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Algebraic data types are central to the development and evaluation of most functional programs. It is therefore

important for compilers to choose compact and efficient representations of such types, in particular to achieve

good memory footprints for applications.

Algebraic data types are most often represented using blocks of memory where the first word is used as

a so-called tag, carrying information about the constructor, and the following words are used for carrying

the constructor’s arguments. As an optimisation, lists are usually represented more compactly, using a

technique called bit-stealing, which, in its simplest form, uses the word-alignment property of pointers to

byte-addressed allocated memory to discriminate between the nil constructor (often represented as 0x1) and

the cons constructor (aligned pointer to allocated pair). Because the representation supports that all values

can be held uniformly in one machine word, possibly pointing to blocks of memory, type erasure is upheld.

However, on today’s 64-bit architectures, memory addresses (pointers) are represented using only a subset

of the 64 bits available in a machine word, which leave many bits unused. In this paper, we explore the use,

not only of the least-significant bits of pointers, but also of the most-significant bits, for representing algebraic

data types in a full ML compiler. It turns out that, with such a particular utilisation of otherwise unused bits,

which we call double-ended bit-stealing, it is possible to choose unboxed representations for a large set of data

types, while still not violating the principle of uniform data-representations. Examples include Patricia trees,

union-find data structures, stream data types, internal language representations for types and expressions,

and mutually recursive ASTs for full language definitions.

The double-ended bit-stealing technique is implemented in the MLKit compiler and speedup ranges from 0

to 26 percent on benchmarks that are influenced by the technique. For MLKit, which uses abstract data types

extensively, compilation speedups of around 9 percent are achieved for compiling MLton (another Standard

ML compiler) and for compiling MLKit itself.
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1 Introduction

Functional programmers have long been accustomed to the possibility of using algebraic data types
for modeling data and for designing and developing programs. Consider the following algebraic
data type declarations:

datatype bop = ADD | MUL | SUB | DIV

datatype e = Var of string | Num of real | Tup of e list

| Sel of int * e | Bin of bop * e * e

Author’s Contact Information: Martin Elsman, University of Copenhagen, Copenhagen, Denmark, mael@di.ku.dk.

© 2024 Copyright held by the owner/author(s).

ACM 2475-1421/2024/8-ART239

https://doi.org/10.1145/3674628

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 239. Publication date: August 2024.

This work is licensed under a Creative Commons Attribution 4.0 International License.

https://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-6061-5993
https://doi.org/10.1145/3674628
https://orcid.org/0000-0002-6061-5993
https://doi.org/10.1145/3674628


239:2 Martin Elsman

Sel 0 Num real 1.0

Tup blk2 blk2
nil::::

Bin MUL Var str "pi"

real 2.0Num

0Sel Tup

::
Bin Num

:: nil

MUL
Num Var

real 1.0

real 2.0 str "pi"

16 bits

...010

45 bits

...01011101

3 bits

000
Tup

::
:

Fig. 1. Boxed and unboxed representations of a simple expression tree (the top two pointer graphs). The

light-blue (and dashed) rectangular boxes represent boxed constructed values and the white rectangular

boxes represent allocated pairs, boxed reals, and strings. An illustration of the word layout for the embedded

Tup value is shown in the lower right part of the figure. Here the :: constructor occupies the 3 lower bits

(000) and the Tup constructor occupies the 16 higher bits. The middle 45 bits represent the pointer to the pair

carried by the :: constructor.

These declarations specify the types bop and e, an enumeration type for possible binary operations
(e.g., ADD denotes addition) and an inductively defined type for expression values, including variables
(i.e., Var), numbers (i.e., Num), tuples (i.e., Tup), tuple selections (i.e., Sel), and binary operations (i.e.,
Bin). Although the programmer may have an idea about how values of these types are represented
at runtime, most ML compilers will make their own representation choices based on external
functional needs such as simplicity, code reuse, efficient execution, low memory usage, support for
reference-tracing garbage-collection, interoperability, and so on.
In strict ML-like languages, a common representation of the above algebraic data types is to

represent the constructors for the bop type as unboxed integers and constructed values of the e

type as pointers to blocks of consecutive words in memory, with the first word holding information
that allows for discriminating between the different constructors, and the remaining words holding
the constructor payload, which for the Bin constructor is three words, for the Sel constructor is two
words, and for the other constructors is one word.1 Consider the value

val ex : e = Sel (0, Tup [Bin (MUL , Num 2.0, Var "pi"), Num 1.0])

A graphical layout of the common boxed representation of the value is shown to the left in Figure 1.
We see that for each of the boxed constructed values (shown dashed and in light-blue color), a tag
word is preceding the constructor’s payload. Lists are here represented unboxed, meaning that its
constructors are represented unboxed, which relies on a common trick that makes use of so-called
low bit-stealing to distinguish nil from cons-cells marked :: in the layout. A particular feature
of an unboxed data type is that constructing a value of that type (possibly given an argument)
does not require allocation. Notice that both strings and reals are represented boxed here, which is
to make sure that a uniform representation is used for values, that is, all represented values are
implemented uniformly and may be identified using one machine word.

This paper presents a new technique for representing algebraic data types, called double-ended bit-
stealing, which uses not only the least-significant bits of pointers for distinguishing data constructors
for simple data types such as lists (making traditional use of common pointer-alignment properties),

1Because the garbage collector needs to distinguish pointers from integers, integers are usually shifted by 1 with the

least-significant bit set to one.
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but also uses the most-significant bits of pointers. The technique is based on the property that the
most-significant bits of pointers are freely available for use on most modern 64-bit architectures.
For instance, on x86_64 architectures, the notion of canonical addresses [Intel 2024] ensures that
the most significant 16 bits of a pointer are identical to bit 47, which is 0 for user addresses under
Linux [Linux Kernel Development Community 2024]. Similar opportunities exist on other UNIX
operating systems and on RISC-V and AArch64 platforms [Bradbury 2023].

As an example of double-ended bit-stealing, the value bound to the variable ex (defined earlier)
may be represented as shown to the right in Figure 1. The notation used in the figure places so-called
high-bit tags on top of pointer sources (e.g., the tag Sel is placed on top of the left-most arrow
source in the layout). Similarly, so-called low-bit tags are placed below pointer sources (e.g., nil
and ::). An important difference between the two layouts is that the layout to the right treats all
non-nullary constructors as constructors that take only one argument, which may be a tuple. We
shall return to the consequences of this choice later. Another difference is that some of the tag words
that also contain size-information about blocks of allocated memory do not appear in the layout to
the right, which is a possible representation choice when, for small tuple values, a big-bag-of-pages
(BIBOP) approach is used for memory management (allocation of small identically-sized blocks are
grouped together and share a common tag, located, for instance, at a page-aligned boundary). In
combination, the two techniques save almost half of the memory needed for representing the ex

value. Notice how a Tup-value is represented using multiple levels of unboxing. The representation
uses the high bits for specifying that it is a Tup value and the remainder of the bits to represent either
nil or a possible :: cell. Not only does double-ended bit-stealing lead to fewer memory accesses,
the reduction in memory usage may also likely have a positive effect on cache performance.
The suggested representation technique has been implemented in the MLKit Standard ML

compiler [Tofte et al. 2022], which, in general, uses a combination of region inference [Tofte
and Talpin 1997] and reference-tracing garbage collection for memory management [Elsman and
Hallenberg 2021; Hallenberg et al. 2002]. In this context, unboxing has an even bigger effect on the
performance and memory usage of programs as regions for the otherwise boxed values cease to
appear in the generated code. The consequence is that critical functions may take fewer regions
as arguments and that the overall overhead of allocation decreases. The traditional unboxing
strategy used by the MLKit (before this work) has been to use only the lower bits in pointers for
tagging unboxed values, which limits what values can be represented unboxed, compared to the
double-ended bit-stealing approach.

Background on Representing Algebraic Data Types. There are already many approaches to repre-
senting algebraic data types and we have already seen common representations for the bop and e

data types. For representing nullary constructors, a common strategy is also to use an unboxed
representation, where each nullary constructor is represented by a unique integer. This strategy,
which is used for instance by OCaml and MosML, may sometimes be beneficial (i.e., it is quick to
test for a particular nullary constructor) but also has the drawback that multiple tests are needed
to test for a unary constructor. In particular, a pattern-matching implementation needs first to
identify the constructor kind (boxed or unboxed) after which the implementation can determine the
particular constructor value. Moreover, such a value representation occupies not only the pointer
bits but also the least-significant bits of a machine word.

An alternative, which is the strategy used by the MLKit compiler, is to use a boxed representation
also for nullary constructors (which may be allocated statically). The benefit of such a represen-
tation is that discriminating between match cases becomes simpler and that such fully boxed
representations occupy only the pointer bits of a machine word, leaving both the lower and the
higher bits to be used by constructors that take values of the boxed type as argument.
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A common strategy is also to understand constructors that take a tuple or a record as argument
as a constructor that takes multiple arguments and to represent such constructed values as the tuple
with a prefix-tag that encodes the tag of the constructor and separately the size of the proceeding
block. A common trick in this respect, shared by OCaml and MosML, is to place the block size
information in the same way in tuples and in values constructed from multi-argument constructors.
In this way, it is immediately possible, at runtime, to retrieve a pointer, representing a tuple, from a
constructed value. Multi-argument constructors may introduce an additional cost, however. When
the tuple is not constructed at the same time the constructed value is constructed, the tuple elements
will need to be copied into the constructed value at the time the multi-argument constructed value
is created.
Again, the MLKit compiler follows a different approach where constructors are either nullary

or unary (also representation-wise), which may introduce unnecessary indirections, but which
has the benefit that constructing a value from a tuple can be implemented without copying the
tuple elements. In principle, there is no reason that both representation forms cannot coexist at
runtime. In fact, OCaml (and MosML, which builds on the runtime system of the older CamlLight
implementation [Leroy 1990]) supports the use of syntactic parentheses in data type bindings to
specify that a constructor should be understood as a unary constructor and not a multi-argument
constructor.
Reference tracing garbage collection usually constrains the representation of values as the

collector needs to distinguish pointers to heap-allocated values (that must be traced) from other
values (e.g., unboxed integers). Often, the least significant bit in values are used for this purpose,
which, in a simple unboxing scheme allows types with two argument-taking constructors and a
large number of nullary constructors to be represented unboxed. In practice, however, compilers
for functional languages seldom goes beyond using more than one bit in pointers for tagging.

Historically, before 64 bits where used for pointers, no spare higher bits were available for tagging
and when moving to 64-bit platforms, compiler implementors have been concerned about targeting
64-bit and 32-bit platforms in the same compiler code-base, which have put a constraint on the
use of spare bits in 64-bit pointers. Moreover, when making use of spare bits in 64-bit pointers,
implementations need to deal with complications in garbage collection algorithms, complications in
foreign-function interfacing, and complications in code that exposes representation details to pro-
grammers. These issues can all be dealt with by proper abstraction mechanisms and, when needed,
mechanisms for controlling representations of exposed data types [Eisenberg and Peyton Jones
2017].

Benefits of Double-Ended Bit-Stealing. There are several benefits to double-ended bit-stealing besides
from directly saving space for constructor tagging. First, by using the high-end bits for storing
constructor tags for an algebraic data type (or sum-type), we can use a type-based big-bag-of-pages
(BIBOP) approach to represent constructor payloads compactly [Elsman and Hallenberg 2021].
Second, for ADTs with constructors that take only one argument (i.e., that do not take products
as arguments), which are sometimes called single-argument constructors, we may (under certain
conditions) represent constructed values unboxed (with no allocation). In such cases (examples
include union-find data structures and streams), a double-ended bit-stealing representation is
strictly more compact than a representation that encodes constructor tags in tuples, even without
applying a big-bag-of-pages approach for avoiding tuple tags. We therefore conjecture that double-
ended bit-stealing may be of general benefit for compiling and representing algebraic data types.
Moreover, the technique is compatible also with boxing strategies that encode constructor tags for
some data types in tuples.
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Contributions. We claim the following contributions:

(1) We devise a technique for inferring uniform unboxity decisions for algebraic data types
that utilise both the least-significant and the most-significant unused bits in pointers. The
technique can be safely integrated with garbage collection.

(2) We present a formal static semantics and a formal dynamic semantics for a small language
with algebraic data types and demonstrate type soundness of the language. Moreover, we
present a formal statement saying that evaluating an expression under different unboxing
strategies lead to similar results.

