
Typing XHTML Web Applications in SMLserver

Martin Elsman
mael@itu.dk

Ken Friis Larsen
kfl@itu.dk

IT University of Copenhagen∗

October 10, 2003

Abstract

In this paper, we present a type system for typing Web applications
in SMLserver, an efficient multi-threaded Web server platform for Stan-
dard ML programs. The type system guarantees that only conforming
XHTML documents are sent to clients and that the target scriptlets of
client-submitted forms use form data consistently and in a type-safe way.
The type system is encoded in the type system of Standard ML using
so-called phantom types, which are used both to guarantee conformity of
XHTML documents and to guarantee form consistency.

1 Introduction

In this paper we address two problems with the construction of Web appli-
cations. Traditionally, frameworks for developing Web applications give little
guarantees about the conformity of generated HTML or XHTML documents.
Moreover, although forms and form variables play a central rôle in the develop-
ment of Web applications, most often, no static mechanism guarantees that the
particular use of form data is consistent with the construction of a corresponding
form.

SMLserver [7] is an efficient multi-threaded Web server platform for the
programming language Standard ML [17]. We present a static type system
for SMLserver scriptlets that guarantees that generated XHTML documents
conform to the XHTML 1.0 specification [27]. In principle, conformity expresses
that a document is well-formed, valid according to a specific DTD, and that a
number of element prohibitions are satisfied.

Although many browsers render non-conforming XHTML well, the rendering
is often browser specific. Thus, it is preferable for a Web application to generate
conforming XHTML only. It turns out that it is difficult for a programmer to
manually obey the many restrictions enforced by the XHTML 1.0 specification.

∗ITU TR-2003-34, ISBN: 87-7949-047-6

1

In particular, the different element prohibitions (i.e., requirements that prohibit
certain elements in certain contexts), but also the restrictions caused by the dis-
tinction between inline, block, and flow elements, can cause many programming
mistakes.

The conformity requirements are enforced by requiring the Web programmer
to construct XHTML documents through the use of a combinator library for
which the different requirements are encoded in the types of element combinators
using phantom types [8, 14, 1, 9, 24, 25, 23]. Because phantom types introduce
type information that has no connection to the actual implementation of the
combinators, phantom types are completely static and thus do not introduce a
runtime overhead.

The Web application type system that we present guarantees that forms in
generated documents are consistent with actual form data submitted by a client.
A scriptlet in SMLserver is represented as a functor. Whereas the argument to
the scriptlet functor represents form data received from a client, the body of the
scriptlet functor represents program code that is executed when the scriptlet
is requested by a client. In this sense, scriptlet functors are instantiated by
SMLserver upon client requests, which can then result in new documents being
sent to clients. Form data submitted by a client either corresponds to form
variable arguments submitted with an HTTP GET request (e.g., a user follows
a link) or to form data following a document in an HTTP POST request (a user
fills out a form).

Because of limitations of Standard ML modules, it is not possible to encode
the recursive nature of scriptlets directly using Standard ML modules. Instead,
an abstract scriptlet interface, containing typing information about accessible
scriptlets and their form arguments, is generated prior to compilation, based on
a preprocessing of scriptlet functor arguments. The abstract scriptlet interface
takes the form of an abstract Standard ML structure, which can be referred
to by scriptlets and library code to construct XHTML forms and hyper-link
anchors in a type safe way.

The type system that we present is complete in the sense that it does not
restrict what conforming XHTML documents it is possible to write. There are
two exceptions to this completeness guarantee. First, a form must relate to its
target scriptlet in the sense that form data submitted by a form is consistent
with the scriptlet’s expectations of the form data. Similarly, form variable
arguments appearing in hyper-link anchors to scriptlets must be consistent with
the scriptlet’s expectations of form variable arguments. In both cases, it is
possible to construct XHTML documents that conform to the XHTML 1.0-
Strict DTD, but that are not accepted by our system.

An important aspect of the type safe embedding of XHTML and form con-
struction in the type system of Standard ML is that it immediately becomes
possible to encode type safe polymorphic higher-order XHTML templates using
Standard ML’s support for Hindley-Milner style polymorphism and higher-order
functions. Moreover, instead of using our type system as the basis for designing
a domain-specific language for writing Web applications, the embedding of the
type system within the type system of Standard ML makes it possible for the

2

programmer to reuse many existing tools and libraries.

1.1 Contributions

The main contributions of this paper are two-fold. First, we present a novel
approach to enforce conformity of generated XHTML 1.0 documents, based
entirely on the use of a typed combinator library based on phantom types.
Although others have suggested type systems for guaranteeing conformity of
generated XHTML documents [25, 23, 24, 21], none of these approaches can
be used for embedding XHTML documents in ML-like languages that do not
provide support for type classes [13]. To the best of our knowledge, the encoding
of linearity constraints using phantom types is novel.

The second main contribution of this work is the type based technique we
have developed for enforcing consistency between a scriptlet’s use of form vari-
ables and the construction of forms that target that scriptlet. Whereas this
technique is also based on phantom types, to encode type lists (i.e., lists at
the type level), we also contribute with a type-indexed function [29, 10, 15] for
swapping arbitrary elements in type lists.

Both of the two main contributions are formally justified and the techniques
have been implemented in SMLserver and used for building various Web ap-
plications, including a form extensive quiz for employees at the IT University
of Copenhagen. We are also in the process of porting existing SMLserver Web
applications to utilize the new type support. It is our experience that the ap-
proach scales well to large Web applications and that the type system catches
many critical programming mistakes early in the application development.

1.2 Outline

The remainder of the paper is organized as follows. In Section 2 and 3, we
describe how it can be enforced, statically, using phantom types, that generated
XHTML documents conform to the XHTML 1.0 specification [27].

In Section 4, we present a mechanism that guarantees that forms generated
with SMLserver are consistent with the target scriptlet’s expectation of form
data.

In Section 5, we present a basic formalization of scriptlets, in the style of [11],
which captures the basic Web application model used by SMLserver. Related
work is described in Section 6. Finally, in Section 7, we describe future work
and conclude.

2 Generating Conforming XHTML

In essence, for a document to conform to the XHTML 1.0 specification [27],
the document must be well-formed, valid according to a particular DTD, and
obey certain element prohibitions. For a document to be well-formed, it is a
requirement that it satisfies the following conditions:

3

1. All start-tags must have a corresponding closing-tag.

2. All elements must be properly nested.

3. No attribute name may appear more than once in the same start-tag.

We adopt the well-known technique for satisfying the first two well-formedness
conditions by allowing the programmer to construct elements only through a
library of combinators [23]. We return to the linearity condition for attributes
in Section 3.

2.1 Static Validation of Generated Documents

Given the XHTML 1.0-Strict DTD, it is not difficult, for instance in Haskell or
Standard ML, to construct a series of mutually recursive datatype declarations
for representing documents in such a way that only valid documents are repre-
sentable. However, for an XHTML interface to be convenient for a programmer,
it is important that the interface is as narrow as possible, in the sense that no
(or at least few) explicit datatype coercions are needed to coerce an element of
some entity to be treated as an element of another entity.

