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Parallelism in a Region Inference Context

MARTIN ELSMAN and TROELS HENRIKSEN, University of Copenhagen, Denmark

Region inference is a type-based program analysis that takes a non-annotated program as input and constructs

a program that explicitly manages memory allocation and deallocation by dividing the heap into a stack of

regions, each of which can grow and shrink independently from other regions, using constant-time operations.

Whereas region-based memory management has shown useful in the contexts of explicit region-based

memory management, and in particular, in combination with parallel execution of code, combining region

inference with techniques for higher-order parallel programming has not been investigated.

In this paper, we present an implementation of a fork-join parallel construct suitable for a compiler based on

region inference. We present a minimal higher-order language incorporating the parallel construct, including

typing rules and a dynamic semantics for the language, and demonstrate type soundness. We present a novel

effect-based region-protection inference algorithm and discuss benefits and shortcomings of the approach. We

also describe an efficient implementation embedded in the MLKit Standard ML compiler. Finally, we evaluate

the approach and the implementation based on a number of parallel benchmarks, and thereby demonstrate

that the technique effectively utilises multi-core architectures in a higher-order functional setting.
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1 INTRODUCTION

Region-based memory management allows programmers to associate objects with so-called regions,
which may be explicitly allocated and deallocated by the programmer. Region-based memory
management, as it is implemented for instance in Rust [Aldrich et al. 2002; Jung et al. 2017] and
extensions to Cyclone [Gerakios et al. 2010; Grossman et al. 2002], can be a valuable tool for
constructing critical systems, such as real-time embedded systems [Salagnac et al. 2006]. In contrast
to explicit region-based memory management, region inference takes a non-annotated program as
input and produces as output a region-annotated program, including directives for allocating and
deallocating regions [Tofte et al. 2004]. The result is a programming paradigm where programmers
can learn to write region-friendly code by following certain patterns [Tofte et al. 2022].
Whereas region inference has shown to be a viable strategy for sequential program execution

[Birkedal et al. 1996; Elsman and Hallenberg 2021; Hallenberg et al. 2002], using region inference
in a parallel shared-memory context has not received much attention, despite its intuitive promise
in guiding a runtime system in which regions of memory are private to a particular task. A simple
thread library could expose the following interface to a programmer:
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signature SIMPLE_THREAD = sig

type α t

val spawn : (unit → α) → α t

val get : α t → α

end

Using this interface, the programmer may fork new threads with the spawn function and join (i.e.,
synchronise) threads using the get function. Unfortunately, from a region-inference perspective,
this interface is problematic because the spawn function says nothing about when the spawned
function no longer needs access to external resources, such as values captured in the closure and
stored in regions that are external to the function.

In general, the main obstacle in supporting parallelism in a high-level functional programming
language is memory management. One possibility is for an implementation to make use of only a
single heap, which easily leads to allocation races, which can be quite expensive for programs that
allocate often. An alternative is for each thread to maintain its own heap and then use dynamic
techniques to promote live objects to the parent’s heap when a thread is joined. Different variations
have been investigated and the techniques are highly influenced by the complexity of dealing with
mutable objects and higher-order functions [Sivaramakrishnan et al. 2020; Westrick et al. 2019].
MPL [Westrick et al. 2019], which is an extension of MLton [Weeks 2006] with support for

Fork-Join parallelism, exposes parallelism, essentially, through a function par:

val par : (unit→α) → (unit→β) → α * β

When applied to two thunks, f and g, the par function will spawn two threads for executing f()

and g() in parallel and synchronize on the result.
Whereas the par function makes explicit when threads synchronise, in the context of region

inference, the two functions may write into the same regions. We may choose a simple and efficient
non-locking allocation scheme when the effect system tells us that races cannot occur and a more
complex atomic allocation scheme when no such guarantee can be established. The non-locking
allocation schemewill apply to allocations in thread-private regions but also to “destination-passing”
cases where a region is allocated by one thread and allocated into only by one other thread.
The region scheme that we consider is based on the stack discipline. Whenever e is some

expression, region inference may decide to replace e with the term letregion ρ in e ′ end, where
e ′ is the result of transforming the expression e , which includes annotating allocating expressions
with particular region variables (e.g., ρ) specifying the region each value should be stored in. The
semantics of the letregion construct is first to allocate a region (initially an empty list of pages)
on the region stack, bind the region to the region variable ρ, evaluate e ′, which may allocate
values in the region (and perhaps in other regions), and, finally, deallocate the region bound to
ρ (and its pages).1 Regions may be passed to functions at run time (i.e., functions can be region
polymorphic) and may be captured in closures. Soundness of region inference ensures that a region
is not deallocated as long as a value within it is used by the remainder of the computation.

In this paper, we present an alternative spawn function that gives the programmer the possibility
of specifying the lifetime of running threads. This aspect allows region inference to infer a useful
conservative approximation to the lifetime of values required by a thread. The construct can be
used to encode other useful parallel constructs, including MPL’s par function. The technique does
not rely on dynamic promotion strategies, even for mutable objects, but is instead based on the
property that the lifetime of objects are determined statically by region inference.

1The implementation in the MLKit Standard ML compiler uses a region page size of 8KiB. Region pages are allocated from

the underlying system in chunks and maintained in a shared free-list.
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We demonstrate the usefulness of the spawn interface by using it to implement a number of
parallel algorithms and by demonstrating that the algorithms perform and scale well in practice.

1.1 Contributions

The contributions of this work are the following:

(1) We present a fork-join parallel construct suitable for a compiler based on region inference
and a minimal higher-order language incorporating the construct. We give typing rules and
a dynamic semantics for the language and demonstrate type soundness both for the core
language and for a region-explicit language, which serves as a target for region inference.

(2) We present an effect-based protection inference algorithm that separates regions into those
allocated into at most by one thread and those that require atomic allocation because they
are potentially allocated into by multiple threads.

(3) We discuss benefits and shortcomings of the approach and present an efficient implementation,
which constitutes the first implementation of parallelism support in the MLKit, a compiler
for the Standard ML programming language.

(4) We evaluate the approach and the implementation based on a number of parallel benchmarks,
and thereby demonstrate that the approach leads to a viable technique for effectively utilising
multi-core architectures in a higher-order functional setting.

The study is performed in the context of the MLKit [Tofte et al. 2022], which generates native
x64 machine code for Linux and macOS [Elsman and Hallenberg 1995] and implements a series
of techniques for refining the representations of regions [Birkedal et al. 1996; Tofte et al. 2004],
including a technique for dividing regions into stack allocated (bounded) regions and regions that
are unbounded and therefore heap allocated.

The parallel benchmarks are executed and compared with versions of the benchmarks compiled
with MLton [Weeks 2006], MPL [Westrick et al. 2019], and with a sequential version of the MLKit.

1.2 Outline

The paper is organised as follows. In Section 2, we present a basic region-friendly interface for
fork-join parallelism in ML, demonstrate its practical usefulness, and give motivations for its
features, seen from a region perspective. In Section 3, we present typing rules and a dynamic
semantics for an internal language featuring the parallel functionality. We also show how the
library implementation of the parallel constructs are compiled into internal language constructs. In
Section 4, we present region typing rules and a dynamic semantics for a region-explicit version
of the internal language. The language serves as a target for region inference and we discuss
how various language extensions, including region and effect polymorphism, has an influence
on parallelism. We also present the effect-based protection inference algorithm that serves to
distinguish between regions that are potentially allocated into by multiple threads and regions
that are allocated into by at most one thread. In Section 5, we discuss the concrete implementation,
which extends the MLKit Standard ML compiler. In Section 6, we present alternative approaches
to avoid region allocation races. In Section 7, we present experimental results. In Section 8, we
describe related work, and in Section 9, we conclude.

