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Chapter 1

Introduction

The language Standard ML can be thought of as a strict functional language providing impera-
tive features. The language is naturally split into a core language, that provides many features
for programming in the small, and a module language for programming in the large.

Since the first ML compiler was built in 1977 [Pau9l, page 1] many other compilers have
been implemented. The language Standard ML and its semantics have evolved over a period
of about 17 years [MTH90, page 81] with contributions of many people.

Existing implementations of the Standard ML language all have some kind of limitations.
The Standard ML of New Jersey system, for example, takes a lot of memory and is cumbersome
to port since it produces native machine code. Other implementations have drawbacks such as
slow evaluation or in that they fail to evaluate phrases of Standard ML correct as defined in
The Definition of Standard ML [MTH90].

At the time of writing new implementations of the Standard ML language are under devel-
opment. Parallel to my work Sergei Romanenko has developed a core Standard ML compiler
that generates byte code and executes it on an abstract machine. This core Standard ML
compiler, called Moscow ML, is partly a modification of the Caml Light system with the static
elaboration part replaced with the corresponding parts of the ML Kit system (see below).
Moscow ML is to a large extend the result of work related to our first attempt to implement a
portable Standard ML compiler.

The ML Kit system, that is a Standard ML compiler written in Standard ML and which
is very modular, has grown drastically during this period of time. Especially, it is worth
mentioning a new back-end for the ML Kit system that uses a stack of regions [Tof94]. In
this scheme garbage collection can be avoided since allocation and de-allocation of data can be
planned statically®.

There is a need for a portable and small implementation of Standard ML that generates
compact code. This report deals with several aspects of the implementation of a compiler for the
language Standard ML. The report is split into two parts. The first part describes an attempt
to change a front-end of an existing compiler (the Caml Light system) into a Standard ML

!This implementation of the new back-end based on regions has been developed by Mads Tofte and Lars
Birkedal at the University of Copenhagen.



2 CHAPTER 1. INTRODUCTION

compiler. The result is the MiniMI[ compiler which implements a subset of the core language
of Standard ML and which has a module system that supports separate compilation. The
MiniMI compiler is capable of compiling many small Standard ML example programs, but
unfortunately the type checker of the Caml Light system is not safe. Also, it does not support
built-in overloading and it has no notion of equality types and imperative types. To implement
these features would be very time consuming though the algorithms could be adapted from the
ML Kit system. It seemed that the entire front-end would have to be substituted (rewritten in
Caml Light) with the front-end of the ML Kit system.

The second part of the report is about a new approach. The idea is to construct a new
back-end for the ML Kit system. At the time of writing the ML Kit system compiles phrases
of core Standard ML into an extended typed lambda language. We show how constructs of
this lambda language can be compiled into sequential code that can be executed on an abstract
machine. The abstract machine is a modified version of the abstract machine of the Caml Light
system. Because of the high level instructions (compared to machine instructions) of the Zinc
abstract machine one may find that the code generated by such a compiler is very compact.

It is possible for this work to result in a portable version of the ML Kit system by boot-
strapping the ML Kit system. Due to inefficiencies in the front end of the ML Kit system this is
not possible with the present version of the compiler?. Also, the system is not able to translate
phrases of the Standard ML module language into constructs of the typed lambda language
that is processed by the back-end. At a later stage however, when these inefficiencies and
limitations are eliminated, it should be possible to bootstrap the compiler and hence achieve a
portable Standard ML compiler that generates compact code.

The first part of the report discusses most parts of the front-end of a core Standard ML
compiler. See chapter 2 for a separate introduction. The second part of the report discusses
a back-end and a runtime system for a Standard ML compiler. See chapter 8 for a separate
introduction.

Whereas the first approach is to replace the front-end of an existing compiler (the Caml
Light system) the second approach is to replace the back-end of an existing compiler (the ML
Kit system) to obtain a portable Standard ML implementation that generates compact code.

2The version of the ML Kit system that has been used is the 1.0 version with a few extensions (as of April
6, 1994). The lambda language is in this version a typed language and core elaboration is more efficient.
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Chapter 2

The Caml Light System as Point of
Departure

In the first part of this report we describe how a compiler for a portable version of a subset of
Standard ML, namely MiniMI !, can be developed. The idea is to translate phrases of this
subset of Standard ML into binary code that can be evaluated on an abstract machine. The
abstract machine is part of the Caml Light system developed at INRIA [Ler93, Ler90b].

The construction of the compiler builds on the bootstrapping capability of the Caml Light
system. We change the front-end of the compiler, so that a subset of phrases of Standard ML
can be parsed, elaborated and compiled to run on the existing abstract machine of the Caml
Light system.

The MiniMI compiler is not a Standard ML compiler in that it fails to compile all phrases
of the Standard ML core language. Also, the module system that MiniMI supports differs
from the module language of Standard ML in many ways. The MiniMI compiler is written
entirely in Caml Light. The compiled byte code is executed on the abstract machine of the
Caml Light system, that is written in C.

In the following the different stages of the compilation process will be described.

2.1 Overview of the compiler for MiniMi

In figure 1 the different steps of compilation are illustrated.

The lexical analysis converts characters to tokens, and it is implemented by use of Caml
Lex which is a tool for constructing scanner algorithms, suitable for Caml Light. The lexical
analyzer for MiniMI is a modification of the lexical analyzer for the Caml Light system. The
parser converts correct phrases (sequences of tokens) into an abstract syntax tree. This abstract
syntax is basically the abstract syntax of Caml Light, though some additional constructs have
been added. The reason is that not all constructs of Standard ML have a corresponding
construct in Caml Light, and only a tiny subset of Standard ML can be implemented without

!The name MiniMI stands for Mini Meta language.
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Figure 2.1: Overview of the compiler.

changing the abstract syntax of Caml Light. Infix resolution in Caml Light is handled in a
way that does not correspond to the infix resolution of Standard ML, hence it is necessary to
introduce a new phase in the compiler for resolving infixes. The method of ML Kit is adopted
for this purpose.

The type checker checks that phrases that have been parsed are well typed and it infers types
for all expressions. It is also at this stage that overloading of built-in operators in Standard ML
is solved. The type checker of Caml Light does not support overloading of built-in operators
and it also lacks some other properties that a type checker for Standard ML should have.

It is the job of the match compiler and the front-end to convert the abstract syntax tree into
terms in the enriched lambda language. The match compiler eliminates all pattern bindings in
the abstract syntax tree producing phrases of the enriched lambda language. Other constructs
in the abstract syntax tree are converted into the enriched lambda language by the front-end.
The enriched lambda language is translated into sequential code by the back-end and then
converted into binary code by the binary code emitter. The binary code can then be executed
on the abstract machine, the Zinc-machine.