XHTML distinguishes between elements that are inline entities and ele-
ments that are block entities. For instance, the p element requires its content
to be an inline entity and results in a block entity. Similarly, the em element
requires its content to be an inline entity and results in an inline entity. A
third entity in XHTML is the flow entity, which allows for a kind of subtyping
in the sense that both inline and block entities can be treated as flow enti-
ties. All elements that are flow entities may be used in td and div elements, for
instance. A serious problem with the mutually recursive datatype declaration
approach is that it requires all subtype coercions to be explicit (via tagging).

Another problem with the mutually recursive datatype declaration approach
is that it does not allow for the same datatype constructor to be used for se-
quencing elements of different entities in a way that prohibits the construction
of invalid documents. Further, the XHTML 1.0 specification specifies a set of
element prohibitions [27, Appendix B], which are not directly expressed in the
XHTML 1.0-Strict DTD. For example, an element prohibition specifies that,
to all depth of nesting, an anchor element a must not be contained in other
anchor elements. For a document to conform to the specification, all element
prohibitions must be satisfied. Element prohibitions are not directly expressible
with the mutually recursive datatype declaration approach, and neither is the
well-formedness linearity condition on attributes.

The approach that we are going to take to guarantee statically that generated
documents conform to the XHTML 1.0 specification is to allow the programmer
to construct XHTML elements only through a library of typed combinators.
The types of the combinators make use of phantom types to an extend that
disallows combinators to be composed to construct non-conforming documents.

4

2.2 Mini XHTML

To demonstrate the phantom type approach for a small subset of XHTML 1.0,
consider the language Mini XHTML defined by the following DTD:

<!ENTITY %block "p | div | pre">
<!ENTITY %inline "%inpre | big">
<!ENTITY %flow "%block | %inline">
<!ENTITY %inpre "#PCDATA | em">
<!ELEMENT p (%inline)*>
<!ELEMENT em (%inline)*>
<!ELEMENT big (%inline)*>
<!ELEMENT pre (%inpre)*>
<!ELEMENT div (%flow)*>

The DTD defines a context free grammar for Mini XHTML documents. Al-
though it appears to be overly simplistic, the DTD captures an essential subset
of XHTML. Not only does it capture the distinction between inline, block,
and flow entities, but it also captures the notion of sequencing and a weakened
form of element prohibitions expressible in a DTD. We postpone the discussion
of attributes to Section 3.

For constructing documents, we use the following grammar, where t ranges
over a finite set of tags and c ranges over finite sequences of character data:

d ::= c | t(d) | d1 d2 | ε

The construct d1 d2 denotes a sequence of documents d1 and d2 and ε denotes
the empty document.

To formally define whether a document d is valid according to the Mini
XHTML DTD, we introduce the relation |= d : κ, where κ ranges over entity
names (i.e., inline, inpre, block, and flow) defined in the DTD. The relation
|= d : κ expresses that d is a valid document of entity κ. The relation is
defined inductively by a straightforward translation of the DTD into inference
rules, which allow inference of sentences of the form |= d : κ.

Valid documents |= d : κ

|= d : inpre
|= d : inline

|= d : inline
|= big(d) : inline

|= d : inline
|= p(d) : block

|= d : inline
|= em(d) : inpre

|= d : flow
|= div(d) : block

|= d : inpre
|= pre(d) : block

|= c : inpre
|= d : inline
|= d : flow

|= d : block
|= d : flow

5

signature MINI_XHTML =
sig
type inl and blk and flw
type inpre and preclosed
type (’flow,’pre) elt
val $: string -> (inl,’p) elt
val p : (inl,’p)elt -> (blk,’p)elt
val em : (inl,’p)elt -> (inl,’p)elt
val pre : (inl,inpre)elt -> (blk,’p)elt
val big : (inl,’p)elt -> (inl,preclosed)elt
val div : (’f,’p)elt -> (blk,’p)elt
val & : (’f,’p)elt * (’f,’p)elt -> (’f,’p)elt
val && : (’f,’p)elt * (’g,’p)elt -> (flw,’p)elt
val emp : unit -> (’f,’p)elt

end

Figure 1: Mini XHTML combinator library.

|= ε : κ
|= d1 : κ |= d2 : κ

|= d1 d2 : κ

A Standard ML signature for an abstract combinator library for Mini XHTML
is given in Figure 1. The signature specifies a type constructor (’flow,’pre)elt
for element sequences. The type constructor takes two type parameters, corre-
sponding to two separate requirements. The first parameter is used to specify
whether the element is an inline entity, a block entity, or a flow entity. For
instance, the p combinator requires its argument to be an inline entity and the
result is a block entity. Using the infix sequence combinator &, it now becomes
impossible to combine a block entity with an inline entity, as in p($"hello")
& $" world". Notice that because the div combinator is polymorphic in the
’flow parameter, it can take either an inline entity or a block entity as ar-
gument, which amounts to implicit subtyping [9] for the subtyping hierarchy
defined by the partial order flow < inline and flow < block.

It is apparent here that the approach has its limitations. Although the
element <div><p>Hello</p> world</div> is a valid block element according
to the DTD, the expression p($"hello") & $" world" cannot be given a type
in our system, even if it appears as an argument to the div combinator. Instead,
the element can be constructed with the expression div(p($"hello") && $"
world"), which makes use of the && combinator.

The ’pre type parameter of the elt type constructor is used for imple-
menting the element prohibition of XHTML 1.0 that, to all depth of nesting,
prohibits big elements from appearing inside pre elements. This element pro-
hibition implies the satisfaction of the weaker DTD requirement that prohibits

6

a big element to appear immediately within a pre element.
Specialized elaboration rules for constructing documents in Standard ML

with the combinators presented in Figure 1 follows. The rules allow inference of
sentences of the form ` e : (τf , τp)elt, where e ranges over expressions, where
τf ranges over the nullary type constructors inl, blk, and flw, and where τp

ranges over nullary type constructors inpre and preclosed.

Expressions ` e : (τf , τp)elt

` $ c : (inl, τp)elt
` e : (inl, τp)elt

` p e : (blk, τp)elt

` e : (inl, τp)elt

` em e : (inl, τp)elt

` e : (inl, inpre)elt
` pre e : (blk, τp)elt

` e : (τf , τp)elt

` div e : (blk, τp)elt ` emp() : (τf , τp)elt

` e1 : (τf , τp)elt
` e2 : (τf , τp)elt

` e1&e2 : (τf , τp)elt

` e1 : (τf , τp)elt
` e2 : (τ ′

f , τp)elt

` e1&&e2 : (flw, τp)elt

` e : (inl, τp)elt

` big e : (inl, preclosed)elt

The implementation of the MINI_XHTML signature is defined in terms of doc-
uments by the function doc:

doc($ c) = c
doc(p e) = p(doc(e))

doc(em e) = em(doc(e))
doc(pre e) = pre(doc(e))
doc(big e) = big(doc(e))
doc(div e) = div(doc(e))

doc(e1 & e2) = doc(e1) doc(e2)
doc(e1 && e2) = doc(e1) doc(e2)

doc(emp()) = ε

An implementation of the MINI_XHTML signature in terms of a Standard ML
structure appears in Figure 2.