2 BASIC PARALLEL CONSTRUCTS

From a programmer’s point of view, parallelism is exposed through the following library interface
and reference implementation:
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signature THREAD = sig

type α t

val spawn : (unit→α) → (α t→β) → β

val get : α t → α

end

structure Thread :> THREAD = struct

type α t = α

fun spawn f k = k(f())

fun get x = x

end

The spawn function takes a function f to spawn and a scope function k. The spawn function
spawns a new thread t and executes the application f() inside the thread. Parallelism is now
achieved by allowing an implementation to proceed evaluating k t , the continuation applied to
the thread t . The continuation may call the function get to wait for the result of evaluating the
thread expression f(). Moreover, if get is not called during the evaluation of the continuation, the
continuation will wait for the termination of the thread before the spawn construct reduces to the
result of the continuation.
The Thread module allows us to implement other useful functions:

fun spawnarg f a k = spawn (fn() ⇒ f a) k

fun par f g = spawn f (fn a ⇒ spawn g (fn b ⇒ (get a, get b)))

We can also choose to implement the par function differently by having it spawn only one thread:

fun par f g = spawn g (fn b ⇒ (f(),get b))

As a more elaborate example, consider a parallel version of Mergesort on integer lists. The
function makes use of a utility function split that takes a list and returns a pair of lists of roughly
the same length. It also makes use of a utility function merge that takes as argument a pair of sorted
lists and returns a sorted list containing the elements of the two argument lists. The Mergesort
function pmsort that we shall define takes as argument a par-number, which indicates the parallel
resources available to a thread. Based on the par-number, the function will diverge into a sequential
Mergesort, when all available parallel resources have been used. Here is the definition of pmsort:2

fun pmsort p [] : int list = []

| pmsort p [x] = [x]

| pmsort p xs = let val q = p div 2

val (l,r) = split xs

val (ls,rs) = if p<=1 then (pmsort q l, pmsort q r)

else par (fn () ⇒ pmsort q l,

fn () ⇒ pmsort q r)

in merge(ls,rs)

end

Region inference results in the following region-annotated version of the function, which makes
use of MLKit’s region-polymorphic recursion to allow for the lists returned by the local calls to
pmsort to be stored in local regions:

fun pmsort ρ p [] = [] at ρ

| pmsort ρ p [x] = [x] at ρ

| pmsort ρ p xs = let val q = p div 2

region ρ 1 ρ 2

val (l,r) = split ρ 1 ρ 2 xs

val (ls,rs) = if p<=1 then (pmsort ρ 1 q l, pmsort ρ 2 q r)

else par (fn() ⇒ pmsort ρ 1 q l,

fn() ⇒ pmsort ρ 2 q r)

in merge ρ (ls,lr)

end

2For reducing the number of allocations and the overall memory usage, a more efficient Mergesort uses vectors.
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Notice how list construction is annotated with the region into which the list is allocated. Notice
also that region-annotated programs are printed using region declarations (region ρ1 ρ2), which
may appear inside let-bindings together with val and fun declarations.
In the case of parallel Mergesort, region inference has done a perfect job in that each region is

allocated into by at most a single thread. Unfortunately, we cannot in general assume that regions
are not allocated into by multiple threads. For this reason, we shall make a particular effort at
allowing multiple threads to allocate into the same region by making region allocation atomic
(using a partly lock-free implementation of allocation), unless we can infer that a region is allocated
into by at most one thread. To illustrate the need for allocation atomicity, consider the following
implementation of a parallel map construct, which, at first, may seem to work well:

fun pmap (f:α→β) (xs:α list) : β list =

let fun g nil k = k()

| g (x::xs) k = T.spawn (fn () ⇒ f x)

(fn t ⇒ g xs (fn () ⇒ T.get t :: k()))

in g xs (fn () ⇒ nil)

end

The function spawns a new thread for each element in the argument list before any result is
demanded using the get function. This function works well if the argument function allocates
mostly in regions that are local to the function, for instance, if it makes allocations only in private
regions and returns an integer. However, if, for example, the argument function allocates its result
in a region, all invocations of the function will allocate into the same region, which may cause
allocation congestion as all threads will compete for the region allocation pointer. Although the
runtime system will ensure atomicity of allocations, a programmer may benefit, through faster
execution, from arranging that multiple threads only rarely allocate into the same region.

3 INTERNAL LANGUAGE

The external library functions spawn and get that are present in the Thread structure are compiled
into internal language constructs of the form letspawn x : τT = e in e ′ and get e.

The semantics of the construct letspawn x : τT = e in e ′ is to evaluate the expression e in the
thread bound to the handle x (of type τ T ), which is in scope in the expression e ′. The thread is
forced to be joined after e ′ is evaluated to a value (meaning that the construct will wait until the
thread terminates). Within e ′, the get construct can be used to force a join and extract the thread
result before exiting the scope of the letspawn binding.
The grammar for a minimalistic internal language featuring thread support looks as follows:

τ ::= int | τ → τ ′ – types
| τ T – futures

v ::= d | λx : τ .e – values
| ⟨v⟩ – package

e ::= x | v | e1 e2 – expressions
| letspawn x : τ T = e in e ′ – thread creation
| get e – wait for result

Basic types (τ ) include the type int of integers, function types (τ → τ ′), and the type of thread
futures (τ T ). Values include integer values (d), function values (λx:τ.e), and thread packages (⟨v⟩),
which represent threads that have terminated with a value v . Besides taking the form of a letspawn
construct or a get construct, an expression may take the form of a variable, a value, or an application.
The typing rules for the constructs of the internal language are given in Figure 1. The typing

rules are straightforward. Notice that in the typing rule for the letspawn construct, no restrictions
enforce thread futures of type τ T not to escape the scope of the construct. At runtime, however,
a thread future can escape the scope of the binding letspawn construct only once the thread has
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Expression and value typing Γ ⊢ e : τ

Γ, x : τ ⊢ x : τ Γ ⊢ d : int
Γ ⊢ e : τ ′ → τ Γ ⊢ e ′ : τ ′

Γ ⊢ e e ′ : τ

Γ, x : τ ⊢ e : τ ′

Γ ⊢ λx : τ .e : τ → τ ′

Γ ⊢ e : τ Γ, x : τ T ⊢ e ′ : τ ′

Γ ⊢ letspawn x : τ T = e in e ′ : τ ′
Γ ⊢ e : τ T

Γ ⊢ get e : τ

Γ ⊢ v : τ

Γ ⊢ ⟨v⟩ : τ T

Fig. 1. Typing rules for the internal language.

Small-step reduction rules e ֒→ e ′

(λx : τ .e)v ֒→ [v/x]e
get ⟨v⟩ ֒→ v

letspawn x : τ T = v in e ֒→ [⟨v⟩/x]e
EΓ[e] ֒→ EΓ[e ′] if e ֒→ e ′ and EΓ

, [.]

Fig. 2. Small-step reduction rules for the internal language.

been fully evaluated. Notice also that values are typed in non-empty type environments, which
allows for values (e.g, functions) to refer to threads that are bound in thread contexts.

3.1 Dynamic Semantics

In order to present the dynamic semantics for the language, we first define the grammar for redexes
(r ) and evaluation contexts (EΓ), which are given as follows:

r ::= letspawn x : τ T = v in e ′

| get ⟨v⟩
| (λx : τ .e)v

EΓ ::= [.] (Γ = ·)

| letspawn x : τ T = e in EΓ
′

(Γ = Γ
′
, x : τ T )

| letspawn x : τ T = EΓ in e

| EΓ e | v EΓ | get EΓ

Evaluation contexts EΓ make explicit, through Γ, the type of variables bound to threads in
encapsulating letspawn constructs. When EΓ is an evaluation context and e is an expression, we
write EΓ[e] to denote the expression formed by filling the hole [.] in the context EΓ with the
expression e . A redex (r ) is an expression of a form that immediately matches the left-hand side of a
reduction rule (to be defined shortly). Evaluation contexts are defined to pinpoint possible redexes
inside threads spawned with the letspawn construct as well as the possible redexes in the host
expression. In other words, for a given expression e , there may exist multiple pairs of evaluation
contexts EΓ and expressions e ′ such that e = EΓ[e ′]. This feature allows for a nondeterministic
order of evaluation with respect to the evaluation steps performed by each thread.

The small-step reduction rules in Figure 2 take the form e ֒→ e ′. The rule for function application
is standard. In the rules for the letspawn construct, we see that when a thread has terminated with
a value v , the value is packaged into a thread package ⟨v⟩ and substituted into the thread’s scope in
place of the variable that the thread is bound to. The rule for the get construct allows for opening a
thread package. The context rule allows for evaluation within a context.

