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An important aspect of building robust systems that execute on dedicated hardware and perhaps in constrained

environments is to control and manage the effects performed by program code.

We present ReML, a higher-order statically-typed functional language, which allows programmers to be

explicit about the effects performed by program code and in particular effects related to memory management.

Allowing programmers to be explicit about effects, the regions in which values reside, and the constraints

under which code execute, makes programs robust to changes in the program source code and to compiler

updates, including compiler optimisations.

ReML is integrated with a polymorphic inference system that builds on top of region-inference, as it is

implemented in the MLKit, a Standard ML compiler that uses region-based memory management as its primary

memory management scheme.
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1 INTRODUCTION

Region inference is a memory discipline that aims at inserting instructions for allocating and
deallocating memory in a program at compile time, without relying on collecting or maintaining
liveness information dynamically as is usually the case for dynamic garbage collection techniques
such as reference tracing garbage collection [Tofte and Birkedal 1998; Tofte and Talpin 1997].

To make region inference tractable, memory is organised into a stack of regions, each of which
may grow dynamically (organised in pages). New regions are pushed on top of the region stack
and the top-most region may be popped (thereby freeing the pages) when it is certain that no
values residing in the top-most region will be needed for the remainder of the computation. Each
allocating expression (e.g., pair construction or string concatenation) is annotated with a region
variable and each expression 4 may be translated into an expression of the form letregion d in 4 ,
which follows the semantics that first a region (specified by d) is pushed (on the region stack), then
the expression 4 is evaluated to a value E , perhaps using the region bound to d , and finally, the
region is popped, with E being the result of evaluating the letregion construct. Functions may
be inferred to take regions as arguments, which allows for modular development, meaning that a
function may allocate in and read from regions that are not allocated when the function is defined.
Region inference builds on a region- and effect-based program analysis [Jouvelot and Gifford

1991; Lucassen and Gifford 1988; Talpin and Jouvelot 1994], which at its core tracks the memory
effects (reads and writes) of expressions through an extended notion of types, where, in particular,
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79:2 Martin Elsman

each function type is annotated with a so-called latent effect, a conservative approximation of the
effect of evaluating functions of that type.

Region inference has been implemented for Standard ML in the MLKit compiler [Tofte et al. 2004,
2022] and augmented with reference-tracing garbage collection, which has been proven to be a
viable alternative to purely dynamic garbage collection [Elsman 2023; Hallenberg et al. 2002].

Unfortunately, region inference alone falls short in some cases and it may be difficult for pro-
grammers to understand how to rewrite a program to become region friendly, let alone understand
the memory requirements of a program. Although the MLKit features a region profiler that makes it
possible to learn how regions are used and which allocations in the program contribute to potential
excessive memory use [Hallenberg 1996; Tofte et al. 2022], properties of the program may change
with minor changes to source code (or perhaps to the optimisation passes of the MLKit compiler).

We propose ReML, a Standard ML extension that allows programs to be annotated with informa-
tion about in which region a value resides and the effects a function may have. A non-annotated
Standard ML program is also a ReML program. The programmer may choose to annotate certain
parts (and aspects) of a program while leaving other parts unannotated. Annotations may appear at
allocation points or using type ascriptions. Regions and effects may be introduced through explicit
with declarations or as additional function parameters. ReML will take the annotations seriously
and interact with region inference to ensure that annotations are consistent with the underlying
region-inference typing rules. In case of inconsistencies, errors are reported to the programmer.
Moreover, ReML allows for specifying effect constraints through so-called while-types. Constraints
include inclusion constraints (an effect contains a particular effect), disjunction constraints (two
effects are non-overlapping), and basic constraints (e.g., an effect is empty).
We claim the following contributions:

(1) We present ReML, an ML language with incremental support for annotating programs with
region and effects in a way that is faithful to an underlying region- and effect-based program
analysis. We further devise a model for modular program development with effects that
combines the notion of effect- and region-information in types and expressions with the
notion of effect constraints.

(2) We develop a theoretical basis for effect constraints through a region- and effect-annotated
language with explicit effect constraints and assertions. Based on a type system for the
language and a small-step dynamic semantics, we demonstrate a soundness property for the
language saying that well-typed programs do not get stuck.

(3) We describe how ReML is implemented on top of MLKit, a compiler for Standard ML, which
is based on region- and effect-inference as the primary memory management discipline, and
demonstrate how the underlying region-inference implementation cooperates with syntactic
region- and effect-annotations in ReML.

(4) We give examples of practical programming in ReML and discuss extensions of ReML featuring
exception effects, mutation effects, IO effects, and non-termination, which, together, form
the basis for specifying pure-functions in ReML.

In the next section, we present an example of using effect constraints in ReML. The example
aims at ensuring that a parallel version of Mergesort runs without allocation races. The example
demonstrates the power of using effect constraints in conjunction with an effect inference system,
leaving programmer annotations at a bare minimum, while allowing for modular development of
high-performing code and, at the same time, providing a guarantee that an implementation will
not suffer from allocation races. In Section 3, we present an explicitly region- and effect-annotated
language with support for effect constraints and effect assertions and demonstrate a soundness
result for the language. The language is essentially a region-annotated language based on the typed
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fun pmsort (P:int) nil = nil

| pmsort (P:int) xs =

if P <= 1 then smsort xs

else merge

let val (l,r) = split xs

val Q = P div 2

in par (fn() ⇒ pmsort Q l,

fn() ⇒ pmsort Q r)

end

(a)

fun pmsort [d] (P:int) nil = nil

| pmsort [d] (P:int) xs =

if P <= 1 then smsort [d] xs

else merge [d]

let with d1 d2

val (l,r) = split [d1,d2] xs

val Q = P div 2

in par (fn() ⇒ pmsort [d1] Q l,

fn() ⇒ pmsort [d2] Q r)

end

(b)

Fig. 1. Parallel Mergesort on Lists. Version (a) is without region annotations and version (b) is explicitly

annotated with regions.

lambda-calculus augmented with support for recursive functions featuring type polymorphism and
polymorphism in regions and effects and an assertion construct that halts evaluation unless an
explicit effect constraint is satisfied. The language also features polymorphic recursion in regions
and effects and a letregion construct for local bindings of regions and effects.

In Section 4, we present the syntactic constructs of ReML and show how the constructs interact
with Standard ML syntax. We also give examples of how ReML complains if a program is not
consistent with the region-inference typing rules.

In Section 5, we describe the notion of effect constraints using the notion of while-types. We also
demonstrate the modular properties of working with effect constraints by showing how constraints
from a calling context may be used for establishing the constraints of a called function. In particular,
we continue the example concerning parallelism and demonstrate how the constraints of a low-level
parallel primitive are satisfied by constraints specified by a higher-level construct (two functions
may be evaluated in parallel without using allocation locks if the allocation effects of the two
functions do not intersect).
In Section 6, we discuss aspects of ReML that allow the programmer to reason about other

effects than memory effects, including exceptions, mutable updates, IO, non-termination, non-
determination, and perhaps even user-defined effects. In Section 7, we describe how region and
effects as well as effect constraints and constraint resolution are integrated with region inference.
The section discusses the integration both from a theoretical perspective and from the perspective
of the implementation in the MLKit compiler. Section 8 contains a discussion of a series of larger
examples and gives an overview of the status of ReML and the artifact associated with the paper
[Elsman 2024]. In Section 9, we describe related work and in Section 10, we conclude and discuss
future work.

