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ABSTRACT
In this paper, we prove the safety of integrating region-based
memory management and Cheney-style copying garbage col-
lection. The safety property relies on a refinement of the re-
gion typing rules that forbids dangling pointers during eval-
uation.

To accommodate the triggering of garbage collection at
any step in the evaluation process, we base our type-safety
result for the region-based system on a small-step contextual
semantics and show that whenever a well-typed expression
reduces to another expression, possibly by deallocating a re-
gion, then no dangling pointer is introduced. Because there
are no dangling pointers in the initial heap, no dangling
pointers appear during evaluation.

Although in principle, the refinement of the region typing
rules leads to less flexibility and can cause worse memory
behavior than when dangling pointers are permitted, exper-
iments show that, for a range of benchmark programs, the
refinement has little effect on overall memory behavior.
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D.1 [Programming Techniques]: Applicative (Functional)
Programming; D.3 [Programming Languages]: Language
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F.3 [Logics and Meanings of Programs]: Semantics of
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1. INTRODUCTION
In previous work, Hallenberg et al. [4] have integrated

region-based memory management with a Cheney-style copy-
ing garbage collection algorithm. The algorithm is imple-
mented for all of Standard ML in the ML Kit compiler [10].
Measurements show that, for programs that are not opti-
mized for regions, adding garbage collection reduces mem-
ory usage. From the point of view of garbage collection,
measurements demonstrate that the pressure on the garbage
collector is reduced significantly by integrating garbage col-
lection with region inference.

Much attention has been focussed on proving type safety
of region inference [12, 5, 2, 3]. At runtime, the store is orga-
nized as a stack of dynamically expandable regions. Region
inference is the process of inserting allocation and deallo-
cation directives in the program at compile time. Value-
creating expressions are annotated with information that
controls in what region values go at runtime. Moreover, if e
is some region-annotated expression, then so is

letregion ρ in e end

An expression of this form is evaluated by first allocating a
new region on top of the region stack and binding the region
to the region variable ρ. Then e is evaluated, possibly using
the region bound to ρ for holding values. Finally, upon
reaching end, the region is reclaimed.

Region inference allows for both shallow and deep point-
ers, that is, pointers from older regions to newer regions
and from newer regions to older regions. A shallow pointer
may turn into a dangling pointer if the newer region is deal-
located before the older region [11]. All previous work on
proving type safety of region inference focuses on showing
that when a region is deallocated, none of the values in the
region is used in the remainder of the computation. In par-
ticular, if region deallocation introduces dangling pointers,
then none of these pointers is dereferenced in the remainder
of the computation.

However, when combining region inference and reference
tracing garbage collection, a stronger property is needed
that guarantees the absence of dangling pointers during eval-
uation. In systems that use reference tracing garbage collec-
tion, the collector may traverse the entire set of values that
are reachable via pointers from the root set at any point
during evaluation, thus, in such settings, dangling pointers
are harmful.

To avoid dangling pointers, it turns out that a sufficient
additional requirement on the region typing rules is to force



values stored in a closure to live at least as long as the closure
itself. Only in special cases does this weakening of the region
typing rules alter region annotations. For such an example,
consider the following Standard ML program:

fun f a = ()

fun g v = fn () => f v

val h = g (2,3)

In this program, the function f makes no use of its argument.
When applied to an argument v, the function g returns a clo-
sure containing v, which is a pointer if v is boxed. Applying
the non-weakened version of region inference to the program
yields the following region-annotated program:

fun f [] a = ()

fun g [r7] v = (fn () => f[] v)at r7

val h = letregion r8

in g[r1] (2,3)at r8

end

Notice here that region inference allows functions to take
regions as arguments. Due to the region-annotated types
that are inferred for f and g, region inference concludes that
the argument pair (2,3) passed to g can be deallocated after
the application of g. The result is that, after deallocation
of region r8, the variable h is bound to a closure containing
a dangling pointer.

To combine region inference with garbage collection, on
the other hand, the region typing rules must ensure that
regions holding values captured in a closure live at least as
long as the closure itself. Thus, in the combined setting, the
result of applying region inference to the binding of h yields
the following region-annotated version of the binding:

val h = g[r1] (2,3)at r1

In this region-annotated version of the binding, the pair
(2,3) is allocated in the global region r1, which happens
to be the same region in which the closure returned by g is
allocated.

In short, the contributions of this work are twofold:

• We present experimental data that suggest that, for a
range of benchmark programs, the space cost of disal-
lowing dangling pointers is small.

• We present region typing rules that disallow dangling
pointers and prove the typing rules to be sound (i.e.,
that there really are no dangling pointers.)

The lack of dangling pointers, demonstrated by the sound-
ness property, eases the integration of region inference and
garbage collection.

1.1 Related Work
We have already mentioned the series of related work on

proving type safety results for type systems for region-based
memory management [12, 5, 2, 3]. Related to our work in
particular is the work by Calcagno, Helsen, and Thiemann
[5, 2, 3], who demonstrate that a type safety proof of the
region type system based on a store-less contextual seman-
tics can be extended to a store-based contextual semantics,
which is suitable also for modeling updatable references. For
simplicity, we base our proof of soundness on a store-less
contextual semantics.

In [11, page 50], Tofte and Talpin present a side condition
to the rule for functions, which they conjecture is sufficient
to guarantee the absence of dangling pointers during evalu-
ation. Although the side condition that we present here is
inspired by the side condition presented by Tofte and Talpin,
several modifications to their side condition was necessary
to prove a formal guarantee about the absence of dangling
pointers (see Section 3.2). Moreover, the framework devel-
oped by Tofte and Talpin is not as suitable for stating a
formal guarantee about the absence of dangling pointers as
our framework, because their framework is based on a big-
step dynamic semantics, which is suitable only for proving
properties of terminating programs.

Another line of related work is the work by Morrisett,
Felleisen, and Harper on semantics of memory management
[8, 7]. Their approach categorizes many different types of
memory management techniques, including copying collec-
tors, generational collectors, and type based collectors, in a
unified framework based on syntactic type safety proofs.

1.2 Outline
The paper first introduces a region type system, presents

a small-step contextual evaluation semantics for the system,
and demonstrates, in the style of Helsen and Thiemann [5],
a type safety property for the system. Then, in Section 3, a
notion of containment is introduced, which defines when all
values referred to in an expression are contained in a set of
regions. We then present a set of modified typing rules for
the region system by adding side conditions to the rules for
functions and demonstrate that the type safety guarantee
carries over to the modified system. Based on the notion
of containment, the paper demonstrates that no dangling
pointers are introduced during evaluation. In Section 4, we
refine the notion of containment to prove that evaluation
does not introduce values in regions that are not present
on the region stack, represented by the evaluation context.
This consistency property suggests that allocation and deal-
location of regions indeed follow a stack discipline.

In Section 5, measurements are presented, which demon-
strate that, for a range of benchmark programs, the space
costs of avoiding dangling pointers is small.

2. THE REGION TYPE SYSTEM
We first introduce a small region-annotated language with

a region type system. The framework that we introduce
in this section is much similar to the framework given by
Helsen and Thiemann [5], but differs in the way that in-
accessibility to values in deallocated regions are modeled.
Whereas Helsen and Thiemann “null out” references to deal-
located regions (to avoid future access), the framework that
we present here keeps track of a set of currently allocated
regions and disallows access to regions that are not in this
set. For completeness, proofs of important properties of the
system are included in Appendix A.

In Section 3, we extend the type system with side con-
ditions that ensure the absence of dangling pointers during
evaluation.

2.1 Terms
We assume denumerably infinite sets of region variables,

ranged over by ρ, and program variables, ranged over by
x, y, and f . We also assume a denumerably infinite set of
integers, ranged over by d. The grammars for expressions



(e) and values (v) are defined as follows:

v ::= d in ρ | (v1, v2) in ρ

| λx.e in ρ | fix f [~ρ] x = e in ρ

e ::= v | x | d at ρ | let x = e1 in e2

| e1 e2 | λx.e at ρ | letregion ρ in e

| fix f [~ρ] x = e at ρ | e [~ρ] at ρ

| (e1, e2) at ρ | #1 e | #2 e

All values (i.e., integers, pairs, and closures) are boxed.
Thus a value belongs to a particular region, which is de-
noted by the “in ρ” part of the value. Similarly, all value
creating expressions, such as d at ρ and λx.e at ρ, are an-
notated with information about in which region (i.e., ρ) the
value goes at runtime.

