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Abstract. We present a region-based memory management scheme with
support for generational garbage collection. The scheme is implemented
in the MLKit Standard ML compiler, which features a compile-time re-
gion inference algorithm. The compiler generates native x64 machine
code and deploys region types at runtime to avoid write barrier prob-
lems and to support partly tag-free garbage collection. We measure the
characteristics of the scheme, for a number of benchmarks, and compare
it to the Mlton state-of-the-art Standard ML compiler and configurations
of the MLKit with and without region inference and generational garbage
collection enabled. Although region inference often serves the purpose of
generations, we demonstrate that, in some cases, generational garbage
collection combined with region inference is beneficial.
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1 Introduction

Region-based memory management allows for programmers to associate the life-
times of objects with so-called regions and to reason about how and when such
regions are allocated and deallocated. Region-based memory management, as it
is implemented for instance in Rust [2], can be a valuable tool for constructing
critical systems, such as real-time embedded systems [25]. Region inference dif-
fers from explicit region-based memory management by taking a non-annotated
program as input and producing as output a region-annotated program, includ-
ing directives for allocating and deallocating regions [27]. The result is a pro-
gramming paradigm where programmers can learn to write region-friendly code
(by following certain patterns [28]) for essential parts of a program and perhaps
retain a combination of region inference and garbage collection [17] for programs
(or the parts of a program) that are not time critical.

Both region-inference and generational garbage collection have been shown
to manage short-lived values well. In this paper we present a framework that
combines these techniques, and discuss the effects of the integration.
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The region-based memory management scheme that we consider is based on
the stack discipline. Whenever e is some expression, region inference may decide
to replace e with the term letregion ρ in e′ end, where e′ is the result of
transforming the expression e, which includes annotating allocating expressions
with particular region variables (e.g., ρ) specifying the region each value should
be stored in. The semantics of the letregion term is first to allocate a region
(initially an empty list of pages) on the region stack, bind the region to the
region variable ρ, evaluate e′, and, finally, deallocate the region bound to ρ (and
its pages). The region type system allows regions to be passed to functions at run
time (i.e., functions can be region-polymorphic) and to be captured in closures.
The soundness of region inference ensures that a region is not deallocated as long
as a value within it may be used by the remainder of the computation. When
combining region inference and reference-tracing garbage collection, to remedy
for the sometimes overly static approximation of liveness, we must be careful
to rule out the possibility of deallocating regions with incoming pointers from
live objects. Luckily, it turns out that such pointers can be ruled out by the
region type system [8], which means that we can be sure that a tracing garbage
collector will not be chasing dangling pointers at run time.

Our generational collector associates two generations with each region. It has
the feature that an object is promoted to the old generation of its region (during
a collection) only if it has survived a previous collection. Compared to the earlier
non-generational collection technique [17], we may run a minor collection by only
traversing (and copying) objects in the young generations.

The contributions of this paper are the following:

1. We present a technique for combining region-based memory management
with a generational (stop the world) garbage collector, using a notion of
typed regions, which allows us to deal with mutable data in minor collections
and for tag-free representations of certain kinds of values such as tuples.

2. To demonstrate the absolute feasibility of the technique, we show empiri-
cally that the MLKit generates code that, in many cases, is comparable in
performance to executables generated with the Mlton compiler (v20180207).

3. We demonstrate empirically that the combination of generational garbage
collection and region-based memory management can lead to improved per-
formance over using non-generational garbage collection but also that the
increased memory waste (unused memory in region pages), caused by hav-
ing multiple generations associated with each region, sometimes leads to an
overhead compared to when a non-generational collection strategy is used.

4. We demonstrate empirically that when combined with generational garbage
collection, region inference will take care of reclaiming most of the data in
young generations with the effect that minor collections occur less often.

The study is performed in the context of the MLKit [28]. It generates na-
tive x64 machine code for Linux and macOS [9] and implements a number of
techniques for refining the representations of regions [4, 27], including dividing
regions into stack allocated (bounded) regions and heap allocated regions.
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The paper is organised as follows. In Sect. 2, we present the generational
garbage collection algorithm and how the algorithm is extended to work with
mutable and large objects. In Sect. 3, we present a number of experimental
results. In Sect. 4, we describe related work, and in Sect. 5, we conclude.