2 A MOTIVATING EXAMPLE FOR EFFECT CONSTRAINTS

As a first motivating example for effect constraints, consider the version of parallel Mergesort on
lists shown in Figure 1(a).1 The function pmsort takes as argument an integer P approximating the
available parallel resources. When only one processor is available, pmsort reverts to a sequential
version of Mergesort (provided by the function smsort). The function pmsort assumes a function

1We acknowledge that the parallel version of Mergesort shown here is not particularly parallel as a good parallel merge is

difficult to implement with lists. A better Mergesort uses array slices and binary search for parallel merging.
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79:4 Martin Elsman

split:int list → int list * int list, which takes a list and divides it into two approximately
equally sized lists, and a function merge:int list*int list → int list, which, given two sorted
lists, returns a sorted list containing the elements in the two argument lists. The strategy applied
by pmsort is simple; if the argument is non-empty, split the argument into equally sized lists, sort
the lists in parallel, and merge the sorted lists to produce the result. A function for executing code
in parallel is the fork-join style operator par, which, in ReML, has the following type:

val par : (unit #e1→ U) * (unit #e2→ V) : U * V while e1 ## e2

The par function is specified to take a pair of two functions as argument and it returns a pair
holding the result of evaluating the two functions.2 Notice that each of the argument functions is
annotated with a so-called effect variable and that the declaration is annotated with a so-called effect
constraint e1 ## e2, which specifies that the two supplied functions should not have overlapping
put-effects, meaning that they should not allocate into the same regions. In fact, it is critical for
performance that the effect constraint is satisfied. Whereas the underlying runtime system will
protect the allocation pointer in case of a race, a drastic performance penalty will appear if each
thread makes many allocations into the shared region. We seek a lightweight method to ensure
statically that there are no overlapping effects.
To appreciate properly the inferred region-annotated version of the code, which is listed in

Figure 1(b), we first give the region- and effect-annotated types for split and merge, simplified
slightly to serve the example:

val split : ∀dd1d2.(int list ,d)
{get(d ),put(d1 ),put(d2 ) }−−−−−−−−−−−−−−−−−−−−→ (int list ,d1) * (int list ,d2)

val merge : ∀d1d2d.(int list ,d1) * (int list ,d2)
{get(d1 ),get(d2 ),put(d ) }−−−−−−−−−−−−−−−−−−−−→ (int list ,d)

We see that split stores the resulting lists in two potentially different regions, possibly distinct
from the region holding the argument list. Similarly, merge stores the merged list in a potentially
different region from the regions holding the argument lists. Notice that in the region- and effect-
annotated types for split and merge, put(d) indicates the effect of storing into the region d and
get(d) indicates a read from the region d .

Looking now at the inferred region-annotated version of pmsort in Figure 1(b), we first see that
split and merge are passed only the regions into which they allocate (for which there are put effects
in their region-annotated types). We also see that support for region-polymorphic recursion has
made it possible to use local regions (declared using an internal-language with-declaration) for
storing the temporary sorted lists and that the regions into which the temporary lists are stored
are disjoint as seen from the point-of-view of the par function. However, the inferred annotations
provided in Figure 1(b) are fragile to changes in the source code. For instance, if the programmer
provides a merge function that does not return its result in a region distinct from those holding the
arguments, all threads will end up storing the merged lists in the same region. A traditional version
of the function merge will have exactly this problem due to the typing rules for polymorphic type-
and effect-inference:

fun merge (nil ,ys) = ys

| merge (xs,nil) = xs

| merge (x::xs,y::ys) = if x < y then x :: merge(xs,y::ys)

else y :: merge(x::xs,ys)

2The par function is also the means to parallelism in MPL [Westrick et al. 2019], a Standard ML compiler, based on MLton,

and equipped with fork-join style task-parallelism support.
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Here is the region-annotated type of the above problematic version of merge:

val merge : ∀d.(int list ,d) * (int list ,d)
{get(d ),put(d ) }

−−−−−−−−−−−−−→ (int list ,d)

ReML complaints with the following message if the constraint of the par function is violated:

** Error: par is passed two functions with intersecting put effects!

** problematic effects: {put(r175)}

** fun1: {put(r175)}

** fun2: {put(r175)}

A fix is of course to perform a copy when one of the arguments is empty:

fun merge (nil ,ys) = copy ys

| merge (xs,nil) = copy xs

| merge (x::xs,y::ys) = if x < y then x :: merge(xs,y::ys)

else y :: merge(x::xs,ys)

We shall see later, in Section 5.1, that par is not a primitive function in ReML but that the function
is built on top of a more fundamental thread library and that the constraints specified by par are
required to meet the specified constraints of the underlying functionality.
We emphasise here that effect constraints of the form discussed in this section is only part of

what can be expressed with the technique described in this paper. Although the formalisation given
in the next section focuses on providing disjointness guarantees about effect sets, the technique
can be used also to reason about other effects, including exceptions, mutation, IO, and termination,
as we shall discuss in Section 6.

3 FORMALISATION

We shall use d to range over so-called region variables and n to range over so-called effect variables.
An effect (i) is a set of atomic effects ([), each of which can be either an effect variable or a region
variable. Notice that, for the sake of the formalisation, we have simplified the notion of atomic
effects and identified get and put effects. We shall later, in Section 6.1, return to the topic of refining
the notion of atomic effects. Latent effects in the types of functions are of the form n.i . Such
objects are called arrow effects and are central for identifying effects and for defining the notion of
substitution, which is the foundation for unification of region- and effect-annotated types and the
region inference algorithm that we build upon [Tofte and Birkedal 1998, 2000].
A basic constraint (2) takes the form i # i and a constraint set (�) is a set of basic constraints.

When 2 = i # i ′ is a basic constraint, we write swap(2) to denote the basic constraint i ′ # i . We
also write [ # [′ to mean {[} # {[′} when [ and [′ are atomic effects. A basic constraint 2 of the
forms ∅ # i or i # ∅ is called a nil-constraint and we write nil(2) if 2 is a nil-constraint. A basic
constraint 2 = i # i ′ is valid, written ⊢ 2 if i ∩i ′

= ∅. A constraint set� is valid, written ⊢ � , if ⊢ 2
for all 2 ∈ � .
We shall use U to range over so-called type variables. Here are the definitions of atomic effects,

effects, types, and type schemes, which are types parameterised over type variables, effect variables,
and region variables:

g ::= U – type variable
| int – unboxed integer

| (g1
n.i

−−−−→g2, d) – boxed function

[ ::= n | d – atomic effect
i ::= {[1, · · · , [=} – effect
f ::= ∀®U.f | ∀®n ®d.g ⊲� – type scheme
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When g is some type, we shall sometimes implicitly treat it as the type scheme with no quantified
variables and the empty constraint set. Similarly, we shall often implicitly drop empty constraint
sets in type schemes. When f = ∀®U ®n ®d.g ⊲� , we consider ®U , ®n , and ®d to be bound in g and � and, in
general, we consider objects identical up to renaming of bound names. Also, when > is some object,
we write fv > to denote the set of free type variables, free region variables, and free effect variables
in > . We also write frev > to denote the set of free region variables and free effect variables of > .
Finally, we write fev > to denote the free effect variables of > .

3.1 Constraint Entailment

Constraint sets specify evidence that effects are disjoint. They are, in particular, used to reason
about aliasing of region and effect parameters. Thus, when a function is defined, we may specify
that two region parameters never alias. This property must then be established in each calling
context. Moreover, region and effect variables introduced by letregion-constructs never alias other
region and effect variables.
Whenever � is some constraint set, we write � # i to specify the constraint i # i ′, where

i ′
= frev(�). Constraints of this form are established when i denotes an effect set bound by a

letregion construct, which, by definition, introduces regions and effects that are distinct from all
other regions and effects in the context.
At (function) instantiation sites, we need to check that all instantiated constraints are satisfied,

perhaps using constraints established in the calling context. For this purpose, we introduce the
notion of constraint entailment. We first introduce a notion of constraint normalisation. When
2 is some basic constraint i # i ′, we write | |2 | | to denote the normalised basic constraint set

{[ # [′ | [ ∈ i, [′ ∈ i ′}.
We say that a constraint set � entails another constraint set �′, written � |= �′, if the judgment

can be derived by the following rules:

Constraint Entailment � |= �′

� ∪ ||2 | | |= �′

� ∪ {2} |= �′ [E-NormL]

frev � ⊇ frev 2

� |= | |2 | | � |= �′

� |= {2} ∪�′ [E-NormR]
� |= ∅

[E-Emp]

2 ∈ �

⊢ 2 � |= �′

� |= {2} ∪�′ [E-Base]

swap(2) ∈ �

⊢ 2 � |= �′

� |= {2} ∪�′ [E-Swap]

frev � ⊇ frev 2

nil(2) � |= �′

� |= {2} ∪�′ [E-Nil]

Notice that if� |= �′ for some constraint sets� and�′ then�∪�′′ |= �′, for any other constraint
set �′′. We refer to this property as constraint entailment extensibility.

An important property of constraint entailment is that validity is ensured for entailed constraint
sets. That is, if � |= �′ then ⊢ �′, which holds even if � is not valid. It is really the property of
validity that is important for proving soundness (in particular progress) of the dynamic semantics.
The machinery that we define here makes it possible to maintain validity of constraints also when
functions are composed and instantiated in particular contexts.

