
Parallelism in a Region Inference Context 142:i

A APPENDIX: LANGUAGE PROPERTIES AND PROOFS
This appendix contains proof details for the paper “Parallelism in a Region Inference Context”
(PLDI ’23) by Martin Elsman and Troels Henriksen.

A.1 Properties and Proofs for the Internal Language
Proposition 3.1 (Decomposition). If ⊢ e : τ then either e is a value or there exist a redex e ′, a type
τ ′, and a context EΓ such that Γ ⊢ e ′ : τ ′ and e = EΓ[e ′].

Proof. By induction over the structure of e . There are three cases corresponding to the three
typing rules for which e is not a value or a variable.

Case e = e0 e1. From the typing rules, we have ⊢ e0 : τ ′′ → τ and ⊢ e1 : τ ′′. By induction, either
e0 is a value or there exist a redex e ′, a type τ ′, and a context EΓ

0 such that Γ ⊢ e ′ : τ ′ and e0 = EΓ
0 [e ′].

If e0 is not a value, we choose EΓ = EΓ
0 e1, which means that we have e = EΓ[e ′], as required.

Otherwise, e0 is a value e0 = v0. By induction, again, either e1 is a value or there exist a redex
e ′, a type τ ′, and a context EΓ

1 , such that Γ ⊢ e ′ : τ ′ and e1 = EΓ
1 [e ′]. If e1 is not a value, we choose

EΓ = v0 E
Γ
1 , which means that we have e = EΓ[e ′], as required.

Otherwise, e1 is also a value e1 = v1. From the typing rules and because ⊢ v0 : τ ′′ → τ (unique
value typing), we know thatv0 = (λx : τ ′′.e ′0)v1, for some x and e ′0. It follows that e = (λx : τ ′′.e ′0)v1,
which classifies as a redex. Thus, there exist e ′ = e , and EΓ = [.], and τ ′ = τ , such that e ′ is a redex
and Γ ⊢ e ′ : τ ′ and e = EΓ[e ′], as required.
Case e = get e0. From the typing rules, we have ⊢ e0 : τ T . By induction, either e0 is a value or

there exist a redex e ′, a type τ ′, and a context EΓ
0 , such that Γ ⊢ e ′ : τ ′ and e0 = EΓ

0 [e ′]. If e0 is not a
value, we choose EΓ = get EΓ

0 , which means that we have e = EΓ[e ′], as required. Otherwise e0 is a
value e0 = v0. From the typing rules and because ⊢ v0 : τ T (unique value typing), we have that
v0 = ⟨v ′

0⟩, for some v ′
0. It follows that e = get ⟨v ′

0⟩, which classifies as a redex, thus, there exist
e ′ = e , a type τ ′ = τ , and a context EΓ = [.] such that e ′ is a redex and Γ ⊢ e ′ : τ ′ and e = EΓ[e ′], as
required.

Case e = letspawn x : τ T = e0 in e1. This case is similar to the case for function application. □

Proposition 3.2 (Context). If Γ0 ⊢ EΓ[e ′] : τ then Γ0, Γ ⊢ e ′ : τ ′ for some τ ′. Further, if
Γ0 ⊢ EΓ[e] : τ and Γ0, Γ ⊢ e : τ ′ and Γ0, Γ ⊢ e ′ : τ ′ then Γ0 ⊢ EΓ[e ′] : τ .
Proof. By straightforward induction over the structure of EΓ . □

Proposition 3.3 (Value Substitution). If Γ, x : τ ⊢ e : τ ′ and Γ ⊢ v : τ then Γ ⊢ [v/x]e : τ ′.
Proof. By induction over the structure of e using an environment extension property of typing

stating that if Γ ⊢ e : τ then Γ, Γ′ ⊢ e : τ for any Γ′ with Dom(Γ′) ∩Dom(Γ) = ∅. As is standard, the
proof also makes use of Barendregt’s convention for renaming bound variables in expressions for
avoiding environment capture. □

Proposition 3.4 (Type Preservation). If Γ ⊢ e : τ and e ↪→ e ′ then Γ ⊢ e ′ : τ .
Proof. By induction over the structure of e . From the small-step reduction rules, there are four

cases:
Case e = (λx : τ1.e0) v . From the typing rules, we have Γ ⊢ λx : τ1.e0 : τ1 → τ and Γ ⊢ v : τ1 and

further that Γ, x : τ1 ⊢ e0 : τ . From the reduction rules, we have e ′ = [v/x]e0, thus, we can apply
Proposition 3.3 to get Γ ⊢ e ′ : τ , as required.
Case e = get ⟨v⟩. From the typing rules, we have Γ ⊢ v : τ and from the reduction rules, we

have e ′ = v and thus Γ ⊢ e ′ : τ , as required.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 142. Publication date: June 2023.



142:ii Martin Elsman and Troels Henriksen

Case e = letspawn x : τ0T = v in e0. From the typing rules, we have Γ ⊢ v : τ0 and Γ, x : τ0T ⊢
e0 : τ . From the reduction rules, we have e ′ = [⟨v⟩/x]e0. We can now apply the typing rules to get
Γ⟨v⟩ : τ0T , thus, we can apply Proposition 3.3 to get Γ ⊢ e ′ : τ , as required.
Case e = EΓ′[e0]. From the typing rules and from Proposition 3.2, we have there exists τ0 such

that Γ, Γ′ ⊢ e0 : τ0. From the reduction rules, we have there exist e ′0 and e ′ such that e ↪→ e ′ and
e ′ = EΓ′[e ′0] and e0 ↪→ e ′0. By induction, we have Γ, Γ′ ⊢ e ′0 : τ0. Now, by applying Proposition 3.2
(second part), we have Γ ⊢ e ′ : τ , as required. □

Proposition 3.5 (Progress). If ⊢ e : τ then either e is a value or e ↪→ e ′ for some e ′.