In expressions of the forms let x = e1 in e and λx.e at ρ,
the variable x is bound in e. In expressions of the form
fix f [~ρ] x = e at ρ, the variables f , ~ρ, and x are bound in
e. Similarly for values. In expressions letregion ρ in e, the
variable ρ is bound in e. As usual, we identify terms up to
renaming of bound variables. The free (program) variables
of some expression (or value) e is written fpv(e).

Region polymorphism and recursion are supported by the
fix construct, which, in combination with the let construct,
is sufficient to model the letrec construct supported by the
Tofte and Talpin region type system [12].

2.2 Types and Substitutions
We assume denumerably infinite sets of type variables,

ranged over by α, and effect variables, ranged over by ε.
An atomic effect, ranged over by η, is either a region vari-
able or an effect variable. An arrow effect, written ε.ϕ, is a
pair of an effect variable and a set ϕ of atomic effects.

The grammars for types (τ ), type and places (µ), type
schemes (σ), and type scheme and places (π) are as follows:

µ ::= (τ, ρ)

τ ::= α | int | µ1 × µ2 | µ1
ε.ϕ
−→ µ2

σ ::= τ | ∀~ρ~α~ε.µ1
ε.ϕ
−→ µ2

π ::= (σ, ρ)

A type environment (Γ) is a finite map from program vari-
ables to type scheme and places.

For any kind of object o, the free region variables and the
free region and effect variables of o are written frv(o) and
frev(o), respectively. Moreover, we write fv(o) to denote the
free type, region, and effect variables of o. In type schemes of

the form ∀~ρ~α~ε.µ1
ε.ϕ
−→ µ2, the variables ~ρ, ~α, and ~ε are bound

in µ1
ε.ϕ
−→ µ2. We identify type schemes up-to renaming

of bound variables. Following Barendregt [1, Appendix C],
implicit use of α-conversion eases the formulation and proofs
of many of the language properties stated in the following
sections.

A substitution (S) is a triple (Sr, St, Se), where Sr is a
finite map from region variables to region variables, St is a
finite map from type variables to types, and Se is a finite
map from effect variables to arrow effects. The effect of
applying a substitution on a particular object is to carry out
the three substitutions simultaneously on the three kinds
of variables in the object (possibly by renaming of bound
variables within the object to avoid capture). For effect
sets and arrow effects, substitution is defined as follows [9],

assuming S = (Sr, St, Se):

S(ϕ) = {Sr(ρ) | ρ ∈ ϕ} ∪
{η | ∃ε, ε′, ϕ′.ε ∈ ϕ ∧ Se(ε) = ε′.ϕ′ ∧ η ∈ {ε′} ∪ ϕ′}

S(ε.ϕ) = ε′.(ϕ′ ∪ S(ϕ)), where Se(ε) = ε′.ϕ′

A type scheme σ = ∀~ρ~α~ε.τ ′ generalizes a type τ via ~ρ ′,
written σ ≥ τ via ~ρ ′, if there exists a substitution S =
({~ρ ′/~ρ}, St, Se) such that S(τ ′) = τ and dom(St) = {~α},
and dom(Se) = {~ε}.

One can show that generalization is closed under substi-
tution; if σ ≥ τ via ~ρ, for some σ, τ , and ~ρ, and S is a
substitution, then S(σ) ≥ S(τ ) via S(~ρ).

2.3 Typing Rules
The typing rules allow inference of sentences of the form

Γ ` e : π, ϕ, which says that, in the type environment Γ,
the expression (or value) e has type scheme and place π
and effect ϕ. We sometimes write ` e : π,ϕ to denote the
sentence {} ` e : π, ϕ.

Values Γ ` v : π, ϕ

Γ ` d in ρ : (int, ρ), ∅
(1)

Γ ` v1 : µ1, ∅ Γ ` v2 : µ2, ∅

Γ ` (v1, v2) in ρ : (µ1 × µ2, ρ), ∅
(2)

Γ + {x : µ1} ` e : µ2, ϕ

Γ ` λx.e in ρ : (µ1
ε.ϕ
−→ µ2, ρ), ∅

(3)

Γ + {f : (∀~ρ~ε.µ1
ε.ϕ
−→ µ2, ρ), x : µ1} ` e : µ2, ϕ

fv(~α~ε~ρ) ∩ fv(Γ, ϕ) = ∅

Γ ` fix f [~ρ] x = e in ρ : (∀~ρ~α~ε.µ1
ε.ϕ
−→ µ2, ρ), ∅

(4)

Expressions Γ ` e : π, ϕ

Γ ` e : π, ϕ ϕ′ ⊇ ϕ

Γ ` e : π,ϕ′ (5)

Γ ` d at ρ : (int, ρ), {ρ}
(6)

Γ + {x : µ1} ` e : µ2, ϕ

Γ ` λx.e at ρ : (µ1
ε.ϕ
−→ µ2, ρ), {ρ}

(7)

Γ(x) = π

Γ ` x : π, ∅
(8)

Γ ` e : (σ, ρ′), ϕ σ ≥ τ via ~ρ

Γ ` e [~ρ] at ρ : (τ, ρ), ϕ ∪ {ρ, ρ′}
(9)

Γ ` e1 : (µ′ ε.ϕ0−→ µ, ρ), ϕ1 Γ ` e2 : µ′, ϕ2

Γ ` e1 e2 : µ, ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ε, ρ}
(10)



Γ ` e1 : µ1, ϕ1 Γ ` e2 : µ2, ϕ2

Γ ` (e1, e2) at ρ : (µ1 × µ2, ρ), ϕ1 ∪ ϕ2 ∪ {ρ}
(11)

Γ ` e : (µ1 × µ2, ρ), ϕ i ∈ {1, 2}

Γ ` #i e : µi, ϕ ∪ {ρ}
(12)

Γ ` e : µ, ϕ ρ 6∈ frv(Γ, µ)

Γ ` letregion ρ in e : µ, ϕ \ {ρ}
(13)

Γ + {f : (∀~ρ~ε.µ1
ε.ϕ
−→ µ2, ρ), x : µ1} ` e : µ2, ϕ

fv(~α~ε~ρ) ∩ fv(Γ, ϕ) = ∅

Γ ` fix f [~ρ] x = e at ρ : (∀~ρ~α~ε.µ1
ε.ϕ
−→ µ2, ρ), {ρ}

(14)

Γ ` e1 : π, ϕ1 Γ + {x : π} ` e2 : µ, ϕ2

Γ ` let x = e1 in e2 : µ, ϕ1 ∪ ϕ2
(15)

2.4 Typing Properties
The typing rules possess a series of properties that are

important for the type safety and garbage collection safety
properties, which we present in later sections.

The following property states that typing judgments are
closed under substitution.

Proposition 1 (Substitution). If Γ ` e : π, ϕ and
S is a substitution, then S(Γ) ` S(e) : S(π), S(ϕ).

Proof. By induction on the derivation Γ ` e : π, ϕ. For
completeness, details of the proof appear in Appendix A.

2

The following two propositions state that values have no
effect and that the typing rules are closed under environment
extension.

Proposition 2 (Values Have No Effect). If Γ ` e :
π, ϕ and e is a value then Γ ` e : π, ∅.

Proof. By inspection of the typing rules for values. 2

Proposition 3 (Environment Extension). If Γ ` e :
π, ϕ and dom(Γ′) ∩ dom(Γ) = ∅ then Γ + Γ′ ` e : π, ϕ.

Proof. By induction on the derivation Γ ` e : π, ϕ. 2

Central to the type preservation argument is the following
proposition, which states that the typing rules are appropri-
ately closed under value substitution.

Proposition 4 (Value Substitution). If Γ+{x : π} `
e : π′, ϕ and ` v : π, ∅ then Γ ` e[v/x] : π′, ϕ.

Proof. By induction on the derivation Γ + {x : π} `
e : π′, ϕ. For completeness, details of the proof appear in
Appendix A. 2

Finally, the following proposition states that the typing
of values dictates the form of the value, canonically.

Proposition 5 (Canonical Forms). Assume ` v :
(σ, ρ), ϕ0.