Most of the problems arising when converting the Caml Light compiler into a Standard ML
compiler are compile time problems. That is, the abstract machine need not be changed radi-
cally. Local declarations, such as type, data type and exception declarations are not supported
by Caml Light. It is important to notice however, that implementation of such declarations is
only a matter of scope and hence a compile time problem?.

There are however, some runtime problems. Caml Light evaluates expressions right to left3

2Note that exceptions in Caml Light are not generative as in Standard ML.
3In this way curried functions can be implemented very efficiently [Ler90b, page 14]
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in contrast to Standard ML, in which expressions are evaluated left to right. This problem can
only be solved efficiently by changing the abstract machine. Also, the semantics of equality
differs between the Caml Light system and Standard ML and some of the basic operators
such as div and mod behaves differently. These problems relates to the dynamic behavior of

MiniMI .

The module language of Standard ML is very different from the module language of Caml
Light. The module language of Caml Light is simpler than that of Standard ML but it has one
advantage, namely that it directly supports separate compilation. It is rather easy to adapt the
module language of Caml Light for the Mini M/ system though it is not true to The Definition.
The module language of Standard ML however, supports better reusability of code than most
other module systems (by parameterization).

In appendix A there is a list of files of source code that have been constructed or altered.
Also, there is a description of how to startup the MiniMI system.

This part of the report is organized as follows. Lexical analysis and parsing is discussed in
chapter 3, and chapter 4 describes how infixes are resolved. In chapter 5 type checking and
type inference are studied. In chapter 6 the dynamic aspects of MiniMI are discussed. The
actual syntax and an informal semantics for the Mini M| language are presented in chapter 7.
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Chapter 3

Parsing

The lexical analysis of the source code to be compiled converts characters to tokens which are
accepted by the parser. The parser converts sequences of tokens into an abstract syntax tree.

3.1 Lexical analysis

As a tool for constructing a lexical scanner Caml Lex [Ler93, pages 113—-115], which is a lexical
analysis tool for Caml Light, is used. The input file for Caml Lex is basically the scanner for
the ML Kit system though it is translated to the style required by Caml Lex. The scanner
eliminates comments and recognizes strings within double quotes and several types of constants
and identifiers. Reserved names are kept in a hash table; all identifiers found in this table are
marked as reserved.

Both keywords that are parts of the core language and keywords that are parts of the module
language of Standard ML are delivered to the parser as keywords. To implement the module
language of MiniMI an additional keyword close is needed. A hash table is used to decide
efficiently whether a scanned string should be treated as an identifier or a keyword.

3.2 The abstract syntax

Before discussing the parsing phase it is necessary to discuss what is required of the parser.
First of all the parsing phase should return an abstract syntax tree for further processing.

In the ML Kit system the abstract syntax, in most cases, directly corresponds to the gram-
mar. When attempting to create an abstract syntax tree that suits the front-end of the Caml
Light system, a direct approach cannot be used in every case. The abstract syntax for the
ML Kit system is more complicated than the abstract syntax for the Caml Light system, in
that it consists of far more levels. As an example, the ML Kit system distinguishes between
expressions and atomic expressions in the abstract syntax. This is not the case for the abstract
syntax of the Caml Light system. This fact however, will not cause any problems, apart from
more complicated code.
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Not all parts of the abstract syntax of the Caml Light system are needed. The constructor
Zorpat, that is a part of the type pattern_desc is not needed. Neither are the constructors Zfor,
Zvector, Zstream and Zparser and the constructors used for dealing with records. These are
all parts of the type expression_desc. The constructors Zexpr and Zimpldirective, which are of
the type impl_desc are not needed either. Parts of the abstract syntax that deals with types
and exceptions are moved to another level in the abstract syntax, namely the declaration level.
These constructs involve changes in the front end also. Implementing the construct “let dec in
exp end” also requires changes in the abstract syntax. The abstract syntax is split into many
datatype constructs, and only the main datatype constructs will be discussed here!. Most of
the datatype constructs are mutually recursive and depend on types not described here.

A type expression is parsed into one of four constructs.

datatype type_erpression =
Typexp of type_expression_desc X location
and type_expression_desc =
Ztypevar of string
| Ztypearrow of type_expression X type_expression
| Ztypetuple of type_expression list
| Ztypeconstr of global_reference X type_expression list

The location information, that is a part of the datatype type_expression, is used for error
reporting. Error reporting will be discussed in a subsequent section.

Patterns are represented by one datatype construct. There is no distinction between pat-
terns and atomic patterns as in The Definition of Standard ML [MTH90, page 73] or as in the
ML Kit system.

datatype pattern =
Pat of pattern_desc X location
and pattern_desc =
Zwildpat
| Zvarpat of string
| Zaliaspat of pattern x string
| Zconstantpat of atomic_constant
| Ztuplepat of pattern list
| ZconstructOpat of constr_desc global
| Zconstructipat of constr_desc global X pattern
| Zconstraintpat of pattern x type_expression
| Zunrespat of pattern list
| Zunresidentpat of (string list) op_ident_opt

Not all patterns are resolved at the stage of parsing. It is necessary to introduce two more
constructs representing these unresolved patterns. Zunrespat is used to resolve sequences of
patterns, and Zunresidentpat is used to resolve whether an identifier is a constructor or a value.

LAll parts are shown using Standard ML notation
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Expression are represented as shown below. As for patterns no distinction is made between
atomic expressions and expressions.

datatype expression =

Expr of expression_desc x location

and expression_desc =

Zident of expr_ident ref

Zconstant of struct_constant

Ztuple of expression list

ZconstructO) of constr_desc global

Zconstructl of constr_desc global X expression
Zapply of expression x expression list

Zlet of bool x (pattern x expression) list X expression
Zfunction of (pattern list X expression) list
Ztrywith of expression x (pattern X expression) list
Zsequence of expression X expression

Zcondition of expression X expression X erpression
Zwhile of expression X expression

Zsequand of expression X erpression

Zsequor of expression X expression

Zconstraint of expression X type_expression

Zvector of expression list

Zassign of string X expression

Zunresexp of expression list

Zunresident of (string list) op_ident_opt

Zunreslet of declaration list X expression

When parsing expressions the infix status of each identifier is not known. Neither is it certain
whether an identifier is a constructor or a value. Since it is necessary to delay this resolution
two extra constructs, Zunreserp and Zunresident, are introduced. To be able to parse two
declarations without a separating semicolon the construct Zunreslet is introduced.

