry (iv)no s.a.,no un-curry (v)uniforml.c.'s (vi)uniforml.c.'s,callersaves (vii)kamkkb 16.28 s 1.00 1.09 1.12 1.20 1.06 1.08 a1.86life 17.40 s 1.00 1.00 1.08 1.08 1.21 1.35 1.78appel 10.38 s 1.00 1.00 0.99 1.00 1.01 1.15 1.20bappel 18.64 s 1.00 1.03 1.00 1.03 1.00 1.14 1.23ip 8.70 s 1.00 1.08 1.37 1.42 1.03 1.07 1.58plusdyb 14.41 s 1.00 1.13 1.37 1.37 1.01 0.98 1.19ack 10.00 s 1.00 1.16 1.00 1.15 1.00 1.00 1.29�b 43.31 s 1.00 1.00 1.00 1.00 `0.90 `0.92 1.00tak 20.32 s 1.00 1.46 1.00 1.46 0.92 0.98 1.49bul 11.98 s 1.00 1.01 0.99 1.01 0.99 1.02 1.29fri 7.85 s 1.00 1.00 1.00 1.01 1.02 1.06 1.52handle 27.93 s 1.00 1.11 a1.51 1.51 1.01 1.01 1.18raise 19.29 s 1.00 1.01 1.00 1.01 1.02 1.02 1.37ryenolds 14.86 s 1.00 1.13 1.02 1.16 1.01 1.01 1.05reynolds 11.26 s 1.00 1.00 `0.96 `0.96 1.05 1.06 `0.87church 34.00 s 1.00 1.00 0.99 0.99 1.06 1.12 1.11foldr 24.22 s 1.00 1.08 1.05 1.11 1.07 1.07 1.30msort 7.26 s 1.00 1.08 1.00 1.08 1.06 1.05 1.60qsort 20.02 s 1.00 1.01 1.00 1.01 1.12 1.11 1.38iter 14.76 s 1.00 a1.57 1.00 a1.57 a1.24 a1.40 1.78mean 1.00 1.09 1.06 1.14 1.04 1.07 1.33Fig. 43. Run-time with di�erent parts of the register allocation disabled.(i) The standard con�guration of our compiler.(ii) Disable several-argument functions. This increases the mean run-time to 1.09,and kkb con�rms that.(iii) Disable uncurrying. The uncurry phase is not part of our work; we trydisabling it to see whether this inhibits the conversion to several-argument functions.(iv) Disable both uncurrying and several-argument functions. Apparently there islittle synergism between uncurrying and conversion to several-argument functions:(iv) is never more than the sum of (ii) and (iii).(v) Use a uniform linking convention, i.e., use the same registers at all calls topass parameters to functions. This increases the mean run-time to 1.04, and kkbcon�rms that.(vi) Use a uniform linking convention and total caller-saves. There is a furtherincrease to mean 1.07, which kkb con�rms. Thus, using 
exible linking conventionsappears to be slightly more important than using 
exible conventions for registersaving. This is contrary to what we would expect, as the latter should avoid savesof registers while the former should only avoid moves (section 5.6).201



Notice it is a bit unfair to compare our 
exible sets of callee-save/caller-save reg-isters with a total caller-saves convention, for an intra-procedural register allocatorcould probably bene�t much from having both some caller-save and some callee-save registers. However, it was easiest to hack our compiler to use a total caller-saveconvention.O�hand, several-argument functions (ii) seem more important than inter-procedu-ral information (vi). But a part of the bene�t from using several-argument functionsmay be indirect: several-argument functions should give the inter-procedural registerallocation greater opportunity for doing well. I.e., several-argument functions mightnot be worth as much if the register allocation was not inter-procedural. It wouldbe an interesting experiment to turn o� both at the same time, i.e., combine (ii)and (vi): if this gives a run-time less than the \sum" 1.16 of 1.09 and 1.07, several-argument functions and inter-procedural information each increase the importanceof the other. To some extent �gure 44 (iv) carries out this experiment: there thetwo are turned o� and our compiler is maimed in other ways, but the run-time onlydecreases to 1.15, which is less than 1.16. This suggests that there is synergismbetween the two.(vii) kam.

202



11.5 The per-function part of the register allocation(i)normal choose (ii)! = ? (iii)samealwayskkb 16.28 s 1.00 1.13 1.34life 17.40 s 1.00 a1.73 2.38appel 10.38 s 1.00 1.29 1.70bappel 18.64 s 1.00 1.25 1.62ip 8.70 s 1.00 1.56 a3.02plusdyb 14.41 s 1.00 1.20 1.47ack 10.00 s 1.00 1.00 1.90�b 43.31 s 1.00 `0.94 1.26tak 20.32 s 1.00 1.05 1.49bul 11.98 s 1.00 1.09 1.36fri 7.85 s 1.00 1.32 2.88handle 27.93 s 1.00 1.09 1.37raise 19.29 s 1.00 1.12 1.10ryenolds 14.86 s 1.00 1.03 1.21reynolds 11.26 s 1.00 1.02 `1.08church 34.00 s 1.00 1.05 1.28foldr 24.22 s 1.00 1.23 1.54msort 7.26 s 1.00 1.31 1.57qsort 20.02 s 1.00 1.37 1.70iter 14.76 s 1.00 1.36 1.80mean 1.00 1.19 1.59

(iv)we ,intra-proceduralversion (v)kam1.15 a1.861.34 1.781.19 1.201.15 1.231.19 1.581.22 1.191.16 1.29`0.96 1.001.61 1.491.06 1.291.06 1.521.10 1.181.01 1.370.99 1.050.99 `0.871.03 1.111.11 1.301.11 1.601.04 1.38a2.01 1.781.15 1.33Fig. 44. Run-time with di�erent heuristics for choosing registers. (i) The normalheuristic for choosing registers (section 6.7). (ii) Same as (i), but ignoring the!-information. (iii) Always choose the �rst register not in �̂ according to some(arbitrary) given order. This (roughly) gives a lower bound on how bad a heuristiccan do, as it does the worst possible: always choose the same register, except whentwo values must be in di�erent registers (e.g., because they will be added together).It seems the heuristic is quite good: (i) is much better than (ii), and it seems that(ii) is not unreasonably bad, for it is much better than the \lower bound", (iii).Take care not to draw rash conclusions, though; setting ! = ? might still not be afair way to handicap the heuristic.Comparing with graph colouring. (iv) Attempting to compare our per-functionregister allocation with graph colouring, we have tried giving we the same condi-tions as kam: uniform calling convention, total caller-saves convention, no several-argument functions, no instruction scheduling, no code duplication, and restrictingthe set of available registers to approximately what kam uses. (v) kam. We do bet-ter, and it is tempting to conclude that our per-function register allocation is betterthan graph colouring, but the experiment does not sustain a conclusion that radi-cal, as there are other di�erences between the two compilers than the per-functionregister allocation algorithm (e.g., the treatment of exceptions, Boolean expressions,free variables, saving across function calls).203



11.6 The importance of the number of registersWe have tried to give the register allocator fewer than the 28 registers avail-able. One of the goals of inter-procedural register allocation is to utilise themany registers better. Thus, if our inter-procedural register allocation isworth anything, one should expect performance to degrade when there arefewer registers. With an intra-procedural register allocation, which cannotexploit the many registers as well, performance should degrade less.We have decided what sets � of registers to try in the following way: Themost frequently used heavy-weight instructions �1 := at �2 : �, � := letregion,and endregion destroy speci�c sets of registers, �̂at, �̂letregion, and �̂endregion,respectively. Since the registers in �heavy = �̂at [ �̂letregion [ �̂endregion aredestroyed frequently (in programs that allocate) they will probably be usedfor values with short live ranges. Therefore, we divide the experiments inthose that include �heavy, and those that do not. The set �rest is the set ofregisters not in �heavy.
�rest8>>>>>>>>>><>>>>>>>>>>: �5 �7 �10�19a �28�19b�16�13�heavy8<:Fig. 45. Varying the set � of registers available to the register allocator.The markings on the vertical axis are the 28 available registers. Registersbelow the thin horizontal line are in �heavy; those above the line arein �rest. The vertical lines are experiments. They are named after thenumber of registers they contain. There are two di�erent experimentswith 19 registers. For technical reasons, no experiment may have lessthan 5 registers from �rest.