(3) We present an inference algorithm for double-ended bit-stealing, describe the details of a
concrete implementation in a full Standard ML compiler, and discuss various unboxing trade-
offs and how the programmer can potentially monitor and influence unboxing decisions by
adhering to a set of simple unboxing rules.

(4) We report on a series of benchmarks measuring the effect of double-ended bit-stealing for
representing algebraic data types in a full Standard ML compiler. In particular, for each
benchmark, we report on the effect on execution time and memory usage and compare the
results with execution times and memory usage for two other state-of-the-art Standard ML
compilers (i.e., SML/NJ [Appel 1992] and MLton [Weeks 2006]) for the purpose of showing
that the results obtained with MLKit are not off by orders of magnitudes compared with
state-of-the-art compilers. Further, we report on the performance effects of double-ended
bit-stealing on two larger programs, the MLKit itself and MLton. We also report on the
double-ended bit-stealing decisions for the two large programs.

Outline. In the next section, we present a small polymorphic functional language equipped with
algebraic data types (including pattern matching) and support for different representations of
constructed data. We further present formal properties of the language. In Section 3, we present
an inference algorithm for representing algebraic data types using double-ended bit-stealing, and
argue that the inference leads to sound unboxing decisions. The inference algorithm finds a sound
fix-point solution for a group of (possibly recursive) data type declarations based on boxity decisions
for other data types the declarations refer to. In the worst case, all data types are represented boxed
(which is always a sound solution). In Section 4, we present details of the implementation and in
Section 5, we present a large series of real-world examples demonstrating double-ended bit-stealing.
In Section 6, we present numbers demonstrating that the approach is beneficial in practice both with
respect to memory usage and to its effect on execution time for a series of benchmarks, including
the MLKit compiler and the MLton compiler. In Section 7, we describe related work and in Section 8,
we conclude and discuss future work.

2 A Polymorphic Language with Algebraic Data Types

In this section, we present a polymorphic language with algebraic data types and a type system
that allows for different boxity decisions for the algebraic data types, under some well-formedness
constraints, which specify the boxity possibilities for the involved data types. We show type
soundness for the language (Section 2.7) and demonstrate a simulation property (Section 2.8)
stating that well-typed programs evaluate to the same result independent of which well-formed
boxity decision is chosen. In the following sections, we first introduce the notions of types and
type schemes, the notions of boxities and well-formed boxity environments, the notions of values,
expressions, and programs, the type system for the language, and a dynamic semantics for the
language. An overview of syntactic constructs and notation, introduced in this section, is available
in Appendix A.3 (auxiliary material).
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2.1 Types, Type Schemes, and Substitutions

We assume a denumerably infinite set of type names, each equipped with an arity (=), and ranged
over by C . When we want to be explicit about the arity of a type name C , we write the type name on
the form C (=) . We also assume a denumerably infinite set of type variables, ranged over by U .
Types (g) and type schemes (f) are defined according to the following grammar:

g := U | int | ®g C | g ∗ g | g → g types
f := ∀®U.g type schemes

Whenever we have a type on the form (g1, · · · , g=) C , it is implicitly assumed that the type name
C has arity =. When ∀®U.g is a type scheme, we consider ®U to be bound in g . We consider type
schemes identical up to renaming of bound variables. A substitution (() is a finite map from type
variables to types. The effect of applying a substitution ( to an object - , written ( (- ), is to replace
(simultaneously) all free (i.e., non-bound) occurrences of type variables in - with corresponding
types in ( (extended to be the identity outside of its domain). When ( and ( ′ are substitutions and
- is some object, we write (( ′ ◦ () (- ) to mean ( ′ (( (- )). We also write �v - to denote the free
type variables in - . When f is some type scheme ∀®U.g , we say that a type g ′ is an instance of f ,
written f ≥ g ′, if there exists a substitution ( such that Dom ( = { ®U} and ( (g) = g ′.

2.2 Boxities and Well-Formed Boxity Environments

We define the notion of boxity (̂ ) according to the following grammar:

^ ::= hub | lub | box boxities

Intuitively, the box boxity specifies that a value is represented boxed, the lub boxity specifies that
a value is represented unboxed using lower bits for tagging (low-unboxed), and the hub boxity
specifies that a value is represented unboxed using the higher bits for tagging (high-unboxed).
Boxities form a total order (>) specified by hub > lub > box, indicating that the hub boxity uses
strictly more bits than the lub boxity, which uses strictly more bits than the box boxity.

We assume a denumerably infinite number of value constructors, ranged over by 2 . A constructor

environment (�) is a finite map from value constructors to type schemes and a boxity environment

(�) is a finite map from type names to pairs of a boxity and a constructor environment. In general,
when " and " ′ are finite maps with Dom " ∩ Dom " ′

= ∅, we write "," ′ to denote the
finite map with domain Dom " ∪ Dom " ′ and values ("," ′) (G) = " (G), if G ∈ Dom " , and
("," ′) (G) = " ′ (G), if G ∈ Dom" ′. Moreover, we write fc � to denote the free constructors in �,
that is the set {2 |2 ∈ Dom �, (^,�) = �(C), C ∈ Dom �}.

We shall now prepare for defining what constitutes a well-formed boxity environment. We first
introduce a relation that establishes a conservative approximation to the boxity of a type. The
relation is defined as a set of inference rules allowing inferences of judgments of the form � ⊢ g : ^ ,
which are read “the type g has boxity ^ in the boxity environment �”:

Type boxity � ⊢ g : ^

� ⊢ U : hub � ⊢ int : hub � ⊢ g1 ∗ g2 : box � ⊢ g → g ′ : box

�(C) = (^,�)

� ⊢ ®g C : ^

� ⊢ g : ^ ^′ > ^

� ⊢ g : ^′

In the case of constructed types of the form ®g C , the relation establishes the boxity of the type by
looking up the type name C in �. Notice that type variables have boxity hub, which is to make
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sure that no matter what type is instantiated for the type variable, no bits are used in the word-
representation of values of that type to tag constructed values. The last rule says that it is always
safe to assume that values of a type use more bits than it actually does.

We now define a relation specifying that, given a boxity environment �, the boxity specification
of the type name C is well-formed in �, written � ⊢ C . The relation is defined by the following rules,
where � = 16 represents the number of bits available for high-bit tagging:2

Well-Formed Type Name Bindings � ⊢ C

� = {21 : ∀®U.g1 → ®g C, . . . , 2< : ∀®U.g< → ®g C, 2<+1 : f0, . . . , 2<+= : f0}

�(C) = (hub,�) � ⊢ g1 : lub . . . � ⊢ g< : lub < + = < 2� f0 = ∀®U.®g C

� ⊢ C
[hub]

� = {21 : ∀®U.g → ®g C, 22 : f0, . . . , 2= : f0}
�(C) = (lub,�) � ⊢ g : box f0 = ∀®U.®g C

� ⊢ C
[lub]

� = {21 : f0, . . . , 2= : f0}
�(C) = (lub,�) f0 = ∀®U.®g C

� ⊢ C
[enum]

� = {21 : ∀®U.g1 → ®g C, . . . , 2< : ∀®U.g< → ®g C, 2<+1 : f0, . . . , 2<+= : f0}
�(C) = (box,�) � ⊢ g1 : ^1 . . . � ⊢ g< : ^< f0 = ∀®U.®g C

� ⊢ C
[box]

We further say that a boxity environment is well-formed, written ⊢ �, if for all C ∈ Dom �, we
have � ⊢ C and we also have �(C) = (^,�) implies Dom � ∩ fc(� \ {C}) = ∅ (here we write � \ {C}
to denote the boxity environment � restricted to the domain Dom � \ {C}).

The notion of well-formed boxity environments captures the necessary conditions for constructed
values to be distinguished effectively at runtime. For simplicity and without lack of generality, we
assume that each constructor can belong to at most one data type. It is straightforward to verify
that boxity environments that map all type names to the boxity box are well-formed (rule [box]).
On the other hand, it is also straightforward to come up with boxity environments that are not
well-formed. One example is a boxity environment that maps the option type name to the lub

boxity, which is problematic because the SOME constructor has the type scheme ∀U.U → U option

and [lub] requires the argument type to the unary constructor to be box, as the least significant
bits must be reserved to discriminate between the two constructors.3 Unfortunately, because type
variable can be substituted with any type, type variables have type boxity hub, which does not align
with the assumption in [lub].

2.3 Data-Type Bindings and Data-Type Declarations

We define the notion of data-type bindings (db) and the notion of data-type declarations (dd) as
follows:

db ::= ®U C = � data-type bindings
dd ::= type db1 and . . . and db= data-type declarations

Notice that we assume here that the syntactic constructor specifications have been elaborated into
constructor environments mapping constructors into type scheme. Further, notice that data-type
declarations allow for multiple types to be declared simultaneously, which allows for mutually
recursive bindings.
Data-type bindings and data-type declarations are elaborated (i.e., checked) by two rules that

allow inferences of judgments of the forms � ⊢ db : �′ and � ⊢ dd : �′, which are read “the
data-type binding db (or data-type declaration dd) elaborates to the boxity environment �′ in �”.

2A lower value of � may be used for platforms that use more than 48 bits for representing pointers.
3Besides the SOME constructor, the option type also has the nullary constructor NONE, which has type scheme ∀U.U C .
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Elaboration of data-type bindings � ⊢ db : �′

�(C) = (^,�) � ⊢ C arity(C) = =

� ⊢ ®U (=) C = � : {C ↦→ (^,�)}
[e-db]

Elaboration of data-type declarations � ⊢ dd : �′

�, �′ ⊢ db1 : �1 . . . �, �′ ⊢ db= : �=
�′

= �1, . . . , �= fc �8 ∩ (fc � 9 ∪ fc �) = ∅, for all 8, 9 s.t. 8 ≠ 9

� ⊢ type db1 and . . . and db= : �′ [e-dd]

The rule for data-type bindings simply requires the type name C to be well-formed in � and
occurring in � with the given constructor environment. The rule for data-type declarations enforces
uniqueness of constructor names and declared type names. Notice that for the rule for data-type
declarations, given � and dd, there may be multiple different �′ so that � ⊢ dd : �′ holds.
The following proposition states that data-type declarations elaborate to well-formed boxity

environments:

Proposition 2.1 (Well-formed data-type declarations yields well-formed boxity-envi-

ronments). If ⊢ � and � ⊢ dd : �′ then ⊢ �, �′.

The proof follows from the definition of elaboration of data-type declarations, which ensures that
constructors are unique for each data-type binding and that �, �′ ⊢ C8 holds for each C8 introduced
by the involved data-type bindings. It follows that ⊢ �, �′ holds as required.

2.4 Values, Expressions, and Programs

Values are divided into boxed values (; ), low unboxed values (E), and high unboxed values (F ):

; ::= F,F | _G .4 | fix 5 G = 4 | {2,F} | {2} boxed values
E ::= ; | ; ·2 | ·2 low-unboxed values
F ::= E | 2 ·E | 2 · | 3 high-unboxed values

We use the letter ; to denote boxed values as to indicate that boxed values are represented by
locations (pointers to objects) in the heap. Boxed values include pairs F,F , closures _G.4 , recur-
sive closures fix 5 G = 4 , boxed unary-constructed values {2,F}, and boxed nullary-constructed
values {2}.

Low unboxed values E include those values that occupy the same number of bits as boxed values
(i.e., pointers). Besides from boxed values, low unboxed values also include low-tagged pointers ; ·2 ,
where 2 is a constructor stored in the least significant bits of a pointer and low-unboxed nullary
constructors ·2 , which are represented with the least-significant bit set (to distinguish them from
unary constructors) and may use other bits occupied by low-unboxed values.
High-unboxed values F include those values that may occupy all bits in a word. Such values

include low-unboxed values, integers 3 (using perhaps all 64 bits), high-tagged low-unboxed values
2 ·E , where 2 is a constructor stored in the most-significant bits of a word, and high-unboxed nullary
constructors 2 ·, which are represented using the most-significant bits of a word.
Notice, in particular, that the high-unboxed value 2T·( 23, ·2nil ·2::) may represent the con-

structed value T[23] if 2T represents the source-level constructor T and if 2nil and 2:: represent the
source-level constructors nil and ::, respectively, given an appropriate boxity environment.
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Expressions 4 , patterns ? , and programs % are defined as follows:

4 ::= G | F | 2 4 | 2 | 4 4 | let G = 4 in 4 | (4, 4) | #8 4 expressions
| _G.4 | fix 5 G = 4 | case 4 of 1 | . . . | 1

1 ::= ? ⇒ 4 branches
? ::= 2 G | 2 patterns
% ::= dd % | 4 programs

Expressions of the form 2 denote a use of a nullary constructor 2 where expressions of the form
2 4 denote a use of a unary constructor (applied to its argument). These aspects are enforced by the
typing rules, presented in the next section. Expressions of the form #8 4 denote projections from
pairs.
For expressions of the form _G.4 (and fix 5 G = 4) and for values of the form _G.4 (and

fix 5 G = 4 ), we consider G (and 5 ) bound in 4 . For expressions of the form let G = 4 in 4′, we
consider G bound in 4′. For branches of the form 2 G ⇒ 4 , we consider G bound in 4 . All values and
expressions are considered equal up to renaming of bound variables.
As a syntactic restriction, we enforce that for expressions of the form case 4 of 11 | . . . | 1= ,

the branches 11, . . . , 1= branch on distinct constructors. In other words, there are no redundant
matches. We shall later see that the typing rules will enforce that case constructs are exhaustive.