2 Generational Garbage Collection

A region descriptor represents an unbounded region and consists of a pointer to
the previous region descriptor on the stack (p), a generation descriptor for the
young generation (gy), a generation descriptor for the old generation (go), and a
list (L) for large objects, which are objects that do not fit in a region page; see
Fig. 1. Each generation descriptor (g) consists of a pointer to a list of fixed-sized
region pages (fp) and an allocation pointer (a).

L

fpo

ao

fpy

ay

p

go

gy

Fig. 1. A region descriptor on the down-growing stack. Region descriptors are linked,
through “previous pointers” (p), hold generation descriptors (gy and go), and hold a
linked list of large objects (L).

The garbage collector we describe is a generational collector, which supports
both minor and major collections. In a minor collection, only reachable objects
allocated in young generations are traversed and evacuated (i.e., copied); those
allocated in old generations are left untouched. In a major collection, all reach-
able objects are traversed and evacuated. In a minor collection, only reachable
objects allocated in young generations are traversed, but a minor collection does
not differentiate between in which region an object is stored, as there can be
pointers from objects in newer regions to objects in older regions.

Consider a region r2 above a region r1 on the stack, with two generations
each. This scenario allows for deep pointers from r2 pointing to objects in region
r1 as shown in Fig. 2 (labeled 1 to 4) and shallow pointers pointing from objects
allocated in region r1 into objects allocated in region r2 (labeled 5 to 8). Shallow
pointers only exist between regions allocated in the same letregion construct,
which is a sufficient requirement to rule out the possibility of dangling pointers
[8, 17]. The scheme that we first describe does not allow for pointers to point
from an old generation to a young generation (i.e., the pointers labeled 3 and 7);
mutable objects, which may violate this principle, are treated later in Sect. 2.3.

When an object in a young generation of a region is evacuated, the object
may be promoted to the old generation of the region. The collector implements
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Fig. 2. Possible and impossible pointers. Impossible pointers are those that are dashed.
The stack grows downwards. Shallow pointers (e.g., pointers from values in r1 to values
in r2) are allowed only between regions that are allocated and deallocated simultane-
ously (e.g., a list’s elements are stored independently from the spine of the list.)

the following promotion strategy, which guarantees that only long-living values
are promoted to old generations:

Definition 1 (Promotion Strategy). Promote objects when they have sur-
vived precisely one collection. The first time a value in a region r is evacuated,
the value stays allocated in the young generation. During the following garbage
collection, the value is promoted (moved) to the old generation of r.

During a minor garbage collection, objects that have survived one collec-
tion must be promoted to the old generation, whereas objects that have not yet
survived a collection should remain in the young generation. However, the im-
plementation must preserve a generation upward-closure property, which states
that, after a collection, whenever a value v has been promoted to an old gener-
ation, all values v′ pointed to by v are also residing in old generations.

Fig. 3 shows two regions and their young generations. The black areas contain
objects that have survived one collection. The white areas signify objects that
have been allocated since the last collection. Objects allocated in the black areas
will be promoted to an old generation and objects allocated in the white area
will stay allocated in a young generation. Fig. 3 shows different combinations of
pointers from white and black areas into white and black areas.
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r2
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Fig. 3. The black areas contain objects that have survived one collection and white
areas contain objects allocated since the last collection.
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To implement the promotion strategy, the generation upward-closure invari-
ant must disallow values in black areas to point at values in white areas (pointers
5 and 6 in Fig. 3):

Definition 2 (Generation Upward-Closure). If a value resides in an old
generation and points to a value v′ then v′ resides in an old generation. If a
value resides in a black area in a young generation and points to a value v′ then
v′ resides in an old generation or in a black area in a young generation.

We now argue that the promotion strategy satisfies the Generation Upward-
Closure invariant. The argument is a case-by-case analysis of the possible point-
ers shown in Fig. 3 (pointers 1, 2, 3, and 4), where each pointer takes the form
v2 → v1 and where v2 is allocated in r2 and v1 is allocated in r1:

Pointer 1. Both v2 and v1 reside in black areas, which means that, given v2
is live, they will both be promoted to old generations according to the pro-
motion strategy. The possibly promoted pointer will thus trivially satisfy
Definition 2, part 1.

Pointer 2. If v2 is live then it will be promoted to the black area of the young
generation while v1 is promoted to the old generation. The possibly promoted
pointer will trivially satisfy Definition 2, part 2.

Pointer 3. Both v2 and v1 reside in white areas of young generations, which
means that, given v2 is live, they will both be promoted to black areas in
young generations. Again, the possibly promoted pointer will trivially satisfy
Definition 2, part 2.