204



�5 �7 �10 �19a �13 �16 �19b �28kkb 1.28 1.22 1.11 0.99 1.10 1.04 1.03 1.00 16.28 slife a1.88 1.72 1.05 1.03 1.08 1.03 1.01 1.00 17.40 sappel 1.43 1.32 1.10 1.01 1.11 1.05 1.04 1.00 10.38 sbappel 1.37 1.29 1.10 1.02 1.11 1.06 1.05 1.00 18.64 sip 1.26 1.19 1.05 0.98 1.04 1.03 1.00 1.00 8.70 splusdyb 1.28 1.25 0.97 1.00 0.95 0.96 `0.99 1.00 14.41 sack 1.28 1.27 1.00 1.00 0.99 0.93 1.00 1.00 10.00 s�b 1.23 1.27 0.93 0.95 `0.86 `0.90 1.00 1.00 43.31 stak 1.41 1.42 0.97 0.96 0.95 0.92 1.00 1.00 20.32 sbul 1.26 1.17 1.14 a1.12 1.07 1.01 1.01 1.00 11.98 sfri 1.27 1.14 1.05 1.02 1.05 1.02 1.01 1.00 7.85 shandle 1.05 1.03 1.00 1.01 1.02 1.02 1.00 1.00 27.93 sraise 1.10 1.09 1.05 1.02 1.07 1.04 1.03 1.00 19.29 sryenolds `0.92 `0.92 `0.84 `0.87 1.03 1.00 1.00 1.00 14.86 sreynolds 1.16 1.14 0.95 0.97 1.07 0.97 1.00 1.00 11.26 schurch 1.28 1.12 0.96 0.98 1.04 0.98 1.00 1.00 34.00 sfoldr 1.36 1.33 1.11 1.05 1.07 1.01 1.00 1.00 24.22 smsort 1.44 1.30 1.07 1.01 1.13 1.13 1.03 1.00 7.26 sqsort 1.66 1.52 a1.31 1.03 a2.73 1.21 1.08 1.00 20.02 siter 1.85 a1.88 1.16 0.99 1.38 a1.42 a1.17 1.00 14.76 smean 1.32 1.26 1.04 1.00 1.11 1.03 1.02 1.00Fig. 46. Run-time with the experiments from �gure 45 normalised to �28.As is to be expected, the gain from adding an extra register to the set of availableregisters decreases as the number of registers increases.The mean of experiment �19a is 1.00, i.e., the benchmarks run just as well with�heavy added to the set of registers as without. This suggests the e�ort we have in-vested in making many registers participate on equal terms in the register allocationis somewhat wasted. We could simply have reserved �heavy for the run-time systemand not allowed these registers to participate in the register allocation.Since the registers in �heavy are destroyed by heavy-weight instructions, we expectthat, e.g., experiment �19a is faster than �19b, even though the same number ofregisters are available. This is the case (1.00 compared to 1.02). The same e�ectcan be seen by comparing �10 and �13 (1.04 compared to 1.11): experiment �13 hasmore registers, but many of them are destroyed by the heavy-weight instructions,and consequently, the benchmarks run faster in �10. Naturally, it is the benchmarksthat allocate, and thus use the heavy-weight instructions, that experience decreasingperformance from �10 to �13: e.g., ryenolds, reynolds, iter, and especially qsort(kkb is an exception, or perhaps it does not allocate much?). The benchmarksthat do not allocate generally improve from �10 to �13. In �16, we get a meanperformance which is the same as in �10; i.e., the numbers say: 10 registers thatare not destroyed by the heavy-weight instructions is as good as 8 registers that areplus 8 that are not. In other words, the registers in �heavy are not worth much.
205



On the other hand, the di�erence between experiments �5 and �13 is only that�heavy has been added, and this gives an improvement in normalised run-time from1.32 to 1.11, which is hardly negligible. The extra registers for short live ranges arewelcome when there are few registers in all.In �5, the programs take 32% longer to run. The big performance increase isgained when going from 7 to 10 registers: already then, the benchmarks are only4% slower than with all registers.Surprisingly, �b seems to run fastest using 13 registers; ryenolds runs quite a bitbetter with 10 than with 28 registers; and it is even better with only 5 than with 28registers. Surprises should be expected, since we are using heuristics.Comparing experiments �19a and �28, we would expect the benchmarks appel,bappel, ip, and plusdyb that are designed to bene�t from inter-procedural registerallocation to be the ones that improve their performance the most when going from19 to 28 registers. This is not the case: the improvement from �19a to �28 on thesebenchmarks is small.

206



11.7 Linearising the codeThe algorithm duplicates a basic block to avoid a jump if the number ofinstructions in the basic block is less than the duplication limit. We havetried setting the duplication limit to 0, 4, 10, 23, 42, and 1000. Heavy-weight instructions count as some �xed amount of light instructions; e.g.,endregion counts as 9.(i) (ii) (iii)0 4 10 23 42 1000kkb 1324 1.00 0.43 0.00 0.03 0.12 0.22 0.31 0.45life 459 1.00 0.34 0.00 0.03 0.10 0.20 0.25 `0.49appel 21 1.00 0.43 0.00 a0.00 a0.00 a0.00 a0.00 a0.24bappel 35 1.00 0.34 0.00 a0.00 0.06 0.06 0.06 0.43ip 40 1.00 0.40 0.00 0.03 0.07 0.07 0.07 0.30plusdyb 15 1.00 0.27 0.00 a0.00 0.07 0.20 0.20 0.27ack 18 1.00 0.44 0.00 0.06 0.11 0.17 0.28 0.28�b 16 1.00 0.44 0.00 a0.00 0.12 `0.25 0.25 0.25tak 25 1.00 0.44 0.00 0.04 0.08 0.16 0.16 0.32bul 41 1.00 `0.46 0.00 0.02 `0.17 0.22 0.29 0.39fri 43 1.00 0.40 0.00 a0.00 0.05 0.14 0.28 0.40handle 58 1.00 0.40 0.00 a0.00 0.14 0.19 0.21 0.38raise 60 1.00 0.38 0.00 0.03 0.15 0.17 0.17 0.37ryenolds 42 1.00 0.43 0.00 0.02 0.10 0.21 0.29 0.36reynolds 47 1.00 0.40 0.00 0.02 0.11 0.21 `0.32 0.32church 115 1.00 a0.17 0.00 0.01 0.07 0.20 0.28 0.33foldr 44 1.00 0.39 0.00 a0.00 0.11 0.23 0.25 0.34msort 196 1.00 0.42 0.00 0.04 0.12 0.20 0.30 0.46qsort 80 1.00 0.44 0.00 0.04 0.09 0.14 0.23 0.40iter 47 1.00 0.43 0.00 `0.09 0.15 0.19 0.26 0.28Fig. 47. E�ect of ordering basic blocks and duplication on number of jumps. (i) Thenumber of basic blocks in the program.(ii) The number of basic blocks that were put after a basic block that jumps to it,i.e., the number of jumps eliminated by ordering basic blocks. Ordering basic blockssucceeds in placing between 0.34 and 0.44 of all basic blocks after a basic block thatjumps to it (except for three benchmarks).(iii) The number of basic blocks that were duplicated to eliminate a jump, withthe duplication limit set to 0, 4, 10, 23, 42, and 1000 instructions, respectively. Withthe duplication limit set to 4 only few extra jumps are avoided by duplication ofbasic blocks. With the duplication limit set to 10, up to 0.17 (bul) of the jumps atthe end of basic blocks are avoided by duplicating basic blocks.
207