2.5 Well-Typed Values, Expressions, and Programs

Environments (Γ) are finite maps from program variables to type schemes. When � is some boxity
environment, ? is some pattern, and ®g C is some constructed type, we write (�, ®g C) ⊲ ? to denote
the empty environment if ? is a nullary constructor and the environment {G : g} if ? is on the form
2 G and �(C) (2) ≥ g → ®g C .

The typing rules, which are shown in Figure 2, are divided into rules for typing values, rules for
typing expressions, and rules for typing programs. Whereas the typing rules for values take the
form � ⊢ F : f , the typing rules for expressions take the form �, Γ ⊢ 4 : f , which are abbreviated to
� ⊢ 4 : f if Γ is the empty map.

Most of the rules are standard, in particular the rules for expressions. Without lack of generality,
the language supports generalisation only through fix expressions and through fix values; other
polymorphic bindings of functions (i.e., lambda-functions) can be turned into bindings of non-
recursive fix constructs.
The typing rules for constructed values link the concrete value representation with the boxity

for the constructor specified in the boxity environment. The typing rules for programs ensure
that the program expression is type checked in boxity environments resulting from the elaborated
data-type declarations of a program, which ensures that program expressions are type checked in
well-formed boxity environments. For brevity, we have omitted straightforward fall-through rules
from Figure 2. For instance, we implicitly have that if �, Γ ⊢ E : f then �, Γ ⊢ F : f ifF = E .

It is an essential property that the typing rules are closed under substitution, which is stated by
the following proposition:

Proposition 2.2 (Typing Rules Closed Under Type Substitution). If �, Γ ⊢ 4 : f then

�, ( (Γ) ⊢ 4 : ( (f), for any substitution ( .

The proposition relies on a series of properties, including the facts that boxity environments
are always closed with respect to type variables, that type scheme instantiation is closed under
substitution, and that, for any substitution ( , we have that Γ = (�, ®g C) ⊲? implies ( (Γ) = ( (�, ®g C) ⊲? ,
for any environment Γ, boxity environment �, type ®g C , and pattern ? .
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Boxed values � ⊢ ; : f

� ⊢ F1 : g1 � ⊢ F2 : g2

� ⊢ F1,F2 : g1 ∗ g2
[l-pair]

�, {G : g} ⊢ 4 : g ′

� ⊢ _G .4 : g → g ′
[l-lam]

�, {G : g, 5 : g → g ′} ⊢ 4 : g ′

� ⊢ fix 5 G = 4 : ∀®U.g → g ′
[l-fix]

�(C) = (box,�)
� (2) ≥ g → ®g C � ⊢ F : g

� ⊢ {2,F} : ®g C
[l-c1]

�(C) = (box,�) � (2) ≥ ®g C

� ⊢ {2} : ®g C
[l-c0]

Low-unboxed values � ⊢ E : f

�(C) = (lub,�)
� (2) ≥ g → ®g C � ⊢ ; : g

� ⊢ ; ·2 : ®g C
[v-c1]

�(C) = (lub,�) � (2) ≥ ®g C

� ⊢ ·2 : ®g C
[v-c0]

High-unboxed values � ⊢ F : f

�(C) = (hub,�)
� (2) ≥ g → ®g C � ⊢ E : g

� ⊢ 2 ·E : ®g C
[w-c1]

�(C) = (hub,�)
� (2) ≥ ®g C

� ⊢ 2 · : ®g C
[w-c0]

� ⊢ 3 : int
[w-int]

Expressions �, Γ ⊢ 4 : f

�, Γ, G : g ⊢ 4 : g ′

�, Γ ⊢ _G.4 : g → g ′
[e-lam]

Γ(G) = f

�, Γ ⊢ G : f
[e-var]

� ⊢ F : f

�, Γ ⊢ F : f
[e-val]

�, Γ ⊢ 4 : f f ≥ g

�, Γ ⊢ 4 : g
[e-inst]

�, Γ ⊢ 41 : g1 �, Γ ⊢ 42 : g2

�, Γ ⊢ (41, 42) : g1 ∗ g2
[e-pair]

�(C) (2) ≥ g → ®g C �, Γ ⊢ 4 : g

�, Γ ⊢ 2 4 : ®g C
[e-con1]

�(C) (2) ≥ ®g C

�, Γ ⊢ 2 : ®g C
[e-con0]

�, Γ ⊢ 4 : g1 ∗ g2 8 ∈ {1, 2}

�, Γ ⊢ #8 4 : g8
[e-sel]

�, Γ ⊢ 41 : f �, Γ, G : f ⊢ 42 : f
′

�, Γ ⊢ let G = 41 in 42 : f
′ [e-let]

�, Γ ⊢ 4 : g → g ′

�, Γ ⊢ 4′ : g

�, Γ ⊢ 4 4′ : g ′
[e-app]

�, Γ, 5 : g → g ′, G : g ⊢ 4 : g ′ { ®U} ∩ �v Γ = ∅

�, Γ ⊢ fix 5 G = 4 : ∀®U.g → g ′
[e-fix]

Γ1 = (�, ®g C) ⊲ ?1 . . . Γ= = (�, ®g C) ⊲ ?= �(C) = (^,�) |Dom � | = =

�, Γ ⊢ 4 : ®g C �, Γ, Γ1 ⊢ 41 : g . . . �, Γ, Γ= ⊢ 4= : g

�, Γ ⊢ case 4 of ?1 ⇒ 41 | . . . | ?= ⇒ 4= : g
[e-case]

Programs � ⊢ % : g

� ⊢ dd : �′ �, �′ ⊢ % : g

� ⊢ dd % : g
[p-dat]

�, {} ⊢ 4 : g

� ⊢ 4 : g
[p-exp]

Fig. 2. Typing rules for values, expressions, and programs.
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Evaluation of expressions � ⊢ 4 { 4′

� ⊢ 4 { 4′ � ≠ [·]

� ⊢ � [4] { � [4′]
[r-ctx]

8 ∈ {1, 2}

� ⊢ #8 F1,F2 { F8

[r-sel]

� ⊢ _G.4 { _G.4
[r-lam]

� ⊢ fix 5 G = 4 { fix 5 G = 4
[r-fix]

� ⊢ (F,F ′) { F,F ′ [r-pair]
� ⊢ fix 5 G = 4 F { 4 [(fix 5 G = 4)/5 ,F/G]

[r-appf]

� ⊢ _G .4 F { 4 [F/G]
[r-app]

� ⊢ let G =F in 4 { 4 [F/G]
[r-let]

ckind (�, 2) = box 18 = 2 G ⇒ 4 1 ≤ 8 ≤ =

� ⊢ case {2,F} of 11 | . . . | 1= { 4 [F/G]
[r-bcase1]

ckind (�, 2) = box

� ⊢ 2 F { {2,F}
[r-bc1]

ckind (�, 2) = box 18 = 2 ⇒ 4 1 ≤ 8 ≤ =

� ⊢ case {2} of 11 | . . . | 1= { 4
[r-bcase0]

ckind (�, 2) = box

� ⊢ 2 { {2}
[r-bc0]

ckind (�, 2) = lub 18 = 2 G ⇒ 4 1 ≤ 8 ≤ =

� ⊢ case ; ·2 of 11 | . . . | 1= { 4 [;/G]
[r-lcase1]

ckind (�, 2) = lub

� ⊢ 2 ; { ; ·2
[r-lc1]

ckind (�, 2) = lub 18 = 2 ⇒ 4 1 ≤ 8 ≤ =

� ⊢ case ·2 of 11 | . . . | 1= { 4
[r-lcase0]

ckind (�, 2) = lub

� ⊢ 2 { ·2
[r-lc0]

ckind (�, 2) = hub 18 = 2 G ⇒ 4 1 ≤ 8 ≤ =

� ⊢ case 2 ·E of 11 | . . . | 1= { 4 [E/G]
[r-hcase1]

ckind (�, 2) = hub

� ⊢ 2 E { 2 ·E
[r-hc1]

ckind (�, 2) = hub 18 = 2 ⇒ 4 1 ≤ 8 ≤ =

� ⊢ case 2 · of 11 | . . . | 1= { 4
[r-hcase0]

ckind (�, 2) = hub

� ⊢ 2 { 2 ·
[r-hc0]

Fig. 3. Small-step reduction rules.

2.6 Evaluation

Before we can define reduction rules for the language, we first define the grammar for redexes (A )
and evaluation contexts (�), which are given as follows:

A ::= caseF of 11 | . . . | 1=
| 2 F | 2 | #8 F

| let G =F in 4

| _G.4 | fix 5 G = 4

| _G.4 F | fix 5 G = 4 F

� ::= [.]
| case � of 11 | . . . | 1=
| let G = � in 4

| (�, 4) | (F, �) | 2 �

| � 4 | F � | #8 �

When � is an evaluation context and 4 is an expression, we write � [4] to denote the expression
formed by filling the hole [.] in the context � with the expression 4 . A redex (A ) is an expression
of a form that immediately matches the left-hand side of a reduction rule. A value substitution

[F1/G1, . . . ,F=/G=] maps program variables to high-unboxed values. We write ckind (�, 2) = ^

to mean there exists C such that �(C) = (^,�) and 2 ∈ Dom � . Reduction is defined in Figure 3
according to rules of the form � ⊢ 4 { 4′.
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The first four lines of rules are standard and specify contextual reduction, tuple-selection,
value-reduction, beta-reduction, and let-reduction. The following two lines of rules specify how
constructor expressions reduces to values under particular boxity environments. The last three lines
of rules specify pattern matching under particular boxity environments. For the two box cases, we
make use of the assumption that it is possible to distinguish values of the form {2,F} from values
of the form {2}, which is possible by an implementation (using only a few machine instructions)
because both boxed values created with nullary constructors and boxed values created with unary
constructors are implemented as a pointer to a word containing the constructor tag (and because
we know statically which constructors are nullary). For the two lub cases, we make use of the
property that it is possible to distinguish values on the form ; ·2 and ·2 , which is possible by an
implementation (using only a few machine instructions) because values of the form ; ·2 do not make
use of the least-significant bit. Finally, for the two hub cases, we make use of the property that it is
possible to distinguish values of the form 2 ·E from values of the form 2 ·, which is possible by an
implementation (using only a few machine instructions) simply by distinguishing the constructors,
which we know belong to the same data type.

We also remark here that in a compiled setting, we refine the case construct further and implement
the different cases differently based on the boxity of the type of the expression that the case construct
treats.

2.7 Soundness

The type safety property that we shall state is proven using well-known techniques for proving
type safety [Morrisett 1995; Wright and Felleisen 1994]. We highlight the main properties below.
Details of the proofs are provided in Appendix A.1 (auxiliary material). The proofs are mostly
straightforward.
The first property states that a well-typed expression is either a value or can be separated into

an evaluation context and a redex, which is demonstrated by induction over the typing derivation:

Proposition 2.3 (Uniqe Decomposition). If � ⊢ 4 : f then either 4 is a value or there exists a

unique redex A , a type scheme f ′, and a context � such that � ⊢ A : f ′ and 4 = � [A ].

Natural properties about contextual typing and value substitution hold, which are demonstrated
by induction over the structure of � and 4 , respectively:

Proposition 2.4 (Context). If � ⊢ � [4′] : f then � ⊢ 4′ : f ′ for some f ′. Further, if � ⊢ � [4] : f
and � ⊢ 4 : f ′ and � ⊢ 4′ : f ′ then � ⊢ � [4′] : f .

Proposition 2.5 (Value Substitution). If �, Γ, G : f ′ ⊢ 4 : f and � ⊢ F : f ′ then �, Γ ⊢ 4 [F/G] :
f .

