Static Interpretation of Modules

Martin Elsman
mael@cs.berkeley.edu

Computer Science Division, University of California, Berkeley*

Abstract

This paper presents a technique for compiling Standard
ML Modules into typed intermediate language fragments,
which may be compiled separately and linked using tradi-
tional linking technology to form executable code. The tech-
nique is called static interpretation and allows compile-time
implementation details to propagate across module bound-
aries. Static interpretation eliminates all module-level code
at compile time.

The technique scales to full Standard ML and is used in
the ML Kit with Regions compiler. A framework for smart
recompilation makes the technique useful for compiling large
programs.

1 Introduction

This paper describes a novel approach to the compilation
of Standard ML Modules, in which the Modules language is
regarded as a linking language for specifying how code frag-
ments can be combined to form a complete program. As
in most ML compilers, functors are elaborated when they
are declared. Thus, type errors in functors are caught al-
ready when the functor is declared (as opposed to when
it is applied). However, code generation for the functor is
postponed till the functor is applied. Indeed, if a functor
is applied to two different arguments, code for its body will
be generated twice. We refer to this approach to module
compilation as static interpretation.

The one most important advantage of static interpre-
tation is that it allows compile-time information to propa-
gate across module boundaries. When the body of a func-
tor is compiled, the actual argument to which it is applied
is known. Thus, one can make use of the information the
compiler has about the actual argument when code is gen-
erated for the functor body. Region information is a case in
point.

Region inference [17, 18, 1, 15] is a type based analysis for
inserting allocation and deallocation directives in a program,
so as to reduce or completely eliminate pointer-traversing
garbage collection. The runtime heap is divided into a stack

*Work done while at University of Copenhagen.

To appear in the 1999 International Conference on
Functional Programming (ICFP’99), September 1999,
Paris, France.

of expandable regions. Value-creating expressions are anno-
tated with information that directs in what regions values
go at runtime. If ezp is some region-annotated expression,
then so is

letregion r in ezp end

Such expressions are evaluated as follows. First a region
is allocated on the stack and bound to the region variable
r. Then ezp is evaluated, possibly using the region bound
to r for holding values. Finally, upon reaching end, the re-
gion is reclaimed. Another important aspect of region based
memory management is region polymorphism, which allows
a function to use different regions for different invocations.
Region inference assigns a region polymorphic function a re-
gion type scheme, which captures the memory behavior of
the function.
Now, consider the functor declaration

functor F(X: sig type t
val £ : int -> t
val g : t -> int * int

end) =
struct
val it = #1(X.g(X.f 5))
end;

The formal parameter signature for X does not give any re-
gion type schemes for £ and g. For example, the signature
does not say whether g creates the pair it returns in a fresh
region, or perhaps always returns some fixed pair that re-
sides in a global region. Consequently, region inference of
the body of F is not possible; we cannot know whether the
pair returned by g can be deallocated after the first projec-
tion has been applied to it.
Now consider an application of F:

structure S = F(struct type t = int
fun f(n:int)
fun g(n:int)

n
(n,n)

end)

Static interpretation of the application results in two inter-
mediate language fragments, one for the argument to F, and
one for the body of F. The two fragments can be compiled
into machine code separately and linked using traditional
linking technology. During compilation of the second frag-
ment, the compiler can apply the information that results
from compiling the first fragment. The code for the appli-
cation is equivalent to the region-annotated program

local
type t = int
fun f(n:int) = n
fun g(n:int) [r] = (n,n) at r
in
val it = letregion r
in #1(g(f 5 [x])
end
end

Region inference of the actual argument to the application
of F shows that the actual g creates a fresh pair. There-
fore, region inference determines that the pair created by g
can indeed be reclaimed after the first projection has been
applied to it.

Another advantage of static interpretation is that no
module-level code exists at runtime (such code can be large,
and often, it is executed only once.) Static interpretation
performs all module-level execution during compilation. Sig-
nature matching generates no code either, not even in the
case where signature matching imposes a less polymorphic
type on a value in a structure. Conceptually, the Modules
language is used for combining declarations of the Core lan-
guage; no overhead is incurred by programming with mod-
ules.

Delaying code generation till functor application time is
not feasible, unless it is integrated with a technique for smart
recompilation of modules. Consider a program consisting of
the three compilation units

unit 1: functor f(X : ...) = struct ... end
unit 2: functor g(Y : ...) = struct ... end
unit 3: structure A = f (...)

structure B = g (4)

Suppose that the user makes a modification to unit 1. Some
separate compilation scheme will say that because unit 3
uses the functor f then unit 3 need be recompiled. And be-
cause functors are compiled at the point they are applied,
recompilation of unit 3 means that the body of the func-
tor g is recompiled as well. To explain the solution to this
problem, let us consider the example once more. Because
the declaration of £ has changed and because f is applied
in unit 3, we do need to reinterpret unit 3. Because the
declaration of f has changed, the static interpretation of
the application of f in unit 3 results in fresh code for the
body of £f. However, we might be able to avoid reinterpre-
tation of the body of g. When code is first generated for
the body of g, the environment under which g is interpreted
is memorised. This environment is the combination of the
compile time environment that existed when g was declared
and the compile time environment for the actual argument
to g (i.e., A). Now, before attempting to reinterpret the body
of g, static interpretation can check if the environment has
changed, and if not, the code previously generated for g can
be reused. However, because type inference and compilation
generate fresh names of various kinds (e.g., type names and
even machine code labels), it is essential that the result of
compiling the body of f the second time around is matched
(by renaming of freshly generated names) against the result
of compiling the body of £ the first time.

In this paper, we formally develop the theory of static in-
terpretation for a skeleton module language and thus provide

a general solution to the problem of propagating compile-
time information across module boundaries. We show that
static interpretation is safe in the sense that our skeleton
language is interpreted into an intermediate language that
possesses a type soundness property. Moreover, by consider-
ing the meaning of the source language as being defined by
the interpretation, the result is proof of type soundness of
the module language. Static interpretation is used for com-
piling Standard ML Modules in the ML Kit with Regions
compiler (the Kit), which is a compiler for full Standard
ML based on region inference [16]. Experience with the Kit
tells us that static interpretation scales to the compilation of
large programs, such as the Kit itself, which is about 87,000
lines of Standard ML.

In the following section, we present the source language
of static interpretation. In Section 3, we present the in-
termediate language, which is the target language for the
static interpretation presented in Section 4. Opaque signa-
ture constraints are discussed in Section 5. The use of static
interpretation in the Kit is discussed in Section 6. In the
final sections, we describe related work and conclude.