0 4 10 23 42 1000kkb 28068 1.00 1.00 1.03 a1.09 1.20 1.88life 13951 1.00 1.00 1.00 1.04 1.08 2.39appel 1026 1.00 1.00 1.00 1.00 1.00 1.57bappel 1367 1.00 1.00 1.00 1.00 1.00 2.14ip 1135 1.00 1.00 1.00 1.00 1.00 2.11plusdyb 431 1.00 1.00 1.00 1.07 1.07 1.06ack 519 1.00 1.00 1.01 1.04 1.15 1.15�b 525 1.00 1.00 1.01 1.07 1.07 1.07tak 599 1.00 1.00 1.01 1.03 1.03 1.31bul 930 1.00 1.00 1.01 1.06 a1.30 1.81fri 1366 1.00 1.00 1.00 1.05 1.19 a2.86handle 2164 1.00 1.00 a1.04 1.05 1.06 1.53raise 2441 1.00 1.00 1.02 1.02 1.02 1.54ryenolds 1395 1.00 1.00 1.00 1.04 1.10 1.23reynolds 1292 1.00 1.00 1.00 1.05 1.11 1.11church 3271 1.00 1.00 1.01 a1.09 1.17 1.58foldr 11032 1.00 1.00 1.00 1.01 1.01 `1.04msort 4384 1.00 1.00 1.01 1.07 1.22 2.13qsort 2197 1.00 1.00 1.00 1.03 1.13 2.48iter 1119 1.00 1.00 1.00 1.03 1.08 1.16mean 1.00 1.00 1.01 1.04 1.10 1.58Fig. 48. E�ect of duplication on code size. We use the number of linesin the .s �le as a measure of the number of P-instructions. This shoulddo, because we are studying the increase in code size. The duplicationlimit is set as in �gure 47. Apparently, there is no code explosion; evenwith the duplication limit set unrealistically high, the code size maximallyincreases by a factor 2.86.

208



0 4 10 23 42 1000kkb 16.37s 1.00 1.00 0.97 0.98 0.96 0.96life 17.91s 1.00 0.97 0.96 0.98 0.98 0.98appel 10.18s 1.00 1.00 a1.01 a1.01 1.00 1.01bappel 18.72s 1.00 1.00 1.00 1.00 1.00 0.99ip 8.71s 1.00 1.00 1.00 1.00 1.00 0.97plusdyb 14.00s 1.00 a1.01 0.99 0.99 0.99 0.95ack 10.43s 1.00 `0.94 `0.89 `0.89 0.95 0.96�b 41.37s 1.00 1.00 0.94 0.98 0.98 0.98tak 20.23s 1.00 `0.94 0.92 0.91 `0.91 `0.93bul 11.61s 1.00 1.00 1.00 a1.01 1.00 1.00fri 7.91s 1.00 a1.01 1.00 1.00 1.02 1.00handle 28.58s 1.00 a1.01 0.99 0.98 0.98 0.97raise 19.49s 1.00 1.00 1.00 0.99 0.99 1.00ryenolds 14.87s 1.00 1.00 1.00 0.97 1.03 1.02reynolds 11.61s 1.00 1.00 a1.01 0.99 1.02 1.02church 34.07s 1.00 a1.01 0.99 a1.01 1.00 1.00foldr 24.46s 1.00 1.00 0.98 0.98 0.98 0.99msort 7.30s 1.00 1.00 0.98 0.98 0.98 0.99qsort 19.66s 1.00 0.99 a1.01 a1.01 a1.04 a1.05iter 14.95s 1.00 1.00 0.99 0.97 0.97 0.97mean 1.00 0.99 0.98 0.98 0.99 0.99Fig. 49. E�ect of duplication on run-time. Performance does not seemto degrade when the code size increases: e.g., at 42, the size of kkb isscaled with 1.20, at 1000 it is 1.88, but the performance is 0.96 in bothcases.The mean speed tops at the duplication limits 10 and 23 (it is 0.98).At these points, the code size (�gure 48) has increased to a mere 1.01and 1.04, respectively, and maximally increases to 1.09. (kkb tops atduplication limit 42, though, with the speed 0.96 and code size 1.20.)
209



11.8 Instruction scheduling we ,no sche-duling wekkb 1.00 0.98life 1.00 0.99appel 1.00 0.99bappel 1.00 1.00ip 1.00 1.00plusdyb 1.00 0.93ack 1.00 0.91�b 1.00 `0.88tak 1.00 0.91bul 1.00 0.97fri 1.00 1.00handle 1.00 a1.01raise 1.00 1.00ryenolds 1.00 1.00reynolds 1.00 0.99church 1.00 0.99foldr 1.00 0.99msort 1.00 0.99qsort 1.00 1.00iter 1.00 0.97mean 1.00 0.97Fig. 50. E�ect of instruction scheduling. The scheduling gives an overallslight speedup. One reason that the speedup is relatively small may bethat the generated code has a large percentage of load/store instructions.For example, approximately 65% of the instructions in the code for kkbare loads or stores.11.9 An exampleAn example illustrates some of the problems with our register allocation.Consider �b: fun �b 0 = 1j �b 1 = 1j �b n = �b(n�1) + �b(n�2)
210