Although the grammar distinguishes between declarations and top level declarations, these
constructs are not distinguished in the abstract syntax.

and declaration =

Dec of dec_desc x location

and dec_desc =

Zvaldef of bool x (pattern x expression) list
Ztypedef of (string X string list x type_-decl) list
Zexcdef of constr_decl list
Zinfir of int x string list
Zinfirr of int x string list
Znonfix of string list
Zimpldirective of directiveu
Zempty
Zunresfun of (pattern list X type_expression
list x expression) list list
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To resolve infixes at a later stage the three kinds of infix declarations

infix (d ) id;, --- id,
infixr (d ) id; --- id,
nonfix id; --- id,

are parsed into equivalent constructs. When infixes are resolved the corresponding declaration
constructs have been removed from the abstract syntax tree. fun-declarations are also solved
at the stage of infix resolution, hence it is necessary to introduce the construct Zunresfun in
the abstract syntax tree. The construct Zempty is used to represent empty declarations.

The module language of MiniMI allows one to specify a signature (or interface) file, con-
taining a sequence of signature specifications, for each implementation file. A signature speci-
fication is parsed into the following construct.

datatype intf phrase =
Intf of intf-desc x location
and intf_-desc =
Zvaluedecl of (string x type_expression X prim_desc) list
| Ztypedecl of (string X string list x type_decl) list
| Zexcdecl of constr_decl list

3.3 The grammar

The grammar for Standard ML is described in The Definition of Standard ML [MTH90]. Most
of the grammar is given in BNF-notation, but restrictions and some additions are mentioned
either in the text or as footnotes. It is necessary to add restrictions to the grammar given in
BNF-notation, to eliminate ambiguities.

The grammar for MiniMI is given in chapter 7 in BNF-notation and is closely related to
the grammar for Standard ML. It builds on the grammar for the ML Kit system, for which
most ambiguities are eliminated.

Most of the productions and their actions are straightforward and will not be discussed
here. As in Standard ML of New Jersey the implementations of “val ValBind” and “val rec

FnValBind” are separated to avoid strange statements like “val rec rec rec ...” [Lab93b, part
3.6].

The expression “let decs in exp, ; ... ; erp; end” where decs contains more than one
declaration, is translated to be equivalent to “let dec; in let decy in ... exp, ; ... ; exp, ...

end end”. The semantics for these two kinds of expressions are the same for Standard ML,
though this is not mentioned in The Definition of Standard ML [MTH90].
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3.4 Elimination of ambiguities

It is not possible to eliminate all the ambiguities in Standard ML by changing the grammar.
This problem is solved by accepting a superset of phrases in the language. Then later, in the
resolution process or in the actions of the input file for Caml Yacc [Ler93, pages 116-120], the
ambiguities are resolved. Phrases that are not acceptable will be detected and then result in
an error message. In the following the ambiguities that cannot be eliminated by changing the
grammar will be discussed.

Constructors that take arguments must be treated as functions if no arguments are given.
That is, it is necessary to detect whether a constructor located in an expression takes an
argument or not. Either it takes an argument or it does not take an argument. It is not
possible however, at the stage of parsing to determine whether an identifier is a constructor or
a variable. For this reason the resolution of identifiers is done at the stage of infix resolution.

In order to parse the pattern construct “(op) wvar(: ty) as pat” it is necessary to parse
the construct “pat, as pat,” to avoid introducing an ambiguity in the grammar. When such a
pattern is parsed it can easily be checked that pat; is indeed a variable. If this is not the case
the construct is rejected.

As mentioned earlier several other constructs cannot be resolved at parse-time. Most of
these constructs will be discussed in chapter 4.

3.5 Reporting errors

All location information of the source code to be scanned and parsed is handled quite nicely in
the Caml Light system. Actions for productions which are similar for the Caml Light system
and the ML Kit system appears simpler in the Caml Light system, since the location information
is hidden. In Standard ML of New Jersey errors are reported by showing an interpretation of
the source code, not by showing the source code itself. It seems to be easier for the user to
understand an error when presented the source code, rather than an interpretation of the source
code.

Location information is represented by the following construct.
datatype location = Loc of int x int

The first integer of the constructor tells the position in the corresponding file of the first
character of the associated language construct. The second integer tells the position of the
character following the associated language construct. During scanning and parsing all language
constructs become associated with location information. This can be done easily since location
information associated with some sub-constructs of a larger construct is available when this
larger construct has been parsed; it is only necessary to deduce the correct location information
for the larger construct from location information of the sub-constructs.

Not all syntax errors are caught at the time of parsing. When parsing the construct
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“pat, as pat,” an exception is raised if pat, is not of the form “(op)var(: ty)”. This ex-
ception is handled in the file compiler.ml together with other error handling exceptions. This
however, causes no problems besides from some syntax errors appearing later in the source
code to be reported earlier. The same is true for errors in sequences of patterns or expressions
and function bindings which are checked at the time of infix resolution. In all cases location
information is reported to the user.



Chapter 4

Resolving Infixes

It is the job of the parser to create an abstract syntax tree. For many languages it is possible
to incorporate the infix status, such as precedence and associativity, of the operators into the
grammar for the language. However, when the language becomes as dynamic as Standard ML
it is impossible to do this. Standard ML gives the programmer the possibility of redefining an
operator, creating new operators and changing the precedence and associativity of an operator
that is already defined. For many functional languages which do not give the programmer these
possibilities, a resolved abstract syntax tree can be constructed during parsing, using only one
pass. In the case of Standard ML however, it is necessary to leave some of the sub trees in the
abstract syntax tree unresolved at the time of parsing. This is done simply by creating a node
in the abstract syntax tree that includes all the information that is given at parse time. In
this way it is possible to resolve this node, the unresolved subtree, when sufficient information
about each identifier is available.

The infix resolution technique is adopted from the ML Kit system and builds on the algo-
rithm described in [ASUS86, page 203]. Additional constructors are added to the expression and
pattern types. During resolution these additional constructors are replaced by constructions
that suit the front-end of the compiler, that is the translation of an abstract syntax tree to an
extended lambda language construct. As mentioned above the resolution is done by traversing
the abstract syntax tree. There are three kinds of nodes in the abstract syntax tree, created by
the parser that need to be solved with respect to an environment, containing information about
the fixity of identifiers. These three kinds of unresolved nodes include a node for unresolved
sequences of expressions, a node for unresolved sequences of patterns and a node for unresolved
sequences of fun—declarations. Nodes that do not contain any of the above unresolved nodes
as sub nodes, need not be traversed'

An environment containing information about the fixity of identifiers is called an infix basis.
To resolve the abstract syntax tree it is necessary to introduce some simple operations on infix
bases. These operations include addition of an identifier and its infix information to an existing
infix basis, and union of two infix bases. The infix basis is implemented as a global variable
which is updated when a new declaration has been compiled. This compilation might result
in additions to the infix basis. In Standard ML the infix basis, in a given scope, can only be

!Notice however, that some identifiers still need to be resolved. An identifier is resolved as soon as it can be
detected whether it is a constructor or a value.
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changed by use of the keywords infix, infixr and nonfix. An infix operator becomes nonfix
when prefixed by the keyword op, where allowed.