• If σ = int then v = d in ρ, for some d

• If σ = µ1 ×µ2 then v = (v1, v2) in ρ, for some v1 and
v2

• If σ = µ1
ε.ϕ
−→ µ2 then v = λx.e in ρ, for some x and

e

• If σ = ∀~ρ~α~ε.τ then v = fix f [~ρ] x = e in ρ, for some
f , x, and e

Proof. By inspection of the typing rules for values, after
initial use of (5) in the case ϕ0 is non-empty. 2

2.5 A Dynamic Semantics
Before we present a small step dynamic semantics for the

language, we first introduce the notions of evaluation con-
texts (E) and instructions (ι):

Eϕ ::= [·] (ϕ = ∅)
| letregion ρ in Eϕ\{ρ} (ρ ∈ ϕ)
| Eϕ e | v Eϕ | Eϕ [~ρ] at ρ
| let x = Eϕ in e
| (Eϕ, e) at ρ | (v, Eϕ) at ρ | #i Eϕ

ι ::= d at ρ | λx.e at ρ | (v1, v2) at ρ
| #1 ((v1, v2) in ρ) | #2 ((v1, v2) in ρ)
| (λx.e in ρ) v
| (fix f [~ρ] x = e in ρ) [~ρ ′] at ρ

The dynamic semantics that we present is in the style of a
contextual dynamic semantics [6]. Notice that contexts Eϕ

make explicit the set of regions ϕ bound by letregion con-
structs that encapsulate the hole in the context. The proof
of type safety resembles well-known techniques for proving
type safety for statically typed languages [6, 13]. The eval-
uation rules consist of allocation and deallocation rules, re-
duction rules, and a context rule. The rules are of the form

e
ϕ

7−→ e′, which says that, given a set of allocated regions ϕ,
the expression e reduces (in one step) to the expression e′.

Allocation and Deallocation e
ϕ

7−→ v

d at ρ
ϕ∪{ρ}
7−→ d in ρ (16)

λx.e at ρ
ϕ∪{ρ}
7−→ λx.e in ρ (17)

(v1, v2) at ρ
ϕ∪{ρ}
7−→ (v1, v2) in ρ (18)

fix f [~ρ] x = e at ρ
ϕ∪{ρ}
7−→ fix f [~ρ] x = e in ρ (19)

letregion ρ in v
ϕ

7−→ v (20)

Reduction e
ϕ

7−→ e′

(λx.e in ρ) v
ϕ∪{ρ}
7−→ e[v/x] (21)

let x = v in e
ϕ

7−→ e[v/x] (22)

(fix f [~ρ] x = e in ρ)[~ρ ′] at ρ′ ϕ∪{ρ}
7−→

λx.e[~ρ ′/~ρ][(fix f [~ρ] x = e in ρ)/f ] at ρ′
(23)



#1 ((v1, v2) in ρ)
ϕ∪{ρ}
7−→ v1 (24)

#2 ((v1, v2) in ρ)
ϕ∪{ρ}
7−→ v2 (25)

Context Eϕ[e]
ϕ′

7−→ Eϕ[e′]

e
ϕ′∪ϕ
7−→ e′ ϕ ∩ ϕ′ = ∅ Eϕ 6= [·]

Eϕ[e]
ϕ′

7−→ Eϕ[e′]
(26)

Notice that evaluation can occur under letregion con-
structs via the context rule. Also notice the rule for region
deallocation (20), which expresses the popping of a region ρ
from the region stack.

Next, evaluation is defined as the least relation formed by

the reflexive transitive closure of the relation
ϕ

7−→, as follows:

Evaluation e
ϕ

7−→∗ e′

e
ϕ

7−→ e′

e
ϕ

7−→∗ e′
(27)

e
ϕ

7−→∗ e (28)

e1

ϕ

7−→∗ e2 e2

ϕ

7−→∗ e3

e1

ϕ

7−→∗ e3

(29)

We further define e ⇓ϕ v to mean e
ϕ

7−→∗ v, and e ⇑ϕ to

mean that there exists an infinite sequence, e
ϕ

7−→ e1
ϕ

7−→

e2
ϕ

7−→ · · · .

2.6 Type Safety
To present a general type safety argument, we first state

a property saying that a well-typed expression is either a
value or can be separated into an evaluation context and a
non-value expression:

Proposition 6 (Unique Decomposition). If ` e :
π, ϕ, then either

1. e is a value; or

2. there exists a unique Eϕ′ , ι, and π′ such that e = Eϕ′ [ι]
and ` ι : π′, ϕ ∪ ϕ′.

Proof. By induction on the structure of e. For complete-
ness, details of the proof appear in Appendix A. 2

A type preservation property (i.e., subject reduction) for
the language can then be stated as follows:

Proposition 7 (Type Preservation). If ` e : π, ϕ

and e
ϕ

7−→ e′ then ` e′ : π,ϕ.

Proof. By induction on the structure of e, with the use of
Proposition 6 and the typing properties stated in Section 2.4.
Details of the proof appear in Appendix A. 2

Proposition 8 (Progress). If ` e : π, ϕ then either

e is a value or else there exists some e′ such that e
ϕ

7−→ e′.

Proof. By case analysis on the structure of e, using
Proposition 6. For completeness, details of the proof are
included in Appendix A. 2

The progress property implies that well-typed expressions
cannot “get stuck” during evaluation, which means that a
well-typed program cannot apply a non-function to some
argument, project an element from a non-tuple, or access
values in regions that are deallocated. In practice, if an
implementation accurately models the dynamic semantics,
the implementation will not access deallocated memory or
“dump core” during evaluation of a program.

Theorem 1 (Type Safety). If ` e : π, ϕ, then either
e ⇑ϕ or else there exists some v such that e ⇓ϕ v and ` v :
π, ϕ.

Proof. By induction on the number of rewriting steps, if

e
ϕ

7−→∗ e′, then by Proposition 7, we have ` e′ : π,ϕ. Now,
by Proposition 8, either e′ is a value or else there exists an

e′′ such that e′
ϕ

7−→ e′′. Thus, either there exists an infinite

sequence e
ϕ

7−→∗ e′
ϕ

7−→ e1
ϕ

7−→ e2
ϕ

7−→ · · · , or else e ⇓ϕ v and
` v : π, ϕ. 2

3. GARBAGE COLLECTION SAFETY
To guarantee safety of garbage collection, we must ensure

that no dangling pointers are introduced during evaluation.
The original Tofte-Talpin system [12] does not guarantee
the absence of dangling pointers. The solution that we ap-
ply here is to add to the typing rules side conditions that
guarantee the absence of dangling pointers.

3.1 Containment
First, we define a notion of containment; an expression e

is contained in a set of regions ϕ, if the sentence ϕ |= e is
derivable from the following rules:

ϕ |= e

ϕ |= x (30)

ρ ∈ ϕ

ϕ |= d in ρ
(31)

ρ ∈ ϕ ϕ |= e

ϕ |= λx.e in ρ
(32)

ρ ∈ ϕ ϕ |= v1 ϕ |= v2

ϕ |= (v1, v2) in ρ
(33)

ρ ∈ ϕ ϕ |= e

ϕ |= fix f [~ρ] x = e in ρ
(34)

ϕ |= d at ρ (35)



ϕ |= e1 ϕ |= e2

ϕ |= (e1, e2) at ρ
(36)

ϕ |= e

ϕ |= λx.e at ρ
(37)

ϕ |= e

ϕ |= #i e
(38)

ϕ |= e

ϕ |= fix f [~ρ] x = e at ρ
(39)

ϕ |= e

ϕ |= e [~ρ] at ρ
(40)

ϕ |= e1 ϕ |= e2

ϕ |= e1 e2
(41)

ϕ |= e1 ϕ |= e2

ϕ |= let x = e1 in e2
(42)

ρ 6∈ ϕ ϕ ∪ {ρ} |= e

ϕ |= letregion ρ in e
(43)

The containment relation ϕ |= e expresses that for each
value v appearing in e, the value v is contained in the set of
regions ϕ and regions bound by letregion constructs that
encapsulate v in e. Taking the latter kind of regions into
account allows for evaluation under letregion constructs
representing allocated regions on the region stack.

We now state a few properties of the containment relation.
The first four properties may be proved by induction on the
structure of e; the last two properties may be proved by
induction on the structure of Eϕ′ .