3.2 Type Safety for the Internal Language

The type safety property that we shall prove for the internal language is based on well-known
techniques for proving type safety [Morrisett 1995; Wright and Felleisen 1994]. We highlight the
main properties below, with details provided in Appendix A.1 (auxiliary material).
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The following property states that a well-typed expression is either a value or can be separated
into an evaluation context and a redex, which is demonstrated by induction over the structure of e :

Proposition 3.1 (Decomposition). If ⊢ e : τ then either e is a value or there exist a redex e ′, a

type τ ′, and a context EΓ such that Γ ⊢ e ′ : τ ′ and e = EΓ[e ′].

Notice that Decomposition does not suggest that when e is not a value then it is constructed based
on a unique redex and a unique evaluation context. Instead, Decomposition just suggests that such
a pair of a redex and an evaluation context exists.

Natural properties about contextual typing and value substitution hold, which are demonstrated
by induction over the structure of EΓ and e , respectively:

Proposition 3.2 (Context). If Γ0 ⊢ EΓ[e ′] : τ then Γ0, Γ ⊢ e ′ : τ ′ for some τ ′. Further, if

Γ0 ⊢ E
Γ[e] : τ and Γ0, Γ ⊢ e : τ ′ and Γ0, Γ ⊢ e ′ : τ ′ then Γ0 ⊢ E

Γ[e ′] : τ .

Proposition 3.3 (Value Substitution). If Γ, x : τ ⊢ e : τ ′ and Γ ⊢ v : τ then Γ ⊢ [v/x]e : τ ′.

Type preservation (i.e., subject reduction) for the language, as well as progress, can be stated as
follows and shown by induction over the structure of e and by use of Proposition 3.1:

Proposition 3.4 (Type Preservation). If Γ ⊢ e : τ and e ֒→ e ′ then Γ ⊢ e ′ : τ .

Proposition 3.5 (Progress). If ⊢ e : τ then either e is a value or e ֒→ e ′ for some e ′.

No matter in which order redexes are evaluated, evaluation leads to the same result.

Proposition 3.6 (Confluence). If Γ ⊢ e : τ and e ֒→∗ e1 and e ֒→
∗ e2 then there exists e ′ such

that e1 ֒→
∗ e ′ and e2 ֒→

∗ e ′.

Proof. Based on Newmann’s Lemma [Newman 1942], it suffices to show that if Γ ⊢ e : τ and
e ֒→ e1 and e ֒→ e2 then there exists e ′ such that e1 ֒→

∗ e ′ and e2 ֒→
∗ e ′. The proof proceeds by

induction over the structure of e with the interesting case being the letspawn construct. □

3.3 Compilation

The library functions spawn and get that are present in the Thread structure are compiled into
letspawn and get constructs in the internal language. The compilation is a straightforward syntactic
translation of the program. We only present a few of the translation rules:

Compilation [[e]] = e ′

[[spawn f e]] = letspawn x : τ T = [[f ()]] in [[e x]]

where f : unit → τ

[[get e]] = get [[e]]

[[e e ′]] = [[e]] [[e ′]]

[[x]] = x

· · ·

4 REGION-ANNOTATED PROGRAMS

In this section, we present the notions of region-annotated types and region-annotated expressions
along with typing rules and a dynamic semantic. Region inference is the process of transforming a
non region-annotated (internal language) expression into a region-annotated (internal language)
expression. We shall not here describe the process of region inference in detail. However, we shall
discuss the typing rules in details and demonstrate how the typing rules are proven sound with
respect to a small-step dynamic semantics for the language. Moreover, by defining a straightforward
notion of region erasure on terms, written er(·), it will also be straightforward to demonstrate
an evaluation erasure property stating that if a region-annotated expression e evaluates to some
(region-annotated) value v then the erasure of e evaluates to the erasure of v .
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Region-annotated values Γ ⊢ v : τ

Γ ⊢ d : int
Γ ⊢ v : τ

Γ ⊢ ⟨v⟩ρ : ((τ ,φ)T , ρ)

Γ, x : τ ′ ⊢ e : τ ,φ

Γ ⊢ λρx : τ ′.e : (τ ′
φ

−−→τ , ρ)

Region-annotated expressions Γ ⊢ e : τ ,φ

Γ ⊢ e : τ ,φ φ ′ ⊃ φ

Γ ⊢ e : τ ,φ ′
Γ, x : τ ⊢ x : τ , ∅

Γ ⊢ v : τ

Γ ⊢ v : τ , ∅

Γ ⊢ e : τ ,φ φ ′′
= φ ∪ φ ′ ∪ {ρ}

Γ, x : ((τ ,φ)T , ρ) ⊢ e ′ : τ ′,φ ′

Γ ⊢ letspawn x : ((τ ,φ)T , ρ) = e at ρ in e ′ : τ ′,φ ′′ (1)
Γ ⊢ e : ((τ ,φ0)T , ρ),φ

Γ ⊢ get e : τ ,φ ∪ {ρ}
(2)

Γ, x : τ ′ ⊢ e : τ ,φ

Γ ⊢ λx : τ ′.e at ρ : (τ ′
φ

−−→τ , ρ), {ρ}

Γ ⊢ e : (τ ′
φ0−−−→τ , ρ),φ Γ ⊢ e ′ : τ ′,φ ′

Γ ⊢ e e ′ : τ ,φ ∪ φ ′ ∪ φ0 ∪ {ρ}

Γ ⊢ e : τ ,φ ρ < frv(Γ, τ )

Γ ⊢ letregion ρ in e : τ ,φ \ {ρ}

Γ ⊢ e : τ ,φ Γ, x : ((τ ,φ)T , ρ) ⊢ e ′ : τ ′,φ ′

Γ ⊢ letspawn x : ((τ ,φ)T , ρ) = e in e ′ : τ ′,φ ∪ φ ′ (3)

Fig. 3. Typing rules for region-annotated values and region-annotated expressions.

We first define the notions of effects (φ), and (region annotated) types (τ ), as follows:

φ ::= {ρ1, · · · , ρn} – effect
τ ::= int – unboxed integer

| (τ1
φ

−−→τ2, ρ) – boxed function
| ((τ ,φ)T , ρ) – boxed future

Effects are simply sets of region variables. We shall not here in this minimalistic treatment distin-
guish between the effect of allocating in a region (a so-called put-effect) or reading a value in a
region (a so-called get-effect). Boxed types (both function types and futures) are associated with
a region specifying where the values of the particular type are stored. Also, both function types
and the type of futures are annotated with latent effects, which specify, respectively, the effect of
evaluating the function and the effect of evaluating the thread future.
Region annotated expressions and region annotated values are defined as follows:

e ::= x | v | λx : τ .e at ρ | e1 e2 – expressions v ::= d | λρx : τ .e – value
| letregion ρ in e – region creation | ⟨v⟩ρ – package
| letspawn x : τ = e at ρ in e ′ – thread creation
| letspawn x : τ = e in e ′ – thread context
| get e – wait for result

Values include unboxed integers (d), closures (λρx : τ .e), and thread packages (⟨v⟩ρ ). Closures
and thread packages are boxed and associated with distinguished regions. An expression can be a
variable (x ), a value (v), a lambda expression, a function application (e1 e2), a letregion construct,
a letspawn allocation-construct, a letspawn context, or a get construct. Notice that allocating
expressions (i.e., lambda expressions and letspawn allocation-constructs) are annotated with an
at specifier, which specifies in which region the value (or thread object) should be allocated. The
letspawn thread-context is used to capture intermediate thread states (e and e ′ may evaluate in
parallel). The free (program) variables of some expression (or value) e is written fpv(e). We use Γ to
range over type environments, which are finite maps from program variables to region types.
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Allocation and Deallocation e
φ
−֒−→v

λx : τ .e at ρ
{ρ }∪φ
−֒−−−−−→ λρx : τ .e

letspawn x : τ = e at ρ in e
{ρ }∪φ
−֒−−−−−→ letspawn x : τ = e in e

letregion ρ in v
φ
−֒−→ v

Reduction and Context e
φ
−֒−→ e ′

(λρx : τ .e)v
{ρ }∪φ
−֒−−−−−→ [v/x]e

get ⟨v⟩ρ
{ρ }∪φ
−֒−−−−−→ v

letspawn x : ((τ ,φ ′)T , ρ) = v in e
φ
−֒−→ [⟨v⟩ρ/x]e

EΓ
φ [e]

φ′

−֒−−→ EΓ
φ [e

′] if e
φ∪φ′

−֒−−−−→ e ′ and EΓ
φ , [.] and φ ∩ φ ′

= ∅

Fig. 4. Dynamic semantics for region-annotated programs.