Pointer 4. Similar to pointer 3.

Pointer 3 gives rise to some considerations because v1 is allocated in a region
page containing both a black and a white area. How do we mark v1 as being
allocated in a white area? One possibility is that we mark each object as being
white or black, which will require that all objects are stored with a tag. A less
costful solution, which we shall pursue, is to introduce the notion of a region page
color pointer (colorPtr), which points at the first white value in the region page.
Given a value v located at a position p in a region page and the color pointer
colorPtr associated with the region page, if p < colorPtr then v is allocated in
the black area of the region page; otherwise, v is allocated in the white area.3

Notice, that color pointers are updated and referenced only during a garbage
collection; it does not change when allocating new values.

For the scheme to be sound, we need to make sure that pointers of the
form of pointer 5 and pointer 6 never occur as the promotion strategy would
otherwise lead to pointers from old generations to young generations, which
would violate Definition 2. As we have shown, the garbage collector will never
introduce such pointers and, luckily, neither will the mutator, except due to
mutable data assignment, which we will treat in Sect. 2.3.

3 In the implementation, the color pointer associated with a region page is located in
the header of the page. If colorPtr points past the page, the entire page is black.
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An alternative to the implemented promotion strategy is to add additional
generations and let a minor collection traverse all objects except those in an
oldest generation. Such a solution, however, could introduce a large amount
of unused memory in region pages. Another promotion strategy would be to
promote objects when they have survived a number (N ≥ 0) of collections,
which generalises the implemented promotion strategy, but is intractable as it
requires tracking of the number of times each object in a young generation has
survived a collection.

2.1 Evacuating Objects

The evacuation process copies live objects into fresh pages so that the copied-
from pages can be reclaimed, including the parts of the pages that hold unreach-
able values. Definition 2 is implemented as follows. During a major collection,
the collector will evacuate objects from old generations into old generations.
During a minor collection, however, old generations will be left untouched and
the collector will not attempt at traversing values stored in old generation pages.
During a major or a minor collection, the collector will evacuate objects in young
generation white areas into young generation black areas. Moreover, the collec-
tor will evacuate objects in young generation black areas into old generations.
The evacuation strategy is implemented by marking all region pages in old gen-
erations black, which means that the same algorithm can be used to evacuate
objects in minor and major collections. All objects in black areas are copied
into black areas in old generations. All objects in white areas are copied into
black areas in young generations. All objects allocated between two collections
are allocated in white areas in young generations.

Before a major collection, all region pages are assembled to form the from-
space as shown in Fig. 4. For a minor collection, from-space is formed from
all young generation pages. After a collection (minor or major), the from-space
pages are added to the free-list of pages.

old old young young young

Fig. 4. From-space contains black region pages from old generations, black region pages
from young generations, white region pages from young generations, and partly-white
region pages from young generations. No white region pages from old generations exist.

To distinguish pointers from non-pointers, integers and other unboxed values
(e.g., booleans and enumeration datatypes) are represented as tagged values with
the least significant bit set. Records are represented as a vector of values with a
prefix tag word, which is used by the collector to identify the number of record
components. Pairs and triples, however, are represented without a prefix tag
word. Given a pointer to a value in a region page, the collector can determine
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that the value is a pair or a triple by inspecting the region type associated with
the region in which the object resides. In practice, the implementation works
with the region types rty bot, rty pair, rty triple, rty double, rty ref,
rty array, and rty top. Here the region type rty top is used for specifying
regions that can contain values of arbitrary type, except those associated with
the other region types. The region type rty bot never occurs at run time, but is
used for specifying type and region polymorphic functions. The region unification
algorithm will fail to unify two regions with different types (except if one of the
region types is rty bot), which provides the guarantee that values stored in a
region at run time are classified according to the region type of the region. For
efficiency, the region type for a region is stored both in the generation descriptor
for the old generation and in the generation descriptor for the young generation.

Values stored in finite regions on the stack are traversed by the garbage
collector, but never copied or collected.

2.2 The GC Algorithm

The GC algorithm makes use of a series of auxiliary utility functions:

– in_oldgen_and_minor(p): Returns true if the collection is a minor collec-
tion and p points to an object in a region page for which the old-generation
bit is set. Returns false otherwise.

– is_int(p): Returns true if the least-significant bit in p is set. Returns
false otherwise.

