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ABSTRACT
This paper describes a memory discipline that combines
region-based memory management and copying garbage col-
lection by extending Cheney’s copying garbage collection
algorithm to work with regions. The paper presents empiri-
cal evidence that region inference very significantly reduces
the number of garbage collections; and evidence that the
fastest execution is obtained by using regions alone, with-
out garbage collection.

The memory discipline is implemented for Standard ML
in the ML Kit compiler and measurements show that for
a variety of benchmark programs, code generated by the
compiler is as efficient, both with respect to execution time
and memory usage, as programs compiled with Standard
ML of New Jersey, another state-of-the-art Standard ML
compiler.

Categories and Subject Descriptors
D.1 [Programming Techniques]: Applicative (Functional)
Programming; D.3 [Programming Languages]: Language
Constructs and Features—Dynamic storage management ;
F.3 [Logics and Meanings of Programs]: Semantics of
Programming Languages—Program analysis

General Terms
Algorithms, Languages
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1. INTRODUCTION
This paper presents a memory discipline that integrates

region-based memory management and automatic heap man-
agement (“garbage collection”).
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In the rest of this section we describe the two strategies
and summarise the differences between the two. The main
contributions are summarised in Section 1.2.

1.1 Background
A popular memory management discipline for block struc-

tured languages is stack allocation. Every allocation point
is matched by a deallocation point and these points are eas-
ily identified in the program. Allocation and deallocation
take place at procedure entry and exit, respectively. This
strategy often leads to fast and compact use of memory.

The main limitation of the stack discipline is that for some
algorithms, lifetimes of data simply are not nested. Some
other form of recycling is needed in such cases. In heap
allocation, values that do not fit in the stack discipline are
allocted in the heap, which is a part of the store separate
from the stack.

The most basic form of heap allocation is manual heap
allocation, in which the programmer is in charge of allocat-
ing and deallocating values. The technique is notoriously
difficult to use in practice: it is easy to allocate memory,
but hard to know when to free it. Freeing memory too soon
may lead the program to crash (“dangling pointers”) while
freeing memory too late may lead to wasteful use of memory
(“memory leaks”).

Automatic heap management addresses these problems by
leaving deallocation of memory to a part of the runtime sys-
tem, the garbage collector. From time to time, the garbage
collector interrupts the user’s program and recycles the parts
of memory that are not needed for the remainder of the
computation (i.e., the “garbage”). Most implementations of
functional languages and some implementations of object-
oriented languages use automatic heap management. Some
even use automatic heap management and no stack at all [2].

However, automatic heap management is not perfect ei-
ther. The separation of allocation and deallocation makes
it hard for the programmer to know how long values will
live and therefore how much memory the program will use.
Garbage collection can account for a high percentage of the
running time, whereas deallocation in the stack discipline is
very inexpensive.

There is a large body of work concerning garbage collec-
tion techniques, see for example [23, 14]. These techniques
share the following features:

• Automation. Garbage is reclaimed automatically at
runtime, by the garbage collector.

• Lifetimes are determined at runtime. The garbage col-
lector traverses values in order to locate garbage.
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Figure 1: A stack of regions. A region is a rectangle
in the picture. The stack grows to the right, i.e., r4

is the topmost region and is the first region to be
deallocated. Each region may grow upwards.

• Uniformity. The garbage collector uses a fixed strategy
for all user programs, although some garbage collection
algorithms rely on heuristics about common memory
behaviour of programs (e.g., [15]).

Region-based memory management [20, 3, 21, 17] attempts
to achieve both the predictability and efficiency of the stack
discipline and the flexibility and safety of automatic heap
management. Conceptually, the store is organised as a stack
of regions, see Figure 1. Allocation and deallocation direc-
tives of regions are inserted into the program at compile
time, based on a program analysis called region inference
[20, 3]. Value-creating expressions are annotated with in-
formation that directs in what region values go at runtime.
Moreover, if e is some region-annotated expression, then so
is

letregion r in e end

Expressions of this form are evaluated as follows. First a
region is allocated on top of the stack and bound to the
region variable r. Then e is evaluated, possibly using the
region bound to r for holding values. Finally, upon reaching
end, the region is reclaimed. A particularly important as-
pect of region inference is the notion of region polymorphism,
which allows regions to be passed to functions at runtime.

Region-based memory management provides the following
properties:

• Automation. Garbage is reclaimed automatically at
runtime, by popping the region stack.

• Lifetimes are decided at compile time. Region infer-
ence and other static analyses decide lifetimes at com-
pile time [20, 3]. There is no tagging (for pointer
traversal) and no runtime traversal of values in order
to free memory.

• Specialization. Region inference specializes memory
management to the user’s program.

Region-based memory management is implemented for Stan-
dard ML in the ML Kit [18], a region-based compiler for all
of SML’97, including Modules and the Standard ML Basis
Library. To date, the largest Standard ML programs com-
piled under the region scheme are AnnoDomini, a 60,000
lines program and the ML Kit itself, a 90,000 lines program.

1.2 Contributions of the Paper
So far, there has been no direct way of comparing region-

based memory management with garbage collection. Part
of the reason is theoretical. It is known that region-based
memory management and garbage collection are incompa-
rable, in that there are programs that use arbitrary more
space in one scheme than in the other. But even experimen-
tal comparisons are difficult: a Standard ML compiler is a
complex piece of software and differences in performance in
code produced by different compilers may stem from many
other factors than differences between regions and garbage
collection.

At the same time, practical experimentation with region-
based memory management has suggested that although
some rewriting of source programs is often necessary in order
to get good memory behaviour, often very little rewriting is
required, even for large programs. (In the case of AnnoDo-
mini, a reasonably good execution was obtained after mod-
ifying 10 lines out of 60,000 [7].) This suggests that “most
of the time,” region inference estimates lifetimes correctly.