�b: push �24 ; spill npush �26 ; spill clospush �25 ; spill retif �24=0 then �b3 else �b4 ; 0?�b3: �26 := 1 ; goto �b7 ; return 1 in �26�b4: if �24=1 then �b5 else �b6 ; 1?�b5: �26 := 1 ; goto �b7 ; return 1 in �26�b6: �23 := 1 ; �b(n�1)�24 := �24{�23 ;�25 := �b1 ; return to �b1goto �b ;�b1: push �26 ; push result of �b(n�1)�26 := m[�sp{3] ; reload clos�25 := m[�sp{4] ; reload n�24 := 2 ; �b(n�2)�24 := �25{�24 ;�25 := �b2 ; return to �b2goto �b ;�b2: �25 := �26 ;pop �26 ; pop result of �b(n�1)�26 := �26+�25 ; return �b(n�1)+�b(n�2) in �26goto �b7 ;�b7: �25 := m[�sp{1] ; reload ret�sp:= �sp{3 ; pop n, clos, and retgoto �25 return.Fig. 51. The k-code for �b. We use a so-called producer-saves strategy forplacing store code: a spilled value is stored as soon as it has been produced(section 6.12). This is the earliest possible and has the disadvantage that valuesare sometimes stored unnecessarily. �b provides a pregnant example of this: theparameters to the function are live across the recursive calls and must hence besaved around these calls. According to the producer-saves strategy, this is donein the start of the code for �b. At leaf calls to the function (calls with argument0 or 1), this storing is actually not necessary, and since half the calls at run-timeare leaf calls, half the stores at run-time are super
uous. For �b, a callee-savesconvention is better than our caller-saves convention, because so many of therecursive calls do not destroy registers. With earlier versions of our compiler,kam did better on �b exactly because it always uses a callee-saves convention;apart from the placement of spill code, the code generated by the two compilersfor �b was almost identical.There should be no clos parameter for functions that have no free variables(e.g. �b). It should be straightforward to make this distinction in the callingconvention.Even though clos were needed, it need not be saved on the stack, for �26, theregister holding it, is never destroyed by the code for �b. clos is neverthelesssaved at each recursive call, as the compiler cannot know that �26 will not bedestroyed by the recursive calls to �b, because the processing of �b has not yetbeen completed. All conceivable solutions to this seem cumbersome.The clumsy code labelled �b2 is caused by our way of saving temporary values.
211



�b stwm %r24, 4(%sr0, %r30) spill nstwm %r26, 4(%sr0, %r30) spill closstwm %r25, 4(%sr0, %r30) spill retcomib, =,n 1, %r24, �b3 0?(�b4) comib, =,n 3, %r24, �b5 1?(�b6) addil l'�b1{$global$, %r27 put �b1 into %r25 (1st part)ldi 3, %r23 �b(n�1)sub %r24, %r23, %r24ldo r'�b1{$global$(%r1), %r25 put �b1 into %r25 (2nd part)b �bldo 1(%r24), %r24�b3 ldw {4(%sr0, %r30), %r25 reload ret(�b7) ldo {12(%r30), %r30 pop 3 wordsbv %r0(%r25) returnldi 3, %r26 ... while returning 1 in %r26�b5 ldw {4(%sr0, %r30), %r25 reload ret(�b7) ldo {12(%r30), %r30 pop 3 wordsbv %r0(%r25) returnldi 3, %r26 ... while returning 1 in %r26�b1 stwm %r26, 4(%sr0, %r30) push result of �b(n�1)ldi 5, %r24 �b(n�2)ldw {16(%sr0, %r30), %r25 reload nldw {12(%sr0, %r30), %r26 reload clossub %r25, %r24, %r24addil l'�b2{$global$, %r27 put �b2 into %r25 (1st part)ldo r'�b2{$global$(%r1), %r25 put �b2 into %r25 (2nd part)b �bldo 1(%r24), %r24�b2 copy %r26, %r25ldwm {4(%sr0, %r30), %r26 pop result of �b(n�1)add %r26, %r25, %r26 +ldw {4(%sr0, %r30), %r25 reload ret(�b7) ldo {12(%r30), %r30 pop 3 wordsbv %r0(%r25) returnldo {1(%r26), %r26 ... while returning resultFig. 52. Finally, the P-code for �b. Now integers are tagged: 1 represents 0,3 represents 1, etc. Remember, �sp= r30. The basic blocks labelled �b4 and�b6 have been placed after a jump to them; and the one labelled �b7 has beenduplicated to avoid jumps to it.Instruction scheduling has reordered instructions. E.g., the two ldw's after �b1that reload clos and n have been exchanged (compare with �gure 51) such thatn will be ready when the sub-instruction needs it.The instruction right after a jump instruction (b or bv) is executed \while" thejump is taken. An optimisation (made by Elsman and Hallenberg (1995)) triesto take advantage of this. As can be seen, it has succeeded well on �b.There are some obvious opportunities for peep-hole optimisations.
212



11.10 Memory consumptionsml/nj kam wetot. res. tot. res. tot. res. tot. res.kkb 2244 k 2164 k 1.00 1.00 1.65 1.64 2.17 2.22life 1824 k 1744 k 1.00 1.00 0.21 0.22 0.25 0.24appel 1704 k 808 k 1.00 1.00 0.06 0.12 0.05 0.11bappel 2228 k 1072 k 1.00 1.00 0.28 0.59 0.30 0.63ip 1904 k 1032 k 1.00 1.00 0.25 0.46 0.40 0.75plusdyb 1700 k 1248 k 1.00 1.00 0.05 0.07 0.05 0.07ack 2220 k 2140 k 1.00 1.00 0.15 0.15 0.18 0.17�b 1720 k 1640 k 1.00 1.00 0.05 0.05 0.05 0.06tak 1708 k 1404 k 1.00 1.00 0.05 0.06 0.05 0.07bul 1892 k 1156 k 1.00 1.00 0.05 0.09 0.05 0.08fri 2136 k 1584 k 1.00 1.00 0.04 0.06 0.04 0.06handle 1912 k 1832 k 1.00 1.00 0.05 0.06 0.05 0.05raise 1728 k 1632 k 1.00 1.00 0.06 0.07 0.05 0.06ryenolds 1660 k 1196 k 1.00 1.00 24.10 33.44 24.10 25.08reynolds 1660 k 1296 k 1.00 1.00 0.06 0.08 0.05 0.07church 1920 k 1840 k 1.00 1.00 7.29 7.61 7.29 7.07foldr 1928 k 1848 k 1.00 1.00 0.88 0.92 0.86 0.87msort 12000 k 12000 k 1.00 1.00 1.17 1.17 1.08 0.92qsort 10000 k 10000 k 1.00 1.00 2.30 2.30 2.20 2.20iter 1888 k 872 k 1.00 1.00 1.50 3.25 0.88 1.90mean 1.00 1.00 0.36 0.36 0.27 0.35Fig. 53. Maximal memory consumption when the compiled program isrun as seen by Unix top. There are two sizes (man top): tot., \Totalsize of the process in kilobytes. This includes text, data, and stack.",and: res., \Resident size of the process in kilobytes. The resident sizeinformation is, at best, an approximate value."We would expect the memory consumption of kam and we to be thesame as both use region inference. For a discussion of memory behaviourwith region inference, see (Birkedal et al., 1996).Overall, our total memory consumption is slightly better than kam's(0.27 against 0.36 tot.). This is probably because we spill on the stackwhile kam reserves a speci�c memory cell for each spilled local.11.11 ConclusionsOn average, our compiler compiles the (toy) benchmarks to code that runsin 0.57 of the time of the code generated by SML/NJ, and in 0.75 of the timeof the code generated by another version of the ML Kit that uses graph-colouring intra-procedural register allocation.213