– tag_is_fwd_ptr(w): Returns true if the tag word w is the reserved for-
ward pointer tag, which is different from other tags used for tagged objects.
Returns false otherwise.

– is_pairregion(r): Returns true if the runtime type associated with the
region descriptor r is region pair. Returns false otherwise.

– in_tospace(p): Returns true if p points to an object in a region page for
which the to-space bit is set. Returns false otherwise.

– acopy_pair(r,p): Allocates a pair in the region associated with the region
descriptor r and copies into the newly allocated memory the two pointers
(or integers) contained in the pair pointed to by p.

– obj_sz(w): Returns the size of the object in words, given its tag word.
– gendesc(p): Returns the generation descriptor for the generation in which

the object pointed to by p resides. Each region page in the generation has
associated with it a generation pointer, pointing at the generation descriptor
for the generation. Generation pointers are installed when a new region page
is associated with a generation.

– push_scanstack(a): Pushes the allocation pointer a onto the scan stack.
– pop_scanstack(): Pops and returns the top scan pointer from the scan

stack. Returns null if the scan stack is empty.
– target_gen(g,p): Returns the old generation associated with g’s region

unless g is a young generation and p appears in a white area in g, in which
case it returns g.
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A central part of the GC algorithm is the function evacuate, shown in Fig. 5,
which copies live values under consideration from from-space into to-space. It
takes a pointer p and copies the value pointed to into to-space provided it is not
already copied and that it is a prospect (i.e., under a minor collection, values in
old generations are not copied.) For brevity, only pairs are treated specially; the
implementation also treats regions of type rty triple and rty ref specially,
as also triples and references are represented unboxed.

void* evacuate(void* p) {
if ( is_int(p) ||

in_oldgen_and_minor(p) )
return p;

g = gendesc(p);
gt = target_gen(g,p);
if ( is_pairregion(g) ) {

if ( in_tospace (*(p+1)) )
return *(p+1); // fwd -ptr

a = acopy_pair(gt,p);
*(p+1) = a; // set fwd -ptr

} else {
if ( tag_is_fwd_ptr (*p) )

return *p;
a = acopy(gt,p);
*p = a; // set fwd -ptr

}
if ( gt->status == NONE ) {

gt->status = SOME;
push_scanstack(a);

}
return a;

}

Fig. 5. The function evacuate assumes
that the argument p points to an object
and that it perhaps resides in from-space
and needs to be copied to to-space. After
copying, a forward-pointer is installed.

void cheney(void* s) {
g = gendesc(s);
if ( is_pairregion(g) ) {

while ( s+1 != g->a ) {
*(s+1) = evacuate (*(s+1));
*(s+2) = evacuate (*(s+2));
s = next_pair(s,g);

}
} else {

while ( s != g->a ) {
for ( i=1; i<obj_sz (*s); i++ )

*(s+i) = evacuate (*(s+i));
s = next_value(s,g);

}
}
g->status = NONE;

}

Fig. 6. The function cheney assumes
that the argument scan pointer s points
to a value that has already been copied
to to-space but for which the compo-
nents have not yet been evacuated. The
function is named cheney because it de-
generates to Cheney’s algorithm if multi-
generations are disabled.

Another central function is the cheney function, which takes care of scanning
the values that have been copied into to-space. During scanning, the cheney

function may call evacuate on values that have themselves not yet been copied,
which may cause an update to the generation allocation pointer. Once, for all
regions, the scan-pointer reaches the allocation pointer, the collection terminates.
The cheney function is shown in Fig. 6. Notice, again, that special treatment is
required for dealing with untagged values (only the case for pairs is shown.)

The main GC function, called gc is shown in Fig. 7. It evacuates all values
in the root set and continues by calling the cheney function on all values on
the scan stack. Notice that the evacuate function pushes values that have been
copied to to-space onto the scan stack for further processing (the gt->status

field is used to ensure that the scan pointer is pushed at most once.)
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void gc(void** rootset) {
while ( p = next_root(rootset) ) *p = evacuate (*p);
while ( p = pop_scanstack () ) cheney(p);

}

Fig. 7. The main GC function evacuates each of the values in the root set after which
the cheney function is called with scan pointers from the scan stack as long as there
are scan pointers on the stack.