The purpose of this paper is to investigate the relation-
ship between region inference and garbage collection more
closely. In particular, can a combination of garbage collec-
tion and region inference reduce the need for tuning pro-
grams? Can such a combination give practical results that
are as good as the ones one obtain with tuned programs
using regions alone?

Conversely, from the point of view of garbage collection:
is region inference an efficient way of reducing the amount
of garbage collection required?

In order to answer these questions, we have designed a new
back-end and runtime system for the ML Kit that allows one
to compile and run programs in different modes, including:

1. Using regions alone, with values untagged and support
for dangling pointers (in a pure region based system
where values are not traversed by a garbage collector,
no tags are needed to distinguish pointers from non-
pointers)

2. Using regions alone, but with values tagged; this mode
makes it possible to isolate the effect of tagging on
performance

3. Using a copying garbage collector within a degenerate
region stack consisting of one region only

4. Using a combination of regions and the copying garbage
collector

The remainder of the paper is organised as follows. Sec-
tion 2 describes the new runtime system for integrating re-
gion inference and garbage collection based on Cheney’s
copying garbage collection algorithm. An overview of the
ML Kit implementation is given in Section 3. Section 4
presents evidence that region inference very significantly re-
duces the number of garbage collections; evidence that the
fastest execution is obtained by using regions alone, without



garbage collection; and empirical evidence that the combi-
nation of region inference and garbage collection is compara-
ble to Standard ML of New Jersey (another state-of-the-art
Standard ML compiler) both regarding time and memory
usage. Finally, in Sections 5 and 7 we describe related work
and conclude.

2. GARBAGE COLLECTING REGIONS
Region inference imposes a restriction on how garbage col-

lection can work, namely, if two values belong to the same
region before the collection and both survive the collection
then they must belong to the same region after the col-
lection. (Otherwise, the popping of the region stack could
become unsound.) The first design issue for a garbage collec-
tor then becomes whether one should try to garbage collect
just one region at a time, or all regions. The former would
allow, for example, that “global” regions (i.e., regions that
are pushed onto the empty region stack when the program
starts and not deallocated until the program terminates) are
garbage collected separately. However, determining the set
of pointers that point into a given region appears to be ex-
pensive, for, in principle, there can be pointers from any
region into the region in question. Thus the algorithm that
we propose collects all regions in every garbage collection.

To discuss the algorithm in more detail, we need to de-
scribe the physical representation of regions, initially with-
out considering garbage collection.

2.1 Physical Representation of Regions
The store consists of a stack and, separate from the stack,

a region heap. The stack consists of activation records. The
region heap consists of a set of fixed-size region pages, some
of which are linked together in a free-list. At runtime we
distinguish between two kinds of regions [3]:

1. Regions inferred to hold only one value at a time. The
size of the region is the maximal size of the values
that may be allocated in the region. Those regions
are called finite regions and are allocated in activation
records on the stack. Finite regions usually contain
tuples and closures.

2. Regions inferred to hold an unbounded number of val-
ues are called infinite regions. An infinite region is
represented by a linked list of region pages, pointed to
by a region descriptor, which resides in an activation
record on the stack. Infinite regions usually contain
lists and other recursive data structures.

A region descriptor is a triple (e, fp, a) of pointers, where
e, the end pointer, points to the end of the most recently
allocated page in the region; a, the allocation pointer, points
to the first available free location in that page; and fp, the
first-page pointer, points to the first page of the region [8].
Figure 2 shows an example runtime stack containing three
region descriptors and one finite region.

Allocating a value is done at a if there is enough space
in the region page; otherwise, the region is extended with a
region page taken from the free-list.

An infinite region is allocated by requesting a region page
from the free-list and updating a region descriptor. When
an infinite region is popped, its region pages are appended
to the free-list; this operation can be done in constant time
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Figure 2: The runtime stack (bottom) contains three
region descriptors and a finite region (r3). Each re-
gion descriptor is a triple of pointers.

with the use of the first-page pointer fp, the end-pointer e,
and knowledge about the size of a region page.

Values that fit in one word, such as integers and booleans,
are implemented unboxed and therefore do not reside in dis-
tinguished regions. The size of an activation record is de-
termined at compile time. An activation record is allocated
on the runtime stack at entry to a function and popped on
exit. Addresses of unboxed values, finite regions and region
descriptors inside an activation record are statically deter-
mined offsets from the stack pointer. Thus, allocating a
value in a finite region amounts to a store operation at a
known offset from the stack pointer. No code is needed for
allocating or deallocating a finite region at runtime, beyond
the code for pushing and popping the enclosing activation
record.

2.2 Cheney’s Stop and Copy Algorithm
Our garbage collection algorithm is based on Cheney’s

stop and copy algorithm [5]. Cheney’s algorithm has the
advantage of being relatively straightforward. An argument
against Cheney’s algorithm might be that, unlike genera-
tional garbage collectors, it does not employ heuristics con-
cerning lifetimes. But region inference already separates
data according to lifetimes, so it is not clear that the garbage
collector has to do so as well.

In this section we review Cheney’s algorithm. In Sec-
tion 2.3 we describe how we have modified it to deal with
regions.

Cheney’s algorithm uses two address spaces (semi-spaces),
called the from-space and the to-space, respectively. The
program allocates values into the from-space. Garbage col-
lection is initiated when the from-space is full. The root set
is the set of variables that are live in the activation records
on the stack. The algorithm copies all the values reachable
from the root set from the from-space into the to-space.