Before we state a soundness property for the combinator library, we define

7

structure MiniXHtml :> MINI_XHTML =
struct
datatype e = Elt of string * e | Emp

| Seq of e * e | S of string
type (’flow,’pre)elt = e
type inl = unit and blk = unit and flw = unit
and inpre = unit and preclosed = unit
fun $ s = S s
fun op & p = Seq p
fun op && p = Seq p
fun em e = Elt("em",e)
fun p e = Elt("p",e)
fun big e = Elt("big",e)
fun pre e = Elt("pre",e)
fun op div e = Elt("div",e)
fun emp() = Emp

end

Figure 2: Mini XHTML Implementation.

a function entity, which relates instantiations of elt types to DTD entities:

entity((inl,preclosed)elt) = inline
entity((inl,inpre)elt) = inpre

entity((blk,preclosed)elt) = block
entity((blk,inpre)elt) = block

entity((flw,preclosed)elt) = flow
entity((flw,inpre)elt) = flow

It is now possible to state a soundness lemma for the combinator library.
The soundness lemma states that well-typed expressions results in documents
that validate according to the Mini XHTML DTD. The lemma is easily proved
by structural induction on the derivation ` e : τ .

Lemma 1 (Soundness) If ` e : τ then |= doc(e) : entity(τ).

We now consider whether the combinator library is complete, in the sense
that all valid documents can be constructed using the combinator library. It
turns out that because of the element prohibition encoded in the combinator
library and because element prohibitions are not—and cannot be—expressed by
the DTD, there are documents that are valid according to the DTD, but which
cannot be constructed using the combinator library. It also turns out, however,
that it is possible to weaken the types for the combinators so that the element
prohibitions are not enforced at arbitrary depth, but only to the extend that
the prohibitions are encoded in the DTD.

8

inl flow flw flow blk flow

li dl td tr ’a flow

’entity

Figure 3: Partial order for the entity subtyping relation.

2.3 Entity Subtyping for Full XHTML

To support full XHTML, we extend the entity subtyping relation to be defined
by the partial order in Figure 3. With this subtyping relation, it is possible to
use the same sequencing combinator (i.e., &) to create sequences of td elements
and sequences of tr elements, for instance. The benefits hereof are many. For
instance, in the following Standard ML code, polymorphism makes it possible
for the same function iter to be used for gluing td elements and tr elements:

fun iter f n = if n <= 1 then f 1
else iter f (n-1) & f n

fun col r c = td ($(Int.toString (r * c)))
fun row sz r = tr (iter (col r) sz)
fun tab sz = table (iter (row sz) sz)

The function, tab takes an integer N as argument and calls the function iter,
via the col and row functions, to construct an N ×N multiplication table. Yet,
the type system guarantees that only valid XHTML code is constructed.

Notice also that with this subtyping relation, the flow-sequence combinator
&& has the type:

(’f1 flow,’p)elt * (’f2 flow,’p)elt -> (flw flow,’p)elt

It is still necessary to use this combinator to combine inline and block entities
in a div element, for instance.

2.4 Composing Element Prohibitions

As mentioned earlier, the XHTML 1.0 specification specifies other element pro-
hibitions than the element prohibition for the big element [27, Appendix B].
The specified element prohibitions, which apply to all depth of nesting, are:

1. An a element must not contain other a elements.

2. A pre element must not contain the elements img, object, big, small,
sub, or sup.

3. A button element must not contain the elements input, select, textarea,
label, button, form, fieldset, iframe, or isindex.

9

4. A label element must not contain other label elements.

5. A form element must not contain other form elements.

As we have seen in Section 2.2, it is possible to express element prohibitions us-
ing phantom types in an ML or Haskell combinator library. It turns out that it
is possible to compose element prohibitions in an orthogonal way such that the
encoding of one element prohibition has no influence on other element prohibi-
tions or other requirements expressed by the phantom type approach. The way
element prohibitions are composed is by having separate type parameters for
each element prohibition. In this way, the elt type constructor for full XHTML
1.0 is parameterized over six type parameters, one for the encoding of the entity
subtyping relation and five for the encoding of the five element prohibitions.

3 XHTML Attributes

An attribute is a pair of an attribute name and an attribute value. In general,
we refer to an attribute by referring to its name. Each kind of element in an
XHTML document supports a set of attributes, specified by the XHTML DTD.
All elements do not support the same set of attributes, although some attributes
are supported by more than one element. For instance, all elements support the
id attribute, but only some elements (e.g., the img and table elements) support
the width attribute.

One important XML well-formedness requirement, which is therefore also
an XHTML well-formedness requirement, is that no attribute name may ap-
pear more than once in a start tag or empty-element tag [26, Section 3.1]. In
this section we shall see how this linearity constraint on attribute lists can be
enforced statically using phantom types.

3.1 Attributes in Mini XHTML

The signature MINI_XHTML_ATTR in Figure 4 specifies operations for constructing
linear lists of attributes, that is, lists of attributes for which an attribute with a
given name appears at most once in a list. For simplicity, the attribute interface
provides support for only three different attribute names (i.e., align, width, and
height). Singleton attribute lists are constructed using the functions align,
width, and height. Moreover, the function % is used for appending two attribute
lists. The interface specifies a nullary type constructor na (read: no attribute),
which is used to denote the absence of an attribute. The type constructor
attr is parameterized over six type variables, which are used to track linearity
information for the three possible attribute names. Two type variables are used
for each possible attribute name. The first type variable represents “incoming”
linearity information for the attribute list, whereas the second type variable
represents “outgoing” linearity information. The type of % connects outgoing
linearity information of its left argument with incoming linearity information of
the function’s right argument. The result type provides incoming and outgoing

10

signature MINI_XHTML_ATTR =
sig
type (’a0,’a,’b0,’b,’c0,’c) attr
type na and align and width and height

val left : align
val right : align
val align : align -> (na,align,’b,’b,’c,’c) attr

val width : int -> (’a,’a,na,width,’c,’c) attr
val height : int -> (’a,’a,’b,’b,na,height) attr

val % : (’a0,’a,’b0,’b,’c0,’c)attr
* (’a,’a1,’b,’b1,’c,’c1)attr

-> (’a0,’a1,’b0,’b1,’c0,’c1)attr
end

Figure 4: Mini XHTML attribute library.

linearity information for the attribute list resulting from appending the two
argument attribute lists. In this respect, for each attribute name, the two
corresponding type variables in the attribute type for an attribute list expression
represent the decrease in linearity that the attribute list contributes with.

Consider the expression

width 50 % height 100 % width 100

This expression does not type because the width combinator requires the incom-
ing linearity to be na, which for the second use of the combinator contradicts
the outgoing linearity information from the first use of the width combinator.
Notice also that the type of a well-typed attribute list expression is independent
of the order attributes appear in the expression.