The latter proposition makes essential use of an “environment extension property” and of
Barendregt’s convention for renaming bound variables in expressions to avoid variable capture.
Type preservation (i.e., subject reduction) and progress are stated as follows and shown by

induction on the structure of the typing derivation of 4 and by use of Proposition 2.3, Proposition 2.4,
and Proposition 2.5:

Proposition 2.6 (Type Preservation). If ⊢ � and � ⊢ 4 : g and � ⊢ 4 { 4′ then � ⊢ 4′ : g .

Proposition 2.7 (Progress). If ⊢ � and � ⊢ 4 : g then either 4 is a value or there exists 4′ such

that � ⊢ 4 { 4′.
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2.8 Simulation

In this section, we demonstrate a simulation property that states that program evaluations that
differ only in their choice of value representations result in values that differ only with respect to
boxity choices.
We first define a notion of similarity that relates values and expressions under different boxity

environments. The similarity relation is defined in Figure 4. It is defined by a set of inductive
judgments of the form (�; 4) ∼ (�′; 4′), where � and �′ are boxity environments and 4 and 4′ are
expressions, high-unboxed values, low-unboxed values, or boxed values.
Many of the rules (e.g., rule [s-let], [s-tup], [s-lam], [s-fix], and [s-case]) are structural rules

expressing that expressions are similar if their subexpressions are similar (under the different
boxity environments). Rule [s-sym] expresses directly that the similarity relation is symmetric,
which allows us to specify fewer rules than otherwise necessary. The interesting rules are those
that relate constructed values, which lookup constructor representations in the respective boxity
environments. There are six rules relating values constructed from nullary constructors ([s-h0],
[s-l0], [s-b0], [s-hb0], [s-hl0], and [s-bl0]) and six rules relating values constructed from unary
constructors ([s-h1], [s-l1], [s-b1], [s-hb1], [s-hl1], and [s-bl1]).

The following proposition states that simulation is closed under value substitution, which follows
by a simple inductive argument with the only interesting case being the case for variables (i.e.,
rule [s-var]). Details of the proofs for the statements presented in this section are provided in
Appendix A.2 (auxiliary material).

Proposition 2.8 (Simulation Value Substitution). If (�; 4) ∼ (�′; 4′) and (�;F) ∼ (�′;F ′)
then (�; 4 [F/G]) ∼ (�′; 4′ [F ′/G]).

We further introduce a notion of similarity between boxity environments. We say that a boxity
environment �′ simulates another boxity environment �, written � ∼ �′, if ⊢ � and ⊢ �′ and
Dom � = Dom �′, and, for all C ∈ Dom �, we have (^,�) = �(C) and (^′,�′) = �′ (C) and � = �′,
for some � , �′, ^, and ^′. In other words, similarity of boxity environments allows for type names
to differ only in their choice of well-formed boxity decisions. Simulation of boxity environments is
symmetric.
We now introduce a notion of strong similarity, which, as simulation, is a symmetric relation

relating pairs of boxity environments and expressions. A pair of a boxity environment and an
expression (�; 4) is strongly similar to another pair of a boxity environment and an expression
(�′; 4′), written (�; 4) ≈ (�′; 4′), if � ∼ �′ and (�; 4) ∼ (�′; 4′).
We can now state the following type-preservation property:

Proposition 2.9 (Typing Preserved by Strong Simulation). If �, Γ ⊢ 4 : f and (�; 4) ≈ (�′; 4′)
then �′, Γ ⊢ 4′ : f .

The proof of the above proposition is based on induction on the typing derivation for 4 and relies in
essential ways on the definition of the similarity relation on values and on the similarity relation on
boxity environments. Each of the three representations of argument-carrying constructors results
in three subcases (utilising the corresponding simulation rule and, perhaps, the symmetry rule
[s-sym] for simulation), which are shown, straightforwardly, each using a single induction step.
The only other interesting case is the case for variables, which is easily shown by the fact that
simulation is reflexive in the variable case (rule [s-var]).

The following proposition states that “similar well-typed expressions evaluate to similar results,
in similar boxing environments”:

Proposition 2.10 (Evaluation Preserved by Strong Simulation). If � ⊢ 4 : g and (�; 4) ≈
(�′; 4′) and � ⊢ 4 { 42 then there exists 4′2 st �

′ ⊢ 4′ { 4′2 and (�; 42) ≈ (�′; 4′2).
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Values (�;F) ∼ (�′;F ′)

(�;F1) ∼ (�′;F ′
1) (�;F2) ∼ (�′;F ′

2)

(�; F1,F2 ) ∼ (�′; F ′
1,F

′
2 )

[s-vtup]
(�; 4) ∼ (�′; 4′)

(�; _G .4 ) ∼ (�′; _G .4′ )
[s-vlam]

(�; 4) ∼ (�′; 4′)

(�; fix 5 G = 4 ) ∼ (�′; fix 5 G = 4′ )
[s-vfix]

(�;3) ∼ (�′;3)
[s-int]

ckind (�, 2) = ckind (�′, 2) = hub

(�; 2 ·) ∼ (�′; 2 ·)
[s-h0]

ckind (�, 2) = ckind (�′, 2) = lub

(�; ·2) ∼ (�′; ·2)
[s-l0]

ckind (�, 2) = ckind (�′, 2) = box

(�; {2}) ∼ (�′; {2})
[s-l0]

ckind (�, 2) = hub ckind (�′, 2) = box

(�; 2 ·) ∼ (�′; {2})
[s-hb0]

ckind (�, 2) = hub ckind (�′, 2) = lub

(�; 2 ·) ∼ (�′; ·2)
[s-hl0]

ckind (�, 2) = lub ckind (�′, 2) = box

(�; ·2) ∼ (�′; {2})
[s-lb0]

(�;F) ∼ (�′;F ′)
ckind (�, 2) = ckind (�′, 2) = box

(�; {2,F}) ∼ (�′; {2,F ′})
[s-b1]

(�; E) ∼ (�′; E ′)
ckind (�, 2) = ckind (�′, 2) = hub

(�; 2 ·E) ∼ (�′; 2 ·E ′)
[s-h1]

(�; ;) ∼ (�′; ; ′)
ckind (�, 2) = ckind (�′, 2) = lub

(�; ; ·2) ∼ (�′; ; ′·2)
[s-l1]

(�; E) ∼ (�′;F)
ckind (�, 2) = hub ckind (�′, 2) = box

(�; 2 ·E) ∼ (�′; {2,F})
[s-hb1]

ckind (�′, 2) = lub

ckind (�, 2) = hub (�; E) ∼ (�′; ;)

(�; 2 ·E) ∼ (�′; ; ·2)
[s-hl1]

ckind (�′, 2) = lub

ckind (�, 2) = box (�;F) ∼ (�′; ;)

(�; {2,F}) ∼ (�′; ; ·2)
[s-bl1]

Expressions (�; 4) ∼ (�′; 4′)

(�;G) ∼ (�′;G)
[s-var]

(�; 41) ∼ (�′; 4′1) (�; 42) ∼ (�′; 4′2)

(�; (41, 42)) ∼ (�′; (4′1, 4
′
2))

[s-tup]

(�; 4) ∼ (�′; 4′)

(�; _G.4) ∼ (�′; _G .4′)
[s-lam]

(�; 4) ∼ (�′; 4′)

(�; fix 5 G = 4) ∼ (�′; fix 5 G = 4′)
[s-fix]

(�′; 4′) ∼ (�; 4)

(�; 4) ∼ (�′; 4′)
[s-sym]

(�; 2) ∼ (�′; 2)
[s-c0]

(�; 41) ∼ (�′; 4′1) (�; 42) ∼ (�′; 4′2)

(�; 41 42) ∼ (�′; 4′1 4
′
2)

[s-app]
(�; 4) ∼ (�′; 4′)

(�; #8 4) ∼ (�′; #8 4′)
[s-sel]

(�; 41) ∼ (�′; 4′1) (�; 42) ∼ (�′; 4′2)

(�; let G = 41 in 42) ∼ (�′; let G = 4′1 in 4
′
2)

[s-let]
(�; 4) ∼ (�′; 4′)

(�; 2 4) ∼ (�′; 2 4′)
[s-c1]

(�; 4) ∼ (�′; 4′) (�; 41) ∼ (�′; 4′1) . . . (�; 4=) ∼ (�′; 4′=)

(�; case 4 of ?1 ⇒ 41 | . . . | ?= ⇒ 4=) ∼ (�′; case 4′ of ?1 ⇒ 4′1 | . . . | ?= ⇒ 4′=)
[s-case]

Fig. 4. Boxity simulation.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 239. Publication date: August 2024.



Double-Ended Bit-Stealing for Algebraic Data Types 239:15

Again, the proof of the above proposition is based on induction on the typing derivation of 4 .
An alternative proof strategy, which may lead to simpler proofs in case of an extended set of

boxities, may be to demonstrate that any well-formed boxity decision leads to results that are
equivalent to results obtained using a canonical (e.g., boxed) representation for all types.

3 Inference

We now present an inference algorithm that infers an effective well-formed boxity environment
from a data-type declaration. Before presenting the effective inference algorithm, we note again
that it is straightforward to find a well-formed, but not necessarily effective, boxity environment
from a data-type declaration. To do so, we can assign the boxity box to all data-types, as suggested
in Section 2.2.
For doing better, rule [e-dd] from Section 2.3 suggests a simple algorithm for possibly finding

a more effective boxity environment for a data-type declaration. The algorithm works by first
constructing an optimistic boxity environment, based on the number of constructors for the involved
data types, their arities in the involved constructor environments, the type boxity of constructor
arguments, and knowledge about the boxities of previously resolved data types. The algorithm then
checks that the optimistic bet is also a well-formed solution, in which case the algorithm returns
the optimistic boxity environment. Otherwise, a fully boxed boxity-environment is returned.
As an example where the algorithm initially finds an optimistic bet that is not well-formed,

consider the following data type declaration:

datatype t = A of s | B of t*t | C

and s = D of t | E

Choosing the optimistic bet with t : hub and s : lub does not lead to a well-formed boxity
environment. The possible cycle through constructed values involving A and D must somehow
involve boxing. In this case, the algorithm results in a fully boxed boxity-environment. Instead,
consider the following small change in the declaration:

datatype t = A of s | B of t*t | C

and s = D of {v:t} | E

In this case, the optimistic bet is well-formed because the argument to D is boxed ({v:t} represents
a singleton boxed record with label v and with type t).

Whereas this suggested inference algorithm is very simple, in practice, it returns effective boxity
environments for most of the data-type declarations we have found in realistic code bases, including
the benchmark programs we shall discuss in Section 6 and the MLKit and MLton compilers. It is
also straightforward to demonstrate that the algorithm results in well-formed boxity environments.
As we shall discuss in Section 4, in practice, better results can be obtained by extending the notion
of boxities slightly, to deal explicitly with enumeration data-type bindings and with singleton
data-type bindings.

4 Implementation

As part of the work reported in this paper, double-ended bit-stealing for algebraic data-types
has been implemented in the MLKit compiler where it is enabled by default. It is possible to use
the classic boxity strategy by passing the flag –no_high_pointer_tagging to the mlkit compiler
executable (we shall later call this configuration for MLKit†, where † means old). It is also possible
to have the MLKit report on boxity decisions by passing the flag –report_boxities to the compiler
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(or REPL). The MLKit is freely available from the MLKit GitHub repository. It is also available from
the supplied artifact as described in Section 6.5.
The concrete implementation extends the presented type system and inference algorithm only

in minor ways. In the concrete implementation, as touched upon in Section 3, enumerations (i.e.,
data-type bindings with only nullary constructors) and singleton data-type bindings (i.e., data-type
bindings that have precisely one unary constructor) are assigned special boxities.