Typing rules for region-annotated values and region-annotated expressions are presented in
Figure 3. Regarding rule (1), notice that the latent effect of the thread function is included in the
type of the thread, which has the consequence that the regions in the latent effect are kept alive
during the scope of the letspawn construct. Regarding rule (2), notice that waiting for a thread is
not in itself associated with an effect besides reading from the boxed future-value. When dealing
with the full language, which supports exceptions, calling get, however, may have the effect of
raising an exception X , if the exception X was raised by the queried thread. Notice also that a
programmer may return (or store somewhere, using mutable data structures) a closure that calls
get and that the effect of such a call is only to access the value in the boxed future; if control has
left the scope of the letspawn construct, the thread has terminated and the result is available and
kept alive as long as the regions in which the result is present are alive.

4.1 Dynamic Semantics

In order to present the dynamic semantics for the region-annotated language, we first define the
grammar for redexes (r ) and evaluation contexts (EΓ

φ ), which are given as follows:

r ::= letspawn x : τ = e at ρ in e | letspawn x : τ = v in e

| letregion ρ in v | get ⟨v⟩ρ | (λρx : τ .e)v

EΓ
φ ::= [.] (Γ = ·, δ = ·)

| letspawn x : τ = e at ρ in EΓ
′

φ (Γ = x : τ , Γ′)

| letspawn x : τ = e in EΓ
′

φ (Γ = x : τ , Γ′)

| letregion ρ in EΓ

φ′ (φ = {ρ} ∪ φ ′)

| letspawn x : τ = EΓ
φ in e | EΓ

φ e | v EΓ
φ | get EΓ

φ

Evaluation contexts EΓ
φ make explicit, through Γ, the type of variables bound to threads in encapsu-

lating letspawn constructs, and, through φ, the region variables bound to regions in encapsulating
letregion constructs. When EΓ

φ is an evaluation context and e is an expression, we write EΓ
φ [e] to

denote the expression formed by filling the hole [.] in the context EΓ
φ with the expression e .

The evaluation rules are given in Figure 4 and consist of allocation and deallocation rules, reduction
rules, and a context rule. The rules are of the form e

φ
−֒−→ e ′, which says that, given a set of allocated

regions φ, the expression e reduces (in one step) to the expression e ′. Notice in particular how the
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letspawn thread-creation construct reduces in one step to a letspawn thread-context with an effect
that includes the region variable associated with the thread future.
We can now define an evaluation relation

φ
−֒→∗ as the least relation formed by the reflexive

transitive closure of the relation
φ
−֒−→.

4.2 Type Safety for the Region-Annotated Internal Language

The proof of type safety is based on an earlier proof of type safety for a similar language, but a
language that does not feature parallel execution of threads [Elsman 2003]. We shall therefore not
present the complete proofs here, but instead report on the involved propositions and highlights
of the proofs. The structure also closely resembles the structure of the type-safety proof for the
non-region-annotated version of the internal language, as covered in Section 3.2. More details are
available in Appendix A.2 (auxiliary material).
A well-typed expression is either a value or can be separated into an evaluation context and a

redex, which is demonstrated by induction over the structure of e:

Proposition 4.1 (Decomposition). If ⊢ e : τ ,φ ′ then either (1) e is a value or (2) there exists a

redex e ′, a type τ ′, and a context EΓ
φ such that e = EΓ

φ [e
′] and Γ ⊢ e ′ : τ ′,φ ∪ φ ′.

Notice how the parameterisation of contexts allows us to establish a proper type environment for
an inner expression. Following the development for the non-region-annotated internal language,
natural properties about contextual typing and value substitution hold, and are demonstrated by
induction over the structure of EΓ

φ and e , respectively:

Proposition 4.2 (Context). If Γ0 ⊢ E
Γ
φ [e

′] : τ ,φ ′ then Γ0, Γ ⊢ e ′ : τ ′,φ ∪ φ ′ for some τ ′. Further,

if Γ0 ⊢ E
Γ
φ [e] : τ ,φ

′ and Γ0, Γ ⊢ e : τ ′,φ ∪ φ ′ and Γ0, Γ ⊢ e ′ : τ ′,φ ∪ φ ′ then Γ0 ⊢ E
Γ
φ [e

′] : τ ,φ ′.

Proposition 4.3 (Value Substitution). If Γ, x : τ ⊢ e : τ ′,φ and Γ ⊢ v : τ then Γ ⊢ [v/x]e : τ ′,φ.

Type preservation and progress, can be stated as follows and shown by induction over the
structure of e and by use of Proposition 4.1:

Proposition 4.4 (Type Preservation). If Γ ⊢ e : τ ,φ and e
φ
−֒−→ e ′ then Γ ⊢ e ′ : τ ,φ.

Proposition 4.5 (Progress). If ⊢ e : τ ,φ then either e is a value or e
φ
−֒−→ e ′ for some e ′.

4.3 Language Extensions

The region-annotated internal language that we have introduced in the previous sections demon-
strate the overall soundness of the approach of using region-based memory management in a
parallel context, but is overly minimalistic as a basis for an implementation of a real programming
language, such as Standard ML. It is straightforward to add features such as tuples, records, condi-
tionals, parameterised sum-types, exceptions, and even recursive functions to the language. It is
also well-known how region inference can support Hindley-Milner style let-polymorphism, region-
and effect-polymorphic functions, and even region-polymorphic recursion.
We now outline how the language is extended with region- and effect-polymorphic functions

and polymorphic recursion, which allows us to discuss techniques for avoiding allocation races
based on region polymorphism. We also discuss aspects of adding mutable data (i.e., references and
arrays) to the language, as well as how region representation analyses [Birkedal et al. 1996], such
as multiplicity analysis, are affected by the addition of parallelism.

Region- and Effect-Polymorphic Functions. We shall use ϵ to range over so-called effect variables.
An effect is now a set of basic effects (η), each of which can be either an effect variable or a region
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variable. Latent effects in the types of boxed functions and boxed futures, are now of the form
ϵ .φ. Such objects are called arrow effects and are central when it comes to defining the notion of
unification, which is the foundation for the region inference algorithm that we build upon [Tofte
and Birkedal 1998, 2000]. Here are the (refined) definitions of basic effects, effects, types, and type
schemes, which are types parameterised over type variables, effect variables, and region variables:

τ ::= α – type variable
| int – unboxed integer

| (τ1
ϵ .φ

−−−−→τ2, ρ) – boxed function
| ((τ , ϵ .φ)T , ρ) – boxed future

η ::= ϵ | ρ – basic effect
φ ::= {η1, · · · ,ηn} – effect

σ ::= τ | ∀®α ®ϵ ®ρ .σ – type scheme

A substitution (S) is a triple (Sr, S t, Se), where Sr is a region substitution, mapping region variables
to region variables, S t is a type substitution mapping type variables to types, and Se is an effect

substitution, mapping effect variables to arrow effects. The effect of applying a substitution on an
object is to perform the three substitutions simultaneously on the three kinds of variables in the
object (by renaming of bound variables within the object to avoid capture). For effects and arrow
effects, substitution is defined as follows [Tofte and Birkedal 2000], assuming S = (Sr, S t, Se):

S(φ) = {Sr(ρ) | ρ ∈ φ} ∪ {η | ∃ϵ, ϵ ′,φ ′ s.t. ϵ ∈ φ ∧ Se(ϵ) = ϵ ′.φ ′ ∧ η ∈ {ϵ ′} ∪ φ ′}

S(ϵ .φ) = ϵ ′.(φ ′ ∪ S(φ)), where Se(ϵ) = ϵ ′.φ ′

We can now appreciate why the types of boxed functions and boxed futures are annotated with
arrow effects ϵ .φ and not with effects φ. With arrow effects, if a non-region-annotated type is given
two distinct region annotations, then there exists a unifier (i.e., a substitution) that, when applied
to the two types, makes the two resulting region-annotated types equal, which is essential for the
unification-based region inference algorithm [Tofte and Birkedal 1998].
A type scheme σ = ∀®ρ ®α ®ϵ .τ ′ generalises a type τ via ®ρ ′, written σ ≥ τ via ®ρ ′, if there exists

a substitution S = ({ ®ρ ′/®ρ}, S t, Se) such that S(τ ′) = τ , dom(S t) = { ®α }, and dom(Se) = {®ϵ}. If
σ ≥ τ via ®ρ, for some σ , τ , and ®ρ, and S is a substitution, then S(σ ) ≥ S(τ ) via S( ®ρ).