To determines whether a minor or a major collection is run, a so-called heap-
to-live ratio is maintained, which by default is set to 3.0. Whenever the size of
the free-list of pages becomes less than 1/3 of the total region heap, garbage
collection is initiated upon the next function entry (i.e., safe point). After each
collection, it is ensured that the number of allocated region pages is at least
3.0 times the size of to-space (given the heap-to-live ratio is 3.0). The following
rules are deployed for switching between major and minor collections, allowing
an arbitrary number of minor collections between two major collections:

1. If the current collection is a major collection, the next collection will be a
minor collection. The region heap is enlarged to satisfy the heap-to-live ratio.

2. If the current collection is a minor collection and the heap-to-live ratio is not
satisfied after the collection, the next collection will be a major collection.

2.3 Mutable Objects and Large Objects

In the presence of mutable objects, the generation upward closure invariant may
be violated during program evaluation. In particular, a reference cell (which are
rare in a functional language) residing in an old generation, may be assigned
to point at a value residing in a young generation. We refine the generation
upward-closure condition as follows:

Definition 3 (Refined Generation Upward-Closure). For all values v, if
v is non-mutable and resides in an old generation then for all values v′ pointed
to from v, v′ resides in an old generation.

The refined generation upward-closure invariant is safe, if each minor collec-
tion traverses all reachable mutable values (even those that reside in old genera-
tions). For minor collections we extend the root set to contain, not only live values
on the stack, but also all references and tables allocated. How does the collector
locate all references and tables? Simply by arranging that such values are stored
in regions with distinguished region types. During a minor collection, the region
stack is traversed and objects in regions of type rty ref and rty array are
traversed. Thus, we avoid the implementation of the usual “remembered set”
of mutable values that have been updated since the previous collection. This
strategy can potentially be more costly than if a proper “remembered set” is
maintained, which we leave to future work.
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Concerning the treatment of large objects, there are several options. In the
implementation, we are currently treating large objects without associating with
being either young or old. Large objects are kept in one list associated with a
region descriptor. Following this strategy, large objects are not associated with a
particular generation (nor need they be associated with a color) and may there-
fore only be deleted during major collections. However, large objects should be
traversed (not copied), when reached, both during major and minor collections.

3 Experimental Results

In this section, we describe a series of experiments that serve to demonstrate the
relationship between region inference, non-generational garbage collection, and
the generational garbage collection algorithm presented in Sect. 2.

The experiments are performed with MLKit version 4.4.1 and Mlton v20180207.
MLKit version 4.4.1 generates native x64 machine code, which is also the case
for Mlton v20180207. The two compilers are very different. Whereas Mlton is a
whole-program highly-optimising compiler, MLKit features a smart-recompilation
system that allows for quick rebuilds upon modification of source code.

All benchmark programs are executed on a MacBook Pro (15-inch, 2016)
with a 2.7GHz Intel Core i7 processor and 16GB of memory running macOS.
Times reported are wall clock times and memory usage is measured using the
macOS /usr/bin/time program. Measurements are averages over 10 runs. We
use m to specify memory usage (resident set size) and t to specify wall clock ex-
ecution time (in seconds). Subscripts describe the mode of the compiler, with ∗r
signifying region inference enabled, ∗g signifying garbage collection enabled, and
∗G signifying generational garbage collection enabled. Thus, trG specifies wall
clock execution time with region inference and generational garbage collection
enabled. We use mmlton and tmlton to signify memory usage and wall clock ex-
ecution time for executables running code generated by Mlton. The benchmark
programs span from micro-benchmarks such as fib37 and tak (7 and 12 lines),
which only use the runtime stack for allocation, to larger programs, such as vliw
and mlyacc (3676 and 7353 lines), that solve real-world problems. The program
msort-rf has been made region-friendly by the programmer.

By disabling region inference, we mean instructing region inference to allocate
all values that would be allocated in infinite regions in global regions (collapsed
according to their region type). Then not a single infinite region is deallocated
at run time and the non-generational garbage collection algorithm essentially
reduces to Cheney’s algorithm. Disabling region inference does not change the
property that many values are allocated in finite regions on the stack.