Thereafter the from-space and the to-space swap roles.
The Cheney algorithm is outlined below:

fun cheney(fromspace,tospace,s,a)=

let

fun evacuate(p)=

case !p of

FORWARDED p’ => p’

| VALUE v =>

let a0 = a

in a:=a+size(v);

tospace[a0..a-1]:= v;

fromspace[p]:=

FORWARDED a0;

a0

end

fun scan(v)=

(for each pointer p in v do

p:= evacuate(p);

s:= s + size(v))

in

while s < a do scan(!s)

end

The algorithm performs a breadth-first search and evacuates
values from the from-space. It uses a scan pointer, s, and
an allocation pointer, a, both of which point into the to-
space; a points at the first free location in to-space and s
points at the next value to be scanned. The invariant s ≤ a
holds throughout. The part of the to-space between s and a
serves as a queue for the breadth-first search. The collection
is complete when we obtain s = a.

Every boxed representation of a value has a tag-field for
implementing pointer traversal. After copying a value, the
algorithm replaces the tag-field in the original copy of the
value with a forward pointer, which points at the new copy of
the value in to-space. Forward pointers can be distinguished
from all other tags.

The function scan scans the value v pointed at by s and
calls the function evacuate on all pointer fields inside v.
We think of a value as a record of words, some of which are
pointers. We assume a mechanism that can distinguish the
pointers of a value from the non-pointers. Each pointer field
is updated to contain the result of evacuating it. Finally,
scan increases s, in preparation for scanning of the next
unscanned value.

A call evacuate(p), where p is a pointer, examines the tag-
field of the contents of p (i.e., !p). If the tag-field is a forward
pointer then the forward pointer is returned. Otherwise !p
is a value v; in this case we copy v into to-space (increasing
a in the process) and replace the original copy of v by a
forward pointer.

The algorithm assumes that there are no pointers from
the heap to the stack. Initially, s and a point at the first
address in to-space. We then apply evacuate on all pointer
values in the root set and update the pointers in the root set
with the new locations. At this point, the memory between
s and a contains values evacuated from the root set. Then,
cheney(fromspace,tospace, s, a) completes the collection.

2.3 Adapting Cheney’s Algorithm for Regions
Cheney’s algorithm can be extended to work with regions,

as follows. Intuitively, each region is associated with a from-

space and a to-space. A region descriptor is now a quadruple
(e, fp, a, b) where a plays the dual role of being the allocation
pointer for region inference and for the garbage collector and
b is a so-called region status, which we have more to say
about below. Scan pointers are kept in a scan stack; there
is no scan pointer in the region descriptor. In the following,
when r is some region descriptor, we use the notation r → a
to refer to the allocation pointer in r; we use similar notation
to access the other components of a region descriptor.

We now apply Cheney’s algorithm locally on each region
and use the stop criteria: ∀r ∈ Reg : (r → a) = sr, where
Reg is the set of region descriptors on the stack and sr is
the scan pointer of r. The stop criteria is implemented using
the scan stack, which consists of those scan pointers sr for
which sr 6= (r → a).

The garbage collector never allocates into from-spaces. At
the start of a garbage collection, the region stack is traversed
and the region pages in the from-space areas (pointed at by
r → fp) are linked together to form a single global from-
space area. Next, for every region descriptor r on the stack,
r → fp is initialised to point at a fresh region page taken
from the free-list. Moreover, r → a is initialised to point at
the beginning of the page pointed to by r → fp and r → e at
the end of the page pointed to by r → fp. While collection
is in progress, region pages are allocated from the free-list,
which is disjoint from the global from-space area. After
garbage collection, the global from-space area is appended
to the free-list in a constant-time operation.

The Cheney algorithm extended to regions is outlined be-
low:

fun evacuate(p)=

case !p of

FORWARDED p’ => p’

| VALUE v =>

let val r = regiondesc(p)

val a = alloc(r, v)

in

if r->b = NONE then

(r->b:= SOME;

push_onto_scanstack(a))

else ();

fromspace[p]:= FORWARDED a;

a

end

fun cheney(fromspace,r,s,a)=

(while s <> a do

let val v = !s

in

for each pointer p in v do

p:= evacuate(p);

s:= next_value(v,r)

end;

r->b:= NONE)

fun collect_regions()=

while scanstack_not_empty() do

let val s = pop_scanstack()

val r = regiondesc(s)

in cheney(fromspace, r, s, r->a)

end



In a call cheney(fromspace, r, s, a), r is the address of a
region descriptor of a region; it plays the role of the to-
space. The for-loop scans the value v pointed at by s and
calls the function evacuate on all pointer fields inside v.
The call next value(v, r) proceeds to the value after v in r
(which may entail proceeding to the next region page in the
region).

Next consider function evacuate. Given a pointer p to
a value v, regiondesc(p) returns the address of the region
descriptor of the region containing v (see Section 2.4). The
function alloc(r, v) allocates v in the region described by
r, returning the address of the new copy. (alloc extends
the region with a new page, if necessary.) The field b in
the region descriptor is a two-valued mark, called the region
status; the field is NONE if sr = (r → a) and SOME if
sr 6= (r → a). The field b is set to NONE in function
cheney when all values has been scanned.

Because a region is composed of region pages, it is not
always the case that sr ≤ (r → a) but sr = (r → a) still
signifies that the queue of unscanned values in the region is
empty. When this happens, the region status of the region
is changed to NONE.

The algorithm maintains the invariant that the region sta-
tus r → b of some region descriptor r is SOME if and only
if either sr is on the scan stack or r denotes a region that is
currently being scanned.1

Finally, collect regions repeatedly calls cheney on one
region at a time, till the scan stack is empty.