3.2 Substitutions

A substitution (() is a triple ((r, ( t, (e), where (r is a region substitution, mapping region variables
to region variables, ( t is a type substitution mapping type variables to types, and (e is an effect

substitution, mapping effect variables to arrow effects. The effect of applying a substitution on
an object is to perform the three substitutions simultaneously on the three kinds of variables in
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the object (by renaming of bound variables within the object to avoid capture and by extending
the maps to be the identity outside of their domains). For effects and arrow effects, substitution is
defined as follows [Tofte and Birkedal 2000], assuming ( = ((r, ( t, (e):

( (i) = {(r (d) | d ∈ i} ∪ {[ | ∃n, n′, i ′ s.t. n ∈ i ∧ (e (n) = n′ .i ′ ∧ [ ∈ {n′} ∪ i ′}

( (n.i) = n′ .(i ′ ∪ ( (i)), where (e (n) = n′ .i ′

Substitutions form the basis for unification of region- and effect-annotated types in region
inference and having substitutions map effect variables to arrow effects makes it possible to find
unifiers (unifying substitutions) for two different region- and effect-annotated types with the same
underlying ML types [Tofte and Birkedal 2000]. Whereas it may be possible to specify the region
typing rules using another notion of substitution, we maintain consistency with region inference
by using the same definition of substitution here. Substitutions may be composed (obeying function
composition properties) and the restriction of a substitution ( to some domain # is written ( ↓ # .
Substitutions act as the identity outside of their domains.
In the following, we shall often work with substitutions that are particularly restricted. We

therefore introduce the notation � |= ( •�′ to mean � |= ( (�′) and Dom ( ∩ frev � = ∅.
The following proposition holds:

Proposition 3.1 (Entailment Substitution Closedness). If� ∪�′ |= �′′ and� |= ( •�′ then

� ∪ ( (�′) |= ( (�′′).

Proof. By induction over the derivation of � ∪�′ |= �′′.
Case [E-Base]. We have �′′

= {2} ∪ �′′′ and � ∪ �′ |= �′′′ and 2 ∈ (� ∪ �′) and ⊢ 2 . Now, if
Dom ( ∩ frev 2 = ∅, we have ( (2) ∈ (� ∪ ( (�′)). If Dom ( ∩ frev 2 ≠ ∅, we have 2 ∉ � because
Dom (∩ frev� = ∅. Thus, 2 ∈ �′, from which it follows that ( (2) ∈ (�∪( (�′)) and because ⊢ ( (�′)
follows from the assumptions, we have ⊢ ( (2). By induction, we also have � ∪ ( (�′) |= ( (�′′′). It
follows from [E-Base] that � ∪ ( (�′) |= ( (�′′′ ∪ {2}) and thus � ∪ ( (�′) |= ( (�′′), as required.
Case [E-NormL]. There are two cases. Either 2 ∈ � or 2 ∉ � .
If 2 ∈ � , then Dom ( ∩ frev(2) = ∅. It follows that Dom ( ∩ frev( | |2 | |) = ∅. Let �0 = � \ {2}. We

have (�0 ∪ ||2 | |) ∪�′ |= �′′. From [E-NormL] and assumption, we have �0 ∪ ||2 | | |= ( (�′). We also
have Dom ( ∩ frev(�0 ∪ ||2 | |) = ∅. Now, by induction, we have (� ∪ ||2 | |) ∪ ( (�′) |= ( (�′′). By
[E-NormL], we have (� ∪ {2}) ∪ ( (�′) |= ( (�′′), and thus, � ∪ ( (�′) |= ( (�′′), as required.

If 2 ∉ � , then 2 ∈ �′. Let�′
0 = �′ \{2}. It follows that�′

= �′
0∪{2}. We thus have�∪(�′

0∪{2}) |=
�′′ and� |= ( (�′

0 ∪ {2}). It follows that (� ∪�′
0) ∪ {2} |= �′′ and we can therefore apply [E-NormL]

to get � ∪ (�′
0 ∪ ||2 | |) |= �′′. From � |= ( (�′

0 ∪ {2}), we have � |= ( (�′
0) ∪ {( (2)} and we can

therefore apply [E-NormR] to get� |= ( (�′
0) ∪ ||( (2) | | and thus� |= ( (�′

0∪ ||2 | |). Because we already
have Dom ( ∩ frev � = ∅ from assumptions, we have by induction that � ∪ ( (�′

0 ∪ ||2 | |) |= ( (�′′)
and thus� ∪ ( (�′

0) ∪ ||( (2) | |) |= ( (�′′). From [E-NormL], we have� ∪ ( (�′
0) ∪ {( (2)} |= ( (�′′) and

thus � ∪ ( (�′
0 ∪ {2}) |= ( (�′′). Because �′

= �′
0 ∪ {2}, we have � ∪ ( (�′) |= ( (�′′), as required.

The case for [E-NormR] follows similarly as the case for [E-NormL].
The cases for [E-Emp], [E-Nil], and [E-Swap] are straightforward. □

3.3 Instantiation

Given a constraint set � , we say that a type g instantiates a type scheme f = ∀®U ®n ®d.g ′ ⊲ �′ via a
substitution ( , written � ⊢ f ≥ g via ( , if the following conditions hold:

• ( (g ′) = g

• Dom ( = { ®U ®n ®d}
• � |= ( (�′)
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79:8 Martin Elsman

When we are interested in only the region instance list, we write � ⊢ f ≥ g via ®d ′ to mean, there
exists a substitution ( = (( t, (r, (e) such that � ⊢ f ≥ g via ( and Rng (r = ®d ′.

Notice that the relation requires that ( (�′) can be proven based on the constraints in � . It is this
requirement that ensures that the calling context is compatible with the function requirements.
Instantiation is closed under substitution according to the following proposition:

Proposition 3.2 (Instantiation Closed Under Substitution). If � ∪�′ ⊢ f ≥ g via ( ′ and

� |= ( •�′ then � ∪ ( (�′) ⊢ ( (f) ≥ ( (g) via ( ′′, where ( ′′ = (( ◦ ( ′) ↓ Dom ( ′.

Proof. Follows from the definition of instantiation. We have ⌈1⌉ f = ∀®U ®n ®d.g ′ ⊲�′′, ⌈2⌉ ( ′ (g ′) = g ,
⌈3⌉ Dom ( ′ = { ®U ®n ®d}, and ⌈4⌉ � ∪�′ |= ( ′ (�′′). From assumptions, ⌈4⌉, and Proposition 3.1, we
have ⌈5⌉ � ∪ ( (�′) |= ( (( ′ (�′′)). By U-renaming, we have from ⌈2⌉ and ⌈1⌉ that ⌈6⌉ ( (f) =

∀®U ®n ®d.( (g ′) ⊲ ( (�′′) and ⌈7⌉ ( (( ′ (g ′)) = ( (g). From assumptions, we have ( ′′ = (( ◦ ( ′) ↓ Dom ( ′.
Thus, from U-renaming and from ⌈3⌉, we can assume Dom ( ′ ∩ fv((,�′′) = ∅. It follows that ⌈8⌉
( (( ′ (g ′)) = ( ′′ (( (g ′)) and ⌈9⌉ ( (( ′ (�′′) = ( ′′ (( (�′′)). From ⌈5⌉, ⌈7⌉, ⌈8⌉, and ⌈9⌉, we have ⌈10⌉
� ∪ ( (�′) |= ( ′′ (( (�′′)) and ⌈11⌉ ( ′′ (( (g ′)) = ( (g). We trivially have ⌈12⌉ Dom ( ′′ = { ®U ®n ®d}. Now,
from the definition of instantiation and from ⌈6⌉, ⌈11⌉, ⌈12⌉, and ⌈10⌉, we have� ∪( (�′) |= ( (f) ≥
( (g) via ( ′′, as required. □

Also, based on extensibility of constraint entailment, it it straightforward to show that if � ⊢
f ≥ g via ®d then � ∪�′ ⊢ f ≥ g via ®d , for any �′.

3.4 Expressions

Expressions (4) and values (E) take the following forms:

4 ::= G | E | _G .4 at d | 4 4′ – expressions E ::= 3 | ⟨_G .4⟩d – value
| letregion i in 4 – local effect | ⟨fun 5 : f [®d] G = 4⟩d – function
| assert 2 in 4 – assertion
| let G = 4 in 4′ – binding
| fun 5 : f [®d] G = 4 at d – function
| 4 [®d] 4′ – application

Values include unboxed integers (3), boxed ordinary closures, and boxed recursive function
closures. Whereas a boxed value is annotated with information about in which region the value is
located, the expression counterparts are annotated with information about in which region the
value is stored when the allocating expression is evaluated. An expression can be a value, a variable,
a lambda-expression, a let-expression, a function application, a recursive function expression, or a
recursive function application. The language also includes an expression of the form assert 2 in 4 ,
which, when 2 takes the form {d} # {d ′}, has the effect of testing whether the two regions d and d ′

are indeed different before evaluation proceeds into 4 . If the two regions are identical, evaluation is
stuck. Thus, one purpose of the type system is to guarantee that a well-typed expression is not stuck
due to an assertion. We shall sometimes write assert d # d ′ in 4 to mean assert {d} # {d ′} in 4 .
The purpose of having the assert construct in the formal language is exactly to model operations
such as parallel constructs that require certain constraints to be satisfied.