Specialized elaboration rules for constructing attribute lists in Standard ML
with the combinators presented in Figure 4 are given below. The rules allow
inference of sentences of the form ` e : (τa, τa, τb, τb, τc, τc)attr, where e ranges
over Standard ML expressions, and where the τn, n ∈ {a,b, c} ranges over the
types na, align, width, and height.

Attribute Typing Rules ` e : τ

` align left : (na, align, τb, τb, τc, τc)attr

` align right : (na, align, τb, τb, τc, τc)attr

11

` width n : (τa, τa, na, width, τc, τc)attr

` height n : (τa, τa, τb, τb, na, height)attr

` e1 : (τ0
a , τa, τ

0
b , τb, τ0

c , τc)attr ` e2 : (τa, τ
1
a , τb, τ1

b , τc, τ
1
c)attr

` e1 % e2 : (τ0
a , τ1

a , τ0
b , τ1

b , τ0
c , τ1

c)attr
(1)

To state a soundness lemma for the attribute typing rules, we first define a
partial binary function ÷ according to the following equations:

align ÷ na = 1
width ÷ na = 1
height ÷ na = 1

τ ÷ τ = 0

The following lemma expresses that there is a correlation between the num-
ber of attributes with a particular name in an attribute list expression and the
type of the expression.

Lemma 2 (Linearity of attribute lists)
If ` e : (τ0

a , τ1
a , τ0

b , τ1
b , τ0

c , τ1
c)attr then

1. the number of align attributes in e is τ1
a ÷ τ0

a

2. the number of width attributes in e is τ1
b ÷ τ0

b

3. the number of height attributes in e is τ1
c ÷ τ0

c

Proof The interesting case is the case for appending two attribute lists. We
have e = e1 % e2. From (1), it follows that there exist types τa, τb, and τc, so
that we can apply induction twice to get that the number of align attributes
in e1 is τa ÷ τ0

a and that the number of align attributes in e2 is τ1
a ÷ τa. We

now proceed by case analysis on τ1
a ÷ τa. There are two cases:

case: τ1
a ÷ τa = 0. In this case we have τa = τ1

a . It follows that τ1
a ÷ τ0

a =
τa ÷ τ0

a . Thus the number of align attributes in e is τ1
a ÷ τ0

a , as required.
case: τ1

a ÷ τa = 1. In this case we have τa = na. From the definition of ÷,
for τa ÷ τ0

a to be defined, we have τ0
a = na, which means that the number of

align attributes in e1 is 0. Thus, the number of align attributes in e is τ1
a ÷τa,

which equals τ1
a ÷ τ0

a , as required.
Similar arguments are used for the width and height attributes. 2

12

3.2 Narrowing the Attribute Interface

The simplest way to provide support for more attribute names in Mini XHTML
is to add two new type parameters to the type constructor attr for each new
attribute name. Following this strategy, however, the number of type variable
parameters for the attr type constructor amounts to twice the total number
of attributes in XHTML. Fortunately, it turns out that no element supports
more than a dozen attributes. As a consequence, to decrease the number of
type variable parameters for the attr type constructor, it makes sense to use
particular type variable parameters for different attributes in different contexts.

To do so, we refine the strategy so that each attribute makes use of a triple
of type variable parameters for each attribute. The first type variable parameter
now denotes the particular attribute that the triple is used for, whereas the two
other type variable parameters are used to encode the linearity information as
before.

We first construct an attribute interference graph with the nodes in the graph
being all attribute names supported by element entries in the DTD. Further, an
edge is added to the graph between two attribute names if the attribute names
are supported by the same element. To construct a coloring of the attribute
names in the graph, where a color denote a type variable triple in the attr type
constructor, we keep removing the nodes with the fewest neighbors from the
graph and pushing them onto a stack. When the graph is empty, we pop nodes
off the stack and reinsert them in the graph. Whenever an attribute name is
reinserted in the graph, the attribute name is given a color different from its
existing neighbors in the graph.

As an example, consider the following simplified subset of the XHTML 1.0-
Strict DTD:

<!ELEMENT img EMPTY>
<!ELEMENT table (tr)+>
<!ELEMENT tr (td)+>
<!ELEMENT td (%flow)*>
<!ATTLIST img id ID #IMPLIED

height %Number; #IMPLIED
width %Number; #IMPLIED>

<!ATTLIST table id ID #IMPLIED
width %Number; #IMPLIED>

<!ATTLIST tr id ID #IMPLIED>
<!ATTLIST td id ID #IMPLIED

colspan %Number; #IMPLIED
rowspan %Number; #IMPLIED>

From the attribute specifications in this DTD subset, we generate the attribute
interference graph shown in Figure 5. Following the graph coloring algorithm,
we can obtain the coloring annotated on the graph. The resulting attribute
interface for the specified DTD looks as follows:

13

(’a) height colspan (’a)

(’c) id

(’b) width rowspan (’b)

Figure 5: Attribute interference graph.

signature ATTR =
sig
type (’a,’a1,’a2,’b,’b1,’b2,’c,’c1,’c2)attr
type na and id and width and height
and colspan and rowspan
val id : string ->
(’a0,’a,’a,’b0,’b,’b,id,na,id)attr
val width : int ->
(’a0,’a,’a,width,na,width,’c0,’c,’c)attr
val height : int ->
(height,na,height,’b0,’b,’b,’c0,’c,’c)attr
val colspan : int ->
(colspan,na,colspan,’b0,’b,’b,’c0,’c,’c)attr
val rowspan : int ->
(’a0,’a,’a,rowspan,na,rowspan,’c0,’c,’c)attr
val % : (’a,’a1,’a2,’b,’b1,’b2,’c,’c1,’c2)attr

* (’a,’a2,’a3,’b,’b2,’b3,’c,’c2,’c3)attr
-> (’a,’a1,’a3,’b,’b1,’b3,’c,’c1,’c3)attr

end

We have used this approach to generate an attribute combinator library
for a large part of the XHTML 1.0-Strict DTD. At present, the combinator
library provides support for 18 different attributes, using only 21 type variable
parameters in the attr type constructor.

3.3 Adding Attributes to Elements

We have still to show how particular attributes may be added to elements in a
type safe way. The approach we take here is, for each element name, to intro-
duce a new attribute-accepting combinator, which takes as its first argument an
attribute list. The idea is then that the type of the argument specifies which
attributes are supported by the element. For instance, for the DTD subset given
above, the combinator library provides a function tda with the following type:1

(colspan,na,’a,rowspan,na,’b,id,na,’c)attr
-> ’f flow elt -> td elt

1For brevity, type variable parameters for encoding element prohibitions in the elt type
constructor are not shown.

14

Given an attribute list and a flow element, the function returns a td element,
which may then be composed with other td elements before it is passed to the
tr element combinator. Notice that the tda combinator is polymorphic in the
outgoing linearity information for each supported attribute. This polymorphism
means that none of the attributes are required attributes.

Another approach to adding attributes to elements is to follow the element
transforming style introduced by Thiemann [24], which has the property that
no additional attribute-accepting combinator needs to be introduced for each
element. A drawback of this approach, however, is that an additional type
variable parameter is needed for the elt type constructor.