The maximal depth of the scan stack is limited by the
number of region descriptors on the region stack; at any
time, at most one pointer for each region is on the scan
stack.

2.4 Region Page Descriptors
Every region page starts with a region page descriptor.

It contains a pointer to the next region page in the region.
It also contains an origin pointer, which points back to the
region descriptor of the region.

As mentioned earlier, all region pages used by regions have
the same fixed size. By instrumenting the compiler and the
runtime system, it is possible to change the size of region
pages to 2n, where 1 ≤ n ≤ w and w is the number of bits
per word (typically 32). Furthermore, the runtime system
ensures that every region page starts on an address divisible
by 2n. Given the address p of value v, the region page
descriptor of the page that contains v is found by computing
the bitwise and of p and 1 · · · 1

︸ ︷︷ ︸

w−n

0 · · · 0
︸ ︷︷ ︸

n

.

Thus regiondesc(p) can be computed by accessing the re-
gion page descriptor as described above and then extracting
the origin pointer from it.

2.5 Finite Regions
So far, we have considered infinite regions only. Unfor-

tunately, finite regions complicate matters, for there can be
pointers from region pages into finite regions on the stack
and indeed from a value in a finite region into another fi-
nite region. We therefore distinguish between three kinds of
values:

1In the implementation, the region status occupies only one
bit and is encoded in one of the pointer fields in the region
descriptor.

1. Values allocated in infinite regions. These values are
traversed and evacuated as described above.

2. Values allocated in finite regions residing in activation
records on the stack. Such values are traversed and
updated but are not moved.

3. Constants in the data area of the program binary. Be-
cause such values do not point at values in finite or
infinite regions, these values are not traversed, not up-
dated, and not copied.

To revise the algorithm to work with all three kinds of values,
a separate scan buffer is used for finite regions. A value in
a finite region is not moved and hence no forward pointer
is stored after the value is traversed. To avoid that the
algorithm traverses finite regions more than once, traversed
values in finite regions are marked as constants by updating
the value tags. After garbage collection, the constant-marks
are removed and values obtain their original tags. The scan
buffer is used both for holding values that remain to be
scanned (similary to the scan stack for values in infinite
regions) and for keeping track of traversed values in finite
regions.

All what is needed is to revise the two functions evacuate
and collect regions shown below:

fun evacuate(p)=

case !p of

FORWARDED p’ => p’

| CONSTANT c => p

| VALUE v =>

if points_into_stack(p) then

(p:= set_tag_const(!p);

add_scan_buffer(p);

p)

else

let val r = regiondesc(p)

val a = alloc(r, v)

in

if r->b = NONE then

(r->b:= SOME;

push_onto_scanstack(a))

else ();

fromspace[p]:= FORWARDED a;

a

end

fun collect_regions()=

(while scanstack_not_empty() ||

scanbuffer_not_done() do

(while scanbuffer_not_done() do

let val s = get_scanbuffer()

in

for each pointer p in !s do

p:= evacuate(p)

end;

while scanstack_not_empty() do

let val s = pop_scanstack()

val r = regiondesc(s)

in cheney(fromspace, r, s, r->a)

end);

for each pointer p in scanbuffer do

p:= remove_tag_const(!p))



Consider the function evacuate. Constant values are rec-
ognized by inspecting the tag-field of the value (see Sec-
tion 2.2). The result of evacuating a pointer to a constant is
the pointer itself. A pointer p pointing at a value v in a finite
region is recognized by a range check on the stack bound-
aries (function points_into_stack). The value v has not
yet been traversed; otherwise it would have been marked as
a constant. The algorithm marks v as a constant and adds
it to the scan buffer (i.e., we postpone the traversal of v).

The stop criteria in function collect regions is now im-
plemented using both the scan stack and the scan buffer.
The function get scanbuffer obtains the next un-scanned
value v in scan buffer; the value v is not removed from the
buffer. At the end of a collection, we remove all constant-
marks (function remove tag const) on traversed values in
finite regions. The maximal size of the scan buffer is limited
by the number of finite regions on the stack.

2.6 Dangling Pointers
Region inference allows for both shallow and deep point-

ers, that is, pointers from older regions to newer regions and
from newer regions to older regions. A shallow pointer may
turn into a dangling pointer if the newer region is deallo-
cated before the older region [19]. When memory is not
traversed by a garbage collector, such dangling pointers are
safe because region inference has discovered that these point-
ers are not dereferenced by the program at runtime. Our
pointer-tracing garbage collection algorithm, however, does
not work when there are dangling pointers. Therefore, when
garbage collection is enabled in the compiler, region infer-
ence is weakened to prevent dangling pointers by forcing val-
ues stored in a closure to live at least as long as the closure
[20]. Only in special cases does this weakening of region
inference alter region-annotations. Consider the following
Standard ML program:

fun f a = ()

fun g v = fn () => f v

val h = g (2,3)

In this program, the function f makes no use of its argument.
When applied to an argument v, the function g returns a clo-
sure containing v, which is a pointer if v is boxed. Applying
the non-weakened version of region inference to the program
yields the following region-annotated program:

fun f at r1 [] (a)= ()

fun g at r1 [r7] (v)= (fn () => f[] v)at r7

val h = letregion r8

in g[r1] (2,3)at r8

end

Due to the region-annotated types that are inferred for f and
g, region inference concludes that the argument passed to g

can be deallocated after the application of g. The result is
that, after deallocation of region r8, h is bound to a closure
containing a dangling pointer.

When garbage collection is enabled, on the other hand,
the weakening of region inference ensures that regions hold-
ing values captured in a closure live at least as long as the
closure itself. Thus when garbage collection is enabled the
result of applying region inference to the binding of h yields
the following region-annotated version of the binding:

val h = g[r1] (2,3)at r1

In this region-annotated version of the binding, the pair
(2,3) is allocated in the global region r1, which happens
to be the same region in which the closure returned by g is
allocated.