Notice that recursive function definitions may take regions as arguments and are annotated with
explicit type schemes, which allow for specifying constraint set assertions. By allowing functions
to be annotated with constraint set assertions, function preconditions can be established without a
calling context knowing the internals of a function. At the same time, each function body can be
type-checked in isolation from contexts that apply the function.
In expressions let G = 4′ in 4 and _G .4 at d , the variable G is bound in 4 . In expressions of the

form fun 5 : ∀®U.∀®n ®d.g ⊲ � [®d] G = 4 at d , the variables 5 , ®U , ®n , ®d , and G are bound in 4 . Similarly
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Typing Rules for Values � ⊢ E : f

� ⊢ 3 : int
[TV-Int]

�, {G : g} ⊢ 4 : g ′, i ′

� ⊢ ⟨_G.4⟩d : (g
n.i ′

−−−−→g ′, d)
[TV-Lam]

f = ∀®n ®d.(g
n.i

−−−−→g ′, d) ⊲�′ �′′
= {[ # ∅ | [ ∈ {®n ®d}}

{ ®U ®n ®d} ∩ fv(�, d) = ∅ � ∪�′ ∪�′′, {5 : f, G : g} ⊢ 4 : g ′, i

� ⊢ ⟨fun 5 : ∀®Uf [®d] G = 4⟩d : ∀®Uf
[TV-Fun]

Typing Rules for Expressions �, Γ ⊢ 4 : f, i

� ⊢ E : f

�, Γ ⊢ E : f, ∅
[T-Val]

Γ(G) = f

�, Γ ⊢ G : f, ∅
[T-Var]

i ′ ⊇ i �, Γ ⊢ 4 : f, i

�, Γ ⊢ 4 : f, i ′ [T-Sub]

� ∪ {frev � # i} ∪ {[1 # [2 | [1, [2 ∈ i, [1 ≠ [2}, Γ ⊢ 4 : g, i ′ i ∩ frv(�, Γ, g) = ∅

�, Γ ⊢ letregion i in 4 : g, i ′\i
[T-Reg]

�, Γ ⊢ 4 : f, i
�, Γ + {G : f} ⊢ 4′ : f ′, i ′

�, Γ ⊢ let G = 4 in 4′ : f ′, i ∪ i ′ [T-Let]

�, Γ ⊢ 4 : (g
n.i0−−−−→g ′, d), i

�, Γ ⊢ 4′ : g, i ′

�, Γ ⊢ 4 4′ : g ′, {d, n} ∪ i0 ∪ i ∪ i ′ [T-App]

�, Γ ⊢ 4 : g, i � |= {2}

�, Γ ⊢ assert 2 in 4 : g, i ∪ frev(2)
[T-As]

�, Γ + {G : g} ⊢ 4 : g ′, i ′

�, Γ ⊢ _G.4 at d : (g
n.i ′

−−−−→g ′, d), {d}
[T-Lam]

f = ∀®n ®d.(g
n.i

−−−−→g ′, d) ⊲�′ �′′
= {[ # ∅ | [ ∈ {®n ®d}}

{ ®U ®n ®d} ∩ fv(�, Γ, d) = ∅ � ∪�′ ∪�′′, Γ + {5 : f, G : g} ⊢ 4 : g ′, i

�, Γ ⊢ fun 5 : ∀®Uf [®d] G = 4 at d : ∀®Uf, {d}
[T-Fun]

�, Γ ⊢ 4 : f, i �, Γ ⊢ 4′ : g, i ′ � ⊢ f ≥ (g
n.i0−−−−→g ′, d) via ®d

�, Γ ⊢ 4 [®d] 4′ : g ′, {d, n} ∪ i0 ∪ i ∪ i ′ [T-FunApp]

Fig. 2. Effect Typing Rules for Values and Expressions.

for values. In expressions letregion { ®d ®n} in 4 , the variables ®d and ®n are bound in 4 . We consider
expressions identical up to renaming of bound names.

3.5 Typing Rules

Environments (Γ) map program variables to type schemes. When Γ and Γ
′ are environments, we

write Γ+Γ′ to denote the environment with domain Dom Γ∪Dom Γ
′ and values (Γ+Γ′) (G) = Γ(G)

if G ∈ Dom Γ and (Γ + Γ
′) (G) = Γ

′ (G) if G ∉ Dom Γ.
The typing rules for values and expressions are mutually dependent and are given in Figure 2.

The typing rules for values allow inference of sentences of the form ⊢ E : f , stating that “the value
E has type scheme f”. The typing rules for expressions allow inference of sentences of the form
�, Γ ⊢ 4 : f, i , which states that “under the constraint set � and in the type environment Γ, the
expression 4 has type scheme f and effect i .
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There are several aspects to note about the typing rules. First, in the typing rules for functions, the
latent effect of functions are annotated as arrow effects on the arrows. We see here the importance
of arrow effects, which allows us to identify effects comprised of other effects.3 Second, both the
value and expression rules for recursive functions allow for polymorphic recursion in regions
and effects, whereas polymorphic recursion in types is not supported. Third, in the typing rule
for letregion, we assert that created local regions (and effects) are distinct from all other region
and effect variables. Fourth, the typing rule for assert expressions requires that the asserted basic
constraint is entailed by the constraint set provided by the context. Recall here that the constraint
entailment also provides a guarantee that the constraint is valid. Also, constraint entailment ensures
that the region and effect variables occurring in the involved constrained sets in assert expressions
are free in the constraint set provided by the context. In particular, the rules [TV-Fun] and [T-Fun]
introduce nil-constraints in the typing judgments for the body of the recursive function, which make
the abstracted region and effect variables available for assertions (the assert construct requires
involved variables to occur free in the contextual constraint set). Another observation is that free
region- and effect-variables occurring in an asserted basic constraint in the assert construct are
added to the effect set of the assert expression, which ensures that the involved regions and effects
are not being discharged prematurely by invocation of the letregion evaluation rule. Finally, the
typing rule for recursive function calls requires that such function calls are fully applied, which
models that recursive function calls need not lead to intermediate closures; instead, both region
arguments and the value argument can be provided in registers (or in a stack frame).

3.6 Typing Properties

The typing rules possess some important properties that we shall emphasise. First, the typing rules
are closed under environment and constraint extensibility:

Proposition 3.3 (Environment and Constraint Extensibility). If �, Γ ⊢ 4 : c, i then

�′ ∪�, Γ′ + Γ ⊢ 4 : f, i for any �′ and Γ
′.

Proof. By straightforward induction on the derivation of �, Γ ⊢ 4 : f, i using the property of
constraint entailment extensibility. □

The typing rules are also closed under value substitution:

Proposition 3.4 (Value Substitution). If �, Γ + {G : f} ⊢ 4 : f ′, i and � ⊢ E : f then

�, Γ ⊢ 4 [E/G] : f ′, i .

Proof. By induction on the derivation of �, Γ + {G : f} ⊢ 4 : f ′, i . □

Finally, the typing rules are also closed under well-constrained substitution, which is demon-
strated by induction on the typing derivation:

Proposition 3.5 (Typing Closed Under Substitution). If � ∪�′, Γ ⊢ 4 : f, i and � |= ( •�′

then � ∪ ( (�′), ( (Γ) ⊢ ( (4) : ( (f), ( (i).