What gives the speed up? decreases run-time bymean max. min.
exible linking conventions andcaller-save/callee-save conventions(�gure 43 (vi)) 7% 29% �9%
exible linking conventions alone(�gure 43 (v)) 4% 20% �11%several-argument functions(�gure 43 (ii)) 8% 36% 0%basic block duplication (�gure 49) 2% 11% �1%instruction scheduling (�gure 50) 3% 12% �1%If, e.g., basic block duplication is disabled and all other things are enabled,enabling basic block duplication as well decreases run-time by 2%. Onecannot add �gures to get the e�ect of the combination of two ingredients.Conversion to several-argument functions and using inter-procedural in-formation are clearly the most important ingredients. There are some indi-cations that there is synergism between them. In comparison, Chow (1988)measures a reduction in the number of executed clock cycles when using inter-procedural information (and shrink wrapping) of about 3%. His experimentis, however, not directly comparable to ours (p. 73).Basic block ordering will quite consistently place around 40% of the basicblocks after a basic block that jumps to it.Basic block duplication is not the most important ingredient. On theother hand, it appears to be worth having, as there seems to be no problemwith code explosion.Instruction scheduling is slightly more important than basic block dupli-cation.The per-function part of our algorithm that uses the structure of thesource program and not graph colouring to allocate registers in a functionseems successful. The algorithm is a bit complicated, but at least we didsucceed in inventing the register allocation for every construct in the sourcelanguage E. It is a good sign that the method extends in a very nice wayto encompass short-circuit translation of Boolean expressions. Comparisonsof object code quality with a graph-colouring register allocator are in ourfavour (�gure 44 (iv)), but this is not conclusive as the two register alloca-tors are di�erent in other aspects. There are also other hints that our non-graph-colouring heuristic is good at keeping values in registers (�gure 44 (ii)).Graph colouring has completely conquered the world of register allocation214



and it is a conceptually nice method, but it seems that other methods cancompete in terms of e�ciency.11.12 Directions from hereIt would be interesting to measure exactly how well a register allocator thatis similar to ours except that it uses graph colouring as the per-function partof the algorithm would compete. The competitiveness of the inter-proceduralpart of our algorithm should be tested more carefully by comparing it withan intra-procedural register allocator that uses a split caller-save/callee-saveconvention instead of the total caller-saves convention that we have tried.An interesting experiment would be to see how much the inter-proceduralregister allocation would su�er from a less sophisticated closure analysis, e.g.,one that only knows which function may be applied if it is an application ofa speci�c, named function. Also, it would be interesting to see what couldbe won from using a smarter spill code placement strategy.We have learned that it is very di�cult to predict which optimisationswill be e�ective. We guess the most important ones now are closure represen-tation analysis (section 4.6) and data representation analysis (section 4.1):The register allocator cannot remove memory tra�c due to accesses to freevariables and accesses to the actual representations of data. Perhaps theseoptimisations should have been addressed before register allocation, therebyincreasing the register pressure and thus the gain from register allocation. Itshould be feasible to integrate our register allocator with these two optimisa-tions: closure representation analysis transforms free variables to arguments,and we already handle several-argument functions; and the data representa-tion analysis will make functions with several results, which can probably behandled analogously to several arguments.How to extend our work to separate/incremental compilation was touchedupon in the end of section 7.2.

215



referencesAiken, Alexander, Manuel F�ahndrich & Raph Levien (1995): Better static mem-ory management: Improving region-based analysis of higher-order languages. InProceedings of the ACM SIGPLAN '95 Conference on Programming LanguageDesign and Implementation ( = SIGPLAN Notices 30(6)). San Diego, California.Andersen, Finn Schiermer (1995): Re: prisen for et miss. E-mail Sep 19 13:00:281995.Appel, Andrew W. (1992): Compiling with Continuations. Cambridge.Asprey, Tom, Gregory S. Averill, Eric DeLano, Russ Mason, Bill Weiner & Je�Yetter (1993): Performance features of the PA7100 microprocessor. IEEE Micro6, 22{35.Bertelsen, Peter & Peter Sestoft (1995): Experience with the ML Kit and RegionInference. Incomplete draft 1 of December 13.Birkedal, Lars (1994): The ML Kit Compiler|Working Note. Unpublished manu-script.Birkedal, Lars, Mads Tofte & Magnus Vejlstrup (1996): From region inference tovon Neumann machines via region representation inference. In Conference Recordof POPL '96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles ofProgramming Languages. St. Petersburg Beach, Florida. 171{183.Birkedal, Lars & Morten Welinder (1993): Partial Evaluation of Standard ML.Master's thesis, Department of Computer Science, University of Copenhagen.( = Technical Report 93/22).Birkedal, Lars, Nick Rothwell, Mads Tofte & David N. Turner (1993): The ML KitVersion 1. Technical Report 93/14. Department of Computer Science, Universityof Copenhagen.Boquist, Urban (1995): Interprocedural register allocation for lazy functional lan-guages. In Conference Record of FPCA '95: SIGPLAN-SIGARCH-WG 2.8 Con-ference on Functional Programming Languages and Computer Architecture. LaJolla, California.Briggs, Preston, Keith D. Cooper & Linda Torczon (1994): Improvements to graphcoloring register allocation. ACM Transactions on Programming Languages andSystems 16(3), 428{455.Brooks, Rodney A., Richard P. Gabriel & Guy L. Steele, Jr. (1982): An optimizingcompiler for lexically scoped Lisp. In Proceedings of the SIGPLAN '82 Symposiumon Compiler Construction (= SIGPLAN Notices 17(6)). Boston, Massachusetts.261{275.Burger, Robert, Oscar Waddell & R. Kent Dybvig (1995): Register allocation us-ing lazy saves, eager restores, and greedy shu�ing. In Proceedings of the ACMSIGPLAN '95 Conference on Programming Language Design and Implementation( = SIGPLAN Notices 30(6)). La Jolla, California. 130{138.Callahan, David & Brian Koblenz (1991): Register allocation via hierarchical graphcoloring. In Proceedings of the ACM SIGPLAN '91 Conference on ProgrammingLanguage Design and Implementation (= SIGPLAN Notices 26(6)). 192{203.Cardelli, Luca (1984): Compiling a functional language. In Conference Record ofthe 1984 ACM Symposium on Lisp and Functional Programming. Austin, Texas.208{217. 216