Singleton data-types are sometimes used by programmers for a kind of safe programming to make
explicit that particular values serve a particular purpose and to have the type system distinguish
such values from other values. In principle, it is straightforward to eliminate singleton data-type
bindings that are non-recursive in the front-end of a compiler and having them incur no runtime
overhead whatsoever, which means that we can safely avoid a special treatment of such data-type
bindings for the purpose of proving soundness and equivalence (i.e., simulation), as demonstrated
in Section 2. Eliminating singleton data-type bindings early, however, may have implementation
consequences for other important features such as pretty-printing of values and error messages,
incremental compilation, and more. Moreover, such an elimination is not possible for recursive
singleton data-type binding, such as the singleton data-type binding defined by Okasaki for binomial
trees [Okasaki 1999].4 Thus, for implementation purposes, we introduce the notion of a boxity
single ^, where ^ is itself a boxity. The aims are to support that singleton data-type bindings are
represented unboxed and to ensure that when determining the boxity of a type with precisely
one single unary constructor, the boxity of the type can be determined to be the boxity of the
constructor argument type. For instance, consider the following example:

datatype s = A of t * t | B

and t = S of s * s

and u = U of t | K of s

Here we can assign s to have boxity lub, t to have boxity single box, and u to have boxity hub, which
form a well-formed boxity environment. Without use of the single ^ boxity, we would be forced to
assign the boxity box to all three type bindings, as we could not know that the type twould not need
any bits to distinguish its constructors. We also extend the notion of boxities to include the boxity
enum for describing data-type bindings with only nullary constructors. By including this boxity, the
algorithm can easily be extended to guarantee that enumerations are always represented unboxed
(using only low-bit tagging) even if they are declared using a mutually-recursive declaration.

The MLKit compiler is based on a system for incremental recompilation and inter-module
optimisation [Elsman 2008], which allows for libraries to be compiled in isolation while compile-
time information may be passed across compilation boundaries. Information that may pass across
compilation boundaries potentially includes definitions of small functions (cross-module inlining),
region- and effect-annotated type schemes, and inferred boxities for data-type declarations.
The Standard ML language does not allow programmers to annotate abstract types and type

parameters (i.e., type variables) with representation kinds, which could be useful for giving guaran-
tees that a particular type is represented according to a particular boxity scheme [Eisenberg and
Peyton Jones 2017]. Instead the programmer is left with the compiler-flags mentioned above and a
set of clear rules that can be used to ensure a particular boxity of a type:

(1) Data-type declarations (possibly a group of mutually recursive bindings) are analysed in
isolation and may utilise boxity decisions of dependent data-type declarations (all abstract

4Okasaki defines binomial trees using a data-type binding datatype tree = Node of int * Elem.t * tree list, where the

integer in each tree node equals the depth of the tree and where Elem.t is the type of the elements stored in each node.
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data types are eliminated at compile time through the principle of static interpretation of
modules [Elsman 1999]).5

(2) Types declared with no unary constructors (i.e., enumerations) are always assigned boxity
enum and represented unboxed.

(3) Types declared with one unary constructor and any number of nullary constructors may be
assigned boxity lub if (*) the argument type of the constructor has boxity box.

(4) Types declared with at most 2� constructors (where � = 16 is the number of available bits
for high-bit tagging) and at least one unary constructor may be assigned boxity hub if (*)
each unary constructor argument type has boxity lub or box.

(5) Types declared with precisely one unary constructor may be assigned boxity single ^ where
^ is the boxity of the argument type of the constructor.

(6) In a data-type declaration, if any type-binding fails the conditions (*) in rule 3 or rule 4, then
all non-enumeration data-types (i.e., those mentioned in rules 3–5) are assigned boxity box.

There is one trick, in particular, that a programmer may apply to improve the boxity of a data-
type binding that is inferred to have boxity box. A common reason that a data-type binding fails
to satisfy condition (*) in rule 4 is that only a few constructors fail the condition. In such cases,
a programmer may explicitly box the argument for a constructor by wrapping the argument in
a singleton record, which MLKit will ensure to implement boxed. As an example, consider what
would happen if we add the constructor “Int of int” to the data-type declaration for e in Section 1.
Because the type int has boxity hub, the condition (*) in rule 4 above would be violated leading to a
boxed representation of e. We could instead choose the following addition:

datatype e = ... | Int of {int:int}

With this additional constructor, which now takes a singleton record as argument (holding an
element with label int and of type int), the data-type binding for e would again be assigned
the boxity hub, as singleton records use a boxed representation. Notice also that the MLKit does
not currently attempt to split mutually recursively declared data-type declarations into strongly-
connected components, which could potentially improve unboxity decisions.
The curious and observant reader may ask why the MLKit is not always using an unboxed

representation for data-type bindings with precisely one unary constructor (it may fail to do so due
to rule (6) above). The reason is somewhat arbitrary and is due to the particular region-inference
algorithm used in the MLKit, which associates region- and effect-variables with a data-type binding.
The algorithm assumes that either all data-type bindings, in a data-type declaration, are boxed (in
which case they share a common region) or they are unboxed (they share no common region). We
consider it future work to generalise the implementation to guarantee that such constructors are
always represented unboxed.

5 Examples

We now present a series of real-world examples that benefit from double-ended bit-stealing.

5.1 Patricia Trees

Patricia trees [Morrison 1968] turn out to be particular useful for representing fast mergeable
finite maps with integer domains [Okasaki and Gill 1998]. Here is the essential data structure for
representing Patricia trees:

5Instead of relying on a mechanism for eliminating abstract data types at compile time, an implementation may, as an

alternative, rely on specified representation kinds for abstract types to resolve boxities [Eisenberg and Peyton Jones 2017].
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Br F1 F2

Lf :1 E1 Lf :2 E2

F1 F2

:1 E1 :2 E2

Br Lf Lf

Fig. 5. Boxed and unboxed representations of a Patricia tree Br(F1,F2,Lf(:1,E1),Lf(:2,E2)) as imple-

mented in MLKit† and MLKit. The light-blue (and dashed) rectangular boxes represent boxed constructed

values and the white rectangular boxes represent tuples.

datatype U map = Empty

| Lf of word * U

| Br of word * word * U map * U map

For branch nodes, the two stored word values specify the branching bit, the bit specifying whether
a node is potentially to the left or to the right in the tree, and the largest common prefix for all
the keys in the tree. Keys and values are stored at leaf notes and the Empty constructor specifies
the empty map. Figure 5 shows a boxed and an unboxed representation of a simple Patricia tree as
they may be implemented in MLKit† and MLKit. Looking at the layouts in the figure, it is clear
that saving the intermediate constructor values decreases pointer-tracing, memory usage, and
code related to memory allocation and deallocation (e.g., garbage collection). In Section 6, we shall
return to the performance benefits of double-ended bit-stealing for Patricia trees (and for the other
examples in this section).

Notice that using multi-constructor arguments, which is how many ML implementations repre-
sent the map data type, the memory usage is only slightly higher than when theMLKit representation
is used (one additional word for each block). Notice also that in comparison to many other tree
structures, including AVL-trees and red-black trees, Patricia trees are special in that they have two
unary constructors. In comparison, AVL-trees and red-black trees may be implemented unboxed in
MLKit using low-bit unboxing, which is not possible with Patricia trees.

5.2 Union-Find Data Structures

A union-find imperative data-type is essential for many purposes, in particular for type inference
and other program-analyses, including, for instance, region-inference [Tofte and Birkedal 1998].
A union-find data structure can be hidden behind an interface for unifiable references, a concept
that allows for mutable cells to be unioned, after which the cells become indistinguishable. The
underlying union-find data structure may be defined using the following Standard ML data-type
declaration:

datatype U t0 = ECR of U * int | PTR of U t

withtype U t = U t0 ref

Figure 6 shows a boxed and an unboxed representation of a value of type data t, where data is the
type of data carried by the union-find structure. Central to all operations on union-find structures
is an operation for extracting the equivalence class representative (ECR) of the structure, while
compressing or halving the pointer paths introduced by union operations. While we shall not
discuss the best way to do so, it is clear that no matter which way is used (path-compression or
path-halving) and no matter whether union operations take into account the rank of a node (i.e.,
how many PTR values point to an ECR node), it is essential to minimise the memory occupancy
(e.g., for cache purposes) and the number of indirections introduced in the data structure. It is
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PTR ECR
data 8

PTR EQR data 8

Fig. 6. Boxed and unboxed representations of the union-find structure value ref(PTR(ref(ECR(data,8))))

as implemented in MLKit† and MLKit. Singleton gray (and do�ed) boxes represent ref cells, the light-blue

(and dashed) rectangular boxes represent boxed constructed values, and the white rectangular boxes represent

pairs.

VAL ’a’ FN
VAL

’a’
FN

REF VAL ’a’ REF FN

Fig. 7. Three different uniform representations of a value of type char stream. The top-le� representation is

how the value is represented in MLKit† (without unboxing) whereas the top-right representation is how the

value is represented unboxed in MLKit using high-bit pointer tagging. The representation below is how the

value is traditionally represented in ML implementations such as MosML, OCaml, and SML/NJ. Gray (and

do�ed) boxes represent ref cells, the light-blue (and dashed) rectangular boxes represent boxed constructed

values, and the white rectangular boxes represent pairs.

also clear that the representation to the right in Figure 6 is much more compact than the boxed
representation to the left in the figure. We shall later, in Section 6, investigate the performance
benefits of the more compact representation.
Notice that some ML implementations (e.g., MosML, OCaml, and SML/NJ), compared to the

boxed MLKit† representation, use a multi-argument representation of ECR nodes, while the ref cells
use an additional word for tagging.

5.3 ML-Yacc and ML-Lex Parsing and Lexing

Lexing and parsing are central to compilers and time spend lexing and parsing can often constitute
large percentages of overall compilation times. The ML-Lex and ML-Yacc lexing and parsing
generators generate code that makes use of a series of data structures, including lazy streams and
semantic values that benefit from unboxing. Lazy streams are represented using the following
data-type declaration [Tarditi and Appel 2000]:

datatype U str = VAL of U * U stream | FN of unit → U

withtype U stream = U str ref

Using this data structure, it can be guaranteed that elements are fetched from the underlying
source only once. Notice that the stream type is imperative and that the data type supports arbitrary
look-ahead. Figure 7 shows three different unboxing schemes for a char stream value of the form

val s : char stream = ref (VAL(#"a",ref(FN f)))

Here we assume that f is a function (of type unit → char) that reads consecutive characters from
a file or a buffer and returns the special character EOF when there are no more proper characters
to be read.
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Another ML-Yacc data type that is a candidate for unboxing is the data type for ML-Yacc semantic
values. This data type is generated by ML-Yacc for every grammar and is part of what constitutes a
token value. Semantic values are tagged functions and for the Standard ML grammar, the data type
has 142 unary constructors, taking functions as arguments, and one nullary constructor. For the
calc benchmark presented in Section 6, the grammar for arithmetic expressions leads to a data
type for semantic values with five unary constructors, taking functions as arguments, and one
nullary constructor. In both cases, MLKit will use an unboxed representation for the data type.

5.4 Alternative Representations of the option Type

In the MLKit, the built-in option type is represented boxed. Here is an alternative specification of
the option type, which may be represented using low-unboxing (lub) according to the scheme in
this paper:

datatype U option = NONE | SOME of {v:U}

Here we use the property that singleton records are always boxed, as hinted upon in Section 4.
For values of type ’a option option, we could potentially choose another representation for the

outer option (using high-unboxing, with no associated allocation), but for uniformity reasons, the
same representation is chosen for both instances of the option type.

5.5 Large Abstract Syntax Trees

The double-ended bit-stealing technique is useful for obtaining unboxed representations for many
recursively defined term data types, including, for instance, term structures for intermediate-
language type structures and intermediate-language data types for statements and expressions in
compilers. Many of these data types resemble the introductory example for expressions in Section 1.
Concretely, for the MLKit compiler, here is a non-exhaustive list of term data types that allow

for high-bit unboxing:

TopdecGrammar types. These types include 23 mutually recursive data type declarations that are
all inferred simultaneously to be candidates for high-bit unboxing. Among others, the types
include variants for expressions, atomic expressions, patterns, atomic patterns, declarations,
module declarations, and signature expressions. The types are either singleton data types
(data types with only one unary constructor and no nullary constructors) or data types with
constructors that take only boxed or low-unboxed arguments.

LambdaExp terms for types and expressions. LambdaExp is an explicitly typed intermediate
language on which a large number or repeated optimisations are performed. Terms of
LambdaExp include both type expressions and a single data type for language expressions. Both
data types are inferred to be candidates for high-bit unboxing. LambdaExp type expressions
do not support unification but are the result of translating elaboration types that have been
attached to the TopdecGrammar structure during elaboration [Milner et al. 1997].

RegionExp terms for types and expressions. RegionExp is an explicitly region- and effect-
typed intermediate language. It is the target language of region inference and is used both for
the so-called spreading phase and for the so-called fix-point phase of region inference [Tofte
and Birkedal 1998]. RegionExp expressions are polymorphic both in annotated allocation
information and in annotated region- and effect-binding information, yet, both the data type
for RegionExp types and the data type for RegionExp expressions are inferred to be candidates
for high-bit unboxing. RegionExp types form a type structure where types for allocated values
are annotated with regions and where function types are annotated with effects. RegionExp
types support a notion of unification where annotated regions and effects in types may be
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unified using an underlying union-find data structure. The key components of this data
structure are also candidates for high-bit unboxing, as described in Section 5.2.