Proof. By induction on the derivation of � ∪�′, Γ ⊢ 4 : f, i . The proof makes essential use of
Proposition 3.2 for the case of recursive function application and essential use of Proposition 3.1
for the case of assertions. □

3If we had instead annotated arrows with effects of the form {n,i }, given two such effects, {n,i } and {n′, i ′ }, we would

not be able to come up with a unifier (i.e., a substitution) that would uniquely identify the two effects as other effect variables

could appear in i and i ′ .
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Allocation and Deallocation 4
i

↩−−→ E

_G .4 at d
{d }∪i

↩−−−−−−→ ⟨_G.4⟩d

fun 5 : f [®d] G = 4 at d
{d }∪i

↩−−−−−−→ ⟨fun 5 : f [®d] G = 4⟩d

letregion i ′ in E
i

↩−−→ E

Reduction and Context 4
i

↩−−→ 4′

⟨_G .4⟩d E
{d }∪i

↩−−−−−−→ 4 [E/G]

⟨fun 5 : f [®d] G = 4⟩d [®d ′] E
{d }∪i

↩−−−−−−→ 4 [ ®d ′/®d] [E/G] [⟨fun 5 : f [®d] G = 4⟩d/5 ]

let G = E in 4
i

↩−−→ 4 [E/G]

assert i ′ # i ′′ in 4
i

↩−−→ 4 (i ′ ∩ i ′′
= ∅)

�i [4]
i ′

↩−−−→ �i [4
′] if 4

i∪i ′

↩−−−−−→ 4′ and �i ≠ [.] and i ∩ i ′
= ∅ [Ctx]

Fig. 3. Dynamic semantics for region-annotated programs.

3.7 Dynamic Semantics

To give a dynamic semantics for the region-annotated language, we first define the grammar for
redexes (A ) and evaluation contexts (�i ):

A ::= letregion i in E | assert 2 in 4

| let G = E in 4 | ⟨_G .4⟩d E | ⟨fun 5 : f [®d] G = 4⟩d [®d ′] E
| _G .4 at d | fun 5 : f [®d] G = 4 at d

�i ::= [.]
| letregion i ′′ in �i ′ (i = i ′′ ∪ i ′)
| let G = �i in 4 | �i 4 | E �i
| �i [®d] 4 | E [®d] �i

Evaluation contexts �i make explicit, through i , the region and effect variables bound to regions
and effects in encapsulating letregion constructs. When �i is an evaluation context and 4 is an
expression, we write �i [4] to denote the expression formed by filling the hole [.] in the context �i
with the expression 4 .

The evaluation rules are given in Figure 3 and consist of allocation and deallocation rules, reduction

rules, and a context rule. The rules are of the form 4
i

↩−−→ 4′, which says that, given a set of allocated
regions i , the expression 4 reduces to the expression 4′ in one step. Notice the reduction rule for
letregion constructs, which puts no constraints on which regions are deallocated. In contrast, the
reduction rule for assert is instrumented with the requirements that the two involved constrained
effect sets are disjoint.

We further define the evaluation relation
i

↩−→∗ as the least relation formed by the reflexive

transitive closure of the relation
i

↩−−→. We further define 4 ⇓i E to mean 4
i

↩−→∗ E , and 4 ⇑i to mean

that there exists an infinite sequence, 4
i

↩−−→ 41
i

↩−−→ 42
i

↩−−→ · · · .

3.8 Type Safety

The proof of type safety is based on well-known techniques for proving type safety for statically
typed languages [Morrisett 1995; Wright and Felleisen 1994].
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Awell-typed expression is either a value or it can be expressed as the composition of an evaluation
context and a redex.

Proposition 3.6 (Uniqe Decomposition). If � ⊢ 4 : f, i , then either (1) 4 is a value, or (2) there

exist a unique �i ′ , 4′, and f ′ such that 4 = �i ′ [4′] and � ⊢ 4′ : f ′, i ∪ i ′ and 4′ is a redex.

Proof. By induction on the structure of 4 . □

A type preservation property (i.e., subject reduction) for the language, as well as progress and
type soundness, can be stated as follows:

Proposition 3.7 (Type Preservation). If � ⊢ 4 : f, i and 4
i

↩−−→ 4′ then � ⊢ 4′ : f, i .

Proof. By induction on the derivation 4
i

↩−−→ 4′. The most involved cases include the case for
contextual evaluation (i.e., [Ctx]), which proceeds by case analysis on the structure of contexts,
and the case for recursive function application.
Case 4 = ⟨fun 5 : f ′ [®d] G = 4⟩d [®d ′] E . We have 4′ = 4 [ ®d ′/®d] [E/G] [⟨fun 5 : f ′ [®d] G = 4⟩d/5 ]

and d ∈ i . The desired result is established using Proposition 3.4 and Proposition 3.5.
The remaining cases are straightforward. □

Proposition 3.8 (Progress). If � ⊢ 4 : f, i then either 4 is a value or 4
i

↩−−→ 4′, for some 4′.

Proof. If 4 is not a value, then by Proposition 3.6 there exist a unique �i ′ , A , and f ′ such that

4 = �i ′ [A ] and � ⊢ A : f ′, i ∪ i ′. The remainder of the proof argues that A
i∪i ′

↩−−−−−→ 42, for some 42,

so that �i ′ [A ]
i

↩−−→�i ′ [42] follows from [Ctx] in Figure 3. We proceed by case analysis.
Case A = letregion i ′ in E , for some i ′ and some E . We have immediately, from the region

reduction rule, that 42 = E .
Case A = assert 2 in 4′′, for some 2 and 4′′. From the typing rule for assertions, we have� |= {2}

and thus ⊢ 2 holds. We know 2 = i ′ # i ′′, for some i ′ and i ′′, and because ⊢ 2 holds, it follows
directly that i ′ ∩ i ′′

= ∅. We can now apply the reduction rule for assertions to get 42 = 4′′.
The remaining rules follow trivially. □

Theorem 3.9 (Type Soundness). If ⊢ 4 : f, i , then either 4 ⇑i or 4 ⇓i E and ⊢ E : f, i , for some E .

Proof. By induction on the length of the evaluation sequence, applying Proposition 3.7 and
Proposition 3.8. □

4 SYNTACTIC CONSTRUCTS

As mentioned earlier, a Standard ML program is also a ReML program. ReML introduces new
name spaces for explicit region variables and explicit effect variables. Besides the top-level region
variables r0top, r0pair, r0triple, r0ref, r0array, and r0string and the top-level effect variable
e0, new explicit region and effect variables may be introduced using with declarations (in which
variables prefixed with an e are deemed to be effect variables). Here is an example function that
declares a local region r for storing a temporary pair, followed by a projection of the first element:

fun f () : int = let with r

val x = (3,5)`r

in #1 x

end
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Notice how the pair is annotated with an explicit region-annotation, specifying that the pair should
be stored in the local region r. As an alternative, we may choose that the pair should be stored in
the global region r0pair:

fun g () : int = let val x = (3,5)`r0pair

in #1 x

end

Either way, ReML decides that the programs are well-typed according to the region-inference
typing rules, albeit the latter function g will leak a pair whenever the function is called, a property,
which (we shall see) is captured in the effect of the function.

An alternative to annotating allocating expressions with region information, a ReML programmer
may use region-annotated type ascriptions to enforce values to be stored in particular regions:

fun h () : int = let val x : (int * int)`r0pair = (3,5)

in #1 x

end

In general, ReML will happily optimise (i.e., simplify) the program [Elsman and Hallenberg 1995],
but if optimisations are disabled, we can get ReML to print the internal representation of h:

fun h at r0top [] (v86) =

let val x = (3, 5)at r0pair

with r15:1

in (fn at r15 v90 ⇒ let val v91 = #1 v90

in v91

end) x

end

One aspect to notice is that an internal region analysis [Birkedal et al. 1996] has determined that
the region r15 takes up only one word of memory (for storing the code pointer of the closure),
which means that r15 will be allocated in the function frame of h. We shall later in Section 6 discuss
extensions that make it possible to specify such properties directly as programmer annotations.
Instead of storing values in local or global regions, a function may store values in regions that

are passed as parameters to the function. As a simple example, here is a function that takes an
integer as argument and creates a list of integers:

fun down `r (n:int) : int list `r = (* down n = [n,...,2,1] *)

case n of

0 ⇒ nil

| _ ⇒ n :: down (n-1)

When calling the function, the programmer may choose to be explicit about region parameters or
rely on region inference to do its best (as in the recursive call to down above). Assuming a function
first:int list→int, returning ~1 (negative one) if the argument list is empty, here is an example
call to down, followed by a call to first:

val x = let with r

in first (down `r 5)

end
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Here, ReML has inferred that it is safe to deallocate the local region r after extracting the first
element of the list.