Chaitin, Gregory J. (1982): Register allocation and spilling via graph coloring. InProceedings of the SIGPLAN '82 Symposium on Compiler Construction (= SIG-PLAN Notices 17(6)). Boston, Massachusetts. 98{105.Chaitin, Gregory J., Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.Hopkins & Peter W. Markstein (1981): Register allocation via coloring. ComputerLanguages 6, 47{57.Chow, Fred C. (1988): Minimizing register usage penalty at procedure calls. InProceedings of the ACM SIGPLAN '88 Conference on Programming LanguageDesign and Implementation (= SIGPLAN Notices 23(7)). Atlanta, Georgia. 85{94.Chow, Fred C. & John L. Hennessy (1990): The priority-based coloring approach toregister allocation. ACM Transactions on Programming Languages and Systems12(4), 501{536.Coutant, Deborah S., Carol L. Hammond & JonW. Kelley (1986): Compilers for thenew generation of Hewlett-Packard computers. Hewlett-Packard Journal 37(1), 4{18.Damas, Luis & Robin Milner (1982): Principal type-schemes for functional pro-grams. In Conference Record of the Ninth Annual ACM Symposium on Principlesof Programming Languages. Albuquerque, New Mexico. 207{212.Elsman, Martin & Niels Hallenberg (1995): An optimizing backend for the MLKit using a stack of regions. Student Project. Department of Computer Science,University of Copenhagen.Fleming, Philip & John J. Wallace (1986): How not to lie with statistics: the correctway to summarize benchmark results. Communications of the ACM 29(3), 218{221.Garey, M. & D. Johnson (1979): Computers and Intractability { A Guide to theTheory of NP-Completeness. New York.George, Lal & Andrew W. Appel (1995): Iterated Register Coalescing. TechnicalReport CS-TR-498-95. Department of Computer Science, Princeton University.Gibbons, Phillip B. and Muchnick, Steven S. (1986): E�cient instruction schedulingfor a pipelined architecture. In Proceedings of the ACM SIGPLAN '86 Symposiumon Compiler Construction. Palo Alto, California.Gupta, Rajiv, Mary Lou So�a & Denise Ombres (1994): E�cient register alloca-tion via coloring using clique separators. ACM Transactions on ProgrammingLanguages and Systems 16(3), 370{386.Harper, Robert & Greg Morrisett (1995): Compiling polymorphism using inten-sional type analysis. In Conference Record of POPL '95: 22nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages. San Francisco,California. 130{141.Henglein, Fritz (1992): Simple Closure Analysis. DIKU Semantics Report D-193.Department of Computer Science, University of Copenhagen.Henglein, Fritz & Jesper J�rgensen (1994): Formally optimal boxing. In ConferenceRecord of POPL '94: 21st ACM SIGPLAN-SIGACT Symposium on Principlesof Programming Languages. Portland, Oregon. 213{226.Hennessy, John L. & David A. Patterson (1990): Computer Architecture: A Quan-titative Approach. San Mateo, California.Hewlett-Packard (1991a): Assembly Language Reference Manual, 4th. edn. [SoftwareVersion 92453-03A.08.06]. 217



Hewlett-Packard (1991b): PA-RISC Procedure Calling Conventions Reference Man-ual, 2nd. edn. [HP Part No. 09740-90015].Hewlett-Packard (1992): PA-RISC 1.1 Architecture and Instruction Set ReferenceManual, 2nd. edn. [HP Part No. 09740-90039].J�rgensen, Jesper (1995): A Calculus for Boxing Analysis of Polymorphically TypedLanguages. Ph.D. thesis, Department of Computer Science, University of Copen-hagen. Universitetsparken 1, DK 2100 Copenhagen �.Kannan, Sampath & Todd Proebsting (1995): Register allocation in structuredprograms. In Proceedings of the Sixth Annual ACM-SIAM Symposium on DiscreteAlgorithms. 360{368.Kernighan, Brian W. & Dennis M. Ritchie (1988): The C Programming Language,2nd. edn. Englewood Cli�s, New Jersey.Kessler, R. R., J. C. Peterson, H. Carr, G. P. Duggan, J. Knell & J. J. Krohnfeldt(1986): EPIC { A retargetable, highly optimizing Lisp compiler. In Proceed-ings of the SIGPLAN '86 Symposium on Compiler Construction (= SIGPLANNotices 21(7)). Palo Alto, California. 118{130.Koch, Martin & Tommy H�jfeld Olesen (1996): Compiling a Higher-Order Call-by-Value Functional Programming Language to a RISC Using a Stack of Regions.Master's thesis, Department of Computer Science, University of Copenhagen.Kranz, David, Richard Kelsey, Jonathan Rees, Paul Hudak, James Philbin & Nor-man Adams (1986): ORBIT: An optimizing compiler for Scheme. In Proceedingsof the SIGPLAN '86 Symposium on Compiler Construction (= SIGPLAN No-tices 21(7)). Palo Alto, California. 219{233.Landin, P. J. (1964): The mechanical evaluation of expressions. Computer Journal6(4), 308{320.Launchbury, John (1993): Lazy imperative programming. In Proceedings of theACM Workshop on State in Programming Languages. Copenhagen.Lee, Ruby B. (1989): Precision Architecture. Computer 22(1), 78{91.Leroy, Xavier (1992): Unboxed objects and polymorphic typing. In ConferenceRecord of the Nineteenth Annual ACM SIGPLAN-SIGACT Symposium on Prin-ciples of Programming Languages. Albuquerque, New Mexico. 177{188.Mahon, Michael J., Ruby Bei-Loh Lee, Terrence C. Miller, Jerome C. Huck &William R. Bryg (1986): Hewlett-Packard Precision Architecture: The Processor.Hewlett-Packard Journal 37(8), 4{21.Milner, R. (1978): A theory of type polymorphism in programming. Journal ofComputer and System Sciences 17, 348{375.Milner, Robin & Mads Tofte (1991): Commentary on Standard ML. Cambridge,Massachusetts.Milner, Robin, Mads Tofte & Robert Harper (1990): The De�nition of StandardML. Cambridge, Massachusetts.Mueller, Frank & David B. Whalley (1992): Avoiding unconditional jumps by codereplication. In Proceedings of the ACM SIGPLAN '92 Conference on Program-ming Language Design and Implementation (= SIGPLAN Notices 27(7)). SanFransisco, California. 322{330.Norris, Cindy & Lori L. Pollock (1994): Register allocation over the program de-pendence graph. In Proceedings of the ACM SIGPLAN '94 Conference on Pro-gramming Language Design and Implementation (= SIGPLAN Notices 29(6)).266{277. 218



Paulson, Lawrence C. (1991): ML for the Working Programmer. Cambridge.Pettis, Karl W. & William B. Buzbee (1987): Hewlett-Packard Precision Architec-ture compiler performance. Hewlett-Packard Journal 38(3), 29{35.Plasmeijer, Rinus & Marko van Eekelen (1993): Functional Programming and Par-allel Graph Rewriting. Workingham.Reynolds, John C. (1995): Using functor categories to generate intermediate code.In Conference Record of POPL '95: 22nd ACM SIGPLAN-SIGACT Symposiumon Principles of Programming Languages. San Francisco, California. 25{36.Santhanam, Vatsa & Daryl Odnert (1990): Register allocation across procedure andmodule boundaries. In Proceedings of the ACM SIGPLAN '90 Conference on Pro-gramming Language Design and Implementation (= SIGPLAN Notices 25(6)).28{39.Sestoft, Peter (1992): Analysis and E�cient Implementation of Functional Pro-grams. Ph.D. thesis, Department of Computer Science, University of Copenhagen.( = Technical Report 92/6).Sethi, Ravi & J. D. Ullman (1970): The generation of optimal code for arithmeticexpressions. Journal of the ACM 17(4), 715{728.Shao, Zhong & Andrew W. Appel (1994): Space-e�cient closure representations. InProceedings of the 1994 ACM Conference on Lisp and Functional Programming( = LISP Pointers 7(3)). Orlando, Florida. 150{161.Shivers, Olin (1988): Control-
ow analysis in Scheme. In Proceedings of the ACMSIGPLAN '88 Conference on Programming Language Design and Implementation( = SIGPLAN Notices 23(7)). Atlanta, Georgia. 164{174.Steele, Jr., Guy Lewis (1977): Compiler Optimization Based on Viewing LAMBDAas Rename plus Goto. Master's thesis, Arti�cal Intelligence Laboratory, MIT.Steenkiste, Peter A. (1991): Advanced register allocation. In Peter Lee (ed.): Topicsin Advanced Language Implementation. Cambridge, Massachusetts. Chap. 2, 25{45.Steenkiste, Peter A. & John L. Hennessy (1989): A simple interprocedural reg-ister allocation algorithm and its e�ectiveness for Lisp. ACM Transactions onProgramming Languages and Systems 11(1), 1{32.Tarditi, David, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper & PeterLee (1996): TIL: A type-directed optimizing compiler for ML. In Proceedingsof the ACM SIGPLAN '96 Conference on Programming Language Design andImplementation. Philadelphia, Pennsylvania. ?{?Thorup, Mikkel (1995): Structured Programs have Small Tree-Width and Good Reg-ister Allocation. Technical Report 95/18. Department of Computer Science,University of Copenhagen.Tofte, Mads (1995): Region-Based Memory Management for the Typed Call-by-ValueLambda Calculus. Submitted for publication.Tofte, Mads & Jean-Pierre Talpin (1993): A Theory of Stack Allocation in Poly-morphically Typed Languages. Technical Report 93/15. Department of ComputerScience, University of Copenhagen.Tofte, Mads & Jean-Pierre Talpin (1994): Implementation of the typed call-by-value�-calculus using a stack of regions. In Conference Record of POPL '94: 21stACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.Portland, Oregon. 188{201. 219