MulExp and ClosExp terms for expressions. These term structures define internal language
representations in the form of data type declarations for so-called multiplicity-inferred
expressions [Birkedal et al. 1996] and for so-called closure-explicit expressions, which are
both refined versions of RegionExp expressions. Both data types are candidates for high-bit
unboxing and as for RegionExp terms, MulExp terms and ClosExp terms are polymorphic both
in annotated allocation information and in annotated region- and effect-binding information.

LineStmt terms for expressions and statements. Data types for these terms define an SSA-
like intermediate language on which to perform low-level optimisations, register allocation,
and instruction selection for particular architectures. both the data type for LineStmt expres-
sions and the data type for LineStmt statements are inferred to be candidates for high-bit
unboxing.

We emphasise here that unboxing of the above data types complements the unboxing of Patricia-
trees, union-find structures, effect graphs, and involved data types for lexing and parsing, as
described in Section 5, along with a series of other supportive data types, such as data types for
pretty printing and more. We shall discuss in Section 6.3 how double-ended bit-stealing affects the
performance of the MLKit compiler.

6 Benchmarks

In this section, we report on the consequences of the optimised data type representation for a series
of benchmarks programs. We compare runtimes and memory usage for the MLKit configuration
that uses only boxed and low-unboxed data type representations (MLKit†), with a configuration that
uses boxed, high-unboxed, and low-unboxed representations (MLKit). The MLKit† configuration
resembles the preexisting MLKit boxity technique (hence the use of †). Measurements are performed
with MLKit v4.7.11. We also compare the runtime and memory usage with measurements obtained
with a configuration of MLKit that combines high-bit unboxing with region inference for memory
management, but no complementary reference-tracing garbage collection (MLKitr). MLKitr uses
full 64-bit (untagged) integers and all records and tuples are allocated without header tags (no
garbage collector will need to traverse values at runtime); it is the version of MLKit with the
least mutator overhead. Further, we compare the runtime and memory usage with measurements
obtained with MLton 20210117 [Weeks 2006], a whole-program optimising Standard ML compiler,
and SML/NJ 110.99.4, a Standard ML compiler based on uniform data representations and a copying
reference-tracing and generational garbage collector [Appel 1992; Appel and MacQueen 1987]. The
comparison with MLton and SML/NJ serves to relate the performance of the code generated by
MLKit with the performance of two state-of-the-art compilers for Standard ML. We emphasise that
MLKit, SML/NJ, and MLton are three very different compilers.
All benchmark programs are executed on a MacBook Pro (15-inch, 2016) with a 2.7GHz Intel

Core i7 processor and 16GB of memory. Times reported are wall clock times and memory usage is
measured using the GNU time program.
The benchmark programs span from micro-benchmarks that serve to demonstrate benefits of

the optimised unboxed data type representation on particular data types to larger benchmarks that
make essential use of data types that are candidates for high-bit unboxing. Benchmarks that fall in
the former category are the benchmarks uf (see Section 5.2) and patricia (see Section 5.1), where
the remaining benchmarks fall in the latter category. The calc benchmark is a calculator program,
constructed using ML-Lex and ML-Yacc, which calculates the value of large arithmetic expressions
written as strings that are lexed and parsed by generated lexers and parsers. The benchmark makes
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Real time (s)

Program Lines MLton SML/NJ MLKitr MLKit† MLKit Speedup

calc 1657 2.25 ± 0% 1.62 ± 1% 2.13 ± 1% 2.45 ± 2% 2.37 ± 0% 3.4%

DLX 2497 0.05 ± 7% 3.88 ± 1% 0.60 ± 1% 0.42 ± 2% 0.41 ± 3% 2.4%

kbc 639 0.27 ± 2% 0.51 ± 2% 0.59 ± 2% 0.75 ± 1% 0.74 ± 4% 1.4%

lexgen 1326 0.39 ± 1% 0.63 ± 0% 0.55 ± 0% 0.64 ± 1% 0.62 ± 1% 3.2%

logic 360 0.65 ± 1% 0.81 ± 1% 1.08 ± 1% 1.34 ± 1% 1.14 ± 1% 17.5%

nucleic 3219 0.83 ± 1% 0.45 ± 1% 1.44 ± 1% 1.16 ± 1% 1.16 ± 2% 0%

patricia 292 3.08 ± 1% 4.70 ± 1% 2.31 ± 3% 4.73 ± 1% 3.82 ± 0% 23.8%

ray 544 0.24 ± 0% 0.27 ± 2% 0.53 ± 1% 0.62 ± 3% 0.60 ± 2% 3.3%

uf 83 0.14 ± 0% 0.90 ± 2% 0.31 ± 2% 0.48 ± 0% 0.38 ± 2% 26.3%

vliw 3681 0.29 ± 0% 0.48 ± 4% 0.44 ± 1% 0.56 ± 3% 0.55 ± 1% 1.8%

Fig. 8. Average wall-clock execution times, measured in seconds, of 10 consecutive runs of the benchmark

programs. The speedup column reports the speedup of the MLKit column compared to the MLKit† column.

essential use of the stream data type presented in Section 5.3 and allows also for high-bit unboxing
for so-called semantic values, as outlined also in Section 5.3. The lexgen benchmark repeats 20
times the task of generating a lexer for Standard ML, based on an ML-Lex specification. The dlx

benchmark is a partial interpreter for Patterson’s and Hennesey’s RISK computer architecture
running the Euclidean gcd algorithm 20 times on the numbers 2322 and 654. The benchmark allows
for high-bit unboxing of the representation of RISK instructions. The kbc and logic benchmarks
perform Knuth-Bendix completion and find solutions to logical problems. Both benchmarks allow
for high-bit unboxing for the respective involved data types for terms. The ray benchmark performs
ray-tracing on a 3D object model and allows for high-bit unboxing of the recursive bounding box
structure. The nucleic benchmark computes the length of an anti-codon structure 200 times. It
allows for high-bit unboxing of the internal data type for atoms. The uf and patricia benchmarks
are described in Section 5.2 and Section 5.1, respectively.

6.1 Execution Time

Figure 8 lists the benchmark programs and reports, for each benchmark, line counts and execution
times across compiler configurations. Measurements are averages over 10 runs. The Real time

columns list average execution times in seconds, annotated with relative standard deviations.
There are several observations to be made. The best time-performing numbers (in the respective

rows) are marked with bold whereas significant improvements from high-bit unboxing (MLKit
compared with MLKit†) are underlined. From an absolute perspective, we see that SML/NJ is fastest
for the nucleic and calc benchmarks and that MLton is fastest for the majority of benchmarks.
We note here that both MLton and SML/NJ benefit from effective flattening techniques [Ziarek
et al. 2008] that allow for specialised flattened records of real values and argument flattening that
effectively allow functions to receive real values in floating point registers; such optimisations have
not yet been implemented to the same extend in MLKit. We also emphasise that MLton, SML/NJ,
and MLKit are three very different compilers that are based on different compilation strategies. We
see that the whole-program compilation scheme used by MLton leads to superior code in most
cases and in particular for the DLX benchmark, which benefit from MLton’s superior inlining and
handling of 32-bit word-operations. While MLKit represents 32-bit word values as boxed values, we
cannot explain the extraordinary high runtime for SML/NJ in the case of the DLX benchmark. We
note here that the whole-program compilation scheme of MLton comes with a cost. In particular,
whole-program compilation schemes suffer from slow recompilation for large code bases.

Proc. ACM Program. Lang., Vol. 8, No. ICFP, Article 239. Publication date: August 2024.



Double-Ended Bit-Stealing for Algebraic Data Types 239:23

Memory usage (MiB ± 0 − 2%)

Program Lines MLton SML/NJ MLKitr MLKit† MLKit Decrease

calc 1657 68.2 44.9 369 81.5 75.2 7.7%

DLX 2497 9.5 16.9 60.7 18.1 18.1 0%

kbc 639 2.3 5.8 5.4 6.6 5.6 15.1%

lexgen 1326 18.4 7.5 67.0 21.4 18.3 14.5%

logic 360 4.9 6.0 852 3.6 3.4 5.6%

nucleic 3219 2.0 5.0 1158 5.2 5.2 0%

patricia 292 15.2 14.8 6.7 7.7 6.2 19.5%

ray 544 14.2 9.5 12.2 9.1 8.5 6.6%

uf 83 27.3 43.6 4.8 6.7 5.1 23.9%

vliw 3681 9.2 9.9 42.9 16.2 12.9 20.4%

Fig. 9. Average memory usage, measured in MiB (megabytes), for 10 consecutive runs of the benchmark

programs. The different columns show results for the different compilers and configurations. The standard

deviations for the measurements are below 2 percent. The last column reports the decrease in memory usage

(in percent) of the MLKit column compared to the MLKit† column.

None of the benchmarks results in slower code with MLKit than with MLKit†. Speedup (MLKit†

/ MLKit) ranges from 0 to 26 percent, with the uf and patricia benchmarks showing speedups
of 23 and 26 percent, respectively. The logic benchmark shows 17 percent speedup. For the
remaining benchmarks, the critical code paths do only to a limited extend involve constructing and
deconstructing values that are represented using double-ended bit-stealing. Notice, however, that
double-ended bit-stealing never results in slowdowns.

For the MLKitr configuration, we see that execution times are often faster than the other MLKit
configurations, except for the nucleic benchmark, which, as we shall discuss in the next section,
in essential ways depends on complementing region inference with reference-tracing garbage
collection.

6.2 Memory Usage

Average memory usage, measured in MiB (megabytes), for 10 consecutive runs of the benchmark
programs are shown in Figure 9. The maximum memory usage across compiler configurations,
with the exception of the MLKitr compiler configuration is about 82 MiB. The numbers vary across
configurations for each particular configuration, which reflect the different nature of the memory
management schemes used and the different default memory management settings used (e.g.,
the default heap-to-live ratios used). For the benchmark programs patricia and uf, we see some
evidence of the more compact data type representation in MLKit compared to MLKit†.
With respect to the MLKitr configuration, we see that some of the benchmarks, in particular

calc, logic, and nucleic, demonstrate problematic memory behavior due to the lack of a reference-
tracing garbage collector to complement region inference. On the other hand, the memory behavior
of many of the other benchmark programs is fine. In particular, we see that the memory usage for
the benchmarks kbc, patricia, and uf is comparable to the memory usage for the configurations
that use reference-tracing garbage collection. For the nucleic benchmark program, the memory
usage is so high that it drastically influences the running time of the program, as noted in the
previous section.
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Run time (s) Memory usage (MiB)

Program Lines MLKit† MLKit Speedup MLKit† MLKit Decrease

MLKit 103857 488 ± 0.1% 445 ± 0.3% 9.7% 950 ± 0.0% 758 ± 0.0% 20.2%

MLton 198487 2012 ± 0.8% 1838 ± 0.1% 9.5% 4831 ± 0.0% 4276 ± 0.0% 11.5%

Fig. 10. Average wall-clock execution times and average memory usage for compiling MLKit and MLton with

different configurations of MLKit. Average wall-clock times are measured in seconds and average memory

usage is measured in MiB (megabytes). Numbers are averages of 5 consecutive runs. The relative standard

deviations for the measurements are below 2 percent.

Algebraic Data Types And�eir Boxities (^)

Program/Compiler Tot hub lub enum box single ^′ ^′ = hub ^′ = lub ^′ = box

MLKit /MLKit† 434 0 52 72 227 83 6 15 62

MLKit /MLKit 434 127 52 72 45 138 7 16 115

MLton /MLKit† 714 0 51 116 254 293 8 11 274

MLton /MLKit 714 129 48 116 112 309 8 11 257

Fig. 11. Data type boxity counts for compiling MLKit and MLton with the MLKit† and MLKit configurations

of the MLKit compiler.

6.3 Comparison of Bootstrapped Compilers

In this section, we report on the effect of double-ended bit-stealing in the MLKit Standard ML
compiler when used for compiling the MLKit itself and for compiling MLton. Double-ended bit-
stealing applies to a large series of supporting data types, used by MLKit, as described in Section 5
and for many of the intermediate languages of MLKit, as described in Section 5.5.