4 Form Consistency

In this section, we demonstrate how form consistency is checked in SMLserver.
Form consistency guarantees that form data submitted by clients, either as form
variable arguments in a GET request or as posted data in a POST request, is
consistent with the scriptlet’s expectations of form data.

The programmer writes a Web application as a set of ordinary Standard ML
library modules and a set of scriptlets, which are functors with arguments that
specify the expected form variables.

Prior to the compilation proper, SMLserver performs a pre-scan of all script-
let functor arguments and generates an abstract scriptlet API (in terms of a
structure with an abstract interface) that, in a type safe way, exposes functions
for constructing hyper-link anchors and form elements for all scriptlets. Both
library modules and scriptlets may depend on the abstract scriptlet API, which
makes it possible to write library functions and scriptlets that, in a type safe
way, result in documents containing any number of different forms and links.

Code for instantiating scriptlet functors is generated automatically by SMLserver
and executed upon client requests. For increased efficiency, SMLserver caches
the result of library code execution [7].

An example scriptlet looks as follows:

functor bmi (F : sig val h : int Form.var
val w : int Form.var

end) : SCRIPTLET =
struct open Scriptlets infix &
val h = Form.get Page.page "Height" h
val w = Form.get Page.page "Weight" w
val bmi = Int.div(w * 10000, h * h)
val txt = if bmi > 25 then "too high!"

else if bmi < 20 then "too low!" else "normal"
val response = Page.page "Body Mass Index"

(p ($ ("Your BMI is " ^ txt)))
end

The signature SCRIPTLET specifies a value response with type Http.response,

15

which represents responses with different status codes, including HTTP re-
sponses with status code 200 followed by a valid XHTML document, or HTTP
redirect responses (status code 302).

The argument of a scriptlet functor specifies form variables, which represent
either form arguments in a GET request or posted data in a POST request.
Although SMLserver guarantees that forms and links appearing in XHTML
documents match the respective target scriptlet’s expectations of form argu-
ments, there is no way that SMLserver can guarantee that a user indeed enters
an integer, for instance.2 In the bmi example, both the h and w form arguments
are specified with type int Form.var, which suggests that the user is supposed
to provide integers for these form arguments. Using the function Form.get, the
bmi scriptlet converts the form arguments into integers and responds with an
error page in case one of the form arguments is not an integer.

In case both the form arguments h and w are integers, the bmi scriptlet
computes the body mass index and constructs a message depending on the
index. Finally, an XHTML page containing the message is bound to the variable
response.

4.1 Static Tracking of Form Variables

Before we present a scriptlet that responds with a form for the bmi scriptlet,
we first present a simplified XHTML signature, which provides operations that
propagate information about form input elements in a type safe way:

signature XHTML =
sig
type (’a,’b)elt
type nil
type (’n,’t)name
val inputtext : (’n,’t)name -> (’n->’a,’a)elt
val inputsubmit : string -> (’n->’a,’a)elt
val $: string -> (’a,’a)elt
val & : (’a,’b)elt * (’b,’c)elt -> (’a,’c)elt

end

Similarly as before, the type (’a,’b)elt denotes an XHTML element, but the
type variables ’a and ’b are here used to propagate information about form
variable names at the type level, where form variable names are represented as
abstract nullary type constructors. For readability, we reuse the function type
constructor -> as a list constructor for variable names at the type level. For
representing the empty list of names, the nullary type constructor nil is used.
We use the term type list to refer to lists at the type level constructed with ->
and nil.

2Neither can SMLserver guarantee that a user does not obfuscate a GET request by altering
form arguments in a browser’s location bar. In this case, SMLserver responds with a standard
error page.

16

Figure 6: Pages served by the BMI Web service.

Consider the value inputtext with type (’n,’t)name -> (’n->’a,’a)elt.
In this type, the type variable ’n represents a form variable name and ’t rep-
resents the ML type (e.g., int) of that variable. In the resulting element type,
the name ’n is added to the list ’a of form variables used later in the form.

Whereas inputtext provides one way of constructing a leaf node in an elt
tree, the operator $ provides a way of embedding string data within XHTML
documents. The type for $ suggests that elements constructed with this operator
does not contribute with new form variable names. The binary operator &
constructs a new element on the basis of two child elements. The type of &
defines the contributions of form variable names used in the constructed element
as the contributions of form variable names in the two child elements.

To continue the Body Mass Index example, consider the scriptlet functor
bmiform, which creates a form to be filled out by a user:

functor bmiform () : SCRIPTLET =
struct open Scriptlets infix &
val response =
Page.page "Body Mass Index Form"
(bmi.form
(p($"Enter your height (in cm)"

& inputtext bmi.h
& br()
& $"Enter your weight (in kg)"
& inputtext bmi.w
& inputsubmit "Compute Index")))

end

Figure 6 shows the result of requesting the bmiform scriptlet. The target of the
form in this scriptlet is the bmi scriptlet.

17

The bmiform scriptlet references the generated abstract scriptlet interface to
construct a form element containing input elements for the height and weight
of the user. Whereas the applications of the inputtext function are used to
construct input elements with type text, the inputsubmit function is used to
construct an input element with type submit and the text “Compute Index”.

4.2 Abstract Scriptlet Interfaces

As mentioned earlier, inter-scriptlet form typing depends critically on the gener-
ation of an abstract scriptlet interface based on a pre-scan of all scriptlet functor
arguments. The abstract scriptlet interface specifies a structure for each script-
let. Each structure provides type safe functions for creating XHTML hyper
reference anchors (i.e., links) and form elements for targeting the specific script-
let. The interface also specifies a type safe function for sending an HTTP 302
redirect response to a client.

In the case for the bmiform and bmi scriptlets, the generated abstract script-
let interface Scriptlets includes the following structure specifications:3

structure bmiform : sig
val form : (nil,nil) elt -> (nil,nil) elt
val link : (’x,’y) elt -> (’x,’y) elt
val redirect : Http.response

end
structure bmi : sig
type h
type w
val h : (h,int) XHtml.name
val w : (w,int) XHtml.name
val form : (h->w->nil,nil)elt -> (nil,nil)elt
val link : {h:int, w:int} -> (’x,’y)elt

-> (’x,’y)elt
val redirect : {h:int, w:int} -> Http.response

end

The abstract scriptlet interface bmi specifies a function link for construct-
ing an XHTML hyper-link anchor to the bmi scriptlet. The function takes as
argument a record with integer components for the form variables h and w.
Similarly as for the bmi.link function, the type for the bmi.redirect function
requires integers for the form variables h and w to be passed to the function
in a record. Contrary, because the bmiform scriptlet takes no form arguments
(i.e., the functor argument is empty), creating a link to this scriptlet using the
function bmiform.link takes no explicit form arguments.

The abstract scriptlet interface bmi specifies two abstract types h and w,
which represent the form variables h and w, respectively. The variables h and

3The abstract scriptlet interface has been simplified to include only elt type parameters
that are used to track form variables.