The unresolved abstract syntax constitute a superset of what should be included in the
resolved abstract syntax. For this reason it is necessary to introduce a new exception to handle
errors detected in the infix resolution. This exception is handled in the file compiler.ml as other
exceptions used for error handling.

4.1 Expressions and patterns

The method by which the resolution of unresolved sequences of expressions and patterns pro-
ceeds is by use of a stack. The input to the resolving functions for expressions and patterns
is respectively a list of expressions and a list of patterns. The result of the resolution is re-
spectively an expression and a pattern (resolved nodes in the abstract syntax tree). The stack
is used to stack operators and their fixity such that the resulting node with nonfix and infix
applications in place can be deduced. To spot applications (two successive operands with no
intervening operator) it is necessary to keep track of the last expression respectively pattern
parsed in the resolution process.

4.2 Function declarations

The syntax rules of fun-bindings are described in The Definition of Standard ML [MTH90,
appendix B, fig 20] as a footnote. These rules are formalized below?. The parser delivers a
fun-binding as a sequence of patterns, followed by an optional “: ty”, and “=" and so on. Of
this general syntax we permit the following declarations:

fun NonfizID NonfitAP+ (- Ty) = ...

fun op ID NonfitAP+ (- Ty)? = ...

fun (NonfitAP InfizID NonfitAP) NonfitAPx (: Ty)? = ...
fun NonfitAP InfitID NonfitAP (: Ty)? = ...

In the above regular expressions NonfizID is any identifier which is not an infix. InfizID is an
identifier with infix status and NonfizrAP is any atomic pattern other than an isolated identifier

”

which has infix status. ID is any identifier except “=".

2This formalization is from The ML Kit code.
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Type Checking

The type checker is the part of the functional programming language implementation that
reports to the user information about types of the declared variables and functions. As the
name suggests it also checks that the declarations are well-typed. Standard ML is an implicitly
and polymorphically typed language. It is an implicitly typed language, since it is optional (in
most cases) whether the user should constrain type expressions, and it is polymorphic, since it
is possible to define functions that takes arguments of different types.

Basic polymorphic type checking, which is known as Milner’s polymorphic type discipline, is
described in a number of papers, books and articles [Mil78, DM82, Car86, Joh93, Ler92, Jon87,
Tof88]. This discipline will be discussed in section 5.1.

Standard ML also provides imperative features such as references to variables. To combine
polymorphism with these imperative features is not an easy task [Tof88, Ler92]. It is important
though, to provide these features in a functional language since certain algorithms cannot be
efficiently implemented otherwise.

5.1 The basic theory of type checking

The ideas illustrated in this section are basically those described in [DM82] and [Car86]. Read-
ers who are familiar with these papers should skip this section. The section is added for
completeness and to let the reader become familiar with the notation.

Given a simple applicative language and a syntax of the type system, type inference rules
can be defined. It is then possible to infer the type for a given expression in the language
[DM82].

5.1.1 The tiny example language

The essence of type checking Standard ML can be explained by type checking a much simpler
example language. Also, since most of the language can be built from some basic constructs
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(e.g. the enriched lambda calculus) we only need to consider a tiny subset of the language.
The syntax of the tiny example language follows below.

exp = Id
| integer
| boolean
| expi expz
| fnId = exp
| let val Id = exp; in exps end
|

(‘exp, exp )

In this language, “Id” is any identifier, and to avoid ambiguities the application exp; exps
associates to the left (as usual).

5.1.2 Typing the tiny example language

Since it is not possible to constrain types to a value or a function explicitly, the example
language is purely implicitly typed. It is the task of the type inference to fail if an expression is
ill typed and to infer the correct principal type, that is the most general type, if an expression
is well typed. If a set of type variables o and a set of primitive types U (iota), such as integers
and booleans, are given, the syntax of types 7 can be given as

T i=
|
|
|

«
!

T
T ¥

It is not sufficient however, to infer a type of an expression simply by unifying a type
variable with the types of the expressions that the given expression is associated to. This
would be sufficient if no polymorphism were intended. In the construct

let

val identity = fn z = «
in

(identity true, identity 4)
end

it should be possible to apply the function identity on arguments of any type. Otherwise
polymorphism would be very restricted. This is achieved by using type schemes o

ou=T
| Var

The quantified type variables a in a type scheme Va7 are called generic type variables and
those that are not quantified are called non—generic or unknowns [Joh93, page 8| [Jon87, page
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172]. A type environment maps every variable name in scope to its type scheme, and whenever
a variable goes out of scope it should disappear from the current type environment. Generic
type variables can be defined as follows [Car86]:

A type variable, occurring in the type of an expression exp is generic (with respect to
exp) iff it does not occur in the type of the identifier of any fn-expression enclosing
exp. That s, when it does not occur free in the type environment.

When a variable or a function is defined, a type scheme for this variable is introduced or
redefined! in the environment. Each time a variable is used the type scheme is instantiated
such that new type variables are introduced in the type that is associated with the use of the
variable.

Not all type variables however, should be instantiated in order for the algorithm not to
make wrong conclusions. Only generic type variables in a type scheme should be replaced
with new type variables during instantiation. Non-generic type variables are simply copied
when instantiation takes place. The reason why these two kinds of type variables has to be
differentiated can be illustrated by the following example:

let
val badpair = fn d = (d true, d 3)
in

end

At first it seems that the abstraction badpair can be given the type (o — ) — (8 * ). But
then consider applying the badpair to the abstraction (fn n = n + 1) which certainly is of
the type o — (. This will result in applying (fn n = n + 1) to true hence the type checking
algorithm has failed. There are sound extensions of Milner’s type system that can type such
expressions [Car86] but there seems to be no need of doing so as long as it is possible to type
the function pair in the example below. In summary , lambda-bound variables do not have
their types generalized; only let-bound variables do.

Given a substitution S = [1;/«;] from type variables a; to types 7;, and a type scheme o,
then So is a new type scheme, an instance of o, where all free occurrences of a; are replaced
by 7; and where all generic type variables which appear in any 7; are replaced by new type
variables. A generic instance o' = V(3 ...3,7" of a type scheme o = Va;...q,,7 is a type
scheme where some of the generic type variables in ¢ have been substituted. We write o > o'.
o is said to be more general than ¢’ and it can be shown that iff, for all 7/, whenever o' = 7"
then also o > 7" [MTH90, page 19].