Waite, W. M. (1974): Code generation. In F. Bauer & J. Eickel (eds.): CompilerConstruction|An Advanced Course (= Lecture Notes in Computer Science 21).Berlin. Chap. 3E, 302{332.Wall, David W. (1986): Global register allocation at link time. In Proceedingsof the SIGPLAN '86 Symposium on Compiler Construction (= SIGPLAN No-tices 21(7)). Palo Alto, California. 264{275.Wand, Mitchell & Paul Steckler (1994): Selective and lightweight closure conversion.In Conference Record of POPL '94: 21st ACM SIGPLAN-SIGACT Symposiumon Principles of Programming Languages. Portland, Oregon. 435{445.Welsh, Jim & John Elder (1982): Introduction to PASCAL, 2nd. edn. EnglewoodCli�s, New Jersey.

220



Symbol tableOrder: symbols: ?, +, : : : ; then alphabetic: a, �, : : : � ra is found under ra, etc.� 2 k, no-operation instruction,p. 20?cc 2 CCC , undecided callingconvention, p. 158?d 2 D, used register containing nolive value, p. 137?i, p. 179?lc = (?cc;?rc) 2LLL , undecidedlinking convention, p. 65?rc 2RRR, undecided returningconvention, p. 158?register 2 �?, no register, p. 82+, function modi�cation, p. 13+oa , p. 132�, p. 20�, sequence two b's, p. 189� 2 R, potentially recursive, p. 1276� 2 R, opposite of �, p. 127?, empty set, p. 13�, p. 138� 2 D, unused register, p. 137[(;) , union of call graphs, p. 123toa , meet !'s, p. 134u�, meet �'s after an if, p. 150ud , meet �d 's, p. 150uD, meet descriptions d, p. 150uP , meet preservers p, p. 151ut , meet �t 's, p. 151uv , meet �v 's, p. 150h� :=�0i = if � = �0 then �else � :=�0;p. 102h� :=�0+ �i = if � = 0 then h� :=�0i,else � :=�0+ �:, p. 147; , sequence two �'s, p. 20; , sequence two �'s, p. 104�, set di�erence, p. 13���, function restriction, p. 13M ! N , functions fromM to N ,p. 13

M ?! N , partial functions from Mto N , p. 13a 7! b = (a; b), p. 13M �, tuples of elements of M , p. 13M ?, re
exive, transitive closure ofM , p. 13:, p. 20#, deconstruct value, p. 15#i, select ith component, p. 15Aa 2 A = _A [A� , exceptionconstructor, p. 16_a 2 _A, unary exception constructor,p. 16a� 2 A� , nullary exceptionconstructor, p. 16�, p. 113antagonise , record in ! that a valueis hostile to some registers, p. 132app, p. 159� ar-� , annotate r's onapplications pp. 68, 127� ar , annotate r's on applications,p. 126at, p. 11at, p. 21 Bb 2 B, (binding of) letrec-function,p. 18� 2 b = �! z, code abstractedover destination register, pp. 81,104b 2 P�, basic block ofP-instructions, p. 189b 2 B ::= i : �k ; �k, basic block ofk-instructions, p. 182� bbs 2 k!PB , convert tobasic blocks, p. 183build-closure, p. 179221



Cc 2 C = _C [ C� , constructor, p. 15_c 2 _C, unary constructor, p. 15c� 2 C� , nullary constructor, p. 15C 2 CCC = (���� � �) [ f?ccg,calling convention, p. 158c C!i, target representation of c,p. 24� ca 2 E ! Ê, closure analysis,p. 113cc, get calling convention, p. 159� cg 2 E ! �, build the callgraph, p. 63children , �nd children in a graph,p. 64choose , heuristic for choosing aregister, p. 87clos 2 V , closure, p. 84coerce b!�, convert � to �, p. 155coerce �!b, convert � to �, p. 155� compile 2 E ! P, pp. 110, 63, 67� cr 2 E� ! E. , annotate closurerepresentation, p. 119Dd 2 D, description of register, p. 137� = (�v ; �t ; �d ) 2 �, descriptor,p. 137�d 2 V ?! D, register descriptor,p. 137�t 2 (�� (W � P ))�, stack oftemporaries, p. 138�v � V , values that are loaded,p. 103ddd � P�P, edges in dependencygraph, p. 189D 2 � ?! P, last instruction tode�ne a register, p. 190e da, guess which registers edestroys, p. 128� da-�, guess which registers �destroys, p. 129decide-cc, pp. 176, 175decide-rc, pp. 176, 174� def, translate de�nition of a

value, p. 88p defd , registers de�ned by p,p. 190dependencies , build dependencygraph for a basic block, p. 190destroys , registers destroyed atapplication, p. 128Dm, domain of function, p. 13� donode, process a call graphnode, i.e. a �, pp. 64, 72, 125don't = ��:�, preserver, p. 138do-scc 2 �	 ! h! k�h, processscc pp. 67, 125 Ee 2 E, our source language, i.e.,region-annotated E , p. 10ê 2 Ê, lambda-annotated E, p. 62e� 2 E� , sibling-annotated E, p. 117e. 2 E. , closure-representation-annotated E, p. 119e 2 E , several-argumented E, p. 121e� 2 E� , recursiveness-annotated E,p. 69e� 2 E� , !-annotated E, p. 86E , language before region analyses,p. 10� 2 k, no-operation instruction,p. 20" = (�; �cur:) 2 e, per-functionenvironment, p. 125"�, �-component of ", p. 64� = (�l; �d) 2 h, inter-proceduralenvironment, p. 64�d 2P(P�) ?! �, environmentrecording registers destroyed byscc of �'s, p. 65�l 2P(P�)!LLL , environmentrecording linking convention forequivalence class of �'s, p. 65E � �� �, edges in the call graph,p. 63endregion, p. 21endregions, pp. 47, 21entry , p. 174222