Proposition 9 (Containment Substitution).
If ϕ |= e then S(ϕ) |= S(e).

Proposition 10 (Containment Extension).
If ϕ |= e and ϕ′ ⊇ ϕ then ϕ′ |= e.

Proposition 11 (Value Substitution).
If ϕ |= e and ϕ |= v then ϕ |= e[v/x].

Proposition 12 (Containment Intersection).
If ϕ |= e and ϕ′ |= e then ϕ ∩ ϕ′ |= e.

Proposition 13 (Context Containment).
If ϕ |= Eϕ′ [e] then ϕ ∪ ϕ′ |= e.

Proposition 14 (Context Containment Replace).
If ϕ |= Eϕ′ [e] and ϕ ∪ ϕ′ |= e′ then ϕ |= Eϕ′ [e′].

3.2 Strengthening of the Region Typing Rules
Before we can state a property saying that, for well-typed

programs, dangling pointers are not introduced during eval-
uation, we introduce a relation G, which we shall use to
strengthen the typing rules for functions to avoid dangling
pointers during evaluation. The relation is derived from the
side condition for functions suggested by Tofte and Talpin
in [11, page 50]. With this side condition, the typing rule
for functions takes the following form:

Γ + {x : µ1} ` e : µ2, ϕ
∀y ∈ fpv(λx.e at ρ).frv(Γ(y)) ⊆ frv(ϕ)

Γ ` λx.e at ρ : (µ1
ε.ϕ
−→ µ2, ρ), {ρ}

(44)

Although this rule appears to be sufficient to guarantee the
absence of dangling pointers during evaluation, it suffers
from three problems.

First, the side condition is not closed under substitution,
because the requirement talks about free region variables,
only. This problem breaks the property that typing is closed
under substitution (Proposition 1). Modifying the side con-
dition to also include effect variables solves this problem:

∀y ∈ fpv(λx.e at ρ).frev(Γ(y)) ⊆ frev(ϕ)

With this modified side condition, the typing rules are closed
under substitution.

The second problem with the side condition is that it is
more restrictive than necessary. It turns out that it is suf-
ficient to require the set of regions appearing in the types
of free program variables in the function to be contained in
the type scheme and place for the function itself. Thus, the
side condition can be refined to read as follows:

∀y ∈ fpv(λx.e at ρ).frev(Γ(y)) ⊆ frev(µ1
ε.ϕ
−→ µ2, ρ)

The third problem with the side condition is that it does
not say anything about values substituted for program vari-
ables in e. Thus, to prove the property that no dangling
pointers are introduced during evaluation, we refine the side
condition to require also that values referred to in e are
contained in the set of regions present in the type of the
function:

∀y ∈ fpv(λx.e at ρ).frev(Γ(y)) ⊆ frev(µ1
ε.ϕ
−→ µ2, ρ)

and frv(µ1
ε.ϕ
−→ µ2, ρ) |= e

Intuitively,

1. For each free variable y in the closure, the region and
effect variables needed to hold y are contained in the
region and effect variables occuring free in the type
and place of the function.

2. All values in the closure body are contained in the
region variables occuring free in the type and place of
the function.

To ease the notation, we define a relation G, which is
parameterized over an environment Γ, a function body e,
a set of function parameters X, and the type scheme and
place π of the function:

Definition 1 (GC Safety).

G(Γ, e, X, π) = ∀y ∈ fpv(e) \ X . frev(Γ(y)) ⊆ frev(π)

and frv(π) |= e



The modified type system, which we shall show is safe for
garbage collection, is the system in Section 2.3, with rules
(3), (4), (7), and (14) modified to include an additional side
condition as follows:

Γ + {x : µ1} ` e : µ2, ϕ

µ = (µ1
ε.ϕ
−→ µ2, ρ) G(Γ, e, {x}, µ)

Γ ` λx.e in ρ : µ, ∅
(45)

Γ + {f : (∀~ρ~ε.µ1
ε.ϕ
−→ µ2, ρ), x : µ1} ` e : µ2, ϕ

fv(~α~ε~ρ) ∩ fv(Γ, ϕ) = ∅

π = (∀~ρ~α~ε.µ1
ε.ϕ
−→ µ2, ρ) G(Γ, e, {f, x}, π)

Γ ` fix f [~ρ] x = e in ρ : π, ∅
(46)

Γ + {x : µ1} ` e : µ2, ϕ

µ = (µ1
ε.ϕ
−→ µ2, ρ) G(Γ, e, {x}, µ)

Γ ` λx.e at ρ : µ, {ρ}
(47)

Γ + {f : (∀~ρ~ε.µ1
ε.ϕ
−→ µ2, ρ), x : µ1} ` e : µ2, ϕ

fv(~α~ε~ρ) ∩ fv(Γ, ϕ) = ∅

π = (∀~ρ~α~ε.µ1
ε.ϕ
−→ µ2, ρ) G(Γ, e, {f, x}, π)

Γ ` fix f [~ρ] x = e at ρ : π, {ρ}
(48)

3.3 Type Safety for the Modified System
Our first task is to carry over the type safety result (The-

orem 1) to the modified system. To do so, we must verify
that all the propositions that we have demonstrated for the
system in Section 2.3 also hold for the modified system.

As mentioned earlier, because the garbage collection con-
dition that we have added to the rules is closed under sub-
stitution, it is easy to verify that Proposition 1 also holds
for the modified system. Moreover, Proposition 2, Propo-
sition 3, and Proposition 5 are easily shown for the modi-
fied system. To demonstrate the value substitution property
(Proposition 4), we first demonstrate two auxiliary proper-
ties, stating (1) that no part of a well-typed value is con-
tained in a region that does not appear in the type scheme
and place of the value and (2) that the relation G is closed
under value substitution.

Proposition 15 (Value Closedness). If ` v : π, ∅
then frv(π) |= v.

Proof. By induction on the typing rules for values. The
interesting case is the case for functions:

Case v = λx.e in ρ. From (45) and Definition 1, we have
frv(π) |= e and ρ ∈ frv(π). From (32), we can conclude
frv(π) |= v. 2

Proposition 16 (GC Safety Value Substitution).
If G(Γ + {x : π}, e, X, π′) and ` v : π, ∅ and x 6∈ X then
G(Γ, e[v/x], X, π′).

Proof. If x 6∈ fpv(e) then G(Γ, e[v/x], X, π′) follows triv-
ially. Now, assume x ∈ fpv(e). By Definition 1, we have

∀y ∈ fpv(e) \ X . frev((Γ + {x : π})(y)) ⊆ frev(π′)

and frv(π′) |= e (49)

It follows from ` v : π, ∅ and Proposition 15 that we have
frv(π) |= v. Thus, because x ∈ fpv(e) and (49) imply

frv(π) ⊆ frv(π′), we have from Proposition 10 that frv(π′) |=
v. It now follows from (49) and Proposition 11 that we have

frv(π′) |= e[v/x] (50)

Because ` v : π, ∅ implies fpv(v) = ∅, we can derive from
(49) that

∀y ∈ fpv(e[v/x]) \ X . frev(Γ(y)) ⊆ frev(π′) (51)

Now, from Definition 1 and from (50) and (51), we can con-
clude G(Γ, e[v/x], X, π′), as required. 2

Using Proposition 16, it is straightforward to verify that
Proposition 6, Proposition 7, and Proposition 8 (and thus
Theorem 1) carry over to the modified system.

3.4 Absence of Dangling Pointers
Recall that the relation ϕ |= e expresses that each value

v within e is contained in the set of regions ϕ and regions
bound by letregion constructs in e encapsulating v. Thus,
the relation expresses that if each region within the set ϕ
represents an allocated region, then no dangling pointer ap-
pears in e.

The following theorem states that, for well-typed pro-
grams, dangling pointers are not introduced by an evalu-
ation step:

Theorem 2 (No Dangling Pointers). If ` e : π,ϕ

and ϕ′ |= e and e
ϕ′

7−→ e′ then ϕ′ |= e′.

Proof. By induction on the structure of e. We proceed

by case analysis on the derivation e
ϕ′

7−→ e′.
Case e = #1 (v1, v2) in ρ. We have e′ = v1. From (38)

and (33), we have ϕ′ |= v1, as required.
Case e = (λx.e0 in ρ) v. We have e′ = e0[v/x]. From

(41) and (32), we have ϕ′ |= e0 and ϕ′ |= v. By applying
Proposition 11, we have ϕ′ |= e′, as required.