18

w specified by the bmi abstract scriptlet interface are used as witnesses for
the respective form variables when forms are constructed using the function
XHtml.inputtext and other functions for constructing form input elements.
Notice that the Standard ML type associated with the form variables h and w,
here int, is embedded in the type for the two form variable names. This type
embedding makes it possible to pass hidden form variable to forms in a type
safe and generic way.

Central to the abstract scriptlet interface bmi is the function bmi.form,
which makes it possible to construct a form element with the bmi scriptlet as
the target action. The type list h->w->nil in the type of the bmi.form function
requires that form input elements for the form variables h and w appear within
the constructed form element. Notice that the types h and w within the type
list h->w->nil are abstract type constructors and that the type lists in type
parameters to the elt type can be constructed only through uses of the function
XHtml.inputtext and other functions for constructing form input elements.

Notice also that the order in which abstract type constructors appear within
type lists does matter. SMLserver induces the order in which abstract type con-
structors for form variable names appear within the argument to form functions
from the order in which the corresponding form variables are specified in the
scriptlet functor argument.

4.3 Type List Reordering

In some cases it is desirable to reorder the components of a type list appearing
in a type parameter to the elt type. Such a reordering is in particular necessary
if two different forms entailing different orderings of form variable names use
the same target scriptlet. What one could hope for is a system where type lists
are interpreted as sets. The Standard ML type system, however, does not—or
so it seems—allow us to provide a type construction for sets in the case that
the maximum number of elements in the sets is not known in advance.

A first solution could be to introduce a function swap with type

(’n->’m->’a,’b)elt -> (’m->’n->’a,’b)elt

which allows the programmer to explicitly swap the first and second element in
a type list appearing in an element type. Again, the implementation of the swap
function is simply the identity. Although this mechanism can be used to reorder
type lists in many ways by applying the swap function to element values in a
program, the mechanism is not complete in the sense that any reordering can be
obtained, given an arbitrary type list. By applying the swap function to different
points in the construction of an element of type (a->b->c->nil,nil)elt, it
is possible to convert this element into an element where the components of
the type list have been reordered arbitrarily. However, it turns out that it is
not possible to convert an element of type (a->b->c->d->nil,nil)elt to an
element of type (c->a->d->b->nil,nil)elt by inserting applications of the
swap function at different points in the construction of the element.

19

A general solution to the problem of reordering type lists would be to provide
the programmer with a type safe mechanism for swapping, within an element
type, the head component of a type list with any other component of the type
list. While it remains to be shown how to retrieve this functionality, it would
provide the programmer with a type safe mechanism for converting an element
of type (l,nil)elt to an element of type (l′,nil)elt where l and l′ are type
lists representing different permutations of the same set of elements.

4.4 Type-indexed Type List Reordering

We now present a general type safe function swapn, which allows the program-
mer to swap, within an element type, the head component of a type list with any
other component of the type list. The function swapn, which is implemented as
a type-indexed function [29, 10, 15], takes as its first argument a value with a
type that represents the index for the component of the type list to be swapped
with the head component. The specifications for the swapn function and the
functions for constructing type list indexes are the following:

type (’old,’new) idx
val One : unit -> (’a->’b->’x,’b->’a->’x) idx
val Succ : (’a->’x,’b->’y) idx

-> (’a->’c->’x,’b->’c->’y) idx
val swapn : (’x,’xx) idx -> (’x,’y) elt

-> (’xx,’y) elt

As an example, the application swapn (Succ(One())) has type

(’a->’b->’c->’x,’y)elt -> (’c->’b->’a->’x,’y)elt

which makes it possible to swap the head component (i.e., the component with
index zero) in the enclosed type list with the second component of the type list.
Safety of this functionality relies on the following lemma, which is easily proven
by induction on the structure of (τ, τ ′)idx:

Lemma 3 (Type indexed swapping) For any value of type (τ, τ ′)idx, con-
structed using One and Succ, the type lists τ and τ ′ are identical when interpreted
as sets.

4.5 Other Input Controls

Whereas the radio button input-control in XHTML gives a user the choice
between several options, of which at most one can be selected at any particular
time, check boxes allow the user to select multiple options. SMLserver provides
the programmer with a series of type safe combinators for constructing radio
buttons and check boxes, as well as other input controls such as selection boxes
and various text controls.

SMLserver also provides support for passing values in input elements of
type hidden in a type safe way. This is done by providing combinators for

20

constructing form values (of type (τ)Form.var) from values (of type τ) that
support marshalling.

For constructing check boxes, three combinators are provided:

val chkbox : (’n,’t list)name -> ’t Form.var
-> (’n chk->’x,’x)elt

val chkbox’ : (’n,’t list)name -> ’t Form.var
-> (’n chk->’x,’n chk->’x)elt

val chkdrop : (’n chk->’x,’y)elt -> (’n->’x,’y)elt

The chkbox combinator may be used to construct a first check box in a group
of check boxes. The combinator takes as arguments a form variable name and a
form value associated with this particular check box. In the case a user selects
the check box, this value is passed to the target script along with values for
other checked boxes. The second combinator chkbox’ assumes that at least
one radio button (with the same form variable name) appears somewhere in the
remainder of the form. In this way, it is possible to write code for constructing
forms with a dynamic number of check boxes in a type safe way. The combinator
chkdrop has no operational meaning, but eliminates the information that the
form variable name is associated with a group of check boxes in the form.

For a target scriptlet to read the list of values associated with checked boxes
in a form, the scriptlet may use the Form.get function described in Section 4.

5 A Formalization of Scriptlets

In this section we formalize a small scriptlet language. The formalization jus-
tifies the implementation of scriptlets in SMLserver, where, as we have seen,
scriptlets are implemented as functors and where the mutually recursive typing
of scriptlets is implemented by the generation of an abstract scriptlet interface
prior to type inference and compilation proper.

The scriptlet language that we introduce does not allow the programmer to
maintain state on the Web server. Instead, state in scriptlet programs must be
modeled using form variables.

5.1 A Scriptlet Language

We assume denumerably infinite sets of program variables, ranged over by x and
f , and scriptlet identifiers, ranged over by s. We also assume a denumerably
infinite set of integers, ranged over by i. The grammars for documents (d),
values (v), expressions (e), scriptlet bindings (S), and programs (p) are defined
as follows:

d ::= link s v | d1 & d2 | ε

v ::= d | i | fix f(x) = e | (v1, v2)

e ::= v | x | e1 e2 | e1 & e2 | (e1, e2)

| link s e | #1 e | #2 e

21

S ::= s(x) = e ; S | •
p ::= scripts S in e

A document d may either represent the empty document ε, a link to a scriptlet
s with form argument v, or a document representing the composition of two
sub-documents. A value represents either a document, an integer i, a (possibly
recursive) function closure, or a value pair. Expressions include support for
extracting components of pairs, constructing documents, applying functions,
and representing values.

We sometimes interpret a scriptlet binding S as a set of bindings.