It turns out that for all the benchmark programs men-
tioned in Section 4, the weakening of region inference as
described here has no visible effect on memory usage or ex-
ecution time.

3. THE ML KIT
The ML Kit is a Standard ML compiler that uses region

inference as the basis for memory management [18]. The
ML Kit is extended to support garbage collection of regions
as described in the previous sections. The compiler is com-
posed of a series of translations that gradually compiles pro-
grams into x86 machine code:2

• Elaboration. Programs that are invalid according to
the language specification are rejected [16].

• Modules Compilation. In this phase, Modules are elim-
inated and program fragments are compiled into an
explicitly typed language called LambdaExp [7].

• Optimization. An optimizer rewrites LambdaExp frag-
ments as long as it can guarantee that the resulting
fragments run in less space than the original fragments.
Optimizations include function inlining, specialization
of recursive functions, unboxing of function arguments,
and elimination of polymorphic equality [6].

• Region inference. In this phase, LambdaExp fragments
are translated into a language RegionExp in which
memory directives are explicit [17].

• Region representation inference. Regions are divided
into finite and infinite regions based on a static ap-
proximation to the number of values that are stored in
the particular region [3].

• Register allocation and instruction selection. This trans-
lation compiles RegionExp fragments into x86 machine
instructions [8, 13]. When garbage collection is en-
abled in the compiler, values are tagged so as to allow
pointer tracing and pointer forwarding.

To execute a program compiled with the ML Kit, the gen-
erated x86 machine code is linked with a runtime system,
written in C. The runtime system includes region primitives
for manipulating the region-stack, such as primitives for al-
locating and deallocating regions, and primitives for allo-
cating in regions. When garbage collection is enabled in the
compiler, the generated code is linked with a version of the
runtime system that integrates the region primitives with
the garbage collector described in the previous sections.

The runtime system may also be compiled with support
for region profiling, which makes it possible to inspect mem-
ory usage in regions over time [12].

3.1 Large Objects
There is one important aspect of the runtime system that

the previous description of the garbage collection algorithm
does not mention, namely how the runtime system manages

2A bytecode backend to the ML Kit is available as well.



large objects (i.e., objects that do not fit in a single region
page). To manage large objects efficiently and to allow ef-
ficient natural representations of certain datatypes, such as
strings and arrays, memory for large objects is allocated
using malloc and associated with a particular region in a
linked list, pointed to from a field in the region descriptor.
Upon resetting or deallocation of a region, large objects in
the associated linked list are deallocated using free.

Although certain types of large objects (such as large ar-
rays and vectors) need be traversed by the garbage collector,
large objects are never copied by the collector.

4. EXPERIMENTAL RESULTS
In this section, we describe a series of experiments that

serve to describe the relationship between region inference
and the garbage collection algorithm shown in Section 2.

We first investigate the effect of enabling tagging (Sec-
tion 4.1). Section 4.2 looks at execution times and the num-
ber of garbage collections performed when garbage collec-
tion is combined with region inference. Section 4.3 seeks
an answer to the question: of the memory reclaimed, what
proportion is reclaimed by region management and what
proportion is reclaimed by garbage collection? Finally, Sec-
tion 4.4 compares memory usage and execution times with
Standard ML of New Jersey (SML/NJ), another state-of-
the-art Standard ML compiler. Section 4.5 compares the
time and memory usage for bootstrapping the ML Kit with
SML/NJ and the ML Kit itself, respectively.

All benchmark programs are run on a 750Mhz Pentium III
Linux box with 512Mb RAM. Times reported are user CPU
times and memory usage is measured in kilobytes using the
/proc special file-system under the Linux operating system.
We use m to specify memory usage (resident set size) and t
to specify execution time (in seconds). Subscripts describe
the mode of the compiler: ∗r signifies region inference en-
abled, ∗t signifies tagging enabled and ∗g signifies garbage
collection enabled (e.g., trt means time with regions and tag-
ging enabled). We use tsmlnj and msmlnj to denote execution
time and memory usage for SML/NJ.

The experiments are performed with the ML Kit version
4.1.0 [18] and Standard ML of New Jersey 110.0.7. The
benchmark programs are listed in Figure 3.

By disabling region inference, we understand instructing
the region inference algorithm to allocate all values that
would be allocated in infinite regions in one global region.
Then not a single infinite region is deallocated at runtime
and the garbage collection algorithm essentially reduces to
Cheney’s algorithm. Notice that disabling region inference
in this sense does not change the property that many values
are allocated in finite regions on the stack.

Whenever the size of the free-list becomes less than 1/3
of the total region heap, garbage collection is initiated upon
the next function entry (i.e., safe point). After garbage col-
lection, we make sure that the number of region pages in the
region heap is at least three times the size of to-space (the
heap-to-live ratio).