Proof. From Proposition 3.1, we have either e is a value of there exist a redex e ′′, a type τ ′′,
and a context EΓ such that Γ ⊢ e ′′ : τ ′′ and e = EΓ[e ′′]. Because e ′′ is a redex, we have from the
small-step reduction rules and from the definition of redex that there exists e ′′′ such that e ′′ ↪→ e ′′′

and further that there exists e ′ such that e ′ = EΓ[e ′′′] and e ↪→ e ′, as required. □

A.2 Properties and Proofs for the Region-Annotated Internal Language
Proposition 4.1 (Decomposition). If ⊢ e : τ ,φ ′ then either (1) e is a value or (2) there exist a redex
e ′, a type τ ′, and a context EΓ

φ such that e = EΓ
φ [e ′] and Γ ⊢ e ′ : τ ′,φ ∪ φ ′.

Proof. By induction over the structure of e . The proof resembles the proof of decomposition for
the internal language with the additional complexity of dealing with region variables. □

Proposition 4.2 (Context). If Γ0 ⊢ EΓ
φ [e ′] : τ ,φ ′ then Γ0, Γ ⊢ e ′ : τ ′,φ ∪φ ′ for some τ ′. Further, if

Γ0 ⊢ EΓ
φ [e] : τ ,φ ′ and Γ0, Γ ⊢ e : τ ′,φ ∪ φ ′ and Γ0, Γ ⊢ e ′ : τ ′,φ ∪ φ ′ then Γ0 ⊢ EΓ

φ [e ′] : τ ,φ ′.

Proof. By straightforward induction over the structure of EΓ
φ . □

Proposition 4.3 (Value Substitution). If Γ, x : τ ⊢ e : τ ′,φ and Γ ⊢ v : τ then Γ ⊢ [v/x]e : τ ′,φ.

Proof. By induction over the structure of e . The proof is similar to the proof of value substitution
for the internal language. It uses an environment extension property of the typing relation and
Barendregt’s convention for renaming bound variables. □

Proposition 4.4 (Type Preservation). If Γ ⊢ e : τ ,φ and e φ
↪−−→ e ′ then Γ ⊢ e ′ : τ ,φ.

Proof. By induction over the structure of e . From the small-step reduction rules, there are 7
cases. In each case it is straightforward to demonstrate that the reduction rule preserves typing.
For the context case, when e = EΓ

φ ′[e ′′], for some e ′′, φ ′, and Γ, the proof proceeds by case analysis
on the structure of EΓ

φ ′ . □

Proposition 4.5 (Progress). If ⊢ e : τ ,φ then either e is a value or e φ
↪−−→ e ′ for some e ′.

Proof. By Proposition 4.1, either e is a value or there exist a redex e ′′, a type τ ′, and a context
EΓ
φ ′ such that e = EΓ

φ ′[e ′′] and Γ ⊢ e ′′ : τ ′,φ ∪ φ ′.

We argue that e ′′ φ∪φ ′
↪−−−−−→ e ′′′ for some e ′′′, so that EΓ

φ ′[e ′′] φ
↪−−→EΓ

φ ′[e ′′′] follows from the context
evaluation rule. We now consider all cases where e ′′ could be stuck.
Case e ′′ = λx : τ0.e0 at ρ, for some τ0, e0, and ρ. From the typing rules, we have Γ ⊢ λx :

τ0.e0 at ρ : τ ′,φ ∪ φ ′. This judgment must be derived from the typing rule for lambda expressions
followed by a number of applications of the effect expansion rule, which implies that ρ ∈ φ ∪ φ ′

and τ ′ = (τ0 φ0−−−→τ1, ρ). It follows that we can apply the reduction rule for lambda expressions to
get e ′′′ = λρx : τ0.e0.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 142. Publication date: June 2023.



Parallelism in a Region Inference Context 142:iii

Case e ′′ = (λρx : τ0.e0) v , for some ρ, τ0, e0, and v . We have Γ ⊢ (λρx : τ0.e0) v : τ ′,φ ∪ φ ′. This
judgment must be derived from the typing rule for function application followed by a number of
applications of the effect expansion rule. By applying the typing rule for lambda values, we have
there exist τ1 and φ0 such that Γ ⊢ λρx : τ0.e0 : (τ0 φ0−−−→τ1, ρ), ∅ and Γ ⊢ v : τ0, ∅ and ρ ∈ φ ∪φ ′ and
φ0 ⊆ φ ∪ φ ′. Now, because ρ ∈ φ ∪ φ ′, we can apply the function-application reduction-rule, to get
e ′′′ = [v/x]e0.

Case e ′′ = get ⟨v⟩ρ , for some v and ρ. Similar to the case for function application.
Case e ′′ = letspawn x : τ1 = e1 at ρ in e2, for some x , τ1, e1, ρ, and e2. Similar to the case for

lambda expressions. □

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 142. Publication date: June 2023.