2 The Source Language

The source language is divided into a Core language and
a Modules language. Static interpretation is in large parts
independent of the Core language, although the technique
does depend on certain properties of this language, which
in this paper are illustrated by considering a small ML like
Core language.

Some modifications to the static semantics of SML’97
[11] were appropriate, so as to demonstrate important prop-
erties of static interpretation. The main modification is that
type generativity is modeled by type abstraction. One es-
sential property of the source language is that of Proposi-
tion 2.1, which guarantees that if a functor and an appli-
cation of the functor can be typed, then so can the body
of the functor with the formal parameter appropriately re-
placed by the actual argument. In contrast, there are kinds
of parameterised modules that cannot be type checked in
isolation, such as C++ templates.

2.1 Grammar and Syntactic Notations

We divide identifiers into classes VId of wvalue identifiers
(vid), TyCon of type constructors (tycon), TyVar of type
variables (@), Strld of structure identifiers (strid), and
Funld of functor identifiers (funid). For each class of iden-
tifiers, ranged over by z, there is a class of long identifiers,
ranged over by longz, defined inductively as either an identi-
fier z or a qualified identifier strid.longz’, for some structure
identifier strid and long identifier longz’. When z ranges
over objects of some class, we write z® kE>0o0r z1 -z,
to denote a sequence of k objects of this class. In program
text and when k& > 2, we write (z1,---,z;) to denote the
sequence.

The grammars for Core and Modules are shown in Fig-
ure 1. Function type expressions associate to the right and
function applications associate to the left.

Structure components can be accessed either through
qualified identifiers or through the open declaration. Lo-
cal declarations are supported by use of let expressions.
To keep the Core language simple, datatypes can have only
one value constructor that does not take arguments. This

ty =ty >ty | @ sigezp = sig spec end | sigezp where type al® longtycon = ty
| ™ longtycon
) spec n= val vid : ty | type a®) tycon | datatype a'¥) tycon = vid
ezp u= longvid | exp; exp, | structure strid : sigezp | spec; specy, | €
| £n longvid => exp
| let dec in ezp end strexp = struct strdec end | longstrid | strexzp : sigexp | funid (strexzp)
dec val vid = exp strdec = dec | structure strid = strezp | strdeci strdecs | €

datatype a®) tycon = vid
type a® tycon = ty
open longstrid |

topdec = strdec | topdec, topdec, | €
functor funid (strid : sigexp) = strezp

Figure 1: Grammar for Core (left) and Modules (right).

simple form of datatypes encapsulates the features of gener-
ativity and identifier status; it is straight-forward to extend
the language to support more liberal forms of datatypes [3].

2.2 Basic Semantic Objects

We assume a denumerably infinite set Name of names and a
denumerably infinite set TyName C Name of type names (t).
To every type name is associated an arity k—the number of
arguments the type name takes. If ¢ is a type name with
arity k, we write arity ¢ = k. We use IV and T to range over
sets of names and sets of type names, respectively. More-
over, we use NameSet to denote the set of all name sets and
TyNameSet to denote the set of all type name sets.

A (semantic) type 7 is either a function type 71 — 72, a
type variable «, or a constructed type 7(Mt. Because two dif-
ferent type constructors in the source language may denote
the same type, type names are used to model the distinction
of types; a constructed type (71, - -, 7)t is equal to another
constructed type (71,---,)t iff t = ' and, recursively,
Ti=1i,1=1.k.

A type function 6 is an object of the form Aa™ .7, with
arity k. Type functions must be closed (i.e., tyvars(r) C
a®)) and the bound variables must be distinct. We use
TypeFcn to denote the set of type functions. Two type
functions are considered equal if they differ only in their
choice of bound variables (alpha-conversion). If ¢ has arity
k then we write ¢ to mean Aa™®.a®)t (eta-conversion), thus
TyName C TypeFcn. We write the application of a type
function 6 to a sequence) of types as g, 16 = Aa™® .1
we set 700 = 7{r*) /a®} (beta-conversion). We write
7{8® /t(} for the result of substituting type functions §*
for type names t*) in 7 and we assume all beta-conversions
be carried out after substitution.

A substitution S is a finite map from type variables to
types. By natural extension, a substitution can be applied to
any semantic object that does not bind type names; its effect
is to replace each type variable a by S(a), with appropriate
renaming of bound type variables.

A type scheme o is an object of the form Vo™ .r. We
use TypeSch to denote the set of all type schemes. A type
scheme o = VYa'® .7 generalises a type 7', written o > 7/,
if there exist types 7" such that ' = 7{r®®)/a®}. If
o’ =VBY 7' then o generalises o', written o > o', if ¢ > 7/
and BY contains no free type variables of 0. Two type

schemes are considered equal up-to renaming and reorder-
ing of bound variables, and deletion from the prefix type
variables that do not occur in the body. We sometimes con-
sider a type 7 to be a type scheme, identifying it with V().7.
It is easy to verify that generalisation of type schemes is
reflexive and transitive. Moreover, generalisation is closed
under substitution, that is, o > ¢’ implies S(o) > S(¢"), for
any substitution S.

2.3 Compound Semantic Objects

The compound semantic objects for elaboration are as fol-
lows:

SE € StrEnv=Strld =% Env
TE € TyEnv= TyCon Sy TypeFcn x ValEnv
VE € ValEnv=VId % TypeSch x IdStatus
E € Env=StrEnv x TyEnv x ValEnv
3 € Sig= TyNameSet x Env
® € FunSig = TyNameSet x (Env x Sig)
F € FunEnv=Funld —% FunSig
B € StatBasis = FunEnv x Env
(T)B € ProgSig = TyNameSet x Basis

A value environment VE associates value identifiers with
a so-called identifier status (is). An identifier status can be
either c (constructor status) or v (value status) and we use
IdStatus to denote the set {c,v}.

The prefix (T') in signatures (T)E, functor signatures
(T)(E,X), and program signatures (7')B binds type names.
Two such objects are considered equal up-to renaming of
bound names and deletion of type names from the prefix
that do not occur in the body. When bound type names
are changed, we demand that arities of type names are pre-
served.

For any semantic object A, tynames A and tyvars A de-
note free type names in A and free type variables in A,
respectively.