Case e = letregion ρ in v. We have e′ = v. From
assumptions, (13), and Proposition 2, we have ` v : π, ∅
and ρ 6∈ frv(π). From Proposition 15, we have frv(π) |= v.
Moreover, from (43) and assumptions, we have ϕ′∪{ρ} |= v,
thus, we can apply Proposition 12 to get frv(π)∩(ϕ′∪{ρ}) |=
v. Because ρ 6∈ frv(π), we have frv(π) ∩ ϕ′ |= v. From
Proposition 10, we can now conclude ϕ′ |= v, as required.

Case e = Eϕ′′ [e1], where Eϕ′′ 6= [·]. We have e′ = Eϕ′′ [e2]

and e1
ϕ′∪ϕ′′

7−→ e2 and ϕ′ ∩ ϕ′′ = ∅. From Proposition 6, we
have there exists π′ such that ` e1 : π′, ϕ′ ∪ ϕ′′. From
assumptions and Proposition 13, we have ϕ′ ∪ ϕ′′ |= e1. We
can now apply the induction hypothesis to get ϕ′∪ϕ′′ |= e2.
Now, from Proposition 14, we have ϕ′ |= e′, as required.

2

We define an expression to be value-free if it contains no
values. When combined with properties of type preservation
(Proposition 7) and progress (Proposition 8), Theorem 2
guarantees that no dangling pointers are introduced during
evaluation of well-typed value-free programs.

4. REGION CONSISTENCY
In this section, we refine the containment relation to prove

that evaluation does not introduce values in regions that are
not present on the region stack, represented by the evalua-
tion context.



In the syntactic approaches to proving type soundness for
the region calculus [5, 2, 3], it is possible to write programs
that type check, but for which regions may not be allocated
in a stack-like manner. This problem also appears in the
region calculus presented in the previous sections. Consider
the following program:

e ≡ ( letregion ρ in

#1(3 in ρ0, 4 in ρ) in ρ,
letregion ρ′ in

#1(5 in ρ0, 6 in ρ′) in ρ′

(52)

) at ρ0

With the use of the typing rules in Section 2.3, we can con-
clude ` e : ((int, ρ0) × (int, ρ0), ρ0), {ρ0}. Moreover, the
evaluation rules in Section 2.5 allow us to conclude that e
evaluates to the value (3 in ρ0, 5 in ρ0) in ρ0 in four steps.
If regions were to be allocated in a stack-like manner, only
one of the regions ρ and ρ′ could be allocated at the same
time, which contradicts the fact that e contains values in
both ρ and ρ′. (The example carries over to the store-based
small-step operational semantics considered in [3].)

By refining the notion of containment, Theorem 2 can
be refined to disallow allocation in regions that are neither
global nor present on the region stack, represented by the
evaluation context. Thus, starting with a well-typed value-
free program, evaluation introduces no dangling pointers
and allows for regions to be allocated and deallocated in
a stack-like manner.

4.1 Refinement of Containment
We refine the notion of containment to include two dif-

ferent relations ϕ |=v e and ϕ |=c e of which the former
expresses that all values in e are contained in regions in ϕ.
The latter relation expresses that when e can be written on
the form Eϕ′ [e′], values in e′ may be contained in regions in
the set ϕ∪ϕ′, where ϕ′ are regions on the stack represented
by the evaluation context Eϕ′ .

The relation ϕ |=v e is defined similarly to the relation
ϕ |= e from Section 3.1, except that the rule for expressions
of the form letregion ρ in e′ does not add ρ to the set of
allocated regions when considering e′:

ϕ |=v e

...
rules (30) to (42) with |=v substituted for |=

...

ρ 6∈ ϕ ϕ |=v e

ϕ |=v letregion ρ in e
(53)

The definition of the relation ϕ |=c e closely follows the
definition of evaluation contexts:

ϕ |=c e

ϕ |=c x (54)

ϕ |=v v

ϕ |=c v
(55)

ρ 6∈ ϕ ϕ ∪ {ρ} |=c e

ϕ |=c letregion ρ in e
(56)

ϕ |=c e ϕ |=v e′

ϕ |=c e e′
(57)

ϕ |=v v ϕ |=c e

ϕ |=c v e
(58)

ϕ |=c e

ϕ |=c e [~ρ] at ρ
(59)

ϕ |=c e ϕ |=v e′

ϕ |=c let x = e in e′
(60)

ϕ |=c e ϕ |=v e′

ϕ |=c (e, e
′) at ρ

(61)

ϕ |=v v ϕ |=c e

ϕ |=c (v, e) at ρ
(62)

ϕ |=c e

ϕ |=c #i e
(63)

ϕ |=c d at ρ (64)

ϕ |=v e

ϕ |=c λx.e at ρ
(65)

ϕ |=v e

ϕ |=c fix f [~ρ] x = e at ρ
(66)

The following property relates the two containment rela-
tions:

Proposition 17 (Containment Weakening).
If ϕ |=v e then ϕ |=c e.

Proof By induction on the structure of e. 2

Notice that, for the expression e defined by equation (52),
there exists no ϕ such that ϕ |=c e.

The properties presented in Section 3.1 carries over to
the refined definition of containment. Again, the first four
properties may be proved by induction on the structure of e,
whereas the last two properties may be proved by induction
on the structure of Eϕ′ .

Proposition 18 (Containment Substitution).
If ϕ |=v e then S(ϕ) |=v S(e). If ϕ |=c e then S(ϕ) |=c S(e).

Proposition 19 (Containment Extension).
If ϕ |=v e and ϕ′ ⊇ ϕ then ϕ′ |=v e.
If ϕ |=c e and ϕ′ ⊇ ϕ then ϕ′ |=c e.

Proposition 20 (Value Substitution).
If ϕ |=v e and ϕ |=v v then ϕ |=v e[v/x].
If ϕ |=c e and ϕ |=v v then ϕ |=c e[v/x].



Proposition 21 (Containment Intersection).
If ϕ |=v e and ϕ′ |=v e then ϕ ∩ ϕ′ |=v e.
If ϕ |=c e and ϕ′ |=c e then ϕ ∩ ϕ′ |=c e.

Proposition 22 (Context Containment).
If ϕ |=c Eϕ′ [e] then ϕ ∪ ϕ′ |=c e.

Proposition 23 (Context Containment Replace).
If ϕ |=c Eϕ′ [e] and ϕ ∪ ϕ′ |=c e′ then ϕ |=c Eϕ′ [e′].

The definition of the garbage collection safety relation G
(Definition 1) is refined as follows to accommodate for the
refinement of containment:

Definition 2 (GC Safety — Refined).

G(Γ, e, X, π) = ∀y ∈ fpv(e) \ X.frev(Γ(y)) ⊆ frev(π)

and frv(π) |=v e

For the refined system, no other changes are made to the
typing rules and no changes are made to the evaluation
rules. Again, because the garbage collection safety relation
is closed under substitution, Proposition 1 carries over to
the refined system, as well as Proposition 2, Proposition 3,
and Proposition 5.

The value closedness property (Proposition 15) is refined
as follows:

Proposition 24 (Value Closedness — Refined).
If ` v : π, ∅ then frv(π) |=v v.

Proof. By induction on the typing rules for values. The
proof is similar to the proof for Proposition 15. 2

From Proposition 24 and the refined definition of G, it
is straightforward to demonstrate that type preservation
(Proposition 7), progress (Proposition 8), and type safety
(Theorem 1) carry over to the refined system.

The following refined version of Theorem 2 states that, for
well-typed programs, dangling pointers are not introduced
by an evaluation step and no value in the program is allo-
cated in a region that is not present on the region stack,
represented by the evaluation context.

Theorem 3 (No Dangling Pointers — Refined).

If ` e : π,ϕ and ϕ′ |=c e and e
ϕ′

7−→ e′ then ϕ′ |=c e′.

Proof. By induction on the structure of e. We proceed

by case analysis on the derivation e
ϕ′

7−→ e′.
Case e = #1 (v1, v2) in ρ. We have e′ = v1. From

assumptions and from (63) and (62), we have ϕ′ |=v v1.
From (55), we can conclude ϕ′ |=c v1, as required.