Using the above definitions, typing rules for function application and for recursive functions
supporting type polymorphism, effect polymorphism, and region polymorphism (and region-
polymorphic recursion) can be given as follows, following [Elsman and Hallenberg 2021]:

Γ ⊢ e : σ ,φ
Γ ⊢ e : σ ,φ Γ ⊢ e ′ : τ1,φ1

σ ≥ (τ1
ϵ .φ0−−−−−→τ2, ρ) via ®ρ

Γ ⊢ e [ ®ρ] e ′ : τ2,φ ∪ φ1 ∪ φ0 ∪ {ρ}

σ = ∀®ρ®ϵ .(τ1
ϵ .φ

−−−−→τ2, ρ)
Γ + { f : σ , x : τ1} ⊢ e : τ2,φ
fv( ®α ®ϵ ®ρ) ∩ fv(Γ,φ, ρ) = ∅

Γ ⊢ fun f [ ®ρ] x = e at ρ : ∀®α .σ , {ρ}
(4)

We shall not here present the typing rule for the associated value version of recursive function clo-
sures, which is necessary for proving soundness (along with appropriate substitution lemmas), but
emphasise that, for region inference to be tractable, region and effect polymorphism is introduced
only for known functions, which include functions that are bound directly by a fun construct.

Parallelism benefits from region and effect polymorphism, as we have already touched upon in
the introduction. The reason is that when a thread calls a function, it can pass private regions to
the function, which means that allocation into these regions will not compete for the allocation
pointer. In Section 6, we shall discuss suggestions for limiting allocation races further.

Put- and Get-Effects. To decrease the number of regions that are passed to functions, the region
type-system and the notion of basic effects are refined to distinguish between basic effects of the
form get(ρ) and put(ρ). After adjusting each rule to use the refined notion of basic effects, we can

refine rule (4) such that the vector of regions ®ρ ′ parameterised over includes only those regions ρ
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that occur on the form put(ρ) in the effect φ. Now, at application points, the vector of regions passed
as arguments must be adjusted so that only regions with put-effects are passed as arguments.

Mutable Objects. The possibility of allocating and accessing mutable objects, such as arrays, is a
prerequisite for efficient implementations of many parallel algorithms (some of the benchmarks we
present in Section 7 make essential use of mutable data). Region inference supports mutable objects
well with the region typing rules for updates and access being straightforward. Both rules introduce
an atomic effect get(ρ), where ρ is the region holding the mutable data structure (no objects are
allocated by these operations). Multiple threads can safely access and update different parts of a
mutable data-structure, such as an array. Region inference will safely take care of deallocating the
mutable objects once the involved threads terminate.

4.4 Region Protection Inference

Based on the notion of put- and get-effects and the notion of region- and effect-polymorphism, we
now present a novel effect- and constraint-based algorithm for inferring if a region can be allocated
into, simultaneously, by multiple threads.

A basic constraint (c) takes the the form φ#φ ′, where φ and φ ′ are effect sets (containing atomic
put-effects and effect variables). A constraint set C is a set of basic constraints. Type schemes are
refined to be on the form∀®α ®ρ®ϵ .τ /C . A type scheme∀®α ®ρ®ϵ .τ ′ /C ′ generalises a type τ with constraint
set C via ®ρ ′, written σ ≥ τ/C via ®ρ ′ if there exists S = ({}, S t, Se) such that S(τ ′) = τ , Dom(S t) = ®α ,
Dom(Se) = ®ϵ , and S(C ′) = C . Applying a substitution S to a basic constraint is defined by the
rules S({η1, · · · ,ηn}) =

⋃
i S(ηi ) and S(φ#φ

′) = S(φ)#S(φ ′). The protection set of a constraint set C ,
written [[C]], is defined by the equations [[C ∪C ′]] = [[C]] ∪ [[C ′]] and [[φ#φ ′]] = {ρ |put(ρ) ∈ φ ∩φ ′}.

Protection inference is defined by a set of rules allowing inferences of the form Γ ⊢ e : σ ,φ/C ,
which resemble the region typing rules closely but with the addition that a constraint set is inferred
and that letregion constructs are refined to take the form letregion ρ:P in e, where P takes the
form prot or noprot, signifying whether the region should be protected by a mutex:

Protection Inference Γ ⊢ e : σ ,φ/C

Γ ⊢ e : τ ,φ/C φ ′′
= φ ∪ φ ′ ∪ {ρ}

Γ, x : ((τ ,φ)T , ρ) ⊢ e ′ : τ ′,φ ′/C ′ C ′′
= C ∪C ′ ∪ {(φ#φ ′)}

Γ ⊢ letspawn x : ((τ ,φ)T , ρ) = e at ρ in e ′ : τ ′,φ ′′/C ′′

Γ, x : τ ′ ⊢ e : τ ,φ/C

Γ ⊢ λx : τ ′.e at ρ : (τ ′
φ

−−→τ , ρ), {ρ}/C

Γ ⊢ e : (τ ′
φ0−−−→τ , ρ),φ/C Γ ⊢ e ′ : τ ′,φ ′/C ′

Γ ⊢ e e ′ : τ ,φ ∪ φ ′ ∪ φ0 ∪ {ρ}/C ∪C ′

Γ ⊢ e : τ ,φ/C ρ < frv(Γ, τ ) ρ ∈ [[C]] ⇒ P = prot ρ < [[C]] ⇒ P = noprot

Γ ⊢ letregion ρ : P in e : τ ,φ \ {ρ}/(C \ ρ)

Γ ⊢ e : τ ,φ/C Γ(f ) ≥ (τ
ϵ .φ0−−−−−→τ ′, ρ) /C ′ via ®ρ

Γ ⊢ f [ ®ρ] e : τ ′,φ ∪ φ0 ∪ {ρ}/C ∪C ′ · · ·

Allocation races are introduced only if two simultaneously running threads allocate values in
the same region, that is, if two simultaneously executing threads have a non-empty intersection of
put-effects. It is perfectly fine that multiple threads read from the same region or that one running
thread is allocating into a region and other running threads are reading from the region. In fact, if a
thread reads a value from a non-private region, the thread’s get-effect on the region will ensure that
the region is allocated for as long as the thread is running. This property holds even in a scenario
involving mutable objects where, for instance, one thread allocates a value and stores a pointer to
the value in a mutable reference cell, which is then dereferenced by another thread. Whereas such
a scenario may involve races at the value level, the scenario is entirely safe (from a type-safety
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perspective) as long as value updates are atomic. Atomic access to the allocation pointer is required
only when simultaneously running threads may allocate into the same region. Notice also that it
may be perfectly fine for two different threads to allocate into the same region, as long as the two
threads are known not to run simultaneously.

5 IMPLEMENTATION

The implementation that we report on here extends the MLKit Standard ML compiler [Tofte et al.
2022] by adding support in the runtime system to create and join threads, by adjusting the many
phases of the compiler to support the new thread constructs, by implementing region protection
inference, and by adjusting the code generator to generate instruction sequences that update region
allocation pointers atomically. The implementation features two different runtime systems, one
based on Pthreads and one preliminary runtime system based on Argobots [Seo et al. 2018], a
generic thread-library that supports lightweight user-space scheduling of threads, built on top of
Pthreads. In the following we report on the runtime system based directly on Pthreads.