4.1 Effect of Tagging
When region inference is used without garbage collection,

values need not be tagged so as to implement pointer trac-
ing. Table 1 isolates the effect of tagging by showing the
execution time and memory usage for the benchmark pro-
grams with tagging enabled and tagging disabled. In both

Program Lines Description

vliw 3676 VLIW instruction scheduler
logic 346 SML/NJ benchmark program
zebra 302 Solves the Zebra puzzle
tyan 1018 Grobner Basis calculation
tsp 493 Traveling salesman problem
mpuz 142 Emacs M-x mpuz puzzle
DLX 2836 DLX RISC instruction simulation
ratio 619 Image analysis
lexgen 1318 Lexer generation
mlyacc 7353 Parser generation
simple 1052 Spherical fluid-dynamics program
professor 276 Solves puzzle by exhaustive search
fib35 9 The Fibbonachi micro-benchmark
tak 17 The Tak micro-benchmark
msort 81 Sorting 100,000 integers
kitlife 230 The game of life
kitkb 725 Knuth-Bendix completion

Figure 3: The benchmark programs span from small
micro-benchmarks (fib35, tak, and msort) to larger
programs, such as vliw and mlyacc, that solve real-
world problems. The Lines column shows the size of
each benchmark. None of the benchmark programs,
except msort, kitlife, and kitkb, has been optimised
for region inference. The benchmark programs fib35
and tak use only the runtime stack for allocation.

cases, region inference is enabled and garbage collection dis-
abled.

The table shows that tagging adds a substantial cost to
execution time (tr < trt) and to memory usage (mr < mrt).

For programs where lists and reals account for the major-
ity of the memory usage, the memory overhead of tagging is
close to 50 percent, due to the value tags in allocated pair
and real values [6].

4.2 Effect of Region Inference on Garbage Col-
lection

Table 2 demonstrates the effect of region inference on
garbage collection. First, the table shows dramatic savings
in number of garbage collections when enabling region in-
ference (i.e., #GCrgt < #GCgt). Second, for most of the
benchmark programs, enabling region inference decreases
execution time (i.e., trgt < tgt).

Third, comparing Table 2 and Table 1, we see that tr <
trgt for all benchmark programs. The fastest execution is
obtained by relying solely on region-based memory manage-
ment.

Finally, Table 2 shows that, when combined with garbage
collection, region inference often has a negative effect on
memory usage (i.e., mgt < mrgt). This negative effect is
mostly due to waste in regions, which we have more to say
about in the next section. The programs DLX and msort be-
have very well without garbage collection (compare Table 2
and Table 1) and in these cases, when garbage collection is
combined with region inference, garbage collection is initi-
ated only at the start of execution; thus it does not become
necessary to allocate three times the amount of live memory
and therefore mrgt < mgt.



Effect of Region Inference on Garbage Collection

Time (seconds) Memory (bytes) Collections
Program

tgt trgt % mgt mrgt % #GCgt #GCrgt %

vliw 1.99 1.16 42 1640K 2376K –45 265 21 92
logic 6.94 7.02 –1 892K 892K 0 2582 2574 0
zebra 4.60 4.46 3 548K 644K –18 2071 408 80
tyan 10.2 7.16 30 1352K 2800K –107 1098 343 69
tsp 4.15 3.56 14 8532K 8536K 0 16 10 38
mpuz 10.2 10.2 0 568K 568K 0 2 2 0
DLX 9.33 7.40 21 5560K 4428K 20 102 3 97
ratio 1.86 1.76 5 1628K 1640K –1 36 13 64
lexgen 7.87 6.77 14 3076K 3912K –27 293 155 47
mlyacc 0.51 0.35 31 2676K 3680K –38 60 29 52
simple 2.39 2.10 12 2372K 2452K –3 16 6 62
professor 1.04 0.73 30 576K 640K –11 2816 122 96
fib35 1.91 1.91 0 500K 500K 0 1 1 0
tak 14.0 14.0 0 500K 500K 0 1 1 0
msort 1.14 0.71 38 9912K 8328K 16 17 7 59
kitlife 1.89 1.83 3 612K 592K 3 818 2 100
kitkb 1.57 1.77 –13 1076K 1352K –26 193 4 98

Table 2: There are significant savings in number of garbage collections performed when region inference is
enabled. For most programs, enabling region inference also significantly reduces execution time. With respect
to memory usage, the effect of enabling region inference strongly depends on the program. Improvements
(e.g., (tgt − trgt)/tgt) are written in percentages.

Effect of Tagging on Time and Memory Usage

Time (seconds) Memory (bytes)
Program

tr trt % mr mrt %

vliw 0.89 0.98 10 4376K 5880K 34
logic 3.15 3.82 21 128M 171M 34
zebra 3.68 3.91 6 6836K 10M 46
tyan 4.67 5.32 14 199M 283M 42
tsp 3.37 4.39 30 3624K 5820K 61
mpuz 8.01 9.17 14 524K 536K 2
DLX 6.01 6.99 16 2972K 3548K 19
ratio 1.44 1.54 7 2784K 3856K 39
lexgen 4.77 5.17 8 19M 27M 42
mlyacc 0.17 0.19 12 7796K 10M 28
simple 1.65 1.79 8 1276K 1708K 34
professor 0.66 0.68 3 4820K 6840K 42
fib35 1.38 1.69 22 480K 476K 0
tak 12.4 13.0 5 480K 476K 0
msort 0.50 0.57 14 4976K 6372K 28
kitlife 1.55 1.57 1 524K 564K 8
kitkb 1.60 1.64 2 1104K 1136K 3

Table 1: The effect of enabling tagging in the ML
Kit. The time overhead (trt − tr)/tr (written in per-
centages) varies from 1 to 30 percent with an av-
erage of 11 percent. The memory usage overhead
varies between 0 and 60 percent with an average of
27 percent.

4.3 Memory Recycled by Region Inference
We now more deeply explore the relationship between

garbage collection and region inference. We first ask: of
the memory that is reclaimed, what percentage is reclaimed
by region inference? (The rest must be collected by the
garbage collector.) This fraction depends on the garbage
collection strategy used; eventually region inference reclaims
all garbage, when the program ends. The fewer times we
garbage collect, the higher the fraction of garbage collected
by region inference becomes.