2.4 Typing Rules for Core

Typing rules for the Core are given in Figure 2. The rules al-
low inferences among sentences of the form F F phrase = A,
where phrase is a Core language phrase, E is an environment
providing assumptions for free long identifiers in phrase, and
A is either a type or a signature. Sentences of this form are

Etty=7 and EtF ezp = 7 and EI—dec:>(T)E‘

E(longtycon) = (6'©), VE)

Ertyy=m1 EkFty,=>m) tyvar = « @) Er-ty,=m,1=1k 3)
ErFty, >ty, =>11 =7 EF tyvar = « E & ty, - ty, longtycon = (11,---,73)0"
vid ¢ Dom E or is of E(vid) =v E(longvid) = (o, c)
o of E(longvid) > T @ E + {vid = (1,v)} + ezp = 7' 5) o7 Ebrep=T (©)
E | longvid = 7

Etemp, =17 >7 Elep,=>71

(7)

Ebfnvid=>emp=>17—71

EF dec = (T)E'

E F fn longvid => exp => 7 — 7'

E+E Fep=>71 TN (tynames(E, 7)) =10

EF exp, exps = 7

Etrep=>71 {a®}ntyvars E=10

(9)

(8)

E |- let dec in ezp end = T

Erty=r

E + val vid = ezp = (0){vid — (Vo™ .7,v)}

arity t =k

E + type o' tycon = ty = (0){tycon — (Aa™ .7, {})}
VE = {vid = (Va®.a®¢, c)}

(10)

E(longstrid) = E'

11 - 12
E + datatype a'® tycon = vid = ({t})({tycon — (t, VE)}, VE) (1) E I open longstrid = (0)E’ (12)

Figure 2: Typing rules for Core.

read “phrase elaborates to A in E.” The rules are similar to
those of SML’97 with one important difference. For the typ-
ing rules of declarations, type names that are bound in the
resulting signature are those type names that must be con-
sidered fresh. Such bound type names stem from datatype
declarations; disjointness of bound type names from other
type names is explicitly enforced in the rules. For example,
without the side condition in rule 8, the typing rules become
unsound [7]. In SML’97, uniqueness of local type names is
enforced by a non-local requirement.

2.5 Realisations and Instantiation

A realisation is a map ¢ : TyName — TypeFcn such that
t and ¢(t) have the same arity. The support Supp ¢ of a
realisation ¢ is the set of type names ¢ for which ¢(t) # t.
Realisations ¢ are extended to apply to all semantic objects;
their effect is to replace each type name t by ¢(t), with
appropriate renaming of bound type names.

Instantiation is a mechanism for hiding implementation
details of type components of a structure. Formally, an envi-
ronment E’ is an instance of a signature X = (T)E, written
¥ > F/', if there exists a realisation ¢ such that (E) = E’
and Supp ¢ C T. The notion of instantiation extends to
functor signatures. A pair (E, X) is called a functor instance.
Given ® = (T1)(E1,21), a functor instance (E2,X2) is an
instance of @, written ® > (E2,X2), if there exists a reali-
sation ¢ such that p(E1,X1) = (E2,X2) and Supp ¢ C T1.

A prefix (T') in some object can be thought of (depend-
ing on the context) as either existentially quantifying 7' or
universally quantifying T'. For instance, a functor signature
(T)(E,(T")E") can be read “VT.(E,3T".E’).

2.6 Enrichment and Signature Matching

Enrichment allows for hiding of components of a struc-
ture. Formally, a type structure (61, VE1) enriches another
type structure (62, VE3), written (61, VE1) > (62, VE2), if
01 = 6> and either VE| = VE; or VE; = {}. Further, let o
and ¢’ be type schemes and let is; and is2 be members of

IdStatus. The pair (o1, 4s1) enriches the pair (o2, 1s2), writ-
ten (o1, 1s1) > (02, 1s2), if o1 > o2 and either is1 = is2 or
182 = v. Finally, an environment Ey = (SE1, TE1, VE1) en-
riches another environment E2 = (SE2, TE2, VE2), written
B > Eg, if

1. Dom SE; D Dom SE; and SE(strid) > SE:(strid)
for all strid € Dom SE»

2. Dom TE1 D Dom TE> and TE:(tycon) > TE>(tycon)
for all tycon € Dom TE,

3. Dom VE; D Dom VE; and VEi(vid) = VE2(vid) for
all vid € Dom VE-

Signature matching is the combination of signature in-
stantiation and enrichment. An environment E matches a
signature ¥ iff there exists E' such that ¥ > E' < E.

2.7 Typing Rules for Modules

The typing rules for Modules are given in Figure 3. The rules
allow inferences among sentences of the form B F phrase =
A, where phrase is a Modules phrase, B is a basis, and A
is either a signature or a program signature. Sentences of
this form are read “phrase elaborates to A in B.” The rules
are similar to those of SML’97 with the main difference that
type generativity is modeled by type abstraction. In rule 24,
for instance, type generativity is enforced by appropriate
alpha-conversion.

The following proposition expresses that if the body of a
functor is typable under assumptions provided by the formal
argument of the functor, then the body is also typable under
assumptions provided by any functor instance:

Proposition 2.1 (Functor instance typeability) If B+
{strid v E} strezp = ¥ and T N tynames B = §§ and
(T)(E,%) > (E',%") then B + {strid — E'} F strezp = X'.

PrOOF The proof is based on the definition of functor sig-
nature instantiation and on the property that elaboration
of structure expressions is closed under realisation [3, Chap-
ter 8]. |

Bl spec = % and Bl—sigexp=>2|

Eof BFty=r a® = tyvars T
Bt val vid : ty = (0){vid = (Va'®).7,v)}

arity t =k
B - type a® tycon = {tH{tycon — (t,{}H}

(13) (14)
arity t =k VE = {vid = (Va®.a®t,c)}

B + datatype a® tycon = vid =
({tH{tycon — (¢, VE)}, VE)

B} sigezp = (T)E
B\ structure strid : sigexp = (T){strid — E}

(15)

(16)

Bt spec; = (Th)E1 (T1 UT:) Ntynames B = ()
B+ E1 & specy, = (T2)E» ToN (Ty Utynames E1) =@ Dom E; NDom E; = ()
B\ spec, specy = (T1 UT>)(E1 + E»)

(17) (18)

BtFe= (0){}
Bt sigezp = (T)E T Ntynames B = ()
Eof BFty=1 E(longtycon) = (t,VE) t€T ¢ ={t— Aa®.1}
B |- sigexp where type o'®) longtycon = ty = (T)(p(E))

B F spec = %
Bt sig spec end = X

(19)

(20)

Bt strezp = ¥ and B} strdec = E‘

Bt~ strdec = X2 (21) B(longstrid) = E
B I struct strdec end = X Bt longstrid = (0)E

(22)