3.1 Comparison with Mlton

In this section, we present base numbers for running the benchmark programs
using the MLKit compiler with region inference and non-generational garbage
collection enabled. Fig. 8 shows wall clock time for MLKit generated executables
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relative to wall clock time for Mlton (version v20180207) generated executables.
We see that for some of the programs, Mlton outperforms the MLKit (with
and without garbage collection enabled). Mlton’s whole-program compilation
strategy, efficient IO-operations, and optimised instruction selection for the x64
architecture, are good candidates for an explanation. Raw numbers for the con-
figurations are shown in Fig. 9, which also shows memory usage for the different
configurations. Even though the performance of all but one benchmark is better
with region inference alone, for some of the benchmark programs (i.e., those
with numbers marked in bold in Fig. 9), region inference alone does not suffice
to obtain good memory performance.
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Fig. 8. Wall clock execution times for MLKit generated executables relative to exe-
cution times for Mlton generated executables (the dashed red base line). The orange
(left) bars show measurements for MLKit with only region inference enabled. The yel-
low (right) bars show measurements for when both region inference and GC is enabled.

3.2 Generational Garbage Collection

Measurements showing the effect of non-generational and generational garbage
collection in concert with region inference is shown in Fig. 10. First, notice
that region inference has a positive influence or no effect on performance in all
but one of the benchmarks, namely the Knuth-Bendix completion program, for
which region inference adds an excessive number of region parameters to the
main mutually recursive functions (explaining the slowdown). Second, genera-
tional garbage collection alone (without region inference) performs better than
or equivalent to (in all but one case) non-generational garbage collection (the red
line). Finally, for six or seven of the benchmarks, the combination of region infer-
ence and generational garbage collection performs better than the combination
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Program tmlton tr trg mmlton mr mrg

kbc 0.10 0.22 0.28 2.5M 6.9M 3.4M
simple 0.26 0.24 0.26 6.4M 2.6M 3.4M
mandelbrot 0.09 0.22 0.24 978K 1.4M 1.6M
life 0.54 0.91 1.11 2.6M 14M 1.6M
msort 1.09 0.83 1.53 427M 410M 137M
msort-rf 0.81 0.70 1.03 652M 102M 124M
mpuz 0.34 0.88 1.11 950K 1.2M 1.3M
barnes-hut 0.14 0.85 1.05 2.2M 284M 2.4M
logic 0.11 0.54 0.75 2.4M 276M 2.4M
DLX 0.51 0.19 0.23 33M 6.7M 6.9M
professor 0.37 0.66 0.54 1.6M 10M 1.4M
lexgen 0.21 0.41 0.57 18M 50M 8.1M
tsp 0.14 0.22 0.25 11M 8.3M 13M
vliw 0.05 0.09 0.11 8.4M 9.7M 4.6M
mlyacc 0.19 0.20 0.24 7.0M 66M 6.6M
zebra 0.51 2.18 2.54 1.6M 132M 1.3M
ratio 0.35 1.98 2.08 50M 38M 10M
fib37 0.32 0.38 0.38 937K 1.1M 1.1M
tak 0.68 1.23 1.26 938K 1.1M 1.1M

Fig. 9. Wall clock execution times and maximum resident memory usage for Mlton
generated executables and for MLKit generated executables with only region inference
enabled and with both region inference and non-generational GC enabled (averages of
10 runs). Numbers in bold highlight benchmarks for which region inference alone does
not suffice to obtain good memory behavior.
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of non-generational garbage collection and region inference. The results are ar-
guably quite sensitive to the heap-to-live ratio (a fair comparison should perhaps
allow the combination of generational garbage collection and region inference to
work with a higher heap-to-live ratio).

Fig. 11 shows the garbage collection counts (crg, crG, cg, and cG) for the
different configurations. Notice that the garbage collection counts (and times)
are smaller when region inference is enabled. Notice also that the percentage of
memory reclaimed by the garbage collector is (close to) invariant to whether the
garbage collector is generational or not.

The MLKit features a region profiling tool [16], which allows for showing a
program’s use of regions over time. Fig. 12 shows region profiles of MLYacc com-
putations for four different MLKit runtime configurations. The profiles show that
generational garbage collection combined with region inference often requires
more memory than when region inference is combined with non-generational
garbage collection, but also, that the profile obtained alone with generational
garbage collection is similar to the profile obtained with region inference and non-
generational garbage collection enabled. The figure also demonstrates a crucial
point, namely that the global regions are often those that needs to be collected
by the reference tracing collector, which means that schemes that attempt at
collecting only the top-most regions will probably fail to be effective.

3.3 Memory Waste

Region inference combined with generational garbage collection results in more
memory waste (unused memory in region pages) than when combined with non-
generational garbage collection (up to 17 percentage points more). The reason
is that, with generational garbage collection, each infinite region contains two
lists of region pages (one list for each generation), each of which may not be
fully utilised. Fig. 13 gives memory waste percentages for the configurations wrg

(region inference and non-generational garbage collection), wrG (region inference
and generational garbage collection), wg (non-generational garbage collection),
and wG (generational garbage collection). As expected, the waste is high for the
region inference configurations. We also see that generational garbage collection
combined with region inference gives rise to the highest degree of waste.