Figure 10 shows average wall-clock times and memory usage for compiling the MLKit and MLton
sources using the MLKit and MLKit† configurations of the MLKit compiler. It is not tractable to
compile MLKit and MLton with the MLKitr configuration due to the lack of a dynamic reference-
tracing garbage collector in this configuration.

We can see that double-ended bit-stealing has an overall positive effect on both execution time
performance and on memory usage. For compiling MLKit itself, the speedup is 9.7 percent and the
decrease in memory usage is 20.2 percent. For compiling MLton, the speedup is 9.5 percent and the
decrease in memory usage is 11.5 percent.

6.4 Broadness of Double-Ended Bit-Stealing

To understand better the broad applicability of double-ended bit-stealing, we have counted the
different boxity decisions made when the two MLKit compiler configurations MLKit and MLKit†

compiles MLKit and MLton, respectively. As described in Section 4, the MLKit defines boxities (̂ )
according to the following grammar:

^ ::= hub | lub | box | enum | single ^

Here, the enum boxity is assigned to data types with only nullary constructors and the single ^

boxity may be assigned to data types with zero nullary constructors and only a single unary
constructor, for which the argument has boxity ^.
Figure 11 reports boxity counts for compiling MLKit and MLton with the MLKit† and MLKit

configurations of the MLKit compiler. We see that MLKit declares 434 data types of which 72 are
enumerations (boxity enum) and 52 are low-unboxed types (boxity lub), which hold true for both the
MLKit† and MLKit configurations of the compiler. For compiling MLKit with the MLKit† compiler,
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227 of the 434 data types are inferred to use a boxed representation whereas this number is only 45
for the MLKit configuration of the compiler. On the other hand, with the MLKit configuration, 127
data types are inferred to be unboxed using high-bit tagging.

For boxities of the form single ^′, we see a higher count for the MLKit configuration than for the
MLKit† configuration of the compiler. The reason is that when high-bit tagging is disabled for data
types (when only basic types such as int and word are considered high-unboxed and have boxity
hub) inference has conservatively determined that some singleton algebraic data types should use a
boxed representation, as discussed in Section 4. Future work may refine the decision procedure to
avoid always a boxed representation of singleton data types.
For MLton, we see that the implementation declares a total of 714 data types of which 116 are

enumerations (boxity enum). For MLKit†, 254 data types use a boxed representation whereas this
number is 112 when high-bit unboxing is enabled, in which case 129 data types are represented
using high-bit unboxing. We also see that there is a difference with respect to the number of data
types that use a low-bit untagged representation, which can happen as the boxity of a constructor
argument may influence the boxity of the data type, as described in Section 3.
Figure 11 lists also numbers for three possibilities of ^′ for boxities of the form single ^′. For

the first three rows, the numbers for the three columns sum up to the number in the single ^′

column, which is not the case for the last row (MLton / MLKit case). The reason is that the inference
algorithm sometimes finds nested singleton boxities of the form single (single ^), which will be
promoted to boxity box by MLKit† (which also explains the difference between the two numbers in
the single ^ column for the MLton cases).

6.5 Artifact

The paper comes with an artifact that includes a tutorial demonstrating unboxing in the MLKit
(and in particular unboxing through double-ended bit stealing) as described in the paper, code for
replicating the benchmark results (Figure 8 and Figure 9), code for replicating the results of compiling
MLton and MLKit itself using different configurations of MLKit (Figure 10 and Figure 11), and,
finally, the source code for MLKit 4.7.11, including a description of the source code implementation
aspects of double-ended bit-stealing. The artifact is available both on GitHub in source form6 and
as a Zenodo image [Elsman 2024].

7 Related Work

Related work falls into a series of categories. Much related to our work is the recent work on
reasoning about the soundness of bit-stealing in ribbit [Baudon et al. 2022, 2023]. This work allows
for specifying exactly the use of bits in a machine word and for specifying, in particular, how
different variants of a data type are discriminated in a safe way. Examples include a specification of
how so-called NaN-boxing7 may be used for discriminating between values in a JavaScript engine
and specifications of how pointer-tagging can be used for specifying unboxed representations
of lists. There is no reason that the techniques used should not also work for double-ended bit-
stealing, although no examples are given utilising the higher unused bits of pointer values. Another
difference from our work is that, compared to ribbit, which serves as a specification language for
data-layouts, the double-ended bit-stealing technique that we present aims at inferring unboxed
representations based on a set of simple rules, while ensuring that the inferred representations
work in a polymorphic setting. This line of work also includes the work on so-called niches in

6Artifact GitHub URL: https://github.com/melsman/debs-icfp24.
7NaN-boxing refers to a technique for encoding the union of all IEEE float values and all 64-bit valid pointers into one 64-bit

machine word, while still allowing all values to be distinguished.
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Rust, which allow for using alignment bits (e.g., lower bits in aligned pointers) in a safe way [Rust
Community 2021].
Also related to this work is the work on using kinds for distinguishing different layouts and

calling conventions [Downen et al. 2020; Eisenberg et al. 2022; Eisenberg and Peyton Jones 2017],
which originates from the work on TALT [Crary 2003] and Cyclone [Jim et al. 2002], which use
kinds to classify different values according to the number of bytes they are represented by at
runtime. None of these systems support the use of the unused high-bits in pointers for value
tagging. The implementation of double-ended bit-stealing in the MLKit does not give programmers
the ability to specify the boxity of a type and therefore, programmers are not guaranteed that
the boxity properties obtained are satisfied after changes to source code (or after changes to the
compiler). It would be natural to add a source-level kind system (or an attribute system similar to
that of OCaml 5.1) that would allow programmers to specify representation properties, such as
boxities, for abstract types and type variables.
Another interesting approach to unboxing (and untagging) is to identify algebraic data types

for which it is possible to discriminate between variants (different constructed values) based on
the values carried in the payload of the constructors [Chataing et al. 2024]. An example is a data
type declaration that declares two constructors, one that takes an integer as argument and one that
takes a string as argument. Because it is possible to discriminate between integers and strings at
runtime, boxing and tagging can be avoided altogether. We consider it future work to investigate
how to complement such an unboxing strategy with double-ended bit-stealing.
There is a strand of related work that addresses the task of compactly representing objects

while still allowing for separately compiled polymorphic code. This work includes Leroy’s seminal
paper on Polymorphic typing and unboxing [Leroy 1992], Peyton Jones and Launchbury’s work on
unboxing in a non-strict functional language [Peyton Jones and Launchbury 1991], the work by
Henglein and Jørgensen on formally optimal boxing [Henglein and Jørgensen 1994], and revisions
of this work [Thiemann 1995]. This strand of work also includes work on practical representation
choices for built-in types in OCaml, and how ad-hoc techniques can be used to obtain unboxed
representations of records of floats and float arrays [Leroy 1997]. Whereas many of the techniques
introduced in this strand of work are of importance to achieving high-performance, the work is
not particularly concerned with the representation of algebraic data-types and is in most respects
complementary to the work presented in this paper.
Another line of related work is the work on tuple- and argument-flattening in Manticore

[Bergstrom and Reppy 2009] and in the MLton compiler [Ziarek et al. 2008], which supports
flattening even of reference cells into records but which also comes at the price of requiring whole-
program compilation. MLKit suffers from the lack of being sufficiently good at deep flattening of
function arguments and of tuples in data structures. In particular, being able to pass floating point
values in registers and being able to store floating point values in records without indirections to
separate blocks of memory are essential, but are areas of research that we do not cover in this work.
A general technique for allowing specialised non-uniform representations of values is to pass

representations of types to functions at runtime. This line of work includes work on adding a
type-case construct to an intermediate language [Harper and Morrisett 1995; Morrisett 1995] and
work on implementing polymorphism in ML-like languages using layout bit-maps [Nguyen and
Ohori 2006]. Other work in this area includes work on dictionary-passing transformations for
implementing type classes [Hall et al. 1996; Jones 1994; Peterson and Jones 1993] and ad-hoc
polymorphism [Elsman 1998].

Also related to this work is the concept of generalised algebraic data types (GADTs), which may
be used, for instance, for writing type-indexed tag-free interpreters. Whereas such untagging is
unrelated to the unboxing techniques presented here, with some restrictions [Colin et al. 2019],
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there is no reason that the techniques presented in this paper should not carry over to work also
for obtaining unboxed representations of generalised algebraic data types. Another technique for
achieving untagged implementations of interpreters is the finally tag-less approach, which uses
techniques such as existential types and phantom types to avoid tagged variants altogether [Carette
et al. 2009].

Another source of related work is work on using fully flattened representations of algebraic data
types [Koparkar et al. 2021]. Whereas such representations and techniques are interesting from a
data-parallel perspective and from a streaming perspective, in general, fully flattened representations
of algebraic data types (i.e., flat pointer-free representations) lack important properties of algebraic
data types that are useful for general-purpose computation.

8 Conclusion and Future Work

We have devised a technique for double-ended bit-stealing for algebraic data types, show that
the technique is sound, and demonstrated that it leads to improvements of code generated by a
compiler for a complete ML language.
There are several opportunities for future work. First, from a language perspective, it would

be natural to support a notion of representation polymorphism that allows programmers to be
explicit in the code about representation kinds [Eisenberg and Peyton Jones 2017]. In the context
of ML-like languages featuring module systems, it would be natural to support representation
specifications for abstract data types in module types. It would also be natural to support a notion
of restricted parameterised types for supporting that a type variable can be instantiated only to
types that have certain representation guarantees. Allowing programmers to specify representation
kinds for abstract types supports modular performance in the sense that proper representation
guarantees can be given without knowing all details about foreign code.

Second, we also consider it future work to combine double-ended bit-stealing with other oppor-
tunities for unboxing, such as relying on discriminating between constructed values based on their
payload [Chataing et al. 2024], and with opportunities for representing constructor payloads more
compactly than using uniform representations, perhaps by using spare bits in header tags.

Another strand of future work is to implement a flexible tuple- and argument-flattening technique
that more closely resembles the techniques used in SML/NJ and MLton. Currently, the tuple-
flattening technique used in MLKit is not capable of flattening tuples of tuples, for instance, as
discussed in Section 7.
Local specialisations of tight code and the associated data types may also be beneficial for

achieving a performance closer to that of MLton. We believe that local specialisations and more
flexible tuple-flattening may together make double-ended bit-stealing an even better optimisation
technique than demonstrated in this paper.

Data Availability Statement

This paper is accompanied by a software artifact [Elsman 2024] that demonstrates the main
contributions of the paper. A more detailed description of the content of the software artifact is
available in Section 6.5.
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A Appendix: Language Properties and Proofs

This appendix contains proof details for the paper “Double-Ended Bit-Stealing for Algebraic Data
Types” (ICFP ’24) and an overview of notation and syntactic constructs (Section A.3).

A.1 Basic Properties and Soundness

The properties that we state in this section are proven using well-known techniques for proving
type safety [Morrisett 1995; Wright and Felleisen 1994].
Proposition 2.2 (Typing Rules Closed Under Type Substitution). If �, Γ ⊢ 4 : f then

�, ( (Γ) ⊢ 4 : ( (f), for any substitution ( .

Proof. By straightforward induction over the structure of the typing derivation. The proof
makes use of the facts that boxity environments are always closed with respect to type variables
and that type scheme instantiation is closed under substitution. Moreover, for any substitution ( ,
we have that Γ = (�, ®g C) ⊲? implies ( (Γ) = ( (�, ®g C) ⊲? , for any environment Γ, boxity environment
�, type ®g C , and pattern ? , which also makes use of the fact that type scheme instantiation is closed
under substitution.
For [e-fix], we use the property that type schemes are considered equal up to alpha-renaming

and that, by renaming, we can assure that { ®U} ∩ Dom ( = ∅ and { ®U} ∩ �v(( (Γ)) = ∅.
For rules where environments are extended in the premises (e.g., [l-fix] and [e-lam]), we use the

property that ( (Γ, G : f) = ( (Γ), G : ( (f). □

Proposition 2.3 (Uniqe Decomposition). If � ⊢ 4 : f then either 4 is a value or there exists a

unique redex A , a type scheme f ′, and a context � such that � ⊢ A : f ′ and 4 = � [A ].