Bt strezp = (T)E B & sigezp = X Bt strezp = (T)E B(funid) > (E",(T")E")
X >E <E TnNtynames B=10 (23) E>=E' (TUT')Ntynames B =10
B\ strexp : sigerp = (T)E' B+ funid (strezp) = (TUT")E'

(24)

E of BF dec =% (25) Bt strezp = (T)E
BFdec=% B | structure strid = strezp = (T){strid — E}

(26)

B+ strdeci = (Th)E1 (T1 UT2) Ntynames B = ()
B+ Ey & strdeco = (T2)E> To N (T1 U tynames E1) =0
Bt strdecy strdeca = (T1 UT»)(E1 + E»)

(27) (28)

BtFe= (0){}

B+ topdec = (T)B’

B strdec = (T)E
B+ strdec = (T)E

Bt sigezp = (T)E B + {strid — E} F strezp = ¥ T Ntynames B=0
B I functor funid (strid : sigezp) = strezp = (0){funid — (T)(E,X)}

(29) (30)

B\ topdec, = (T1)B1 (Th UT>) Ntynames B =
B + B: | topdec, = (T2)B: T> N (T1 U tynames B1) =0
B} topdec, topdec, = (T1 UT2)(B:1 + B2)

(31) (32)

Bte= (0){}

Figure 3: Typing rules for Modules.

3 An Intermediate Language

We now present the intermediate language used as the target
language for static interpretation.

We assume a denumerably infinite set IVar C Name of
variables (z) and a denumerably infinite set ICon C Name
of constructors (c) . We use a to denote either a variable or
a constructor. Here is the grammar for the language:

e ::= da:7e | erex | ar | letdine

valdec z:a®.r = ¢

d :
| datdeca®™t=c | di;do | ¢

A type name in the intermediate language is bound uniquely
by a datatype declaration, which mentions the set of value
constructors associated with the type name. For simplicity,
the intermediate language allows datatype declarations to
have only one value constructor that takes no arguments.
The language can easily be extended to allow more liberal
forms of datatypes.

A function Ac: T.e, where c is a constructor, resembles a
simple pattern-match construct with only one branch. The
construct is used for translating pattern-match constructs
of the Core language. Dynamically, the function fails if
it is applied to a value different from the constructor c.
The soundness result guarantees that for well-typed phrases,
the pattern-match mechanism always succeeds. Because the
constructor is not considered bound within the body of the
function, the constructor may not be renamed.

In contrast, the variable x in a function of the form
Az : T.e is bound within its body e. Similarly, the type vari-
ables a® in the value declaration valdec z : a®).7 = e are
considered bound within 7 and e. Functions and value dec-
larations are considered equivalent up to renaming of bound
variables and bound type variables. The declared names of
a declaration d, written decl(d), is defined by the equations

decl(datdec a®t =¢) = {t}
decl(valdec z: 0¥ 7 =¢) = {z}
decl(dy ; d2) = decl(dq) U decl(d2)
decl(e) = 0

For declarations of the form di ; d2, declared names of di
are bound in ds. The language supports local declarations
through the use of expressions of the form let d in e. We
consider such expressions equivalent up to renaming of de-
clared names of d.

3.1 Typing Rules

The typing rules make use of the following additional se-
mantic objects:

A € IVarEnv = IVar BN TypeSch

©® € ITyEnv= TyName RN (ICon RN TypeSch)
I' € IEnv=ITyEnv x IVarEnv

The typing rules are given in Figure 4. They allow infer-
ences among sentences of the forms '+e:7and T'Hd: TV,
where I and I are typing environments, e is an expression,
T is a type, and d is a declaration. Sentences of the former
form are read “e has type 7 in I''"” Sentences of the latter
form are read “d respects IV in I.” When T is some typ-
ing environment, we write tyvars I' to denote the set of type

|P|—e:7' and PI—d:I"|

Dom(I'(t)) = {c} T(t)(c:) > ™t Tre:q (33)
Ckxc:®te: 7™t o 7
F'+{z—7}re:7™ z¢&namesD (34)
TFXe:Te:T— 7T
I'tei:m—=7 T'lFex:m T'(z)>1
FFeiex: T (35) TFz,:7 (36)
=r®¢ Tkd:T" T+4+Tke:r
L#)(c) > 7 Dom I'" N tynames 7 =)
Their 07 Trietdineir OO
x ¢ names I’ 'kFe:r {a(k)} N tyvars T = @ (39)
[+ valdecz:a®.r=e: {z — Va(k).f}
t ¢ names I' arity t=£k (40)
I+ datdec a®t = ¢: {t = {c = Va®.aPt}}
I't-dy: Ty I'+TykFdy:To
F'Fdi; d2:T1 4T (41) Tke:{} (42)

Figure 4: Typing rules for the intermediate language.

variables that occur free in I'. Moreover, we write tynames I'
and names I' to denote the set of type names and the set
of names that occur free in I'. Notice that a name or a
type name occurs free in some object if it occurs free in the
domain of some finite map within the object.

The requirement Dom(I'(t)) = {c} in rule 33 ensures that
the simple pattern-matching mechanism is exhaustive. The
side condition in rule 38 ensures that locally declared type
names do not escape.

3.2 Dynamic Semantics

Evaluation of an intermediate language phrase is defined by
first erasing all type information from the phrase, thereby
yielding an untyped phrase, and then evaluating this un-
typed phrase with respect to an environment that provides
assumptions for those variables that occur free in the phrase.

We also use e and d to range over untyped phrases; it is
always clear from the context whether we talk about typed
or untyped phrases. The erasure function er is defined by
the equations

er(Aa:7.e) = Aa.er(e)
er(er es) = er(e1) er(e2)
er(a-) = a

er(let d in e)
er(valdec z : a®).7 = ¢)

let er(d) in er(e)
valdec x = er(e)

er(datdec ¥t =¢) = ¢
er(di ; d2) = er(di); er(da)
er(e) = €

Notice that untyped declarations do not include datatype
declarations.