4.1 Exomorphisms and Endomorphisms

An exomorphic function is a function that stores its result in regions different from those containing
the arguments. Here is an example exomorphic function:

fun copy `[r1 r2] (xs : U list `r1) : U list `r2 =

case xs of

nil ⇒ nil

| x :: xs ⇒ x :: copy xs (* If we forget copy , ReML complains! *)

Here we have specified that copy receives its argument in r1 and returns a list in r2. If we had
forgotten to copy xs in the last line, ReML complains with an error message:

copylist.sml , line 4, column 9:

fun copy `[r1 r2] (xs : U list `r1) : U list `r2 =

^^^^^^^^

Cannot unify the explicit region variables `r1 and `r2

An endomorphic function, on the other hand, is a function that stores its result in the same regions
as its arguments. A good example is the infix append-function @, which is defined as follows:

fun op @ `[r1 r2] (xs : U list `r1, ys: U list `r2) : U list `r2 =

case xs of

nil ⇒ ys

| x :: xs ⇒ x :: (xs @ ys)

Notice that the first argument list is allowed to reside in a different region than the second argument
and that the result is stored in the same region as the second argument. If we want to make sure
that the result is stored into a region different from the second argument, the programmer may
first copy the second argument:

fun copyappend `[r1 r2 r3] (xs:U list `r1,ys:U list `r2) : U list `r3 =

xs @ (copy ys)

It is an important design choice that explicit region variables are never unified, which gives us
modular properties about functions that are explicitly annotated. Notice, however, that a calling
context may pass the same region for different formal explicit region parameters. We shall see later,
in Section 5, that ReML allows for expressing that two arguments reside in different regions.

4.2 Specifying Effects

ReML distinguishes between explicit region variables and explicit effect variables, both of which
may be declared using with declarations and as parameters to functions (using the ` notation).
Here is an example of a type ascription that refers to an explicit effect variable:

val x = let with e

val f : int #e→ int = fn x ⇒ x+8

in f 3

end
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Whereas explicit effect variables are often not useful in their own right, they are important for
expressing constraints through the use of while-types, as we shall see in Section 5.

5 EFFECT CONSTRAINTS

Effect constraints, which is a novel concept in ReML, are expressed using so-called while-types,
which are types annotated with the while keyword, followed by an effect constraint. ReML supports
effect constraints on the forms 41 ## 42 and 41 # 42, where 41 and 42 are effects. An effect in ReML
is either an effect variable or a set of atomic effects. An atomic effect takes one of the forms
get r, put r, or e, where r is an explicit region variable and e is an explicit effect variable (in the
formalisation in Section 3, atomic effects of the forms put r and get r are conflated as the atomic
effect d). Multiple constraints may be specified using nested while-types.
Constraints of the form 41 ## 42 express that 41 and 42 contain no intersecting put-effects.

Constraints of the form 41 # 42 express that the set of explicit region and effect variables of 41 and
42 are disjoint.

5.1 Unlocking Parallelism

In recent work, a fork-join parallel construct has been added to the MLKit [Elsman and Henriksen
2023]. In essence, the fork-join functionality is expressed through the following interface:

structure Thread : sig

type U t

val spawn : (unit→U) → (U t→V) → V

val get : U t → U

end

Here, the spawn function takes two functions as arguments. In a call spawn f g, the function f is
evaluated in parallel with g, which may use the get functionality to join the thread executing f.
A particular problem that the spawn interface exposes is that there are no guarantees that the

allocation effect of evaluating f does not intersect with the allocation effect of evaluating g. In
particular, the two threads may each attempt to modify a shared allocation pointer, causing a
race-condition, unless a mutual exclusion lock (i.e., a mutex) is used for controlling access to the
shared resource.

Whereas the overhead of potential race-conditions may be mitigated with a so-called protection
inference [Elsman and Henriksen 2023], in ReML, we can express that the allocation effects of the
two threads are disjoint, using while-types, as is also demonstrated in Section 2:

val spawn : (unit #e1→ U) → (U t #e2→ V) → V

while e1 ## e2

Here the effect variables e1 and e2 are implicitly quantified in function specifications. While while

-types allow for expressing effect constraints of the kind shown for spawn, it now becomes the
obligation of the caller to establish that the effects of the two provided functions do not have
intersecting allocation effects. In particular, instantiating spawn in some context must obey the
while-type constraint, which may require evidence obtained from other while-type constraints.

Here is how to implement MPL’s par function:

fun par (f: unit #e1→ U) (g: unit #e2→ V) : U * V while e1 ## e2 =

spawn g (fn t ⇒ (f(),get t))
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6 EXTENDING THE NOTIONS OF EFFECTS

Although ReML provides general support for managing effects through its type- and effect-system,
each type of effect must be added to ReML case-by-case. ReML currently supports effects that are
related to memory allocation and memory use through the notion of put and get effects, but the
foundation supports other kinds of effects and refinements of memory effects, as we shall discuss
in detail below.

6.1 Refinement of Memory Effects

Allowing programmers to reason about mutable updates at the type level provides a good foundation
for reasoning about local state. We refine atomic effects and effect constraints as follows:

[ ::= n | put d | get d | mut d

2 ::= i # i ′ | i ## i ′ | noput i | nomut i

Notice that the letregion construct (with declaration in ReML) acts as a handler for mutation
effects in a local region. Thus, local mutable state is supported and mutation cannot be observed if
the region holding the mutable data is local to the function.

In practice, here are the types for reference construction, dereference, and assignment, without
showing auxiliary region and effect variables:

val ref : U
{put(d ) }

−−−−−−−−→ (U ref , d)

val op := : (U ref ,d) * U
{get(d ),mut(d ) }

−−−−−−−−−−−−−→ unit

val ! : (U ref , d)
{get(d ) }

−−−−−−−−→ U

We see that the latent effect specified for mutable update (:=) includes a mut(d) effect. As for
reference updates, the type for array update (Array.update) contains a mut effect on the region
containing the array.
Notice also the support for effect constraints on the form noput(n) and nomut(n), which allow

for specifying that a function does not allocate in non-local regions and that a function makes no
mutations in non-local data structures. Moreover, with the refinement of atomic effects, it is natural
to include a basic constraint i ## i ′, which specifies that put effects in i and i ′ do not intersect.
For the formalisation, we extend the notion of what constitutes a valid basic constraint (i.e., the
relation ⊢ 2):

Basic Constraint Validity for Refined Memory Effects ⊢ 2

�d.mut d ∈ i

⊢ nomut i

�d.put d ∈ i

⊢ noput i

�d.put d ∈ (i ∩ i ′)

⊢ i ## i ′

frev i ∩ frev i ′
= ∅

⊢ i # i ′

We further refine the notion of normalisation to contain also definitions for the new cases. Thus,
we have, for instance, | |nomut i | | = {nomut {[} | [ ∈ fev i ∨ ∃d.[ = mut d ∧ [ ∈ i}.

It is important to notice here that validity of a basic constraint is not a sufficient property for the
basic constraint to be satisfied. In order for a basic constraint to be satisfied, it must be entailed by
the constraint set specified in the context of a particular call site, which may include precondition
constraints for effect variables, for instance, that have not yet been instantiated.
A further possibility would be to allow the programmer to be explicit about whether a region

should be allocated directly on the stack, which it can be if it can be determined statically that
only one value will ever reside in the region and that the maximum size of that value can be
determined statically [Birkedal et al. 1996]. Constraining function to allocate only on the stack
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may be a desirable property of a function and it may be desirable for a programmer to specify and
reason about such a property.

6.2 Exceptions

Extending the effect language to allow also for specifying possibly uncaught exceptions [Fahndrich
et al. 1998; Pessaux and Leroy 1999] fit naturally in ReML. Special care must be taken to deal
properly with the generative nature of exceptions in Standard ML (and ReML), however.4 A key
benefit in ReML from integrating region inference and exception inference is that exceptions that
can be inferred to live locally may be allocated in local regions. Currently, exceptions that carry
payloads are allocated in global regions to ensure that exception-carried values are still allocated at
potential handler-sites.
In the following, we use = to range over exception names. For extending the ReML formalism

with support for exceptions (that do not take payloads), we first extend the language with support
for raising exceptions and for handling exceptions, as well as typing rules for specifying the typing
and effect properties for the new constructs. For simplicity, we assume that the construct for raising
an exception takes an exception name as argument and that the handling construct has only one
branch for handling a particular exception:

�, Γ ⊢ raise = : g, {exn(=)}

�, Γ ⊢ 4 : g, i �, Γ ⊢ 4′ : g, i ′

�, Γ ⊢ 4 handle = ⇒ 4′ : g, (i \ {exn(=)}) ∪ i ′

The dynamic semantics is extended to allow for an expression to evaluate to an exception and
particular context rules are added for formally defining the propagation of raised exceptions (we
shall not give the rules here).
We then refine the notion of atomic effects and basic constraints as follows:

[ ::= . . . | exn =

2 ::= . . . | noexn i

We further extend the notion of what constitutes a valid basic constraint (i.e., the relation ⊢ 2), as
we did for the refined memory effects:

Basic Constraint Validity for Exceptions ⊢ 2

�=.exn = ∈ i

⊢ noexn i

Finally, we further refine the notion of normalisation to contain also a definition for the new case.
Thus, we have | |noexn i | | = {noexn {[} | [ ∈ fev i ∨ ∃=.[ = exn = ∧ [ ∈ i}.