5.1.3 Type inference rules for the tiny example language

An assumption = : o maps an identifier to a type scheme. In the following we require that no set
of assumptions contains more than one assumption about each identifier. A set of assumptions

ITf the variable is redefined the type scheme in the environment should be redefined.
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is denoted by A. The binary operator W is defined as follows:
AW Ay ={(id: o) | (id:0) € AoV ((id: 0) € Ay A—Td'.(id : 0') € Ay)}
The operator W overwrites the assumptions in A; by those in A,.

The following type inference rules define what it means for an expression exp to be well—-
typed with type 7 under given assumptions A.

TAUT : AkFid:o ((id: o) in A)
) Aberp:o ,
INST: A exp: o (0> 0')
Al : .
GEN : Al—eaig]? Vga (v not free in A)
COMB : Atbexp:7 =7 Abexp :7

Al (expexp): T
Aw{id: 7'} Fexp: T

ABS': AF (fnid=exp): 7 —> 1
LET: AFerp:o AW{id:o}bFexp : 7

" AF (let val id =exp in exp’ end) : T
TUP - Abexp:o Ablexp :0

At (exp, exp):oxo

These inference rules consist of one axiom TAUT and a collection of ordinary inference rules.
In addition to the inference rules shown in [DM82] the inference rule TUP is added to type tuples
of two elements. Note that the example language does not provide any mechanism for selecting
the first component of a tuple. Built-in functions however, such as #1 : Va.V§.a * § — « and
#2 :VaVp.a x 3 — 3 for selecting a component of a tuple could be provided.

The following example illustrates how the inference rules are used to prove that an expression
has a given type. To show that the identifier pair in the expression

let
val pair =
let
val id =th z = 2
in
(id true, id 4)
end
in
end

has type (bool x int) in the body (- --) of the let-expression, a proof tree is built. It is necessary
to split the tree into pieces to make it fit on a page. The proofs of some of the branches follow
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the main proof. Besides from the rules listed above we implicitly use a weakening rule to carry
out the proof. The weakening rule is defined as:

WEAK - Alerp:o

BWAFexp:o
The proof is as follows:
TAUT{J;:a}I—z:a
ABS
N N Ffnz=2):a—« {id :Va.ao — «, true : bool, 4 :int}
N (fnz =z):Vaao—a F (id true,id 4) : bool * int

o {true : bool, 4 : int} F (let val id = fn z = z in (id true, id 4) end) : bool * int

{id : YVa.ao — «, true : bool} & (id true) : bool  {id :Va.ao — «, 4 :int} & (id 4) : int

T {id : Ya.ao — a, true : bool, 4 :int} & (id true, id 4) : bool * int
e {id :Va.ao = a} Fid :Yo.a = «
e {id :Va.ao — a} F id : bool — bool U {true : bool} & true : bool
COMB

{id :Ya.ao — «, true : bool} t (id true) : bool

TAUT . -
{id :Va.aa — a} Fid : Va.a — «
INST TAUT

{id :Va.ao = a} Fid : int — int {4 vint} - 4 :int
{id :Yo.ao = «, 4 :int} F (id /) :int

COMB

At some points in the proof, though not mentioned, it is necessary to check the additional
conditions of the inference rules INST and GEN. These additional conditions are required to
hold whenever INST or GEN is used in order to make correct conclusions. Note that the
polymorphic type (type scheme) Ya.ao — « is inferred for id, and that two different instances
are created during type checking, namely bool — bool and int — int.

It is interesting to notice that in the example above, it is necessary to guess the type of
the expression (fn z = ) when using the LET inference rule. For this reason an algorithm
determining the type of an expression that builds directly on such an inference system will be
quite inefficient.

5.1.4 An algorithm for type checking

As mentioned it is not easy to apply the inference rules to an arbitrary expression in the
language in order to find its type. In the following it will be discussed how an algorithm for
the purpose of finding the type of such an arbitrary expression can be constructed.

Instead of guessing a type of z for which a type cannot directly be inferred, the idea is to
associate a new type variable, o to z. Whenever z is used and its type is expected to be 7,
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the equation o = 7 is introduced. To make sure that this equation holds the type variable
a and the type 7 are unified. In general two types, 7 and 7’ that should have the same type
are unified and the unification algorithm produces a substitution S, that maps the free type
variables in 7 and 7’ to types.

To implement an algorithm for finding a type of an arbitrary (valid) expression a unifica-
tion algorithm is needed. As proposed in [DM82, Rob65] this algorithm U has the following
properties:

e Given a pair of types it will either return a substitution V' or it will fail.

e If U(r,7') returns V then V unifies 7 and 7' in the sense that V7 = V7', (V is a unifier
of 7 and 7')

e If S unifies 7 and 7’ then U(7, 7') returns a substitution V" and 3R.S = Ro V. (V is the
most general unifier of 7 and 77)

e If U(r,7') returns V then V will only map type variables involved in 7 and 7" (V" is the
identity on everything else).

Recall that only type variables not free in the assumptions should be generalized (made
generic) in “let val Id = exp; in exp, end”. For this reason it is necessary to define the
closure of a type 7 with respect to assumptions A as follows:

A(T) =Vay...a,T
where a4, ..., q, are type variables which are free in 7 but not in A.

The specification of the algorithm W is written in a loose form of Standard ML, meaning
that an abstract notation is used when appropriate. It is assumed that the expression that is
to be typed, is parsed and translated into an abstract syntax tree. This syntax tree is defined,
using the notation of Standard ML, as:

type idtype = string;

datatype exptype =
Id of idtype
| App of exptype X exptype
| Fn of idtype x exptype
| Let of idtype x exptype X exptype
| Tup of exptype x exptype;

The algorithm W takes as arguments a set of assumptions A and an abstract representation
of an expression (of the type exptype). W returns a substitution S and a principal type of the
expression specified in the argument. The algorithm W can be defined as:

fun W (A, exp) =
case erp of
Id (z) = if (z:Voy...a,7") € A
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then
let
val 3 ... [0, = newtypvar()
in
(I, [Bi/ci] )
end
else

raise fail

| Int (i) = ([], int)
| Bool (b) = ([], bool)
| App (expl, exp2) =

let

in

1 ) = W(A, expl)
val (Sy, 7o) = W (S, A, exp2)

|

1

8 = newtypvar()
V = U(SQTl, To — ﬂ)

(V 5351, V)

end

| Fn (a,

let

in

expl) =

val § = newtypvar()

val (S1, 1) = W(A w{x: 3}, expl)

(S1, Si8 — m)

end

| Let (z,

let

in

expl, exp2) =

val (Sy, 1) = W (A, expl)

val (S, 1) = W(S1A, U{x: S1A(1)}, exp2)

(5251, T2)

end
| Tup (expl, exp2) =

let

in

val (Sy, ) = W (A, expl)
val (Sy, 1) = W(A, expl)

(5251, (527'1) X 7'2)

end;

In the algorithm above A, is defined as:

A, ={(y:1) € A|y#x}

23

The function newtypvar() creates a new type variable and the notation S,S; stands for com-

posing the substitutions Sy and S;. This substitution has the property:

(5251)7' = 52(517')



24 CHAPTER 5. TYPE CHECKING

Syt stands for applying the substitution Sy on the type 7 and the notation [] above simply
stands for the empty substitution, that is [Jo = o for all type schemes (identity—operation.)