Threads run on the dedicated thread stacks, which, besides from holding stack frames and region
descriptors also hold finite regions, which are regions that are determined to be allocated into at
most once (with values of a statically determined maximum size). Finite regions are implemented
unboxed on the stack, which means that a (pointer to a) value in such a region can be communicated
to other threads. However, due to the region typing rules, the thread stack holding the value will
be live as long as any other thread could potentially access the value.
Although the MLKit makes many high-level optimisations (e.g., specialisation of modules, con-

stant folding, inlining of small functions, tuple elimination, and specialisation of small higher-order
recursive functions), it is not an aggressively optimising compiler in the sense that it reorders
side-effecting memory operations (e.g., mutable updates), although hardware can still do that.
Whereas synchronisation of shared mutable data is outside the scope of this paper, recent research
suggests [Vollmer et al. 2017] that inserting a memory fence after every shared mutable update has
low overhead for functional programs where such updates are (relatively) rare. Such a strategy
provides sequential consistency and could be further optimised, using a variation of protection
inference, by avoiding fences when updating objects in private regions.

5.1 Thread Local Data

In the non-parallel version of the MLKit, the runtime system maintains a number of global variables
including the REGION_TOP variable, which holds a pointer to the top-most region, and the FREE_LIST
variable, which holds the application’s list of free region pages, pages that are allocated, but have
been freed by the region runtime system. In the parallel versions of the runtime system, each thread
has its own REGION_TOP value, which is accessed through a dedicated thread-context register, which
give immediate access to thread-local data, including thread-local free lists of region pages.
For the Pthreads runtime system, when a thread frees a page, the page is added to the thread’s

free list. Only when a thread needs a new region page and no page is available in the thread-local
free list, the main free list is accessed and a number of pages are moved from the shared free-list to
the thread-local free-list (and the mutex that protects the main free list is temporarily locked). When
a thread terminates, thread-local pages are added to the main free list. Without this intermediate
free-list layer, it turns out that allocations in threads will too often be involved in context switches
that are caused by locking and unlocking the mutex that protects the main free list.

5.2 Exceptions

A thread’s top-most exception handler writes the exception value into the thread’s local data. When
a thread value is retrieved by the get function, the code joins the thread and waits for the thread to
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Fig. 5. A region descriptor on the down-growing stack.

terminate. The code then tests if an exception value is stored in the thread’s local data, in which
case, the exception is raised by the parent. If no exception is stored, the calculated value is returned.

5.3 Atomic Allocation

In general, region allocation races can occur if two different threads allocate into the same region.
In the following we shall consider only the case of allocations into non-bounded regions (as opposed
to finite regions, which we know statically are allocated into at most once).

A region descriptor, which is depicted in Figure 5, represents an unbounded region and consists
of a pointer (fp) to the previous region descriptor on the stack (possibly NULL), a pointer (fp) to a
list of 8KiB-aligned fixed-sized region pages, each of size 8KiB, a pointer (a) to the first free location
in the last region page (i.e., the allocation pointer), a pointer (L) to a linked list of malloc-allocated
large objects, and a mutex (M) for resolving allocation races (NULL if no protection is needed).
Space for region descriptors are reserved as part of a function’s stack frame. When a region is

allocated, the associated region descriptor is populated with a pointer to a fresh region page, taken
from the threads’ free-list (possibly by taking a number of pages from the process’s FREE_LIST), and
the allocation pointer is initialised to point at the start of the region page. Moreover, the “previous
pointer” in the region descriptor is initialised to point at the thread’s current content of the thread’s
TOP_REGION value, after which the thread’s TOP_REGION value is updated to point to the new region
descriptor. Finally, the large-object pointer is initialised to NULL, and possibly, a mutex is installed
from a free list of mutexes (managed the same way as region pages).
For allocating in a region, the runtime system implements a fallback allocation routine alloc,

which takes as arguments a region r (i.e., a pointer to a region descriptor) and a number n, which
indicates the number of words to allocate. The allocation routine uses Compare-And-Swap (CAS)
operations and the region’s mutex to protect against allocation races. Space is allocated in the large
object list if n is larger than the size of a region page. Otherwise, if there is space in the current
region page (detected using region-page alignment-properties), r .a is updated to r .a + n and the
previous content of r .a is returned. In case a new page is needed, a page is fetched from the thread’s
free-list; if this list is empty, first, a number of pages are fetched from the global free-list. If this
free list is also empty, a number of new pages are allocated using malloc.
For allocating n words in a region r , the generated assembler code attempts to avoid calling

alloc (for avoiding using the mutex) by applying the following steps:

(1) If n is larger than the page size (8KiB), return the result of calling the alloc routine.
(2) Save the current value of r .a in a temporary register R.
(3) Using the region page alignment properties, detect if R+n is within the region page boundary;

if not, attempt to update (using a CAS operation with R) a to point to the end of the page; on
success, return the result of calling the alloc routine; on failure, jump to step (2).

(4) Use a CAS operation with R to update r .a to contain the value R + n. On success, return the
content of R. On failure, jump to step (2).
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Notice that before the alloc routine is taking the region’s mutex lock, the routine takes care of
using a CAS operation to store the region page boundary in the allocation pointer r .a. In this way,
it is known that the allocation inline-instruction-sequence will not concurrently update r .a.

The above allocation strategy allows for multiple threads to store into the same region and is in
many cases a good compromise between safety and performance, in particular, when combined
with region protection inference.

Much like MPL expects programs to be written to ensure that there is no entanglement [Westrick
et al. 2019], MLKit programmers should avoid that different threads allocate local data in the same
shared region, which can sometimes be ensured by simple copying of values into private regions.

In the MLKit, protection inference runs after region inference as a separate pass that generates
constraints for each subexpression as defined by the rules in Section 4.4. Whenever a letregion

construct is visited, it is decided, based on the constraints generated for the local expression,
whether the bound region should be protected (i.e., have a mutex in the region descriptor) or not.

6 ALTERNATIVES TO AVOIDING REGION ALLOCATION RACES

In general, allocation races may occur if two simultaneously running threads allocate into the same
region. We make the following observations:

(1) Regions that are allocated into only by a single thread (e.g., the thread that allocates the
region) need no allocation protection. When such regions are allocated into, no allocation
races arise (unless a new page is needed from the global free-list of pages).

(2) Reading (values) from a region (no matter whether it is local or not) requires no locking as
only values created before the thread was spawned are accessible. Values that are assigned to
mutable references or arrays are valid values once assigned and cause no allocation races.

There are various ways in which such data races can be eliminated. One possibility is to protect
allocation in a region using a combination of CAS operations and a mutex, as discussed in the
previous section, which is the current generic approach taken in the MLKit implementation.

Shadow Regions. To better support scalable allocation (where many threads allocate into the same
regions), an alternative to the atomic allocation scheme of Section 5.3 is for each thread to maintain
its own local “shadow regions” for regions that the thread allocates into and that are potentially
also allocated into by other threads. Upon exiting the scope of a thread, the thread’s shadow regions
can then be merged with the parent thread’s regions by linking region pages (this operation can be
done in constant time, but may introduce region fragmentation). With the current implementation,
however, it will be difficult, with little overhead, to implement the required region descriptor
mappings. This idea is similar to how traditional parallel runtime systems may allow each thread
to pre-allocate a block of memory for local use, with the benefit of reducing allocation congestion.
With region memory-management, however, different allocations may store into different regions,
which complicates block management and perhaps suffers from fragmentation. We consider these
design opportunities possibilities for future work.

Higher-Order Region Polymorphism. Another possibility for reducing allocation races would
be to improve the precision of region inference, for instance by supporting higher-order region-
polymorphism. Consider an implementation of a parallel prefix scan on an array of values:

val scan : (α * α → α) → α → α array → α array

To implement this routine in parallel, the programmer may choose to split the array in two, scan
the two parts in parallel (using the supplied associative operator and neutral element), and use
a data-parallel operation (e.g., a map) to update each element in the second array using the last
element of the first result array. From the perspective of the scan function, the region type for
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the passed associative function f is (α ∗ α, ρ) ϵ .∅−−−−→α . Here scan itself will need to allocate the
argument pairs to f . Because f is inherently region monomorphic, the pairs will be allocated in
the same region. What is needed is for f to be region polymorphic in the region holding the pairs:

val scan : (∀ρ.(α * α, ρ) → α) → α → α arr → α arr

Now, the two threads used for scanning the left and right parts of the argument array can use
different regions for storing the pairs. However, consider if α is instantiated with a boxed type such
as (real, ρ), in which case f would both allocate in ρ and read from ρ. In this case, a more elaborate
combination of higher-order type- and region-polymorphism would be necessary. Currently, region
inference, as it is implemented in the MLKit, does not support higher-order region-polymorphism,
a restriction that potentially could be lifted by supporting explicit region annotations.