Notice that for normalisation, we eliminate only those atomic effects that may not result in
invalid constraints.

6.3 Exotic Effects

Other relevant effects that may be modeled in ReML include non-termination, non-determinism,
and IO effects.
For IO effects, we can simply add an atomic effect io and enrich each library function that

perform IO by adding the io atomic effect to the latent effect of the function type. Such effects will
have no natural handler but can be used to reason about whether a function is pure, for instance,
in conjunction with a basic effect constraint on the form noio i .

4The notion of generative exceptions allows exceptions to be declared with type variables that are bound at higher levels.

For soundness, a new “dynamic name” is generated whenever an exception is declared and it is thus not always known

statically at exception-handler sites which exception is handled.
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For reasoning about non-termination, we may add an atomic effect rec to the language along
with a basic effect constraint on the form norec i . In this way, we can reason about termination in
a structural way, which may also be used to determine that a function as pure, which, again, can be
used by a compiler optimiser pass. By further distinguishing between recursive and tail-recursive
function calls (refine atomic effects of the form rec into the atomic effects trec and rec), we may add
support in ReML for giving guarantees that a function runs in bounded space (no heap allocation
and no stack allocation). Again, as for io effects, termination and boundedness effects will have no
natural handler.

There are quite a few other possibilities. For instance, ATS [Chen and Xi 2005] makes it possible
to distinguish between functions that are represented as closures (which have a non-empty en-
vironment) and functions that need no environment. We can model such properties with atomic
effects specifying whether the function will read from a closure or not when evaluated.
It would be interesting to explore useful predicates over effects, including a purity predicate, a

non-allocation predicate, and an idempotence predicate. Such predicates could potentially be used
for implementing optimisations in the backend part of ReML.
One limitation of the ReML effect system is that it does not support reasoning about linear or

affine use of resources, as effects are really modeled as sets of atomic effects and because a function
can be annotated with any arbitrary effect (meaning that the function could potentially have this
effect). While this restriction is well suited for inference and typing, a possibility for future work
would be to support effects that have more substructural properties.

7 INTEGRATION OF REGION INFERENCE AND CONSTRAINT RESOLUTION

Formally, region inference can be presented as a substitution-based type-inference algorithm, based
on Hindley-Milner’s algorithm W and augmented with a mechanism for discharging effects and
regions that are local to an expression (for insertion of letregion constructs). Due to the support
for polymorphic recursion in regions and effects, the algorithm is split into a so-called spreading

phase, which annotates allocation sites with fresh regions and function types with effects identified
by fresh effect variables. A separate co-called contraction phase applies contracting substitutions
(i.e., substitutions that unify effects and regions) repeatedly in order for a program to adhere to the
region typing-rules. In the contraction phase, no new effect and region variables are created, thus,
the algorithm is guaranteed to terminate with a region-annotated program that satisfies the region
typing-rules.

ReML augments region-inference with syntax (explicit region- and effect-variables) for referring
to the underlying region- and effect-variables that region inference works with. Substitution is
implemented as graph-unification, with unifiable nodes being region- and effect-variables and edges
representing effect membership (the implementation also represents other atomic effects, such as
mut(d), put(d), and get(d) as nodes). Here is an overview of how the different ReML annotation
mechanisms influence region inference, which, without annotations, is guaranteed to result in a
well-typed program, provided the underlying program is a well-typed Standard ML program:

(1) During the spreading phase, explicitly annotated regions (annotated using the back-tick
syntax) are looked up in the environment when spreading expressions and types. The imple-
mentation complaints with a type error if unification attempts to unify two different explicit
effect variables or two different explicit region variables.

(2) Explicit with declarations and support for explicit region- and effect-parameters may be used
to pin region- and effect-variables to a particular scope. This pinning is implemented by
introducing fresh region- and effect-variables and binding them to the explicit counterparts
in the environment used for spreading subexpressions. If unification results in a violation
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of the pinning (that is, if region inference is forced to push the binding outwards), a type
error is reported. For details about how effects are unified, we refer the reader to [Tofte and
Birkedal 1998] and [Tofte and Birkedal 2000], in particular with respect to information about
how to deal with so-called secondary region- and effect-variables, variables that occur in
arrow effects but are not paired directly with a type constructor.

(3) Effect constraints, expressed using the while-type mechanism, have no influence on region
inference, which, as we have seen, is in contrast to explicit with annotations, explicit parameter
annotations, and explicit at-annotations. Instead, all effect constraints are checked after
region-inference, where we can assume that all graph cycles have been collapsed. The
implementation decomposes effect constraints into basic constraints that are added to the
nodes of the effect-graph. When parts of the graph are copied, which happens when a type
scheme is instantiated, also the constraints are copied (and instantiated). For discharging
an effect, it is sufficient to check each basic constraint, under the assumption that other
constraints are satisfied (cycles in the graph have been collapsed by region inference).

From a formal perspective, region inference makes the assumption that the set of arrow effects
occurring in a region- and effect-annotated program is consistent, meaning that the set is functional
(i.e., each effect variable is associated with a unique effect), transitive (i.e., if n.i and n′ .i ′ are both in
the set then n′ ∈ i impliesi ′ ⊆ i), and closed (i.e., each effect variable occurring in the set is defined
by the set) [Tofte and Birkedal 1998]. Whereas this consistency property is not used for establishing
soundness, it is essential for establishing termination and correctness of region inference. A central
property of a contracting substitution is that when it is applied to a consistent set of arrow effects,
the result is itself a consistent set of arrow effects. We see here the link to the implementation
that uses unifiable graphs for representing arrow effects. Much like Hindley-Milner’s algorithm W,
where type substitution may be implemented by unification, region inference may be implemented
using region- and effect-unification to model region- and effect-substitutions.

8 REML STATUS AND LARGER EXAMPLES

Whereas ReML is a fully working system featuring explicit region and effect annotations, mut,
put, and get effects, and constraints such as noput, nomut, and ## constraints, current work aims
at improving type error reporting with proper indication of the source of a constraint violation.
The changes to the implementation have little influence on overall compilation times (if any) as
overhead is introduced only in relation to managing annotations, effect constraint propagation,
and constraint checking.
We have carried out experiments on larger benchmarks from [Elsman and Henriksen 2023],

including the benchmarks mandelbrot, vpmsort, pmsort, and ray. Whereas the benchmark pro-
grams vpmsort and pmsort uses the par function shown in the paper, the benchmarks mandelbrot
and ray uses a parfor function, which, as par, is based on the underlying spawn functionality,
and which applies a function of type int → unit in parallel on an interval of integers. Using a
noput constraint, the ## constraint on the used spawn function can be discharged and we get the
property that the ray-tracer and Mandelbrot image creator can execute without allocation races.
In the process of porting the ray benchmark, we were directed by the type system to modify the
ray-tracer implementation (using an array-of-structs to struct-of-arrays transformation) to ensure
that pixel values (triples of integers) are not allocated by the individual threads but rather saved in
individual channel arrays.
ReML is open source and is available from the MLKit source code repository.5 Moreover, this

paper comes with an artifact, which, in addition to a snapshot of the ReML source code, includes a

5See http://github.com/melsman/mlkit.
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tutorial demonstrating the features of ReML presented in this paper, and an in-depth description of
the implementation aspects of ReML [Elsman 2024]. ReML builds on the MLKit infrastructure and
shares source code with the native MLKit backend, targeting x68-64 machine code, and SMLtoJs
[Elsman 2011], which targets JavaScript engines.

The artifact is comprised by a docker image, which readily makes available the ReML compiler in
terms of a reml executable. The reml executable accepts ReML programs as input and generates x86-
64 machine code as a result. The artifact tutorial demonstrates how to apply reml to the examples
presented in this paper and how to apply ReML to new examples. Concretely, the artifact describes
the ReML parallel library and demonstrates how to compile and run the parallel Mergesort example,
the parallel Mandelbrot example, and the parallel ray-tracer.