The typing of the [et—construct requires an explanation. To implement polymorphism it is
necessary to generate a type scheme for the identifier . In this type scheme all type variables
a1 ...q, occurring in 7; but not in S7A should be generalized. For this reason the closure
S1A(7) is computed. Type variables which occur in 7; but are not generalized, corresponds
to non—generic type variables introduced on a higher level, since such type variables will occur
both in S;A and in 7;. Notice that if non—generic type variables are detected when building

the closure S;A(7;) then the construct must be a subexpression of an expression of the form
“fn Id = exp”.

A polymorphic type inference algorithm, as the one described here, when applied to purely
applicative languages can be proved to be sound in the sense that it does not make any wrong
conclusions [DM82, Mil78]. The type scheme derived by the algorithm is a principal type
scheme. Every other type scheme of the same expression is a generic instance of the type
scheme computed by the algorithm W. It can also be proved to be complete [DM82] in the
sense that every derivable type scheme will be an instance of, that is — at least as specific as,
the type scheme produced by the algorithm W.

5.1.5 An efficient type checking algorithm

Implementations of type checking algorithms based directly on the theory illustrated in the
previous section turn out to be bottlenecks in many compilers. The reason is that it seems
necessary to handle large environments in a way that is not efficient. In this section however,
it will be shown that it is possible to handle these environments in a quite efficient way using
levels®.

Consider the tiny example language from section 5.1.1. Besides from a unique name each
type variable is also associated with a let—level. The idea is that when type checking the
expression

fnz = exp

then z is bound to a fresh type variable for which the level is set to current level. When type
checking the expression
let val x = exp, in exp, end

the let—level is increased by one when checking the expression exp, and then decreased again.
Now, all the type variables in the type 7y, that is inferred for erp,, which have an associated
level greater than the current level are to be quantified. All type variables in the environment
will have lower level; if a type variable has higher level it does not occur in the environment
and so it should be generalized. For this to work out correctly it is required that when a type
variable « is unified with a type 7 then all the levels associated to the type variables for 7
together with the type variable «, are to be substituted with the lowest of these levels.

Quantification of a type variable is then done by setting the level of the type variable to -1,
e.g. Type instantiation is done by taking a copy of the type where all generic type variables

2The idea was presented by Lars Birkedal at The University of Copenhagen, DIKU and described in [R92].
The algorithm is implemented in the Caml Light system and in the ML Kit system version 1.z, z > 0.
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occurring in the type are made fresh (get level equal to present let-level) and where non-generic
type variables are “copies” of the type variables of the original type. It is assumed that type
variables are represented by references. In this way, when a type variable is unified with a type,
the type variable can be updated destructively.

5.2 The type checker for MiniMI

The type checker for the Caml Light system is not sufficient to type check declarations of
Standard ML. A type checker for Standard ML should resolve overloading and also it should
allow type variables to be associated with an equality attribute and an imperative attribute.
In MiniMI however, the type checker of the Caml Light system is adopted, though it is not
sound. The type checker of the Caml Light system is fast, the implementation is rather small
and it does reject most of the phrases that should be rejected by a Standard ML compiler.
Because the type checker of MiniMI (Caml Light) is not sound it is possible to compile the
following sequence of declarations:

fun f z =
let
val r = ref z
in
(fn()=!r,fnk=r:=k)
end;

val (read, write) = f (fn z = z);
val _ = write (fn i = i + 1);

val what = read () true;

It is necessary to know of the implementation to predict the result of the last declaration:

val what = false : bool

The type of the equality operator of MiniMI is
V'a.'a x 'a— bool
and not as described in the definition:
V'"a. "a x "a — bool

This is simply because MiniMI does not have equality attributes associated with type variables
and for this reason it is possible to type check the following declaration:

fun f () =
let
fun £ _ =0
fun ¢ _ =1
in
k =

end;
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However, when applying the function f in the above example to a value of type unit, the
equality function will raise the exception Invalid_argument ”equal: functional value”.



Chapter 6

Dynamic Aspects of Mini ML

As mentioned in the introduction it is necessary to change the runtime system of the Caml
Light system in order to obtain the behavior that is required of a Standard ML compiler. The
aspects that we will discuss here includes order of evaluation and correct implementations of
primitives, such as div, mod and equality (“="). Some parts of this chapter requires knowledge
of the abstract machine of the Caml Light system. For information regarding this topic see
chapter 10, [Ler90b] and [Ler93, chapter 12].

6.1 Order of evaluation

At the point of writing, MiniMI evaluates expressions right to left since it builds on the
abstract machine of the Caml Light system. This only shows by use of side effects. The
expression

let
val a = ref 0
fun f z y = la
in
f(a:=1) (a:=2)

end;
evaluates to
val it = 1 : int

Not only function applications are evaluated this way; every expression is evaluated from right
to left. As an example the expression

let
val a = ref 0
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evaluates to
val it = 1 : int

and hence shows that also tuples are evaluated from right to left. Similar experiments can be
made with lists and other datatypes.

When choosing a right-to-left evaluation order, it is possible to evaluate multiple applica-
tions very efficiently [Ler90b, page 14]. When evaluating (M N ... Ni), left to right it seems
necessary to reduce M first, then A; = (M Ny), then Ny, then Ay = (A; N;), and so on until
A = (Ax_1 Ng). Since A; has to be computed before Ny and so on, it is necessary to build

the closures Ay, ..., Ai_1 during the evaluation process. When evaluating expressions right to
left the evaluation order for the above example becomes Ng,..., Ny, M, Ay, ..., A; hence the
arguments Ny, ..., Nj are available when starting to reduce inside M.

The evaluation order of MiniMI can be changed in two ways. One way is to change the
lambda-code to Zam-code translation, such that closures are built for every argument (see
example above) and such that elements in e.g. tuples are pushed on the stack in the reverse
order. If the system is changed in this way the efficient application mechanism of the Zinc-
machine will not be used.