Case e = (λx.e0 in ρ) v. We have e′ = e0[v/x]. From
assumptions and from (58) and (55) and from the refined
version of (32), we have ϕ′ |=v e0 and ϕ′ |=v v. By apply-
ing Proposition 20, we have ϕ′ |=v e′. We can now apply
Proposition 17 to get ϕ′ |=c e′, as required.

Case e = letregion ρ in v. We have e′ = v. From
assumptions, (13), and Proposition 2, we have ` v : π, ∅
and ρ 6∈ frv(π). From Proposition 24, we have frv(π) |=v v.
Moreover, from (56) and assumptions, we have ϕ′∪{ρ} |=c v.
Because v is a value, (55) must have been applied, thus, we
have ϕ′ ∪ {ρ} |=v v. We can now apply Proposition 21 to
get frv(π) ∩ (ϕ′ ∪ {ρ}) |=v v. Because ρ 6∈ frv(π), we have

Table 1: The benchmark programs.

Program Lines Description

vliw 3676 VLIW instruction scheduler
logic 346 SML/NJ benchmark program
zebra 302 Solves the Zebra puzzle
tyan 1018 Gröbner Basis calculation
tsp 493 Traveling salesman problem
mpuz 142 Emacs M-x mpuz puzzle
DLX 2836 DLX RISC instruction simulation
ratio 619 Image analysis
lexgen 1318 Lexer generation
mlyacc 7353 Parser generation
simple 1052 Spherical fluid-dynamics program
professor 276 Solves puzzle by exhaustive search
fib35 9 The Fibbonachi micro-benchmark
tak 17 The Tak micro-benchmark
msort 81 Sorting 100,000 integers
kitlife 230 The game of life
kitkb 725 Knuth-Bendix completion

frv(π) ∩ ϕ′ |=v v. From Proposition 19 and from (55), we
can now conclude ϕ′ |=c v, as required.

Case e = Eϕ′′ [e1], where Eϕ′′ 6= [·]. We have e′ = Eϕ′′ [e2]

and e1
ϕ′∪ϕ′′

7−→ e2 and ϕ′ ∩ ϕ′′ = ∅. From Proposition 6,
we have there exists π′ such that ` e1 : π′, ϕ′ ∪ ϕ′′. From
assumptions and Proposition 22, we have ϕ′∪ϕ′′ |=c e1. We
can now apply the induction hypothesis to get ϕ′∪ϕ′′ |=c e2.
Now, from Proposition 23, we have ϕ′ |=c e′, as required.

2

When combined with the properties of type preservation
(Proposition 7) and progress (Proposition 8), Theorem 3
guarantees that no dangling pointers are introduced dur-
ing evaluation of well-typed value-free programs and that
evaluation does not introduce values in regions that are not
present on the region stack, represented by the evaluation
context. As a consequence, allocation and deallocation of
regions indeed follow a stack discipline.

5. MEASUREMENTS
In this section we present measurements demonstrating

that the strengthened typing rules for functions, as pre-
sented in Section 3.2, do not change the result of region in-
ference dramatically. The memory discipline is implemented
for all of Standard ML in the ML Kit compiler [10]. We
present both the number of static region annotation changes
to the generated program caused by the strengthening and
the difference in memory usage between programs compiled
with and without the strengthened typing rules. When the
strengthened rules are used, we also present the memory
usage of the program when region-based memory manage-
ment is combined with a copying reference tracing garbage
collector [4].

The benchmark programs are presented in Table 1 and
span from small micro-benchmarks (fib35, tak, and msort)
to larger programs, such as vliw and mlyacc, that solve
real-world problems. The Lines column shows the size of
each benchmark. None of the benchmark programs, except
msort, kitlife, and kitkb, has been optimized for region
inference. The benchmark programs fib35 and tak use only
the runtime stack for allocation. Benchmark statistics for



Table 2: Benchmark statistics.

Memory usage (bytes)

Program
dangling
pointers

no dangling
pointers

Number
of static

differences
no gc no gc gc

vliw 4320k 4208k 2608k 143
logic 128M 128M 812k 14
zebra 6728k 6660k 620k 16
tyan 199M 197M 2356k 26
tsp 3456k 3456k 6316k 0
mpuz 480k 480k 520k 0
DLX 2916k 2916k 3016k 4
ratio 2736k 2736k 1456k 1
lexgen 19M 19M 3496k 19
mlyacc 4552k 4644k 2860k 93
simple 1204k 1208k 1836k 120
professor 4624k 4592k 564k 5
fib35 436k 436k 452k 0
tak 436k 436k 452k 0
msort 3436k 3436k 4608k 2
kitlife 468k 468k 528k 0
kitkb 1072k 1072k 1188k 26

the different programs are presented in Table 2. The bench-
mark programs are run on a 750Mhz Pentium III Linux box
with 512Mb RAM. Memory usage (resident set size) is mea-
sured in kilobytes using the /proc special file-system under
the Linux operating system. The experiments are performed
with the ML Kit version 4.1.3. The first two columns show
memory usage (resident set size) for the different bench-
mark programs with and without dangling pointers. For
both columns, garbage collection and tagging of values are
disabled. The third column shows memory usage when no
dangling pointers are allowed and garbage collection is en-
abled. The fourth column shows the number of static region
annotation changes to the program enforced by the strength-
ened typing rules.

The numbers demonstrate the following properties:

• Reference tracing garbage collection improves memory
usage for most of those programs that are not opti-
mized for region inference (e.g., logic and lexgen).

• When reference tracing garbage collection is disabled,
there are only two programs out of the 17 benchmarks
(i.e., mlyacc and simple) for which the enforced ab-
sence of dangling pointers increases memory usage.

• Due to the necessity of tagging values, such as reals,
when garbage collection is enabled, memory usage is
higher for some programs when garbage collection is
enabled than when disabled; this behavior is demon-
strated by the tsp benchmark.

6. CONCLUSION AND FUTURE WORK
This paper demonstrates the safety of combining region

inference and reference tracing garbage collection by refining
the region typing rules to guarantee the absence of dangling
pointers during execution of a program.

The paper also demonstrates, experimentally, that the
strengthened region type system has little influence on mem-
ory usage of compiled programs.

There are several directions for future work. First, there
are aspects of the integration of region inference and garbage
collection in the ML Kit that can be improved. In partic-
ular, arranging that garbage collection can be initiated at
arbitrary allocation points—instead of only at function en-
try points—may improve memory usage for some programs.
Also, current research investigates the possibility of com-
bining region inference with a tag-free garbage collection
scheme.
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APPENDIX

A. PROOFS
Proposition 1 (Substitution) If Γ ` e : π, ϕ and S is

a substitution, then S(Γ) ` S(e) : S(π), S(ϕ).

Proof. By induction on the derivation Γ ` e : π,ϕ.
The cases for integers, pairs, projections, and identifiers are
trivial.

Case e = λx.e′ in ρ. From (3), we have Γ ` e : (µ1
ε.ϕ
−→

µ2, ρ), ∅ and Γ + {x : µ1} ` e′ : µ2, ϕ. By induction, we
have S(Γ) + {x : S(µ1)} ` S(e′) : S(µ2), S(ϕ). Let S(ε) =
ε′.ϕ′. From the definition of substitution, we have S(ε.ϕ) =
ε′.(ϕ′ ∪ S(ϕ)). Now, by applying (5), we have S(Γ) + {x :
S(µ1)} ` S(e′) : S(µ2), S(ϕ) ∪ ϕ′. We can now apply (3) to

get S(Γ) ` S(e) : S(µ1
ε.ϕ
−→ µ2), ∅, as required.

Case e = e1 e2. From (10), we have Γ ` e : µ, ϕ0 ∪

ϕ1 ∪ ϕ2 ∪ {ε, ρ} and Γ ` e1 : (µ′ ε.ϕ0−→ µ, ρ), ϕ1 and Γ ` e2 :

µ′, ϕ2. By induction we have S(Γ) ` S(e1) : (S(µ′)
S(ε.ϕ0)
−→

S(µ), S(ρ)), S(ϕ1) and S(Γ) ` S(e2) : S(µ′), S(ϕ2). Let
S(ε) = ε′.ϕ′. It follows from the definition of substitution
that S(ε.ϕ0) = ε′.(ϕ′ ∪ S(ϕ0)). We can now apply (10)
to get S(Γ) ` S(e) : S(µ), S(ϕ0) ∪ ϕ′ ∪ S(ϕ1) ∪ S(ϕ2) ∪
{ε′, S(ρ)}. From the definition of substitution, it follows
that S({ε, ρ}) = {ε′, S(ρ)} ∪ ϕ′, thus, we have S(Γ) ` S(e) :
S(µ), S(ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ε, ρ}), as required.