5.2 Scriptlet Evaluation

Scriptlet evaluation represents evaluation on the Web server. The grammars for
evaluation contexts (E) and instructions (ι) are defined as follows:

E ::= [·] | link s E | E & e | v & E | E e

| v E | (E, e) | (v,E) | #1 E | #2 E

ι ::= #1 (v1, v2) | #2 (v1, v2) | (fix f(x) = e) v

Evaluation rules for expressions and programs allow inference of sentences
of the forms e ; e′ and p ; p′, respectively.

Expressions e ; e′

(fix f(x) = e) v ; e[v/x][(fix f(x) = e)/f]

#1 (v1, v2) ; v1 #2 (v1, v2) ; v2

e ; e′

E[e] ; E[e′]

Programs p ; p′

e ; e′

scripts S in e ; scripts S in e′

5.3 Link Reduction

Link reduction represents evaluation on the Web client. Document contexts are
defined according to the following grammar:

D ::= [·] | D & d | d & D

22

Programs that represent a document may be reduced according to the following
rule for link reduction, which models that a user, non-deterministically, selects
a link in a document. Link reduction allows inference of sentences of the form
p

link−→ p′.

Link reduction p
link−→ p′

(s(x) = e) ∈ S

scripts S in D[link s v] link−→ scripts S in e[v/x]

5.4 A Type System for Scriptlets

We now present a type system for the scripting language. The type system
guarantees that well-typed scriptlet programs do not get stuck, except if the
program reduces to the empty document ε, which provides no continuation
links.

The grammars for types (τ), type environments (Γ), and scriptlet environ-
ments (Σ) are as follows:

τ ::= int | doc | τ1 × τ2 | τ1 → τ2

Γ ::= x : τ ; Γ | •
Σ ::= s : τ ; Γ | •

In any type environment Γ, we assume that a variable is associated with a
type at most once. We sometimes interpret type environments as sets and we
write Γ(x) to denote the type τ such that (x : τ) ∈ Γ. Similarly for scriptlet
environments.

The typing rules allow inference of sentences of the forms Σ,Γ ` e : τ and
` S : Σ and ` p : doc.

Expressions Σ,Γ ` e : τ

Σ,Γ ` i : int Σ,Γ ` ε : doc

Σ(s) = τ → doc
Σ,Γ ` e : τ

Σ,Γ ` link s e : doc

Σ,Γ ` e1 : doc
Σ,Γ ` e2 : doc

Σ,Γ ` e1 & e2 : doc

Σ,Γ ` e1 : τ1

Σ,Γ ` e2 : τ2

Σ,Γ ` (e1, e2) : τ1 × τ2

Σ,Γ ` e1 : τ → τ ′

Σ,Γ ` e2 : τ

Σ,Γ ` e1 e2 : τ ′

Σ,Γ ` e : τ1 × τ2

Σ,Γ ` #1 e : τ1

Σ,Γ ` e : τ1 × τ2

Σ,Γ ` #2 e : τ2

23

Σ,Γ ; f : τ → τ ′ ; x : τ ` e : τ ′

Σ,Γ ` fix f(x) = e : τ → τ ′

Scripts ` S : Σ

Σ = {s1 : τ1 → doc, · · · , sn : τn → doc}
Σ, xi : τi ` ei : doc i = 1..n

` s1(x1) = e1 ; · · · ; sn(xn) = en : Σ

Programs ` p : doc

` S : Σ Σ ` e : doc
` scripts S in e : doc

The proof of type safety is based on well-known techniques for proving type
safety for statically typed languages [18, 28]. We first state a property say-
ing that a well-typed expression is either a value or can be separated into an
evaluation context and an instruction:

Lemma 4 (Unique Decomposition) If Σ ` e : τ , then either (1) e is a
value, or (2) there exists a unique E, e′, and τ ′ such that e = E[e′] and Σ ` e′ :
τ ′ and e′ is an instruction.

Proof By induction on the structure of e. 2

The following type preservation and progress lemmas hold:

Lemma 5 (Type Preservation) If Σ ` e : τ and e ; e′ then Σ ` e′ : τ .
Moreover, if ` p : doc and p ; p′ then ` p′ : doc. Finally, if ` p : doc and
p

link−→ p′ then ` p′ : doc.

Lemma 6 (Progress) If Σ ` e : τ then either (1) e is a value (possibly a
document), or (2) e ; e′ for some e′.

The following lemma suggests that documents served by scripts are indeed
documents and that reduction is stuck only if a served document contains no
links:

Lemma 7 (Web Progress) If ` p : doc then either (1) p ; p′ for some p′

(evaluation), or (2) p is a document containing no links, or (3) p
link−→ p′ for

some p′ (user follows a link).

24

6 Related Work

The approach that we present here is not the first approach to guarantee well-
formedness and validity of XHTML documents and consistent use of forms.
First, the Haskell WASH/CGI library [24, 25, 23] provides a type safe inter-
face for constructing Web services in Haskell. Although Thiemann’s element
transforming style is very much related to the element type encoding that we
use here, the WASH/CGI library uses a combination of type classes and phan-
tom types to encode the state machine defined by the XHTML DTD and to
enforce constructed documents to satisfy this DTD. Because Standard ML has
no support for type classes, another approach was called for in SMLserver.

The JWIG project [4, 5] (previously the <bigwig> project [21, 2, 3]) pro-
vides another model for writing Web applications for which generated XHTML
documents are guaranteed to be well-formed and valid and for which submitted
form data is guaranteed to be consistent with the reading of the form data. In
contrast to SMLserver and WASH/CGI, JWIG is based on a suite of program
analyses that at compile time verifies that no runtime errors can occur while
building documents or receiving form input. For constructing XHTML docu-
ments, JWIG provides a template system with a tailor-made plugging operation,
which in SMLserver and WASH/CGI amounts to function composition.

Both of the above mentioned systems, WASH/CGI and JWIG, allow state
to be maintained on the Web server in so-called sessions. SMLserver does not
support sessions explicitly, but does provide support for type safe caching of
certain kinds of values [7]. The possibility of maintaining state on the Web
server (other than in a database or in a cache) introduces a series of problems,
which are related to how the Web server claim resources and how it behaves in
the presence of memory leaks and system failures.

Another branch of work related to this paper uses phantom types to restrict
the composition of values and operators in domain specific languages embedded
in Haskell and Standard ML [14, 9, 24, 25, 23]. This branch of work also includes
the work by Thiemann on WASH/CGI. Also related to this work is the work
on using phantom types to provide type safe interaction with foreign languages
from within Haskell and Standard ML programs [8, 1]. As far as we know,
we are the first to express all validity requirements of XHTML using phantom
types. Moreover, we are aware of no other work that uses phantom types to
express linear requirements, as we do to restrict an attribute from being added
to an element more than once, for instance.

Phantom types have also been used in Haskell and Standard ML to encode
dependent types in the form of type indexed functions [29, 10, 15]. In the present
work we also make use of a type indexed function to allow form fields to appear
in a form in an order that is different than the order the corresponding form
variables are declared in scriptlet functor arguments.