The semantics of untyped intermediate language phrases
is given as a natural operational semantics. The rules are
instrumented with extra rules for expressing that evaluation

DkFe~r and ’Dl—d'\»’D'|

(43)

D+ Aa.e ~ {Aa.e, D) DrFc~e (44)

D(z) =v
DFx~w (45)

Dt e~ (Az.e, Do)

z ¢ Dom D
DF x~ wr

(46)

DbFex~»v Do+ {r—vite~sr (a7)
Dheires~r
DrFei~(Ace,Dyg) Dlrex~c Dole~~r (48)

Dhkejyeyr~ar

DtFei~ (Ace,Dg) Dles~r c#r
DFe eag ~ wr
Dl ey~ (Az.e, Do)
DFes ~ wr
DFe1 ez~ wr

(49)

DFey~ wrorec
DFe1 es~ wr

(50)

(51)

Dkd~ D
D+D Fe~nr
DFletdine~sr

Dkd~ wr
DF let d in e ~ wr

(52)

DrFe~w
Dt valdec x = e~ {z — v}

(53)

(54)

DlFe~ wr
DF valdec x = e ~ wWr

Dtrdy~ Dy DFdy~ Dy
D+D1|‘d2’wD2 D+D1|‘d2’\»Wl‘
DrFdi; do~ D1+ Do DrFdi; do~ wr

Drdy ~ wr
Dt di; d2 ~ wr

(55)

(56) (57)

(58) (59)

Dre~{}

Figure 5: Semantics of the intermediate language.

goes wrong if a non-function is used as a function in an appli-
cation, if a variable is looked up in a dynamic environment
but is not there, or if pattern matching fails.

We use IExp to denote the set of untyped intermediate
language expressions. The semantic objects for the dynamic
semantics are given as follows:

v € Val =ICon U Clos
(Aa.e,D) € Clos =IExp x DynEnv
D € DynEnv=IVar —% Val
r € ExpResult = ValU {wr}
¢ € DecResult = DynEnv U {wr}

Constructors are values. The object wr is not a value; it is
the result of a faulty evaluation such as an attempt to apply
a non-function to an argument.

The evaluation rules are given in Figure 5. The rules
allow inferences among sentences of the forms D F e ~ r
and D + d ~ g, where D is a dynamic environment, e is
an untyped expression, d is an untyped declaration, r is an
expression result, and p is a declaration result. The former
sentence is read “e evaluates to r in D.” The latter sentence
is read “d evaluates to g in D.”

In rules 48 and 49, the pattern-matching mechanism fails
if the constructor in the closure is not identical to the result
of evaluating the argument of the application.

Type soundness of the intermediate language states that
well-typed intermediate language phrases cannot go wrong:

Proposition 3.1 (Type soundness) If {} - d : I' and
{} F er(d) ~ o then o # wr.

PrROOF The proof is an inductive argument on the structure
of intermediate language phrases. The proof sets up a con-
sistency relation between dynamic environments and type
environments and uses the properties that the consistency
relation and the typing rules are closed under substitution.
Chapter 7 of [3] gives the full proof. O

The proof is inspired by other proofs of type soundness
[14, 8] for Milner’s polymorphic type discipline [10, 2]. The
technique that we use to demonstrate soundness for the in-
termediate language extends to other features of Standard
ML including datatypes with multiple value constructors [3]
and recursion and imperative language constructs [8].

4 Interpretation of Modules

There are three important aspects to the interpretation of
Modules. First, structures are flattened during interpreta-
tion. The interpretation avoids name clashes due to flatten-
ing by maintaining a mapping from source language identi-
fiers to freshly generated intermediate language variables.

The second important aspect to the interpretation is that
functors are specialised for each application. Although there
is a potential possibility for an exponential increase in code
size, Standard ML functors cannot be recursive, thus, the
interpretation terminates. Moreover, experience with large
software projects that use Standard ML Modules exten-
sively, such as the Kit and the Standard ML of New Jersey
compiler, indicates that few functors are applied more than
once. We shall return to this issue in Section 6.

The third important aspect to the interpretation is
that signature matching results in no intermediate language
phrases; in the case a value component of a structure is made
less polymorphic, the instantiation is captured in the trans-
lation environment and code generation for the instantiation
is postponed till the value component of the constrained
structure is accessed. Consider the program

datatype s = A

structure S = struct val id = fn b => b
end : sig val id : s -> s end

val a = S.id A

This program translates into the intermediate language dec-
laration

datdec t =c ;
valdec ¢ : Va.aa = @ = Ay : Q.yq
valdec z:t = Tt C

where c is a constructor associated with the identifier A, ¢ is
a type name with arity 0, and z, y, and z are intermediate
language variables associated with the identifiers id, b, and
a, respectively.

In the following sections, we formalise the static inter-
pretation of Modules.

4.1 Semantic Objects for Interpretation

The following additional semantic objects are used for inter-
pretation:

SE € TStrEnv = Strld An TEnv

VE € TValEnv = VId -5 TValEntry
(0,is,a:0') € TValEntry = TypeSch x IdStatusx
(IVar UICon) x TypeSch
€ € TEnv = TStrEnv x TyEnv x TValEnv

F € TFunEnv = Funld %
(TBasis x Strld x StrExp x FunSig)
B € TBasis = TFunEnv x TEnv

Translation value environments map value identifiers to en-
tries of the form (o, is,a : '), where o is the type scheme
for the value identifier, s is its identifier status (v or ¢), and
a: o' is a pair of an intermediate language variable and its
type scheme. Because a value component of a structure can
be made less polymorphic by signature matching, the type
scheme ¢’ can be more general than the type scheme o.

To postpone the interpretation of a functor body till the
functor is applied, a functor identifier is mapped to a functor
closure, which is a quadruple of the form (B, strid, strezp, ®),
where B is a translation basis for capturing free variables
of the functor, strid is a structure identifier for the formal
parameter, strezp is the functor body, and & is the functor
signature of the functor.

4.2 Weakening and Enlargement

When A is some translation environment or translation ba-
sis, we define the weakening of A, written A, to be the
elaboration object derived from the translation object A by
erasing all translation information that is not present in the
corresponding elaboration object:

(£.8) = (7,8
(B, strid, strezp, ®) = @
(SE,TE,VE) = (SE&, TE,VE)
(o,i8,a:0") = (o,18)
SE = {strid = SE(strid) | strid € Dom SE&}

VE = {vid — VE(vid) | vid € Dom VE}
F = {funid — F(funid) | funid € Dom F}

Enlargement relates translation environments much as
enrichment relates elaboration environments. An object
(01,1481,a1 : 1) enlarges an object (02,452, a2 : 0h), written
(01, 481,a1 : 0’1) > (02,182,092 : U’z), if (01,181) > (o2,182)
and (a1 : o) = (a2 : 03). Enlargement is extended to
environments, inductively, as follows. A translation envi-
ronment & = (S&1, TE1,VE1) enlarges another translation
environment & = (S§€2, TE2,VE>), written &1 > s, if

1. Dom S&; 2 Dom S&; and S&:(strid) > SE»(strid)
for all strid € Dom S&»

2. TE,1 > TE»

3. Dom V&1 D Dom V&3> and VE:(vid) > VEa(vid) for
all vid € Dom VE&-

4.3 From Core to the Intermediate Language

‘We first present rules for translating Core phrases into inter-
mediate language phrases. The rules allow inferences among
sentences of the form £ + exp = 7,e, where £ is a trans-
lation environment, erp is a Core expression, 7 is a type,
and e is an intermediate language expression, and of the
form £ F dec = (N)(£',d), where £ and &' are transla-
tion environments, dec is a Core declaration, N is a set of
names, and d is an intermediate language declaration. Sen-
tences of the former form are read “ezp translates to (,e)
in £.” Sentences of the latter form are read “dec translates
to (N)(€',d) in £ In objects of the form (IV)(A,d), where
A is either a translation environment or a translation basis,
the prefix (V) binds names and we identify such objects up
to renaming of bound names and deletion of names from the
prefix that do not occur in the body (A, d). The rules are
given in Figure 6.