4 Related Work

Most related to this work is the previous work on combining region inference and
garbage collection in the MLKit [17]. Compared to the earlier work, the present
work investigates how generational garbage collection can be combined with
region inference and how the concept of typed regions can be used to implement
a generation write barrier. There is a large body of related work concerning
general garbage collection techniques [19] and garbage collection techniques for
functional languages, including [7, 18, 23, 29].
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Fig. 12. The top-left MLYacc region profile shows the memory usage over time for a
runtime configuration with region inference enabled and reference tracing GC disabled
(denoted r). The top-right region profile shows the memory usage for a configura-
tion where non-generational GC is combined with region inference (denoted rg). The
configuration for the bottom-left region profile combines generational GC with region
inference (denoted rG) whereas the configuration for the bottom-right region profile is
using generational GC only (denoted G).

wrg wrG wg wG

Program (%) (%) (%) (%)

kbc 42 57 4 8
simple 13 30 2 6
mandelbrot 0 0 0 0
life 8 17 4 9
msort 2 5 2 4
msort-rf 3 6 2 4
mpuz 69 82 47 65
barnes-hut 10 18 2 5
logic 3 6 3 6
DLX 23 32 1 2

wrg wrG wg wG

Program (%) (%) (%) (%)

professor 25 38 10 17
lexgen 10 18 1 2
tsp 7 12 5 7
vliw 13 28 1 3
mlyacc 8 21 1 2
zebra 31 38 10 22
ratio 5 7 1 2
fib37 0 0 0 0
tak 0 0 0 0

Fig. 13. Memory waste. The numbers show the average percentage of region waste
(unused memory in region pages) measured at each collection.
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Incremental, concurrent, and real-time garbage collection techniques for func-
tional languages have recently obtained much attention. In particular, the pres-
ence of generations has been shown useful for collecting parts of the heap in-
crementally and in a concurrent and parallel fashion [22, 21, 3]. We leave it to
future work to investigate the use of regions and generations in the MLKit for
supporting concurrency and parallelism in the language.

A particular body of related work investigates the notion of escape analysis
for improving stack allocation in garbage collected systems [5, 24]. Region infer-
ence and MLKit’s polymorphic multiplicity analysis [4] allow more objects to be
stack allocated than traditional escape analyses, which allows only local, non-
escaping values to be stack allocated. Other work investigates the use of static
prediction techniques and linear typing for inferring heap space usage [20].

Cyclone [26] is a region-based type-safe C dialect, for which, the programmer
can decide if an object should reside in the GC heap or in a region. Another
region-based language is Gay and Aiken’s RC system, which features limited
explicit regions for C, combined with reference counting of regions [15]. A modern
language for system programming is Rust, which is based on ownership types
for controlling the use of resources, including memory [2]. Ownership types are
also used for real-time implementations of Java [6]. None of the above systems
are combined with techniques for automatic generational garbage collection.

Also related to the present work is the work by Aiken et al. [1], who show how
region inference may be improved for some programs by removing the constraints
of the stack discipline, which may cause a garbage collector to run less often.
Region inference has also been used in practical settings without combining it
with reference-tracing garbage collection. In particular, it has been used as the
primary memory management scheme for a web server [10, 11, 13, 14].

5 Conclusion and Future Work

We have presented a technique for combining region inference and generational
garbage collection in a functional language. Whereas generational collection by
itself is shown (in most cases) to be beneficial compared to a simple Cheney-style
non-generational collector, when generational collection is combined with region
inference, it turns out that region inference will take care of reclaiming much
of the memory that generational garbage collection would otherwise reclaim.
There are, however, potential benefits of a generational collector, which, in a
few cases, also leads to improved performance. For a more detailed description
of the implementation, consult the companion technical report [12].

As a first obvious candidate for future work, the x64 code generator can
be improved to generate more efficient code. Second, for making the technique
useful for applications that make heavy use of mutable objects, a proper imple-
mentation of a “remembered set” would be an appropriate next step. Finally, an
obvious candidate for future work is to investigate the possibility of combining
region inference and, perhaps, generations, with features for concurrency and
parallelism.
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