The other way of changing the MiniMI system such that the evaluation order becomes
left to right uses the efficient application mechanism of the Caml Light system. This however,
requires a change in the abstract machine. The idea is to introduce an instruction, say Re-
verseArgs (k), in the abstract machine that “reverses” the accumulator and the & top entries
on the argument stack':

Code Accu | Env. | Arg. stack | Return stack
ReverseArgs(k);c | a e Vo .- Up_1.S r
C Vk—1 € Vig—2...0y.Q.5 r

A multiple application is compiled in the Caml Light system as follows:

C [(M Ny... Ny)] = Pushmark; C [Ny] ; Push; ...; C [Ny] ; Push; C [M] ; Apply

To obtain left—to-right evaluation the following translation scheme could be used instead:

C [(M Niy... Ny)] = Pushmark; C [M] ; Push; C [Ni] ;

!This idea is due to Sergei Romanenko, University of Moscow.
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Push; ...; C [Ny] ; ReverseArgs(k); Apply

This translation scheme is correct even if functions are not fully applied. To see this, observe
that the state of a machine using the right-to-left evaluation scheme and a machine using the
left-to-right evaluation scheme (all else equal) is the same prior to the Apply instruction. Hence
beside from evaluating the function and the arguments in different order the two schemes behave
the same.

Still elements in e.g. tuples must be pushed on the stack in reverse order for all expressions
to evaluate from left to right.

6.2 Correct implementation of primitives

Not all primitives of the Caml Light system can directly be used in the MiniMI system. In
order for the dynamic semantics of the primitives in Mini M| to match the dynamic semantics
of the primitives of The Definition of Standard ML [MTH90, appendix D], it is necessary to
change either corresponding primitive operations of the abstract machine, or corresponding
primitive functions residing in the Caml Light library. The primitive functions that resides
in the Caml Light library can be split into two categories. Some functions are written in the
Caml Light language and some are actually written in C using the facilities of Caml Light to
link C object code to Caml Light code [Ler93, chapter 12]. Functions that need to be efficient
are either C functions or direct operations on the stack and the accumulator in the abstract
machine.

Most of the primitives of MiniMI behaves semantically correct with respect to The Defi-
nition, though some of the primitives do not raise the correct exceptions when required. The
abstract machine (the Zinc machine) does not check for overflow on operations on integers
though this test could be integrated in the abstract machine. The abstract machine represents
an integer ¢ as the value 2 % ¢ + 1, hence an operation resulting in overflow would cause the
carry bit to be set?.

6.2.1 Changing the semantics of equality

The Caml Light system operates with two different notions of equality. One that checks for
structural equality and one that checks for physical (referential) equality. In Standard ML
there is only one notion of equality. The equality test in Standard ML is basically a structural
equality test, though no structural equality is done on references. Equality on two references
returns true only if the references are identical; otherwise equality on two references returns
false. In this way no equality test will result in an infinite loop since every loop in a Standard
ML data structure either goes through a reference (ref) or a function. The static semantics of
Standard ML requires that no data structure containing functions can be checked for equality.
In MiniMI however, this is not checked statically but dynamically. That is, an exception

2This representation is also used in the Standard ML of New Jersey system [App89, page 5], and this system
checks for overflow.
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is raised if a data structure containing a function is checked for equality with another data
structure.

To incorporate the notion of equality of Standard ML, with respect to references into M ini-
MU it is necessary to make it possible for the runtime system to identify reference cells. This is
done by boxing all reference values with a special ref-tag just as closures, strings and doubles
have their own tags. The data in a ref-block is then one word denoting a value.

One word One word
‘ ref -tag ‘ GC ‘ size =1 H value
One block

The equality function of Caml Light is written in C and it is relatively easy to change this
function to match The Definition of Standard ML?. When the equality function compares two
ref-blocks the function returns true if the references (pointers) are identical, otherwise false.
In this way no infinite loops will occur when using the equal predicate.

3Tt is of course necessary to recompile the abstract machine and bootstrap the system for the change to
appear.



Chapter 7

Using the System

MiniMI is an implementation of a subset of the core Standard ML language that is defined
in The Definition of Standard ML [MTH90]. The language is built on the basis of another
functional language Caml Light, that is developed at INRIA in France'. Actually MiniMI is
a modified version of the Caml Light system, written in Caml Light.

To incorporate many of those features that Standard ML provides, some parts of the ML
Kit system, that is a Standard ML written in Standard ML, was translated into Caml Light
and integrated with the already existing code. The parser and lexer are translations of code
from the ML Kit system.

Due to the module system of Caml Light the system supports separate compilation of
modules. The module system of Standard ML does not direct provide such a feature though it
gives the user other features such as better reusability of code.

The compiler translates code into binary code that is highly portable. The binary code is
executed on an abstract machine, the Zinc machine. The abstract machine itself is written in
C and can, for this reason, be transported to many platforms.

The language MiniMI is naturally, as Standard ML, split into a core language and a
module language.

7.1 The core language

The core language follows the definition of core Standard ML closely. There are however, some
constructs of core Standard ML that are not supported in MiniMI[ . These constructs will
not be mentioned in the grammar (see section 7.1.4).

!The Caml Light system is copyright (©1989, 1990, 1991, 1992, 1993 INRIA which holds all ownership rights
to the Caml Light system. (See [Ler93, page 5] for more information regarding this topic.)
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7.1.1 Reserved words

The reserved words of core MiniMI are the same as for core Standard ML [MTH90, page 3|
though some of the words has no meaning in MiniM| . There is one additional reserved word
in core MiniMI that is not included in The Definition, and that is close. Only “=" may be
used as an identifier. The reserved words of core MiniMI are given below.

abstype and andalso as case close do
datatype else end exception fn fun handle
if in infix infixr let local nonfix
of op open orelse raise rec then
type val with withtype while ( )

[ A } : : ;

- = == —> #

7.1.2 Constants

MiniMI supports, as Standard ML, the following tree kinds of special constants (scon).

e inleger: a non—empty sequence of digits, possibly preceded by a negation symbol (7).
Examples: 23 ~340.

e real: an integer followed by a point (.) and an integer or an integer followed by an
exponent or an integer followed by a point (.) and an integer and an exponent. The
exponent must consist of an exponent symbol E and an integer. Examples: 4.2
43 .2E32 “38E72.

e siring: a sequence of printable characters, spaces or escape sequences, enclosed in double—
quotes ("). Escape sequences start with a backslash (\) and must be of one of the following

forms:
\n Newline.
\t Tab.
\"c Control—c. ¢ may be any character with number 64-95.

\ddd A character with ASCII number ddd
(the number must be in the interval [0,255]).

\n "
\\ \

\f...f\ | This sequence is ignored, where f ... [ stands
for a sequence of spaces, tabs and newlines.

7.1.3 Identifiers

There are six different classes of identifiers. These are:
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Class | Description Long
Var Value variables long
Con Value constructors long

ExCon | Exception constructors | long
TyVar | Type variables
TyCon | Type constructors long
ModId | Module identifier

As in [MTH90], var ranges over Var, con over Con and so on. In addition modid ranges over
ModId. For each class X marked “long” there is a class LongX of long identifiers. If z ranges
over X then longr ranges over LongX. Long identifiers are defined as:

longzr ::= x identifier
modid.z qualified identifier

These long identifiers creates a connection between the core and the modules.