4.4 Interpretation of Modules

The rules for interpreting Modules phrases into intermedi-
ate language declarations allow inferences among sentences
of the form B F phrase = (N)(A,d), where B is a trans-
lation basis, phrase is either a structure-level declaration,
a structure-level expression, or a top-level declaration, A is
either a translation environment or a translation basis, NV
is a set of names, and d is an intermediate language decla-
ration; sentences of this form are read “phrase translates to
(N)(A,d) in B.” The rules are given in Figure 7. Notice
that no code is generated for structure bindings (rules 70
and 73). In rule 78, the interpretation of the functor body
is delayed until the functor is applied.

The following proposition states that well-typed source
language programs are translatable:

Proposition 4.1 (Translatability) If {} F topdec =
(T)B then there ezists (N)(B,d) such that {} - topdec =
(N)(B,d) and N D T and B = B.

PrROOF The proof is based on Proposition 2.1 and on the
relationship between enrichment and enlargement [3, Chap-
ter 8]. ad

To state a type correctness property for the interpreta-
tion, we first define a consistency relation I' k. B between
intermediate language type environments and translation
bases. Type consistency expresses that all intermediate lan-
guage variables and constructors in value entries in B are
associated to the same type schemes as in I'. The relation
is defined inductively by the following equations:

o I'kc (SE, TE,VE) iff T ke £ for all £ € Ran S€ and
I'(z) = o' for all (o,4s,z : 0’) € Ran VE and I'(t)(c) =
o’ and o' = Va'®.a®t for all (o, is,c: 0’) € Ran VE

o' ke (F,E) if T ke £ and T' ke B for all
(B, strid, strezp, ®) € Ran F

Type correctness is then stated as follows:

Proposition 4.2 (Type correctness) If {} F topdec =
(N)(B,d) then there exists T’ such that {} Fd: T and T ke B
and Dom I' C N.

PrOOF The proof uses an inductive argument on the struc-
ture of source language constructs [3, Chapter 8]. m|

Erexp=1e and EF dec = (N)(E,d) ‘

vid Dom & or s of E(vid) =v
z ¢ names £ £+ {vid— (r,v,z:7)} F ep = 7',e
Ebfnvid=>erp=>T7T 7, \x:Te

!

E(longvid) = (o,is,a:0") o > 7T
&+ longvid = 1,a,

(60)

(61)

Elerp, =7 w11 EFemp=>1,en
EtF expy exp, = T,e1 €2

E(longvid) = (0,c,c:0) o>=1 EFemp=71e
EF fn longuid => exp = 7 — 7, Ac: T.€

(62)

(63)

EF dec = (N)(E',d) {a®}Ntyvars E=0 o =Va® .1
NNnames(£,7) =0 E+E Fewp=Te Erep=>1e & ={vid— (o,v,x:0)} =« ¢&namesé&

4
&+ let dec in exp end = 7,let d ine (64) £ Fval vid = exp = ({})(E',valdec z : oF) .7 = ¢) (65)

arity t =k o =Va®.a®t VE ={vid — (0,¢)} VE={vid— (0,¢,c:0)} (66)

£ F datatype o'® tycon = vid = ({t,c})(({tycon — (t, VE)}, VE),datdec ¥t = ¢)
Erty=>1 & = {tycon —» (Aa™ .1, {})} 67) E(longstrid) = &' 68)

£ F type o'®) tycon = ty = (0)(E,¢) € I open longstrid = (0)(£,¢)
Figure 6: Translation of Core.
B strezp = (N)(€,d) and BF strdec = (N)(€,d) and BV topdec = (N)(B',d) ‘
EtF dec = (N)(E,d) (69) B strezp = (N)(€,d) (70)
(F,€) F dec = (N)(€,d) B b structure strid = strezp = (N)({strid — £},d)
B & strdec1 = (N1)(51,d1) (Nl @] Nz) N names B =10
B+ &1 F strdeca = (N2)(€2,d2) N2 N (N1 Unames(E1,d1)) =0 (71) (72)
B F strdect strdeca = (N1 U N2) (€1 + €2,d1 5 d2) Bre= (0)({},e)
B strdec = (N)(€,d) (73) B(longstrid) = € (74)
B F struct strdec end = (N)(€,d) Bt longstrid = (0)(€,¢)
BF strezp = (N)(E,d) Bl sigezp=>% X>& £>E& NnNnamesB=10 (75)
B strezp : sigezp = (N)(E',d)
BF strezp = (N)(£,d) B(funid) = (Bo, strid, strezp,, @) @ > (£',(T")&) T CNi E>¢&
(NUNi)Nnames B=0 N1 N(NUnames(€,d)) =0 Bo+ {strid — E'} & strezp, = (N1)(€1,d1) (76)
B F funid (strezp) = (N UN:1)(&1,d ; di)
B F strdec = (N)(E,d) (77) Bt sigezp = (T)E T Ntynames B=0 B+ {strid — E} - strezp = % (78)

Bt strdec = (N)({}, €),d) B+ functor funid (strid : sigezp) = strezp =

(D) ({funid — (B, strid, strezp, (T)(E, %))}, €)

B topdec; = (N1)(Bi,d1) (N1 U N2) Nnames B=0
B+ Bi F topdecy, = (N2)(Bz2,d2) NaoN (Ni Unames(Bi,d1)) =0
B F topdec, topdec, = (N1 U N2)(B1 + Ba,d1 ; da)

(79) (80)

BFe= (0)({},e)

Figure 7: Interpretation of Modules.