Finally, there is a large body of related work on using functional languages
for Web programming. Preceding Thiemann’s work, Meijer introduced a library
for writing CGI scripts in Haskell [16], which provided low-level functionality for
accessing CGI parameters and sending responses to clients. The mod_haskell

25

project [6] took the approach of embedding the Hugs Haskell interpreter as
a module for the Apache Web server [22]. Peter Sestoft’s ML Server Pages
implementation for Moscow ML [20] and SMLserver [7] provide good support for
programming Web applications in Standard ML, although these approaches give
no guarantees about the well-formedness and validity of generated documents.

Queinnec [19] suggests using continuations to implement the interaction be-
tween clients and Web servers. Graunke et al. [12] demonstrate how Web pro-
grams can be written in a traditional direct style and transformed into CGI
scripts using CPS conversion and lambda lifting. In contrast to Queinnec, their
approach uses the client for storing state information (i.e, continuation environ-
ments) between requests. It would be interesting to investigate if this approach
can be made to work for statically typed languages, such as Standard ML or
Haskell.

7 Conclusion and Future Work

Based on our experience with the construction and maintenance of community
sites and enterprise Web applications—in SMLserver and other frameworks—
we have contributed with two technical solutions to improve reliability and the
quality of such applications. Our first contribution is a novel approach to enforce
conformity of generated XHTML 1.0 documents, based entirely on the use of a
typed combinator library in Standard ML. Our second technical contribution is
a technique for enforcing consistency between a scriptlet’s use of form variables
and the construction of forms that target that scriptlet.

The technical contributions are justified theoretically and we have devised
a theoretical concise model for understanding the essence of scriptlets, which
form a basis for the implementation of scriptlets in SMLserver. Although the
theoretical frameworks presented in this paper might seem heavy handed, the
formalisms have given us a precise vocabulary for discussing future developments
and desired properties.

There are several directions for future work. First, a natural question to ask
is to which extend the type safe embedding of XHTML in Standard ML can be
generalized to work for other DTDs than the XHTML 1.0-Strict DTD. Another
line of future work is to use some of the techniques that we have described
here for embedding database queries—in the form of SQL code—in ML-like
languages, extending the work by Leijen and Meijer [14].

References

[1] Matthias Blume. No-longer-foreign: Teaching an ML compiler to speak C
“natively.”. In Workshop on Multi-language Infrastructure and Interoper-
ability (BABEL’01), September 2001.

26

[2] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. Static val-
idation of dynamically generated HTML. In ACM Workshop on Program
Analysis for Software Tools and Engineering (PASTE’01), June 2001.

[3] Claus Brabrand, Anders Møller, and Michael I. Schwartzbach. The
<bigwig> project. ACM Transactions on Internet Technology, 2(2):79–114,
2002.

[4] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach.
Static analysis for dynamic XML. Technical Report RS-02-24, BRICS,
May 2002. Presented at Programming Language Technologies for XML,
PLAN-X, October 2002.

[5] Aske Simon Christensen, Anders Møller, and Michael I. Schwartzbach. Ex-
tending Java for high-level Web service construction. ACM Transactions
on Programming Languages and Systems, 2003. To appear.

[6] Eelco Dolstra and Armijn Hemel. mod_haskell, January 2000.
http://losser.st-lab.cs.uu.nl/mod_haskell.

[7] Martin Elsman and Niels Hallenberg. Web programming with SMLserver.
In International Symposium on Practical Aspects of Declarative Languages
(PADL’03). Springer-Verlag, January 2003.

[8] Sigbjorn Finne, Daan Leijen, Erik Meijer, and Simon Peyton Jones. Calling
hell from heaven and heaven from hell. In ACM International Conference
on Functional programming. ACM Press, 1999.

[9] Matthew Fluet and Riccardo Pucella. Phantom types and subtyping. In In-
ternational Conference on Theoretical Computer Science (TCS’2002), Au-
gust 2002.

[10] Daniel Fridlender and Mia Indrika. Functional pearl: Do we need dependent
types? Journal of Functional Programming, 10(4):409–415, July 2000.

[11] Paul Graunke, Robert Bruce Findler, Shriram Krishnamurthi, and
Matthias Felleisen. Modeling web interactions. In European Symposium
On Programming (ESOP’03), April 2003.

[12] Paul Graunke, Shriram Krishnamurthi, Robert Bruce Findler, and
Matthias Felleisen. Automatically restructuring programs for the Web. In
17th IEEE International Conference on Automated Software Engineering
(ASE’01), September 2001.

[13] Cordelia V. Hall, Kevin Hammond, Simon L. Peyton Jones, and Philip L.
Wadler. Type classes in Haskell. ACM Transactions on Programming
Languages and Systems (TOPLAS), 18(2):109–138, 1996.

[14] Daan Leijen and Erik Meijer. Domain specific embedded compilers. In
ACM Conference on Domain-specific languages. ACM Press, 2000.

27

[15] Conor McBride. Faking it: Simulating dependent types in Haskell. Journal
of Functional Programming, 12(4&5):375–392, July 2002.

[16] Erik Meijer. Server side Web scripting in Haskell. Journal of Functional
Programming, 10(1):1–18, January 2000.

[17] Robin Milner, Mads Tofte, Robert Harper, and David MacQueen. The
Definition of Standard ML (Revised). MIT Press, 1997.

[18] Greg Morrisett. Compiling with Types. PhD thesis, School of Computer Sci-
ence, Carnegie Mellon University, Pittsburgh, PA 15213, December 1995.

[19] Christian Queinnec. The influence of browsers on evaluators or, contin-
uations to program Web servers. In Fifth International Conference on
Functional Programming (ICFP’00), September 2000.

[20] Sergei Romanenko, Claudio Russo, and Peter Sestoft. Moscow ML Owner’s
Manual, June 2000. For version 2.00. 35 pages.

[21] Anders Sandholm and Michael I. Schwartzbach. A type system for dynamic
Web documents. In ACM Symposium on Principles of Programming Lan-
guages (POPL’2000), January 2000.

[22] Lincoln Stein and Doug MacEachern. Writing Apache Modules with Perl
and C. O’Reilly & Associates, April 1999. ISBN 1-56592-567-X.

[23] Peter Thiemann. Programmable type systems for domain specific lan-
guages. In Workshop on Functional and Logic Programming (WFLP’02),
June 2002.

[24] Peter Thiemann. A typed representation for HTML and XML documents
in Haskell. Journal of Functional Programming, 12(4&5):435–468, July
2002.

[25] Peter Thiemann. Wash/CGI: Server-side Web scripting with sessions and
typed, compositional forms. In Conference on Practical Aspects of Declar-
ative Languages (PADL’02), January 2002.

[26] W3C. Extensible markup language (XML) 1.0 (second edition), October
2000. W3C Recommendation.

[27] W3C. XHTMLTM 1.0: The extensible hypertext markup language (second
edition), January 2000. W3C Recommendation. Revised August 2002.

[28] Andrew K. Wright and Matthias Felleisen. A syntactic approach to type
soundness. Information and Computation, 115(1):38–94, 1994.

[29] Zhe Yang. Encoding types in ML-like languages. In ACM International
Conference on Functional Programming (ICFP’98), September 1998.

28