Ff 2 F , letrec-function name, p. 18f 2 F =PF , sibling name, p. 117F , p. 117� 2 �, register, p. 20�descriptors, p. 23�dp, data pointer, p. 164�free, p. 23�letregion 2 �, natural destination ofa letregion-instruction, p. 141�raised, handler argument register,p. 164�sp, stack pointer, p. 21� 2 �? = � [ f?registerg, register topreferably choose, naturaldestination register, p. 82�̂ � �, registers that must not bechosen, p. 23�̂at�̂endregion�̂endregions�̂letregion�̂raise
9>>>>=>>>>; registersdestroyed bydi�erentheavy-weightinstructions�heavy = �̂at [ �̂letregion [ �̂endregion,registers destroyed byheavy-weight instructions, p. 204�rest = ���heavy, p. 204�a � �, registers to avoid choosing,p. 87�� � �, registers to preferablychoose, p. 73�.� 2 k, test bit � of �, p. 20' � p�p, region aliasinginformation, p. 113�nd , p. 126e fv, free variables of e, p. 119Gg 2 E [ F , p. 159
 = (�cg;E ; �main) 2 �, call graph,p. 63
 = (���	s;S ;�	main) 2 �, sccs graph,p. 67goto, p. 161 H

h, current handler (global variable),p. 48h, inter-procedural environments,p. 64� has-been-loaded, record in � thatsome value is loaded, p. 103heur , p. 90 Ii 2 I, source integer, p. 14iframe, p. 163� 2 i, target integer, label, p. 20�h, label of h , p. 164�n, label of n , p. 178i 2 I , p. 184i I!i, representation of i, p. 24KK 2 K = Z ?! I, closurerepresentation, p. 118� 2 k, intermediate language, p. 20�� 2 �k � k, jump instructions in k,p. 182�� 2 �k, non-jump instructions, p. 182�̂ 2 k̂, linear code, p. 183� 2 x, condition in k, p. 20� kill , give a preserver for aregister if the value it contains isloaded, p. 104kill-arg , pp. 163, 161kill-tmp, mark end of live range oftemporary; the dual of new-tmp,p. 136 L� 2 �, function in E, p. 62�cur: 2 �, the � currently beingprocessed, p. 72��cur:, !-annotated �cur:, p. 174�main = �ymain.e at rmain 2 �,whole program; root node in callgraph, p. 63� 2 � =P�, p. 62�cg � �, nodes in callgraph; the �'sof �main, p. 63�� � �, equivalence class of �'shaving the same linking223



convention, p. 65�	 � �, scc, node in sccs graph,p. 67�	cur:, the scc currently beingprocessed by do-scc , p. 72�	main = f�maing, root node in sccsgraph, p. 67����s 2P(P�), set of equivalenceclasses, p. 65���	s 2P(P�), set of sccs, p. 67L 2LLL = CCC �RRR, linkingconvention, p. 158� �!i, unique label for �, p. 163letregion, p. 17letregion, p. 21lin 2PB ! k̂, linearise k basicblocks, p. 184� load, translate load of value,p. 103 Mm, memory pseudo-register, p. 192m[�], memory access, p. 20� = (�; ") 2m, p. 134��, �-component of �, p. 64move, record in � that some value iscopied to another register, p. 139NN , approximate number of registers,p. 159nr:d:, size of region descriptor, p. 140� = (�;��), per-scc environment,p. 73n, last exception name (globalvariable), p. 51new-tmp, get register for temporary,p. 135 Oo 2 O, binary operator, p. 14o 2 O = s! I ! i, p. 145� oa , !-analysis, p. 131o o-prim , code for o, p. 135Pp 2 P = z! z, preserver, p. 138

p, region variables, p. 14� 2 � = I [ �, parameterconvention, p. 158$, p. 115p 2 P, PA-RISC assemblerlanguage, p. 10ppp � P, nodes in dependency graph,p. 189pppc 2PP, candidates for scheduling,p. 190PM , subsets of M , p. 13� pa 2 k̂! P, p. 186params , parameters of a �, p. 176preserve, give a preserver for avalue, p. 138preserve-tmp, give a preserver for atemporary, p. 138 2 	, region size variable, p. 18� push-arg. , p. 175Rr 2 R = f�; 6�g, recursiveness,p. 127% 2 r, region variable without sizeannotation, p. 18%: 2 p, variable-size �, p. 18%:i 2 p, known-size �, p. 18%:? 2 p, unknown-size �, p. 18� 2 p = �p[ �p, region variable, p. 14�� 2 �p, letregion-bound �, p. 18�� 2 �p, letrec-bound �, p. 18~� 2 ~p, vector of �'s, p. 18~�� 2 ~�p, vector of ��'s, i.e., the regionarguments to a regionpolymorphic function, p. 18rmain 2 p, dummy region variable of�main, p. 63R 2RRR = � [ f?rcg, returningconvention, p. 158ra , record that some value is put insome register, pp. 88, 139� ra , pp. 81{82, 87{89, 102{104� ra-arg , p. 160� ra-at, translate allocation inregion, p. 147� ra-clos, p. 160224



raise 2 k, p. 165rdfs 2 �! k, reverse depth-�rsttraversal of the call graph, pp. 63,65, 67, 124� relabel 2 k̂! k̂, p. 184ret 2 V , return label, p. 84S& = (&e; &p) 2 s, stack shape, p. 103&e 2 V ?! I, compile-time stackenvironment mapping values tostack positions, p. 103&p 2 I, compile-time stack pointer,p. 103� 2 � = i� i! z, selector, i.e.,code abstracted over destinationlabels, p. 152S �P��P�, edges in the sccsgraph, p. 67� sa 2 E. ! E , translate tofunctions of several arguments,p. 121sccs 2 �! �, p. 124� sched. 2 P! P, instructionscheduling, p. 189set-cc, set calling convention, p. 160set-rc, set returning convention,p. 160� sib 2 Ê ! E� , convert f 's toF 's, p. 117 Tt 2 T , source Boolean, p. 16� 2 T = � [b, a � or a �, i.e., codeabstracted over a destination,p. 152� 2 I ! z, p. 160#, p. 114t = � 7! (w; p), temporary, p. 138t T!i, target representation of t,p. 24tmp-tmp, get register for temporarywith short live range, p. 139Uu 2 U , unary operator, p. 14

� 2 � = i [ �, p. 20U 2 �!PP, give instructionsthat use a certain register, p. 190� uf , �nd equivalence classes, ����s,p. 126unantagonise , reset hostilityinformation in !, p. 133underway, p. 184union, p. 126u u-prim , code for u, p. 177� use, translate access to value,p. 142p used , registers used by p, p. 190Vv 2 V ::= Z jclos j ret, values, p. 84Ww 2W ::= V j ?d, p. 137wipe, record that some registers aredestroyed, p. 140Xx 2 X, let-bound variable, p. 14� 2 � = i� i [ �, destination(register or labels), p. 153Yy 2 Y , �-bound variable, i.e.argument, p. 14ymain 2 Y , dummy argument of�main, p. 63� 2 � = i [ �, p. 20Zz 2 Z ::= X j Y j F j p jA, variables(before � sib ), p. 19z� 2 Z� ::= X j Y j F jp j A, variables(after � sib ), p. 117� 2 z = s! k, code abstractedover stack shape, p. 104� zap , p. 175 �� 2 E [p, p. 163! 2 
, !-information, p. 86225