5 From Opaque to Transparent Modules

In Standard ML, opaque signature matching, that is, struc-
ture expressions on the form strexp :> sigezp, makes it
possible to hide implementation details of a type declared
in strezp to the degree to which the type is specified in
sigexp. In this section, we shall see that it is possible to
translate opaque signature matching into transparent sig-
nature matching (i.e., structure expressions on the form
strexp : sigexp) in such a way that elaboration is preserved
under related assumptions. This translation, which is called
opacity elimination, is important because it allows static
interpretation to expose implementation details of abstract
types into the intermediate language (which is of importance
to what analyses are possible on the intermediate language.)
Opacity elimination is defined as a function oe from program
phrases to program phrases. Here are a couple of the defin-
ing equations:

oe(strezp :> sigexp) =
oe(funid (strezp)) =

strezp : sigexp
funid (oe(strezp))

Although opacity elimination is a straightforward trans-
lation, it is not trivial to show that it preserves elaboration.
To do so, we first extend the typing rules of Figure 3 with a
rule for opaque signature matching:

Bt strezp = (T)E B & sigezp = X
Y >FE <E TnNtynames B=10

Bt strezp :> sigezp = X

(81)

This rule differs from the rule for transparent signature
matching (i.e., rule 23) in that the result of the matching
is exactly the signature obtained by typing the signature
expression. The addition of opaque signature matching to
the language does not violate any of the previous properties
that we have shown.

We now give three examples, so as to justify how the
typings of a program phrase and its translated phrase relate
by a notion of abstraction. Consider the functor declaration

functor F() = struct type a = int
end :> sig type a end

and let By be the basis {int ~ (tint, {})}, Where tin¢ is a
type name with arity 0. Then the functor declaration for
F elaborates, in the basis By, to a program signature that
contains the functor signature

@) ({3 {tH{a = ¢ {H})

for F, where t is a type name with arity 0. The functor
declaration translates into the functor declaration

functor F() = struct type a = int
end : sig type a end

which, in the basis By, elaborates to a program signature
that contains the following functor signature for F:

@) ({3}, @){a = (tins, {H})

In this case, generativity—or type abstraction—has de-
creased (i.e., after the translation, the type constructor a
is known to stand for the type denoted by the type name
tint-)

As the second example, consider the functor declaration

10

functor G(s : sig type a end) =
struct type b = s.a end :> sig type b end

This functor declaration elaborates, in the empty basis, to
a program signature containing the functor signature

{tH{am & MO} {EH{p— ¢ {HH

for G, where t and t' are type names with arity 0. The
functor declaration translates into the functor declaration

functor G(s : sig type a end) =
struct type b = s.a end : sig type b end

which elaborates, in the empty basis, to a program signature
containing the functor signature

{tH{a = & {H} @{e = ¢ {H}

where t is a type name with arity 0. Also in this case, opacity
elimination decreases generativity—or type abstraction.

It is not always the case, however, that generativity is
decreased by opacity elimination. In fact, in this final ex-
ample, we shall see that opacity elimination may increase
generativity. Consider the functor declaration

functor H() = struct datatype a = A
datatype b = B
type c = a -> b

end :> sig type c end

which elaborates, in the empty basis, to a program signature
containing the functor signature

@O ({3 {EH{e = ¢ {H}

where t is a type name with arity 0. The functor declaration
translates into the functor declaration

functor H() = struct datatype a = A
datatype b = B
type c =a -> b

end : sig type c end

which elaborates, in the empty basis, to a program signature
containing the functor signature

@O {t,t'D{e = (AQt = ¢, {1}

where t and t' are type names with arity 0.
We now turn to a formal definition of the abstraction
relation.

5.1 Abstraction

A signature X1 abstracts another signature Yo = (T2)E-,
written ¥1 = X, iff ¥1 > F»> and tynames X1 N7 = 0.
One can show that signature abstraction is closed under
realisation, that is, if ¥; > X then ¢(31) > ¢(32) for any
realisation ¢.

We extend the notion of abstraction as follows. A func-
tor signature ®; = (T1)(E1,X1) abstracts another functor
signature (13‘2 = (TQ)(E2,22), written @1 t q)g, iff Tl = T2
and E; = E> and ¥; > 3. Further, a functor environ-
ment Fj abstracts another functor environment F5, written
Fy = F», iff Dom Fy = Dom F> and Fi(funid) = F>(funid),
for all funid € Dom F;. Moreover, a basis By = (F1, E1)
abstracts another basis By = (F», E»), written By = B,
iff i > F> and E1 = E,. Finally, a program signa-
ture (T1)B: abstracts another program signature (T%)Bs,
written (T1)B1 > (T2)B2, iff there exists a realisation ¢
such that (1) Supp ¢ C Ti, (2) ¢(B1) = Bz, and (3)
T> N tynames((T1)B1) = 0.

5.2 Preservation of Elaboration

We can now state the proposition saying that opacity elim-
ination preserves typeability under related assumptions:

Proposition 5.1 (Preservation of elaboration) Let
phrase be either a structure-level expression, a structure-
level declaration, or a top-level declaration. If {} +
phrase = A then there exists a semantic object A’ such that
p(A) = A’ and {} F oe(phrase) = A'.

Proor The proof is by induction over the structure of
phrase and depends on another proposition saying that ty-
peability of signature expressions is closed under abstraction
and realisation. Details are given in [3, Chapter 5]. O

An interesting aspect of the proof that opacity elimi-
nation preserves typeability is that the proof is constructive
and thus outlines how type information is updated if opacity
elimination is performed on an explicitly-typed intermediate
representation of the program. Moreover, the translation fits
into the framework of smart recompilation.

6 The ML Kit with Regions

The ML Kit with Regions (the Kit) is a Standard ML com-
piler based on region inference [16]. The Kit implements
Standard ML Modules using static interpretation and the
framework for smart recompilation that we discussed in the
introduction.

The 33,000 lines Standard ML program AnnoDomini,
which is a tool for correcting year 2000 problems in OSVS
COBOL programs, has been compiled with the Kit. A re-
gion profile of running AnnoDomini (which include parsing,
type checking, and program transformation) on a 1500 lines
OSVS COBOL program is shown in Figure 8. Notice that
type checking of the 1500 line program is performed in con-
stant space. To obtain this memory behavior, it is essential
that region-annotated types are propagated across module
boundaries.

The Kit has also successfully compiled itself—about
87,000 lines of Standard ML. In doing so, only six of the 138
functors that the Kit consists of were compiled more than
once. Although two of these functors, which implement sets
and maps based on an ordering relation, were compiled 9
and 11 times, respectively, these functors are small. Based
on the sizes of the source files, a simple calculation shows
that for compiling the Kit, static interpretation increases
the number of compiled lines by only 10.9 percent. Here
we have not accounted for the fact that static interpreta-
tion decreases code size by eliminating all modules language
constructs at compile time.