Table 3 shows, in percentages, how much memory is re-
cycled by region inference (RI rgt) and garbage collection
(GC rgt), respectively. The table also shows the amount of
region waste (i.e., non-used memory in region pages) as a
percentage of the total amount of memory allocated for re-
gion pages. The region waste column is calculated as an
average of region waste computed at each garbage collec-
tion invocation.

We see that region inference recycles the vast amount of
memory for many of the programs. However, for the bench-
mark programs logic, zebra, tyan, lexgen, and mlyacc,
a high percentage of memory is deallocated by the garbage
collector. It is important to notice that finite regions are not
accounted for here; finite regions are allocated in activation
records on the stack. Previous measurements demonstrate
that a high percentage of all values may be stored in finite
regions [3].

To compute, for each garbage collection, the fractions of
memory reclaimed by garbage collection and region infer-
ence, respectively, we proceed as follows. Let gi be garbage
collection phase i. Let Li be the amount of live data af-
ter gi (i.e., number of region pages in the to-space) and
let Ap be the total number of region pages requested in
the period between gi and gi+1. Moreover, let Ai+1 be
the number of region pages in from-space just before gi+1.



Memory Recycling and Region Waste

Recycling (%) Waste (%)
Program

RI rgt GC rgt Wrgt

vliw 85.2 14.8 22.9
logic 0.1 99.9 3.2
zebra 33.1 66.9 27.2
tyan 7.7 92.3 16.2
tsp 91.7 8.3 4.4
mpuz 100 0.0 –
DLX 100 0.0 –
ratio 75.5 24.5 16.0
lexgen 24.2 75.8 18.9
mlyacc 27.8 72.2 19.4
simple 92.5 7.5 17.8
professor 85.7 14.3 19.5
fib35 – – –
tak – – –
msort 100 0.0 5.0
kitlife 100 0.0 –
kitkb 99.9 0.1 –

Table 3: The programs fib35 and tak do not use
regions, hence no values appear in the columns for
these programs. No value appears in the third col-
umn for benchmark programs for which the garbage
collector runs only a few times. The same heap-to-
live ratio of 3.0 was used for all benchmarks.

Then, the amount of data reclaimed by garbage collection
is Ai+1 − Li+1 and the amount of data reclaimed by re-
gion inference is Li + Ap − Ai+1. The total amount of data
reclaimed is Li + Ap − Li+1, thus, we get the fractions:

RI =
Li+Ap−Ai+1

Li+Ap−Li+1
and GC =

Ai+1−Li+1

Li+Ap−Li+1
.

Figure 4 shows the fraction GC (i.e., 1−RI) for the bench-
mark professor as a function of time. Throughout, region
inference takes care of most of the deallocation.

4.4 Comparison with SML/NJ
In this section we compare memory usage and execu-

tion time for executables generated by the ML Kit with
executables generated by Standard ML of New Jersey ver-
sion 110.0.7. The purpose here is not to suggest which com-
piler is better, but merely to demonstrate that combining
garbage collection with region inference may produce re-
sults that are comparable in performance to state-of-the-art
compilers. The measurements should be taken with a grain
of salt; as mentioned earlier, differences in performance in
code produced by different compilers may stem from many
other factors than differences between regions and garbage
collection.

Table 4 shows execution times and memory usage for all
benchmark programs compiled with Standard ML of New
Jersey.

The benchmark programs can be divided into three groups
of programs; those that run in less time than with SML/NJ
and uses less memory (programs zebra, DLX, professor,
fib35, tak, and kitlife), those that run in more time and
uses more memory (programs tyan, lexgen, mlyacc, and
simple), and the remaining programs (logic, tsp, mpuz,
ratio, msort, and kitkb).

The benchmark programs in the second group (in particu-
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Figure 4: The figure shows the amount of memory
(in percentages) reclaimed by garbage collection as
a function of time. At garbage collection number
60, the garbage collector reclaims approximately 10
percent of the memory reclaimed since garbage col-
lection number 59. Hence region inference reclaims
90 percent of the garbage in that period. Time is
the garbage collection cycle number.

Comparison with Standard ML of New Jersey

Time (seconds) Memory (bytes)
Program

tsmlnj trgt
tsmlnj

trgt
msmlnj mrgt

msmlnj

mrgt

vliw 1.44 1.16 1.2 556K 2668K 0.2
logic 3.75 7.02 0.5 1936K 1012K 1.9
zebra 10.4 4.46 2.3 864K 852K 1.0
tyan 3.78 7.16 0.5 1820K 2972K 0.6
tsp 20.8 3.56 5.8 7408K 8640K 0.9
mpuz 20.7 10.2 2.0 840K 768K 1.1
DLX 10.1 7.40 1.4 4892K 4564K 1.1
ratio 3.15 1.76 1.8 2500K 3312K 0.8
lexgen 5.95 6.77 0.9 304K 3976K 0.1
mlyacc 0.33 0.35 0.9 1692K 3504K 0.5
simple 1.64 2.10 0.8 1880K 2520K 0.7
professor 2.18 0.73 3.0 924K 832K 1.1
fib35 2.72 1.91 1.4 1072K 652K 1.6
tak 22.4 14.0 1.6 860K 648K 1.3
msort 0.87 0.71 1.2 3516K 8516K 0.4
kitlife 2.54 1.83 1.4 1064K 780K 1.4
kitkb 2.51 1.77 1.4 752K 1572K 0.5

Table 4: Comparison of Standard ML of New Jer-
sey with the version of the compiler that combines
region inference and garbage collection. A heap-to-
live ratio of 3.0 was used for all benchmarks.



lar tyan and lexgen) suggest that the garbage collector does
not always do a good job. There may be several reasons for
this:

• All top-level variables are included in the root set.
This inefficiency may be overcome by applying an anal-
ysis for nullifying top-level variables after their last use.