7 EXPERIMENTAL RESULTS

In this section, we present a series of experiments that serve to demonstrate the viability of using
region inference as the primary memory management discipline for parallel execution of high-level
functional programs on multi-core architectures. We show parallel scalability for MLKit and MPL
on a collection of benchmark programs, compared to sequential baselines. The goal here is to show
that parallel MLKit shows reasonable scalability, compared to a state-of-the-art implementation.

7.1 Experimental Setup and Benchmark Overview

The experiments are performedwithMLKit version 4.7.3, MPLMPL version 0.3, andMLton 20210117.
MPL is built on MLton, which is a whole-program highly-optimising compiler, while MLKit features
a smart-recompilation system that allows for quick rebuilds upon modification of source code
[Elsman 2008]. In particular, MPL’s optimiser uses aggressive unboxing and defunctionalisation,
sometimes leading to significantly faster sequential code (see Table 1). We generally do not expect
MLKit to match MPL in absolute performance, and our focus here is on parallel scalability. In
principle, there is nothing that prevents a compiler from using both region inference and aggressive
MLton-style optimisations, but doing so is beyond the scope of this paper. When reporting speedups,
we are comparing parallel MLKit with sequential MLKit, and parallel MPL with sequential MLton.

All benchmark programs are executed on an Intel Xeon Gold 6230 CPU, with 192GiB of RAM, 20
cores, and hyper-threading disabled. The MLKit benchmarks are compiled with reference-tracing
garbage collection disabled, meaning they rely entirely on region inference. Recent work [Elsman
and Hallenberg 2021] compares the performance of a pure region-memory management scheme,
based on region inference, and a scheme that combines region inference and garbage collection.

The MPL programs are informed how many cores are available (and hence how many OS threads
to spawn). The MLKit benchmark implementations are oblivious and always use approximately
50 threads independent of the numbers of cores available, and have the number of cores they
can access limited at the OS level via taskset. This difference is because MPL contains its own
scheduler for scheduling “lightweight” threads across a fixed number of “heavy” OS threads, while
MLKit’s threading interface always launches a new OS thread, and leaves granularity control to
user code. Benchmark code is shared between all compiler instances and make use of a simple
parallel programming module (essentially, the interface shown in Section 2) that has distinct
implementations for MPL, MLKit, and sequential Standard ML.

Wemeasure the average time of 10 runs within the same process. Peak memory usage is measured
with time -l, which is therefore the total for all 10 runs.

The Soboloption benchmark prices an equity call option via the Black-Scholes formula [Black
and Scholes 1973] implemented with quasi-random Sobol numbers [Bratley and Fox 1988]. In high-
level terms, this is a map-reduce composition. Fib computes fib(46) with the classic (inefficient)
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(a) MLKit speedup over sequential MLKit.
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(b) MPL speedup over sequential MLton.

Fig. 6. Scalability of parallel MLKit and MPL measured from 1 to 20 cores.

recursive formula, parallelising the recursive calls three levels deep, then switching to sequential
execution. Mandelbrot is a visualisation of the Mandelbrot set, using an iteration limit of 105 and
a radius of 28. This means there is substantial sequential work per pixel. Primes uses parallel map
and filter to find all prime numbers below 106. Filter is a parallel filter that finds all integers
in the range [0, 107] that are divisible by 99. Ray is a BVH-accelerated ray tracer adapted from
MPL’s benchmark suite. In its original formulation, it represents 3D vectors with SML records of
reals, which are boxed in MLKit. We have modified the code to use an unboxed representation
instead. Scan computes a parallel prefix sum of the integers in the range [0, 108]. Ray-orig is the
ray benchmark without the modification mentioned above. This version runs significantly slower
in MLKit, but not in MPL, as MPL, in this case, automatically unboxes the reals in the records.
Nqueens solves the classic N-queens problem for N = 13, using a recursive search. Pmsort is
parallel merge sort on lists with 106 elements, as presented in Section 2. Vpmsort is similar to
pmsort, but on arrays instead of lists. Some of the benchmark programs (e.g., mandelbrot, ray, scan,
and ray-orig) use shared mutable arrays while others (e.g., vpmsort, pmsort, and nqueens) are purely
functional. The benchmarks fib, ray-orig, and nqueens are from the MPL benchmark suite.

7.2 Benchmark Results

Figure 6 shows scalability of MLKit and MPL when varying the number of available cores. Table 2
shows memory usage for the sequential baseline programs, and the proportional increase in
memory usage when executing in parallel on 20 cores. Table 1 shows the absolute runtimes of
the sequential baseline programs (MLKitseq, MLtonseq), the parallel programs running on a single
thread (MLKit1, MPL1), and the parallel programs running with 20 threads (MLKit20, MPL20).

Speedups. As shown on Figure 6a, the program that scales the best with MLKit is fib, likely
because it performs no heap allocations within each thread. This benchmark thus represents the
current “speed limit” of parallel MLKit. Soboloption, mandelbrot, primes, filter, scan, and ray all
scale decently, and represent regular parallelism, although with some irregular workload. This is
handled by over-partitioning, as we launch more threads than the hardware is physically capable of
executing. The slightly worse scaling of ray is because it is more memory-bound, as each pixel
requires us to traverse an irregular tree-based data structure. The benchmarks that scale the poorest
(nqueens, ray-orig, vpmsort, and pmsort) suffer slowdown simply from being compiled with MLKit’s
parallel code generator, as shown by the runtimes in Table 1. The reason for this slowdown is
that, compared to the sequential code generator, the parallel code generator uses a more complex
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Table 1. Absolute benchmark runtimes.

Benchmark MLKitseq MLKit1 MLKit20 MLtonseq MPL1 MPL20
soboloption 3.820s 4.090s 0.294s 2.468s 2.580s 0.180s
fib 10.104s 10.365s 0.811s 12.875s 18.652s 1.511s
mandelbrot 10.428s 10.461s 0.867s 10.285s 8.195s 0.665s
primes 2.132s 2.161s 0.191s 0.570s 0.634s 0.060s
filter 5.077s 4.565s 0.631s 2.682s 2.134s 0.381s
ray 2.574s 2.725s 0.348s 3.411s 2.456s 0.190s
scan 1.151s 1.111s 0.178s 0.829s 1.010s 0.169s
ray-orig 9.687s 11.468s 1.796s 3.402s 2.435s 0.183s
nqueens 1.506s 1.708s 0.347s 1.120s 1.305s 0.100s
vpmsort 0.281s 0.314s 0.090s 0.260s 0.320s 0.070s
pmsort 0.331s 0.431s 0.122s 0.770s 0.841s 0.269s

instruction sequence (involving conditional synchronisation) for allocations into regions that may
be stored into by multiple threads (see Section 5.3). Scaling compared to parallel MLKit on 1 core is
decent for these benchmarks, as this constant overhead is independent of the number of threads.

A detailed analysis of MPL’s performance on these benchmarks is outside our scope. We note that
Figure 6b shows that pmsort scales as poorly with MPL as MLKit. While ray-orig scales excellently
with MPL due to its effective unboxing optimisations, scan and filter do not perform very well. Also
notice that MPL with one core often performs better than sequential MLton, which we speculate
is due to optimisations that are implemented in MPL but not in MLton. This aspect also explains
some of the high scalability numbers (e.g., for mandelbrot, ray, and ray-orig) as MPL speedup is
calculated relative to sequential MLton.

Impact of Protection Inference. As a separate experiment, we have measured the performance
impact of protection inference. The slowdown from making all allocations atomic ranges from 0 on
fib and primes, to 30× on pmsort, with a geomean slowdown of 1.87×.

Space Usage. Table 2 shows the increase in memory usage when executing the benchmark
programs in parallel. Generally, the increase is modest. This is because many programs consist of
threads mutating a shared array, where the memory usage is largely independent of the number of
threads. The common outliers are ray, fib, and nqueens, where particularly the latter two use very
little memory in sequential execution. Merely allocating additional stacks for parallel execution
becomes the main cost. Some benchmarks (ray, ray-orig, vpmsort, and pmsort) use substantially
less memory when compiled with MPL (or MLKit) as compared to MLton, which may simply be
due to differences in MLton’s and MPL’s garbage collectors.