7 Related Work

The idea of eliminating parameterised modules at compile
time is not new. C++ templates and Ada packages are
usually implemented by expanding the body of the param-
eterised module at the points where the module is used.
Moreover, tools are available for eliminating functors from
Standard ML programs [4, 19], but these tools do not sup-
port any form of separate compilation and have not been
formally justified.

The static semantics of our source language uses type
abstraction rather than unique stamps [11] to model type
generativity. Type abstraction is used in other type systems

11

for module languages to model abstract types and type de-
pendencies [5, 9]. Independently from the work we have
done here, Russo [12] has developed a static semantics for a
subset of Standard ML Modules, much similar to the static
semantics for the source language that we present here. In
particular, Russo also formulates type generativity by type
abstraction. Moreover, he demonstrates that his static se-
mantics accepts the same set of language phrases as a name
based static semantics. Russo does not demonstrate type
soundness for his language.

Similar to the approach we take here, Harper and Stone
[6] interpret Standard ML phrases into an intermediate lan-
guage for which a type soundness result exists. Their inter-
pretation, however, interprets Modules language constructs
of Standard ML into constructs of their intermediate lan-
guage. In contrast, static interpretation eliminates all Mod-
ules language constructs during interpretation.

Shao has proposed a framework for cross module optimi-
sation that allows information to propagate across module
boundaries [13]. However, certain advanced analyses such
as region inference (which do not immediately work for the
FLINT variant of the F* language) do not carry over to
module languages in his framework.

8 Conclusion

Static interpretation is a novel approach to the compilation
of Standard ML Modules. The technique has several ad-
vantages. First, it allows information about identifiers to
propagate across module boundaries. Second, the technique
makes available (for the compiler) the exact definition of ab-
stract types. Finally, the technique introduces no overhead
for programming with modules, as no code is generated for
Modules language constructs. The first two properties are
essential to make advanced analyses such as region inference
applicable for the entire Standard ML language.

The technique is used in the ML Kit with Regions com-
piler [16] and combined with a framework for smart recompi-
lation, which makes static interpretation useful for compiling
large programs. The Kit has yet to exploit the possibilities
of propagating other than region information across mod-
ule boundaries. Other possibilities for compiler optimisa-
tion that static interpretation enables to work across module
boundaries include in-lining of small functions and optimisa-
tion of data representations (e.g., unboxing of floating-point
values and flattening of arrays and list elements.)

Acknowledgments

I would like to thank my PhD supervisor Mads Tofte for
great advise about many aspects of the work presented here.
I also want to thank Niels Hallenberg, Xavier Leroy, Greg
Morrisett, Hanne Riis Nielson, Tommy Hgjfeld Olesen, and
Peter Sestoft, who all contributed with valuable comments
about this work.

References

[1] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup.
From region inference to von Neumann machines via
region representation inference. In 23rd ACM Sympo-
stum on Principles of Programming Languages, Jan-
uary 1996.

AD_on_pgm0123 - Region profiling

Mon Mar 23 04:19:12 1998

bytes

6000k _|

parse begin

5500k |

5000k |

4500k |

4000k |

3500k |

Maximum allocated bytes in regions: 6623504.

. rlinf

D r4inf

B s5172tint
B 1483533int
[] ra83532inf
B r484700int
B 1484690in
D stack

[re51722int
B ros207int
B ros206int
[rss883fin

B 1484698inf
B ro7928int
[] re7927int
B re6975int
B ro6074int
[] r1214fin

[r100949inf

B otHER

80.5 seconds

Figure 8: A region profile of running AnnoDomini on a 1500 lines OSVS COBOL program.

[2]

3]

[4]

[6]

[7]

[9]

[10]

Luis Damas and Robin Milner. Principal type schemes
for functional programs. In 9th ACM Symposium on
Principles of Programming Languages, January 1982.

Martin Elsman. Program Modules, Separate Compila-
tion, and Intermodule Optimisation. PhD thesis, De-
partment of Computer Science, University of Copen-
hagen, January 1999.

The Berkeley ANalysis
BANE de-functorizer.

Engine Group. The
Available via the URL

http://www.cs.berkeley.edu/Research/Aiken/bane.html.

Robert Harper and Mark Lillibridge. A type-theoretic
approach to higher-order modules with sharing. In 21st
ACM Symposium on Principles of Programming Lan-
guages, January 1994.

Robert Harper and Chris Stone. An interpretation of
Standard ML in type theory. Technical report, Carnegie
Mellon University, June 1997. CMU-CS-97-147.

Stefan Kahrs. Mistakes and ambiguities in the defini-
tion of Standard ML. Technical report, University of
Edinburgh, Laboratory for Foundations of Computer
Science, April 1993. There is an Addenda for this pa-
per, written June 94.

Xavier Leroy. Polymorphic Typing of an Algorithmic
Language. PhD thesis, INRIA, October 1992.

Xavier Leroy. Manifest types, modules, and separate
compilation. In 21st ACM Symposium on Principles of
Programming Languages, pages 109-122, 1994.

Robin Milner. A theory of type polymorphism in pro-
gramming languages. Journal of Computer and System
Sciences, 17:348-375, 1978.

12

[11] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen. The Definition of Standard ML (Revised).
MIT Press, 1997.

Claudio V. Russo. Types for Modules. PhD thesis, Uni-
versity of Edinburgh, Department of Computer Science,
June 1998.

[12]

[13] Zhong Shao. Typed cross-module compilation. Tech-
nical report, Department of Computer Science, Yale

University, July 1997. YALEU/DCS/TR-1126.

Mads Tofte. Operational Semantics and Polymorphic
Type Inference. PhD thesis, University of Edinburgh,
Department of Computer Science, May 1988.

[14]

[15] Mads Tofte and Lars Birkedal. A region inference al-
gorithm. Transactions on Programming Languages and

Systems (TOPLAS), 20(4):734-767, July 1998.

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hal-
lenberg, Tommy Hgjfeld Olesen, Peter Sestoft, and Pe-
ter Bertelsen. Programming with regions in the ML
Kit (for version 3). Technical report, Department of
Computer Science, University of Copenhagen, Decem-
ber 1998.

[16]

[17] Mads Tofte and Jean-Pierre Talpin. Implementation of
the typed call-by-value A-calculus using a stack of re-
gions. In 21st ACM Symposium on Principles of Pro-

gramming Languages, January 1994.

[18] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,

132(2):109-176, 1997.

[19] Stephen Weeks. smlc user’s guide. A whole-program

Standard ML compiler, August 1998.