• Region waste. As shown in Table 3, some benchmark
programs cause a significant amount of unused mem-
ory in region pages.

• Insufficient safe points. In the ML Kit, garbage collec-
tion may be initiated only at function entry—not at
arbitrary allocation points.

• Lack of tail-calls. It is possible for region inference
to introduce letregion constructs around expressions
that occur in tail-call contexts and that would other-
wise cause applications within the expression to be im-
plemented as tail-calls. By widening the scope of such
letregion constructs tail-calls may be implemented
properly. This feature is not yet implemented.

For programs in the third group, it is possible to alter
the trade-off between memory usage and execution time by
altering the heap-to-live ratio (default is 3.0), because the
heap-to-live ratio controls how often garbage collection is
invoked.

4.5 Bootstrapping
In this section we compare bootstrapping the ML Kit us-

ing either SML/NJ or the ML Kit itself [18]. In the first
setting, the SML/NJ compiler is used to compile the ML
Kit sources into a version of the ML Kit that, when run-
ning, uses the SML/NJ runtime system. This version of the
ML Kit is called kit1. Using kit1 to compile the ML Kit
sources into kit2 uses 809Mb and takes 40:41min.3

The kit2 executable runs on the runtime system of the ML
Kit using the combination of region inference and garbage
collection. Using kit2 to compile the ML Kit sources into
kit3 uses 904Mb and takes 17:33min. The combination of
region inference and garbage collection works very well on
this large program.

Figure 5 shows the memory behavior of the ML Kit (using
region inference and garbage collection) when compiling the
benchmark program kitkb. The global region r1 is by far
the largest. The ML Kit is not optimized for regions and
without the garbage collector, region r1 would grow without
ever decreasing.

5. RELATED WORK
Related work fall into several categories. First, there is

a large body of work concerning general garbage collection
techniques [23, 14] and escape analysis for improving stack
allocation in garbage collected systems [4]. The extra com-
plexity of region inference and the polymorphic multiplicity
analysis implemented in the ML Kit [3] allow more objects
to be stack allocated than does traditional escape analyses,
which allows only local, non-escaping values to be stack al-
located.

3A 1 GHz Pentium III (Coppermine) machine equipped with
1Gb RAM is used for the bootstrapping experiments.
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Figure 5: A region profile of the ML Kit using region
inference and garbage collection when compiling the
benchmark program kitkb. Without garbage collec-
tion, region r1 would grow without ever decreasing.

Gay and Aiken demonstrate how explicit region based
memory management may work succesfully for C when com-
bined with reference counting of regions [9, 10]. In their
RC system, however, individual objects in a region are not
garbage collected until the entire region is freed, which is im-
portant in our case where, for instance, a programmer can-
not be assumed to have arranged that the result of a func-
tion is stored in a region different from intermediate results
computed by the function. Aiken et al. [1] show how region
inference may be improved for some programs by removing
the constraints of the stack discipline; such improvements
to region inference could cause a fall-back garbage collector
to run less frequently.

Also related to our work is the work on Cyclone [11], a safe
version of the C programming language that uses regions for
memory management. In Cyclone, a particular region—the
heap—is garbage collected, whereas other regions, except
regions corresponding to individual activation records, must
be allocated and deallocated explicitly by the programmer.

Slightly related to our work is the work by Appel and
Wang on integrating with a program a type-safe specialized
garbage collector for the program [22]. The focus of their
work, however, is on type safety and it is yet to be shown
how well the approach works in a real system.

6. FUTURE DIRECTIONS
There are several directions for future work. First, the

results in this paper suggest that the combination of re-
gion inference and garbage collection in a general purpose
ML compiler is a viable and efficient strategy for memory
management. As outlined in Section 4.4, however, there
are several ways the interaction between region inference
and garbage collection can be improved. In particular, the
widening of some letregion constructs to ensure proper im-
plementation of tail calls is called for. Also, arranging that
garbage collection can be initiated at arbitrary allocation
points—instead of only at function entry points—may im-
prove memory usage for some programs.

A second direction for future work is to investigate the use
of region inference as an advanced, polymorphic escape anal-
ysis by collapsing all infinite regions into one single heap. In



such a setting, which corresponds to the disabling of region
inference in our benchmark tests, an efficient generational
collector could be used for the single heap.

Finally, a third direction for future work concerning the
combination of garbage collection and region inference is to
investigate the possibility of combining region inference with
a tag-free (or nearly tag-free) garbage collection scheme. In
the basic region typing rules, two values are forced into the
same region, only if their types are identical. This property
suggests that tags for pointer traversal can be moved from
individual values to the level of regions, which could improve
memory usage significantly for many programs.

7. CONCLUSION
Based on Cheney’s copying garbage collection algorithm,

we have developed a runtime system that integrates garbage
collection with region based memory management.

The runtime system is implemented for all of Standard
ML in the ML Kit compiler. Concerning execution time,
measurements show that the fastest execution is obtained by
using regions alone. Concerning memory consumption, the
experiments confirm that most region-optimised programs
use less space and time when using regions alone than when
using regions combined with garbage collection or garbage
collection alone. (Region inference does not need tags for
pointer traversal, nor space for copying.) For programs that
are not optimised for regions, adding garbage collection re-
duces memory usage but increases running times.

From the point-of-view of garbage collection, the measure-
ments demonstrate that the pressure on garbage collection is
reduced significantly by integrating garbage collection with
region inference.

Finally, measurements show that the combination of re-
gion inference and garbage collection, as implemented in the
ML Kit, is as efficient with respect to memory usage and ex-
ecution time as a state-of-the-art generational garbage col-
lection system.
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