9 RELATED WORK

Much related to this work is the work on Cyclone [Gerakios et al. 2010; Grossman et al. 2002;
Hicks et al. 2004; Swamy et al. 2006], a C-like programming language aimed at safe system-level
programming (and even thread-based programming) based on regions, but with limited support for
region inference and higher-order programming. Another region-based language is RC [Gay and
Aiken 1998], which features support for explicit regions in C, combined with reference counting
of regions (instead of relying on the stack discipline). Another related language for system-level
programming is ATS [Chen and Xi 2005], which, in addition to supporting refinement types and
dependent types, also allows a programmer to specify specific properties about a function, such
as the property that a function has no free variables and therefore can be represented without a
closure and only by its code pointer.

The region- and effect calculus by Tofte and Talpin [Tofte and Talpin 1997] can also be modeled
using polymorphism and monads [Fluet and Morrisett 2004], which has inspired extensions to
region-based memory management leading, for instance, to a discipline that does not follow a
LIFO-lifetime of regions, and uses of region-based memory management for managing other types
of resources, such as file descriptors [Kiselyov and Shan 2008]. The notion of monadic regions has
also contributed with techniques for reasoning about code generation in multi-stage languages
[Kiselyov et al. 2016]. In comparison to the techniques we present here, monadic regions are
centralised around an “outlives” relationship between regions, suggesting that one region lives
longer than another, and a subset relation between effects. Whereas these relations induce a notion
of subtyping constraints, region inference in ReML is based on substitutions with arrow effects
providing the mechanism that allows for finding region- and effect-unifiers (i.e., substitutions) that
will unify two arbitrary region- and effect-annotated types, as long as their underlying ML types
(i.e., after region- and effect-erasure) are identical. We shall not here argue that the one approach
is better than the other, but rather emphasise that the design span here is large, which is also
exemplified by the existence of two different inference algorithms for region-inference [Birkedal
and Tofte 2001; Tofte and Birkedal 1998].

Besides the work on monadic regions, there has been a large body of work on providing simpler
proofs of soundness for region-based systems, including [Calcagno 2001; Calcagno et al. 2002;
Helsen and Thiemann 2001], and [Elsman 2023], which consider soundness in the context of
augmenting region-based memory management with reference-tracing garbage collection. The
present work builds on these techniques, which are all based on the strategy of syntactic soundness
proofs [Morrisett 1995; Wright and Felleisen 1994].

Also related to the present work is the work on Embedded ML [Pareto 2000], which is inspired by
the intermediate region-based program representation in the MLKit. Contrary to ReML, Embedded
ML aims at more precise reasoning about the sizes of allocated regions, while requiring the
programmer to be explicit about regions (no region inference fallback). Related to this work involves
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work on optimising the representation of regions, including distinguishing between regions that
may be allocated directly on the stack and regions that are heap-allocated as a linked list of pages
[Birkedal et al. 1996]. Region inference, as it is implemented in the MLKit (and ReML), may be
combined with garbage collection [Elsman 2023; Elsman and Hallenberg 2021; Hallenberg et al.
2002]. This area of work is complementary to the present work, which may be used with and
without reference-tracing garbage collection.

A dominant language that supports explicit programming with region-based memory is Rust
[Jung et al. 2017; Klabnik and Nichols 2018], which owns much of its design to the earlier work on
Cyclone, RC, previous work on region-based memory management, and capability-based memory
management [Walker et al. 2000] and ownership types [Jung et al. 2017].
Another area of related work is the bulk of recent work on programming languages based on

effect handlers, including Eff [Bauer and Pretnar 2015], Koka [Leijen 2014], Effekt [Brachthäuser
et al. 2020b], and System C [Brachthäuser et al. 2022, 2020a]. Here both Effect, which also features
an embedding in Scala, and System C are based on the notion of capabilities.
Yet another body of related work is the work on refinement types for refining the set of values

being specified by a type. Such work includes the seminal work on refinement types for ML
[Freeman and Pfenning 1991] and newer work on refinement types in Liquid Haskell [Vazou
et al. 2014]. We consider combining the type- and effect-system of ReML with a more traditional
refinement type system a good candidate for future work.
One of the motivating examples of the present work is efficient support for parallelism. The

present work uses much of the infrastructure presented in [Elsman and Henriksen 2023] for
parallelism support in ReML, with the difference that in ReML, protection against allocation races
can be ensured statically with the use of while-types. In contrasts, the constraint-based protection-
inference algorithm, presented in [Elsman and Henriksen 2023], aims at distinguishing regions that
require protection (e.g., using mutexes) from those that do not. With the lack of explicit constraints
provided by the programmer, protection inference is fragile to small program changes and gives the
programmer only limited control of the desired runtime behavior. Technically, protection inference
infers, for each allocated region, whether a mutex should be associated with the region at runtime.
Effect constraints in ReML and protection inference are complementary concepts in the sense that
one mechanism does not necessarily preclude the other. It is perfectly fine to have two different
versions of the par function around, one that uses protection inference and dynamic features, such
as mutexes, to preclude allocation races, and another, that uses ReML effect constraints to give
static guarantees about the avoidance of allocation races.
Much related work has investigated the possibilities for adding support for shared-memory

parallel OS threads (and light-weight threads) in ML-like languages, such as OCaml [Sivaramakr-
ishnan et al. 2020], Standard ML [Cooper and Morrisett 1990; Westrick et al. 2019], and Manticore
[Farvardin and Reppy 2020; Fluet et al. 2008]. In all cases, the implementations require special
attention to the garbage collection techniques used, in particular with respect to mutable effects.
In the case of MPL [Westrick et al. 2019], which adds shared-memory fork-join parallelism to the
MLton Standard ML compiler through a simple par-function, the memory discipline is centered
around so-called disentangled heaps, for which each thread is associated with an individual heap
and where pointers between heaps can only point upwards towards the root [Raghunathan et al.
2016]. The disentangled-heap property, which is required by MPL and its parallel garbage collection
of leaf heaps, can be enforced automatically by a combination of static and dynamic techniques
[Westrick et al. 2022]. If a thread assigns to an object allocated by a sibling, the object will be
allocated in a memory region allocated by a common ancestor.
Finally, a large area of related work includes work on qualified types [Jones 1994], including

qualifier inference for C [Foster et al. 2002], implementation of Haskell type classes [Hall et al. 1996;
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Peterson and Jones 1993], elimination of polymorphic equality [Elsman 1998], and type inference
with constraints, in general [Odersky et al. 1999; Sulzmann and Hudak 2000]. Whereas previous
work shed important light on particular aspects of constraint inference and constraint abstraction,
the present work differs from previous work by involving constraints on effects that are treated as
separate objects in judgments. Much of the previous work on constraint solving, however, may
show to carry over to the setting of effect constraints.

Another effect system based on boolean unification and constraints, is implemented in Flix. This
system allows for tracking complementary effects, expressing, for instance, that an expression does
not raise a particular exception [Lutze et al. 2023]. In Flix, however, it is not possible to express
that two effects are disjoint.

10 CONCLUSION AND FUTURE WORK

We have presented ReML, a higher-order statically-typed functional language that allows pro-
grammers to be explicit about the effects performed by program code, including effects related
to memory management. While work on ReML is ongoing, the current implementation is freely
available, as described in Section 8.
There are a number of directions for future work. First, by integrating region inference and

exception inference, exceptions that can be inferred to live locally may be allocated in local regions.
Currently, exceptions that carry payloads are allocated in global regions to ensure that carried
values are still allocated at potential handler-sites. Second, enriched effect information may open
up for compiler optimisations that are otherwise difficult to implement. Such optimisations may
involve reasoning about whether a function is pure (code elimination) or whether an effect is
idempotent (code duplication).
With explicit annotations in ReML, it may be possible to augment region- and effect-inference

with the possibility of higher-order region- and effect-polymorphism, existential regions [Henglein
et al. 2001], and even first-class regions. We consider such developments good possibilities for
future work.

We emphasise here that ReML is work-in-progress and that the integration of exception effects
in the ReML effect system is under active development. That said, even in its current state, ReML
can be used to reason locally about memory aspects of library functionality and for establishing
guarantees about the lack of allocation races in parallel programs. We also consider it future
work to investigate generalisations in terms of more general effect constraints (e.g., supporting set
operations) and user-defined effects.

DATA AVAILABILITY STATEMENT

This paper is accompanied by a software artifact [Elsman 2024] that demonstrates the main
contributions of the paper. A more detailed description of the content of the software artifact is
available in Section 8.
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