Case e = letregion ρ in e′. From (13), we have Γ `
e : µ, ϕ \ {ρ} and Γ ` e′ : µ, ϕ and ρ 6∈ frev(Γ, µ). By
induction, we have S(Γ) ` S(e′) : S(µ), S(ϕ). By renaming
of bound names, we can assume ρ 6∈ frev(S(Γ), S(µ)), thus,
we can apply (13), to get S(Γ) ` letregion ρ in S(e′) :
S(µ), S(ϕ) \ {ρ}. Also by renaming of bound names, we
can assume letregion ρ in S(e′) = S(letregion ρ in e′)
and S(ϕ) \ {ρ} = S(ϕ \ {ρ}), thus, we have S(Γ) ` S(e) :
S(µ), S(ϕ \ {ρ}), as required.

Case e = e′ [~ρ] at ρ. From (9), we have Γ ` e′ : (σ, ρ′), ϕ
and σ ≥ τ via ~ρ. By induction, we have S(Γ) ` S(e′) :
(S(σ), S(ρ′)), S(ϕ). Because generalization is closed under
substitution, we have S(σ) ≥ S(τ ) via S(~ρ), thus, from (9),
we can conclude S(Γ) ` S(e) : S(τ, ρ), S(ϕ ∪ {ρ, ρ′}), as
required.

Case Rule (5). We have Γ ` e : π, ϕ and Γ ` e : π, ϕ′ and
ϕ′ ⊇ ϕ. By induction. we have S(Γ) ` S(e) : S(µ), S(ϕ).
From the definition of substitution, it follows that ϕ′ ⊇ ϕ
implies S(ϕ′) ⊇ S(ϕ), thus, we can apply (5) to get S(Γ) `
S(e) : S(µ), S(ϕ′), as required. 2

Proposition 4 (Value Substitution) If Γ + {x : π} `
e : π′, ϕ and ` v : π, ∅ then Γ ` e[v/x] : π′, ϕ.

Proof. By induction on the derivation Γ + {x : π} ` e :
π′, ϕ.

Case e = y. From assumptions and (8), we have Γ +
{x : π} ` y : π′, ϕ and (Γ + {x : π})(y) = π′ and ϕ =
∅. If y 6= x, we have e[v/x] = y, thus, because Γ(y) =
π′, we can conclude from (8) that Γ ` e[v/x] : π′, ϕ, as
required. Otherwise, y = x, thus e[v/x] = v and π = π′.
From assumptions and Proposition 3, we have Γ ` e[v/x] :
π′, ϕ, as required.

Case e = λy.e′ at ρ. From assumptions and (7), we
have Γ + {x : π, y : µ} ` e′ : µ′, ϕ′ and ϕ = {ρ} and

π′ = (µ
ε.ϕ′

−→ µ′, ρ). By renaming of bound variables, we can
assume x 6= y, thus, we can apply the induction hypothesis
to get Γ + {y : µ} ` e′[v/x] : µ′, ϕ′. By applying (7), we
have Γ ` λy.e′[v/x] : π′, ϕ, as required.

The remaining cases follow similarly. 2

Proposition 6 (Unique Decomposition) If ` e : π, ϕ,
then either

1. e is a value; or

2. there exists a unique Eϕ′ , ι, and π′ such that e = Eϕ′ [ι]
and ` ι : π′, ϕ ∪ ϕ′.

Proof. By induction on the structure of e. Suppose e is
not a value. There are 9 cases to consider. We proceed by
case analysis.

Case e = d at ρ. It follows immediately that Eϕ′ = [·],
ι = d at ρ, π′ = π, and ϕ′ = ∅.

Case e = letregion ρ in e1. A derivation ` e : π, ϕ must
end in a use of (13) followed by a number of uses of (5). It
follows that there exists ϕ1 and ϕ2 such that ϕ = ϕ1\{ρ}∪ϕ2

and ρ 6∈ frv(π) and ` e1 : π, ϕ1. By renaming of bound
variables, we can assume ρ 6∈ frv(ϕ2). By induction, either
e1 is a value or there exists a unique E′

ϕ′′ , ι1, and π′
1 such

that e1 = E′
ϕ′′ [ι1] and ` ι1 : π′

1, ϕ1 ∪ ϕ′′. If e1 is not a value

then we take Eϕ′ = letregion ρ in E′
ϕ′′ , ϕ′ = ϕ′′ ∪ {ρ},

ι = ι1, π′ = π′
1, and from (5), we have ` ι1 : π′

1, ϕ ∪ ϕ′,
because ϕ1∪ϕ′′ ⊆ ϕ∪ϕ′. Otherwise, e1 = v1 for some value
v1. Thus, Eϕ′ = [·], ι = letregion ρ in v1, π′ = π, and
ϕ′ = ∅.

Case e = e1 e2. A derivation ` e : π, ϕ must end in a
use of (10), followed by a number of uses of (5). It follows
that there exists µ, ϕ1, ϕ2, µ′, ε, ϕ0, and ϕ3 such that

ϕ = ϕ0∪ϕ1∪ϕ2∪{ε, ρ}∪ϕ3 and ` e1 : (µ
ε.ϕ0−→ µ′, ρ), ϕ1 and

` e2 : µ, ϕ2 and π = µ′. By induction, either e1 is a value
or else there exists E′

ϕ′

1

, ι1, and π′
1 such that e1 = E′

ϕ′

1

[ι1]

and ` ι1 : π′
1, ϕ1 ∪ ϕ′

1. If e1 is not a value, then we take
Eϕ′ = E′

ϕ′

1

e2, ι = ι1, π′ = π′
1, and because ϕ′ = ϕ′

1 and

ϕ1 ⊆ ϕ, we can apply (5) to get ` ι1 : π′
1, ϕ∪ϕ′. Otherwise,

e1 = v1 for some value v1. We can now apply the induction
hypothesis to get that either e2 is a value or else there exists
E′

ϕ′

2

, ι2, and π′
2 such that e2 = E′

ϕ′

2

[ι2] and ` ι2 : π′
2, ϕ2∪ϕ′

2.

If e2 is not a value, then we take Eϕ′ = v1 E′
ϕ′

2

, ι = ι2,

π′ = π′
2, and because ϕ′ = ϕ′

2 and ϕ2 ⊆ ϕ, we can apply
(5) to get ` ι2 : π′

2, ϕ ∪ ϕ′. Otherwise e2 = v2 for some

value v2. Because ` v1 : (µ
ε.ϕ0−→ µ′, ρ), ϕ1, we can apply

Proposition 5 to get v1 = λx.e′ in ρ. Thus, Eϕ′ = [·], ϕ′ = ∅,
ι = (λx.e′ in ρ) v2, and π′ = π.

The remaining cases follow similarly. 2

Proposition 7 (Type Preservation) If ` e : π,ϕ and

e
ϕ

7−→ e′ then ` e′ : π, ϕ.



Proof. By induction on the structure of e. We proceed
by case analysis.

Case e = d at ρ. From assumptions and (6), we have
π = (int, ρ), and ϕ = {ρ}. From (16), we have ρ ∈ ϕ and
e′ = d in ρ. By use of (1) and (5), we have ` e′ : π, ϕ, as
required.

Case e = letregion ρ in v. From assumptions and from
(13), there exists ϕ′ such that ϕ = ϕ′ \ {ρ} and ` v : µ, ϕ′.
It follows from Proposition 2 that ` v : µ, ∅, thus, from
(20) and (5), we have ` e′ : µ, ϕ, as required.