8 RELATED WORK

A key strand of related work is the previous work on adding support for parallel OS threads in ML-
like languages, including OCaml and Standard ML, which both feature mutable data structures such
as arrays and references. Cooper and Morrisett describe, in [Cooper and Morrisett 1990], several
implementations of a Standard ML thread interface, building on top of SML/NJ, of which one of
their implementations executes on native OS threads by separating the heaps evenly among threads
and by using a stop-the-world garbage collection strategy. Newer approaches to adding parallelism
to ML-like languages are divided into shared-memory approaches and message-passing approaches.
The first kind of approach focuses on retrofitting OS-level thread support into highly-performing
sequential language implementations, such as the native OCaml compiler [Sivaramakrishnan et al.
2020] and the MLton Standard ML compiler [Westrick et al. 2019], which, in both cases, require
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Table 2. The increase in memory usage for parallel execution with MLKit and MPL, compared to their

respective sequential baselines.

Benchmark MLKitseq MLKit1 MLKit20 MLtonseq MPL1 MPL20
soboloption 1MiB 3.19× 3.26× 1MiB 96.28× 29.96×
fib 1MiB 5.60× 5.60× 768KiB 1.71× 7.12×
mandelbrot 7MiB 2.42× 2.46× 7MiB 1.03× 1.56×
primes 40MiB 1.27× 1.27× 20MiB 0.84× 1.09×
filter 3060MiB 1.00× 1.00× 1963MiB 0.98× 0.98×
ray 26MiB 4.85× 4.87× 151MiB 0.11× 0.47×
scan 764MiB 1.00× 1.00× 811MiB 0.94× 0.95×
ray-orig 170MiB 4.03× 4.08× 151MiB 0.11× 0.44×
nqueens 2MiB 68.74× 116.92× 1MiB 15.77× 62.82×
vpmsort 36MiB 2.02× 2.05× 123MiB 0.40× 0.79×
pmsort 77MiB 1.89× 1.97× 738MiB 0.28× 0.75×

special attention to the underlying garbage collection techniques, in particular with respect to
dealing efficiently with mutable effects. In the case of MPL, which adds shared-memory Fork-
Join parallelism to the MLton Standard ML compiler through a simple par-function, the runtime
overhead of non-parallel executables was initially reported to be roughly 200 percent, which is a
significant overhead to pay for the potential to run code in parallel [Raghunathan et al. 2016]. The
MPL semantics is based on the notion of disentangled heaps, which is a memory discipline where
each thread is associated with an individual heap and where pointers between heaps can only point
upwards towards the root [Raghunathan et al. 2016]. For programs that guarantee that heaps are
always disentangled, independent garbage collection of leaf heaps is supported with provably good
space-efficient properties [Arora et al. 2021]. Recent work improves performance significantly and
support has been added for mutable objects to be assigned to as long as the mutable object appears
in an ancestor’s heap [Westrick et al. 2019]. The disentangled-heap property, which is required
by MPL, is enforced automatically by a combination of static and dynamic techniques [Westrick
et al. 2022]. If a thread assigns to an object allocated by a sibling, the object will be allocated in a
memory region allocated by a common ancestor.
Another parallel ML-like language is Manticore [Fluet et al. 2008], which supports both light-

weight threads and native Pthreads-like threads for providing a range of parallel programming
techniques, including Fork-Join style parallel programming, CML-style programming [Reppy et al.
2009], and data-parallel programming based on parallel reductions, parallel scans, and parallel
maps. Manticore can be configured to work with different backends and stack representations
[Farvardin and Reppy 2020], but all are based on reference-tracing garbage collection techniques.

Lightweight threads, based on message-passing techniques, as supported by Go [Davis et al. 2012]
and Erlang [Armstrong 2003] have also been added to Standard ML in the context of MultiMLton
[Li et al. 2016; Sivaramakrishnan et al. 2010, 2014]. Such lightweight message passing frameworks
provide a different model for parallelism than the shared-memory Fork-Join style model. In the
work we present here, we base all scheduling on the underlying Pthreads implementation or,
alternatively, on the Argobots lightweight-thread implementation [Seo et al. 2018]. We consider
it future work to investigate techniques for properly supporting lightweight user-space threads,
perhaps based on the MassiveThreads library [Nakashima and Taura 2014], which serves as the
basis for prototype thread support in SML# [Ohori et al. 2017].
Also related to this work is the previous work on combining region inference and garbage

collection in the MLKit [Elsman 2023; Hallenberg et al. 2002] and how the concept of typed regions
can be used to support untagged values and a combination of region inference and generational
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garbage collection [Elsman and Hallenberg 2021]. The implementation that we describe in the
present paper does not support reference tracing garbage collection, although we believe the
implementation can be extended to support parallel collection of regions that live in leaf threads.
Cyclone [Swamy et al. 2006] is a region-based type-safe C dialect, for which, the programmer

can decide if an object should reside in the GC heap or in a region. Cyclone interfaces with Pthreads
[Gerakios et al. 2010]. Another region-based language is Gay and Aiken’s RC system, which features
limited explicit regions for C, combined with reference counting of regions [Gay and Aiken 2001].
Whereas our implementation has limited support for explicit region annotations, it is primarily
based on the assumption that region annotations are inferred by the compiler. Also related to the
present work is the work by Aiken et al. [Aiken et al. 1995], who show how region inference may be
improved for some programs by removing the constraints of the stack discipline. Other approaches
for improving region inference, includes techniques for deallocating parts of a region, which has
been investigated in the context of Go [Davis et al. 2013]. Finally, another body of related work is
on using region inference without combining it with a reference-tracing garbage collector. Such
work include the use of region inference as the primary memory management scheme for a web
server [Elsman and Hallenberg 2003; Elsman and Larsen 2004; Elsman et al. 2018].
A modern language for system programming is Rust, which is based on ownership types for

managing resources, including memory [Aldrich et al. 2002]. Ownership types are also used for
real-time implementations of Java [Boyapati et al. 2003]. Compared to these techniques, region
inference provides an automatic technique for inferring allocation and deallocation of memory.

From a parallelism perspective, there is a large body of related work on supporting deterministic
parallelism in Haskell, for instance through the use of the Par-monad [Marlow et al. 2011] and
through software transactional memory (STM) [Harris et al. 2005; Shavit and Touitou 1995]. Another
strand of work on functional parallel programming include the work on embedded data-parallel
languages, such as Accelerate [Chakravarty et al. 2011] and functional data-parallel languages,
such as Futhark [Henriksen et al. 2017] and SaC [Grelck and Scholz 2007]. These languages are
centered around the array programming paradigm and are superior when it comes to targeting
massively parallel architectures, such as GPUs, but are not necessarily useful for task-parallelism.
Other work investigates parallel garbage collection techniques to decrease garbage collection

times [Marlow et al. 2008]. Our present implementation of parallelism support in theMLKit compiler
does not support reference-tracing garbage collection and we consider it future work to investigate
the possibility of leaf threads to perform garbage collection of local regions in parallel.

9 CONCLUSION AND FUTURE WORK

We have presented a framework that integrates region inference and parallel programming with
threads and shown that region inference can be a helpful companion for managing memory in
a parallel setting. We have implemented the techniques and demonstrated the performance of
the approach based on a set of non-trivial benchmarks. We have compared the performance with
versions compiled with MPL. We have demonstrated that the techniques are promising and that
our implementation in some cases performs as well as MPL.
There are a number of opportunities for future work, including adding support for parallel

reference-tracing garbage collection of regions that are private to a leaf heap. Another candidate
for future work is to improve the scalability properties of the approach, in particular by support-
ing lightweight user-space thread scheduling and by providing techniques for localising region
allocation, and thereby better support scalable allocation. Another candidate for future work is to
support region-explicit annotations in source programs, in particular with support for specifying
effect properties of functions and individual threads.
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DATA AVAILABILITY STATEMENT

An artifact demonstrating the benchmark results presented in the paper is archived in Zenodo
[Elsman and Henriksen 2023].
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