Proof. By induction over the typing derivation. There are ten non-value cases corresponding to
the ten typing rules for which 4 is not a value or a variable. We show a few cases here.
case [e-inst]. We have � ⊢ 4 : f ′ and f = g and f ′ ≥ g . Here we assume f ′ is a proper type

scheme (not just a type), which ensures that the inductively defined typing relation is well-founded
(which is standard). The required conclusion then follows directly by induction.

case [e-con1]. We have f = ®g C and 4 = 2 4′ and �(C) (2) ≥ g → ®g C and � ⊢ 4′ : g . By induction,
we have either (1) 4′ is a value or (2) there exists a unique redex A ′, a type scheme f ′′, and a context
�′ such that � ⊢ A ′ : f ′′ and 4′ = �′ [A ′]. In case of (1), we have A = 4 = 2 4′ is a unique redex (4′ is
a value). Further, we have f ′

= f and � = [·] and 4 = � [A ] and � ⊢ A : f ′ (straightforward from
assumptions), as required. In case of (2), we have f ′

= f ′′ and � = 2 �′ and A = A ′ and 4 = � [A ] and
therefore � ⊢ A : f ′, as required.
The remaining cases follow similarly. □

Proposition 2.4 (Context). If � ⊢ � [4′] : f then � ⊢ 4′ : f ′ for some f ′. Further, if � ⊢ � [4] : f
and � ⊢ 4 : f ′ and � ⊢ 4′ : f ′ then � ⊢ � [4′] : f .

Proof. Each of the properties are proven by straightforward induction over the structure of
�. □

Proposition 2.5 (Value Substitution). If �, Γ, G : f ′ ⊢ 4 : f and � ⊢ F : f ′ then �, Γ ⊢ 4 [F/G] :
f .

Proof. By induction over the structure of 4 using an environment extension property of typing
stating that if �, Γ ⊢ 4 : g then �, Γ, Γ′ ⊢ 4 : g for any Γ′ with Dom(Γ′) ∩Dom(Γ) = ∅. As is standard,
the proof also makes use of Barendregt’s convention for renaming bound variables in expressions
for avoiding environment capture. The interesting case is the case for variables (rule [e-var]) for
which f = f ′. The required conclusion then follows directly from assumptions. □
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Proposition 2.6 (Type Preservation). If ⊢ � and � ⊢ 4 : f and � ⊢ 4 { 4′ then � ⊢ 4′ : f .

Proof. By induction over the structure of 4 . From the small-step reduction rules, there are 20
cases. We show some of the cases here.

case [r-ctx]. We have � ⊢ 41 { 4′1 and � ≠ [·] and 4 = � [41] and 4
′
= � [4′1]. By Proposition 2.4,

we have there exists f ′ such that � ⊢ 41 : f
′. We can now apply induction to get � ⊢ 4′1 : f

′. Finally,
by the second property in Proposition 2.4, we have � ⊢ 4′ : f , as required.
case [r-app]. We have 4 = _G .4′′ F and 4′ = 4′′ [F/G]. Moreover, from [e-app], we have f = g

and � ⊢ _G .4′′ : g ′ → g and � ⊢ F : g ′. From [l-lam], we then have �, G : g ′ ⊢ 4′′ : g . Now, from
Proposition 2.5, we have � ⊢ 4′ : f , as required.
case [r-hc1]. We have 4 = 2 E and 4′ = 2 ·E and ckind (�, 2) = hub. Moreover, from [e-con1], we

have f = g and �(C) (2) ≥ g ′ → g and g = ®g C and � ⊢ E : g ′. It follows that we can apply [w-c1] to
get � ⊢ 4′ : f , as required.
case [r-lcase0]. We have 4 = case ·2 of 11 | . . . | 1= and ckind (�, 2) = lub and 18 = 2 ⇒ 4′ and

1 ≤ 8 ≤ =. Moreover, from [e-case], we have f = g and Γ8 = (�, ®g C) ⊲ 2 = {} and � ⊢ 4′ : f , as
required.
The remaining cases follow similarly. □

Proposition A.1 (Value Boxity). Assume � ⊢ F : g . If � ⊢ g : box then F is a boxed value. If

� ⊢ g : lub thenF is a low-unboxed value (or a boxed value).

Proof. By simple case analysis on the derivation of � ⊢ F : g . □

Proposition 2.7 (Progress). If ⊢ � and � ⊢ 4 : f then either 4 is a value or there exists 4′ such

that � ⊢ 4 { 4′.

Proof. From Proposition 2.3, we have either 4 is a value of there exist a redex A , a type scheme
f ′, and a context � such that � ⊢ A : f ′ and 4 = � [A ]. We proceed by case analysis on the structure
of the redex A . There are seven possibilities.
case A = 2 F . From [e-con1], we have there exists ^ such that �(C) = (^,�) and f ′

= g ′ and
� (2) ≥ g ′′ → g ′ and g ′ = ®g C and � ⊢ F : g ′′. There are now three sub-cases, one for each possible
value of ^.

subcase ^ = box. In this case we can apply [r-bc1] to get there exists a boxed value ; = {2,F}

such that � ⊢ A { ; . Now, from [r-ctx], we have 4′ = � [;] and � ⊢ 4 { 4′, as required.
subcase ^ = lub. In this case, we need to ensure that F is a boxed value ; . From ⊢ �, it follows

that � ⊢ C holds and because� (2) ≥ g ′′ → g ′, it follows that rule [lub] must have been applied and,
hence, that � ⊢ g ′′ : box holds (type boxity is trivially closed under type substitution). We can now
apply Proposition A.1 to get that F is a boxed value ; . It then follows that we can apply [r-lc1]
to get there exists a low-unboxed value E = ; ·2 such that � ⊢ A { E . Now, from [r-ctx], we have
4′ = � [E] and � ⊢ 4 { 4′, as required.

subcase ^ = hub. In this case, we need to ensure that F is a low-unboxed value E . From ⊢ �, it
follows that � ⊢ C holds and because � (2) ≥ g ′′ → g ′, it follows that rule [hub] must have been
applied and, hence, that � ⊢ g ′′ : lub holds (type boxity is trivially closed under type substitution).
We can now apply Proposition A.1 to get thatF is a low-unboxed value E . It then follows that we
can apply [r-hc1] to get there exists a high-unboxed value F ′

= 2 ·E such that � ⊢ A { F ′. Now,
from [r-ctx], we have 4′ = � [F ′] and � ⊢ 4 { 4′, as required.
case A = let G =F in 41. From [r-let], we have � ⊢ A { 41 [F/G]. Now, from [r-ctx], we have

4′ = � [41 [F/G]] and � ⊢ 4 { 4′, as required.
□
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A.2 Properties and Proofs for Simulation

Proposition 2.8 (Simulation Value Substitution). If (�; 4) ∼ (�′; 4′) and (�;F) ∼ (�′;F ′) then
(�; 4 [F/G]) ∼ (�′; 4′ [F ′/G]).

Proof. By straightforward induction over the derivation (�; 4) ∼ (�′; 4′). The only interesting
case is the case for variables (rule [s-var]), in which case the conclusion (�; 4 [F/G]) ∼ (�′; 4′ [F ′/G])
follows directly from the assumption (�;F) ∼ (�′;F ′). □

Proposition 2.9 (Typing Preserved by Strong Simulation). If �, Γ ⊢ 4 : f and (�; 4) ≈ (�′; 4′)
then �′, Γ ⊢ 4′ : f .

Proof. By induction on the typing derivation for 4 . Each of the three representations of argument-
carrying constructors results in three subcases (utilising the corresponding simulation rule and,
perhaps, the symmetry rule [s-sym] for simulation), which are shown, straightforwardly, each using
a single induction step. The only other interesting case is the case for variables, which is easily
shown by the fact that simulation is reflexive in the variable case (rule [s-var]).8 □

Proposition A.2 (Context Simulation). If A is a redex and (�, � [A ]) ∼ (�′, 4′) then there exists

a redex A ′ and a context �′ such that 4′ = �′ [A ′] and (�, A ) ∼ (�′, A ′). Moreover, if (�, � [A ]) ∼
(�′, �′ [A ′]) and (�, A ) ∼ (�′, A ′) and (�, 4) ∼ (�′, 4′) then (�, � [4]) ∼ (�′, �′ [4′]).

Proof. Each property is proven using straightforward induction over the structure of �. □

Proposition 2.10 (Evaluation Preserved by Strong Simulation). If � ⊢ 4 : f and (�; 4) ≈
(�′; 4′) and � ⊢ 4 { 42 then there exists 4′2 st �

′ ⊢ 4′ { 4′2 and (�; 42) ≈ (�′; 4′2).

Proof. From Proposition 2.3 and because 4 is clearly not a value, we have there exists a unique
redex A , a type scheme f1, and a context � such that � ⊢ A : f1 and 4 = � [A ]. From Proposition A.2,
we have that there exists a redex A ′ and a context �′ such that 4′ = �′ [A ′] and (�, A ) ∼ (�′, A ′). By
possible use of [r-ctx], we have � ⊢ A { 41 and 42 = � [41]. We proceed by a case analysis of the
possible instances of (�, A ) ∼ (�′, A ′).
case A = 2 and A ′ = 2 . There are three subcases corresponding to the possible uses of [r-bc0],

[r-lc0], and [r-hc0]. For all subcases, we have that there exists ^ such that ckind (�, 2) = ^. From
the definition of similarity of boxity environments, we have (because � ∼ �′) that there exists ^′

such that ckind (�′, 2) = ^′. We proceed by case analysis on the different combinations of ^ and ^′.
There are a total of nine subcases.

subcase ^ = hub and ^′ = box. From [r-hc0] and [r-bc0], we have 41 = 2 · and there exists 4′1 such
that �′ ⊢ A ′ { 4′1 and 4

′
1 = {2}. It now follows from [s-hb0] that (�, 41) ∼ (�′, 4′1). Moreover, from

the second property of Proposition A.2, we can conclude that there exists 4′2 = �′ [4′1] such that
(�, � [41]) ∼ (�′, 4′2) and hence (�, � [41]) ≈ (�′, 4′2) because � ∼ �′. We can also apply [r-ctx] to
get �′ ⊢ 4′ { 4′2, as required.
subcase ... The remaining eight subcases proceed similarly (some subcases make use of rule

[s-sym]).
case A = let G = F in 40 and A ′ = let G = F ′ in 4′0. Only [s-let] applies. We have from [r-

let] that 41 = 40 [F/G]. We can also apply [r-let] to get that there exists 4′1 = 4′0 [F
′/G] such

that �′ ⊢ A ′ { 4′1. Moreover, from Proposition 2.8, we have (�, 41) ∼ (�′, 4′1). Now, from the
second property of Proposition A.2, we can conclude that there exists 4′2 = �′ [4′1] such that

8We assume that the symmetry rule is never applied more than once in sequence, which ensures that the simulation-relation

is inductively well-founded. For simplicity, the rules provided do not include the extra tagging that, formally, can guarantee

this property.
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(�, � [41]) ∼ (�′, 4′2) and hence (�, � [41]) ≈ (�′, 4′2) because � ∼ �′. We can also apply [r-ctx] to
get �′ ⊢ 4′ { 4′2, as required.
The remaining cases follow similarly. □

A.3 Overview over Notation and Syntactic Constructs

This appendix provides an overview of notation and syntactic constructs defined in the paper.

g := U | int | ®g C | g ∗ g | g → g types
f := ∀®U.g type schemes

^ ::= hub | lub | box boxities

db ::= ®U C = � data bindings
dd ::= type db1 and . . . and db= data declarations

; ::= F,F | _G.4 | fix 5 G = 4 | {2,F} | {2} boxed values
E ::= ; | ; ·2 | ·2 low-unboxed values
F ::= E | 2 ·E | 2 · | 3 high-unboxed values

4 ::= G | F | 2 4 | 2 | 4 4 expressions
| let G = 4 in 4 | (4, 4) | #8 4

| _G .4 | fix 5 G = 4

| case 4 of 1 | . . . | 1

1 ::= ? ⇒ 4 branches
? ::= 2 G | 2 patterns
% ::= dd % | 4 programs

U : type variable

C (=) : type name of arity =

fc � : set of free value constructors in boxity environment �

�v - : set of free type variables in object -

( : substitution mapping type variables to types

f ≥ g ′ : type g ′ is an instance of type scheme f

"," ′ : map with Dom("," ′) = Dom" ∪ Dom" ′ assuming Dom" ∩ Dom" ′
= ∅

and values ("," ′) (G) =

{

" (G) if G ∈ Dom"

" ′ (G) otherwise

ckind (�, 2) = ^ if there exists C such that �(C) = (^,�) and 2 ∈ Dom �

(�, ®g C) ⊲ ? =

{

{} if ? = 2

{G : g} if ? = 2 G and �(C) (2) ≥ g → ®g C
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