Case e = (λx.e1 in ρ) v. From assumptions, (10), and
(3), there exists µ1, ε, and ϕ0 such that {x : µ1} ` e1 : µ, ϕ0,
` v : µ1, ϕ1, and ϕ = ϕ0 ∪ {ε, ρ}. From Proposition 2,

we have ` v : µ1, ∅. Thus, from Proposition 4, we have
` e1[v/x] : µ, ϕ0. Now, because ϕ ⊇ ϕ0, we can apply (5)

to get ` e′ : µ, ϕ, as required.
Case e = (fix f [~ρ] x = e1 in ρ) [~ρ ′] at ρ′. From

assumptions, (9), and (14), we have π = (τ, ρ′), ϕ = {ρ, ρ′},

v = fix f [~ρ] x = e1 in ρ, σ = ∀~ρ~α~ε.µ1
ε.ϕ0−→ µ2, and

` v : (σ, ρ), ∅ (67)

σ′ = ∀~ε~ρ.µ1
ε.ϕ0−→ µ2 (68)

σ ≥ τ via ~ρ ′ (69)

{f : (σ′, ρ)}, x : µ1} ` e1 : µ2, ϕ0 (70)

From (67), (68), and (14), we have

` v : (σ′, ρ), ∅ (71)

From Proposition 4 and (71) and (70), we have

{x : µ1} ` e1[v/f ] : µ2, ϕ0 (72)

From the definition of generalization and from (69), there
exists a substitution S = ([~ρ ′/~ρ], St, Se) such that

S(µ1
ε.ϕ0−→ µ2) = τ (73)

From (72) and (7), we have

` λx.e1[v/f ] at ρ′ : (µ1
ε.ϕ0−→ µ2, ρ

′), {ρ′} (74)

By renaming of bound names, we can assume S(v) = v and
S(ρ′) = ρ′, thus, from (73), (74), and Proposition 1, we have
λx.e1[~ρ

′/~ρ][v/f ] at ρ′ : (τ, ρ′), {ρ′}. We can now apply (5)
to get ` e′ : π,ϕ, as required.

Case e = #1 (v1, v2). From assumptions, (12), and (2),
we have ` v1 : µ, ∅. We can now apply (5) to get ` v1 :
µ, ϕ, as required.

Case e = Eϕ′ [e′′]. We have e′′
ϕ∪ϕ′

7−→ e′′′ and ϕ ∩ ϕ′ = ∅
and e′ = Eϕ′ [e′′′]. We now proceed by case analysis on the
structure of Eϕ′ .

case Eϕ′ [e′′] = (e′′, e2) at ρ. We have ϕ′ = ∅. From
assumptions and (11) we have ` e′′ : µ1, ϕ1, ` e2 : µ2, ϕ2,
µ = (µ1 × µ2, ρ), and ϕ = ϕ1 ∪ ϕ2 ∪ {ρ}. By applying (5),
we have ` e′′ : µ1, ϕ. We can now apply the induction
hypothesis to get ` e′′′ : µ1, ϕ. By applying (11), we have
` Eϕ′ [e′′′] : µ, ϕ, as required.
case Eϕ′ [e′′] = (v1, e

′′) at ρ. We have ϕ′ = ∅. From
assumptions and (11) we have ` v1 : µ1, ϕ1, ` e′′ : µ2, ϕ2,
µ = (µ1 × µ2, ρ), and ϕ = ϕ1 ∪ ϕ2 ∪ {ρ}. By applying (5),
we have ` e′′ : µ2, ϕ. We can now apply the induction
hypothesis to get ` e′′′ : µ2, ϕ. By applying (11), we have
` Eϕ′ [e′′′] : µ, ϕ, as required.
case Eϕ′ [e′′] = #i e′′, i ∈ {1, 2}. We have ϕ′ = ∅. From

assumptions and (12), we have ` e′′ : (µ1 × µ2, ρ), ϕ′,

µ = µi and ϕ = ϕ′ ∪ {ρ}. By applying (5), we have ` e′′ :
(µ1 × µ2, ρ), ϕ, thus, we can apply the induction hypothesis
to get ` e′′′ : (µ1 ×µ2, ρ), ϕ. We can now apply (12) to get
` Eϕ′ [e′′′] : µ, ϕ, as required.
case Eϕ′ [e′′] = let x = e′′ in e2. We have ϕ′ = ∅. From

assumptions and (15), there exists π such that ` e′′ : π, ϕ1,
{x : π} ` e2 : µ, ϕ2, and ϕ = ϕ1 ∪ϕ2. Applying (5), we have
` e′′ : π, ϕ. By induction, we have ` e′′′ : π, ϕ. We can

now apply (15) to get ` Eϕ′ [e′′′] : µ, ϕ, as required.
case Eϕ′ [e′′] = e′′ e2. From assumptions and (10), there

exists ε, ϕ0, ϕ1, ϕ2, and ρ such that ` e′′ : (µ2
ε.ϕ0−→ µ, ρ), ϕ1,

` e2 : µ2, ϕ2, and ϕ = ϕ0 ∪ ϕ1 ∪ ϕ2 ∪ {ε, ρ}. From (5), we

have ` e′′ : (µ2
ε.ϕ0−→ µ, ρ), ϕ, thus, by induction, we have

` e′′′ : (µ2
ε.ϕ0−→ µ, ρ), ϕ. We can now apply (10) to get

` Eϕ′ [e′′′] : µ, ϕ, as required.
case Eϕ′ [e′′] = v e′′. As above.
case Eϕ′ [e′′] = e′′ [~ρ] at ρ. As above.
case Eϕ′ [e′′] = letregion ρ in e′′. We have ϕ′ = {ρ}.

From assumptions and from (13), there exists ϕ′′ such that
ϕ = ϕ′′ \ {ρ}, and ` e′′ : µ, ϕ′′. From (5), we have ` e′′ :
µ, ϕ∪ϕ′. We can now apply the induction hypothesis to get
` e′′′ : µ, ϕ ∪ ϕ′. Now, because ϕ = (ϕ ∪ ϕ′) \ {ρ}, we can
apply (13) to get ` Eϕ′ [e′′′] : µ, ϕ, as required.

The remaining cases follow similarly. 2

Proposition 8 (Progress) If ` e : π, ϕ then either e

is a value or else there exists some e′ such that e
ϕ

7−→ e′.

Proof. If e is not a value, then by Proposition 6 there
exists a unique Eϕ′ , ι, and π′ such that e = Eϕ′ [ι] and

` ι : π′, ϕ∪ϕ′. We argue that ι
ϕ∪ϕ′

7−→ e2, for some e2, so that

Eϕ′ [ι]
ϕ

7−→ Eϕ′ [e2] follows from (26). We now consider all
cases where ι could possibly be stuck.

Case ι = d at ρ. From (6) and (5), we have ρ ∈ ϕ ∪ ϕ′.
We can now apply (16) to get e2 = d in ρ.

Case ι = (λx.ex in ρ) v. We have ` (λx.ex in ρ) v :
π′, ϕ ∪ ϕ′. This derivation must end in an application of
(10) followed by a number of applications of (5). Thus, by
applying Proposition 2, there exists µ, µ′, ε, and ϕ0 such

that ` λx.ex in ρ : (µ
ε.ϕ0−→ µ′, ρ), ∅ and ` v : µ, ∅ and π′ = µ′

and ϕ0 ∪ {ε, ρ} ⊆ ϕ ∪ ϕ′. Now, because ρ ∈ ϕ ∪ ϕ′, we can
apply (21) to get e2 = ex[v/x].

Case ι = (fix f [~ρ] x = e0 in ρ′) [~ρ′] at ρ. The deriva-
tion ` ι : π′, ϕ∪ϕ′ must end in an application of (9) followed
by a number of applications of (5), thus, using Proposition 2,
there exist σ and τ ′ such that π′ = (τ ′, ρ) and

` fix f [~ρ] x = e0 in ρ′ : (σ, ρ′), ∅ (75)

σ ≥ τ ′ via ~ρ′ (76)

{ρ, ρ′} ⊆ ϕ ∪ ϕ′ (77)

By the definition of generalization and from (76), we have
σ = ∀~ρ~α~ε.τ , for some ~α, ~ε, and τ . Now, because ρ′ ∈
ϕ ∪ ϕ′ follows from (77), we can apply (23) to get e2 =
λx.e0[~ρ

′/~ρ][v/f ] at ρ, where v = fix f [~ρ] x = e0 in ρ′.
Case ι = letregion ρ in v. It follows immediately from

(20) that e2 = v.
The remaining cases follow similarly. 2