7.1.4 Grammar

The grammar for MiniMI is given in BNF-notation. The conventions are as in [MTH90].
The derived forms [MTH90, appendix A] are included in the grammar®. The grammar for a
program is [MTH90, page 63]:

program ::=  topdec ; (program) a program

In addition to the phrase classes given in [MTH90, page 7, figure 2] MiniM! introduces a new
phrase class TopDec. This is done to restrict datatype, exception and type declarations from
appearing inside [et declarations.

topdec ::= exception ezbind exception declaration
datatype datbind datatype declaration
type typbind type declaration
open modid open declaration
close modid close declaration
topdec, ; topdec, sequential toplevel declaration
dec declaration

Notice that two topdec—declarations need to be separated by a semicolon. In core Standard ML
no declarations need to be separated by semicolons.

The grammar for a standard declaration follows.

2The full grammar for core Standard ML is given in [MTH90, appendix B|
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dec = val valbind value declaration
val rec valbind recursive value declaration
fun fvalbind function declaration

decy (;)decs
infix (d) idy - idy,
infixr (d) idy --- id,

empty declaration
sequential declaration
infix (L) directive, n > 1
infix (R) directive, n > 1

nonfix idy --- id, nonfix directive, n > 1
valbind == pat = exp (and valbind)
fvalbind = (op) var atpat,; --- atpaty, (:ty) = exp; my,n>1

| (op) var atpaty; --- atpaty, (:ty) = exp,  See note below

| (op) var atpat,,, --- atpat,,, (:ty) = exp,,

(and fvalbind)

typbind := tyvarseq tycon = ty (and typbind)
datbind ::= tyvarseq tycon = conbind (and datbind)
conbind =  (op) con (of ty) (| conbind)
exbind = (op) ezxcon (of ty) (and ezxbind)

(op) excon = (op) longexcon (and exbind)

In the fvalbind—form, if var has infix status then either op must be present or war must be
infixed, that is, at the start of any clause the phrase “op wvar (atpat, atpat’) ---” may be
replaced with “(atpat var atpat’) ---”, and the parentheses may be dropped if “ty” or “=”
follows immediately.

In the infix—declaration and the infixr—declaration, if the optional d is not present, the
priority is set to default, that is zero [MTH90, page 6].

The grammar for an expression follows.

erp = infexp
exp : ty typed (L)
erp,; andalso ezp, conjunction
exp, orelse exp, disjunction

handle exception
raise exception
conditional
iteration

case analysis

exp handle match

raise exp

if exp, then ezp, else exps
while ezp, do exp,

case ezxp of match

fn match

infexp = appezxp

infexp, id inferp, infix expression



7.1. THE CORE LANGUAGE 35

appexp = atexp
appexrp aterp application expression
atexp 1= scon special constant
(op) longvar value variable
(op) longcon value constructor
(op) longexcon exception constructor
() 0-tuple
(expy , --- , exp,) n—tuple, n > 2
lexp, , -+, exp,] list, n > 0
(expy 5 --- ; exp,) sequence, n > 2
let dec in exp, ; --- ; ezp, end local declaration
(exp)
match = mrule (| match)
mrule ;1= pat => exp

The match—expression extends as far right as possible, hence parentheses may be needed in
nested matches (e.g. a case inside a case—branch).

A pattern has the following grammar.

atpat = _ wild-card
scon special constant
(op) var variable
(op) longcon constructor
(op) longexcon exception constructor
9] O—tuple
(paty , --- , pat,) n—tuple, n > 2
[paty , -+, pat,] list, n >0
( pat )
pat = atpat atomic
(op) longcon atpat constructor
(op) longexcon atpat exception constructor
pat, con pats infixed value construction
pat, excon paty infixed exception construction
pat = ty typed
(op) var (: ty) as pat layered

The grammar for type expressions are as follows.

ty = tyvar type variable
tyseq longtycon type construction
ty, * -+ % ty, tuple type, n > 2
ty -> tyf function type expression

(ty)
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7.1.5 Phrases of Standard ML not included in MiniM]

When comparing [MTH90, appendix B] with the above grammar there are a few differences.
First of all the above grammar includes the production topdec. MiniMI does not support
topdec declarations inside let expressions hence it is not possible to nest declarations of types,
datatypes or exceptions. Neither does MiniMI support two sequential topdec declarations not
separated with a semicolon. Also records are not supported in MiniMI . Constructs such
as abstype— and withtype—constructs are not supported either. Also, none of the built—in
operators are overloaded.

The lack of these features is a result of not committing to the static semantics of Standard
ML. Most of the features could therefore be gained by integrating the type checker of the ML
Kit system in the MiniMI system.

MiniMI evaluates expressions right to left and the exceptions Neg, Quot, Prod, Sum
and Diff are not raised on overflow of the result of arithmetic operations®. These topics are
discussed in chapter 6 and both have to do with the dynamic semantics of Standard ML.

Streams are not supported in MiniMI , but could fairly easily be integrated in the system
with use of the input/output primitives of the Caml Light system.

7.2 The module system

The module system of MiniMI is a C-like module system. The system is able to compile
two kind of files — .sml-files (implementation files) and .sig-files (signature files.) The signature
files roughly tell what to export from the implementation files. It is not necessary to write
signature files for every implementation file. MiniMI compiles signature files into .zi-files and
implementation files into .zo-files. When MiniMI compiles an implementation file it checks if
a compiled signature file (.zi-file) exists. If this is not the case MiniMI creates one itself.

The grammar for an implementation file simply follows the grammar for the core MiniMI
language. The name of such files have to end on “.sml”. The grammar for a signature file, on
the other hand, is a sequence of specifications separated by semicolons. The reserved words for
a signature file is a subset of the reserved words for the core MiniMI language. The grammar
for a signature file follows.

signature ::=  spec ; signature specification
empty specification

spec = val wvaldesc value specification
type typdesc type specification
datatype datdesc datatype specification
exception excdesc exception specification

3The Standard ML of New Jersey system raises the exception Overflow on overflow of the result of arithmetic
operations. That is, the exceptions Neg, Quot, Prod, Sum and Diff are all equal to the exception Overflow
[Lab93a, page 13].
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valdesc = id : ty (and valdesc) value description

id : ty = d string (and valdesc) C function description
typdesc ::= tyvarseq tycon (and typdesc) type

tyvarseq tycon = ty (and typdesc) type abbreviation
datdesc ::= tyvarseq tycon = condesc (and typdesc) datatype
condesc == (op) id (of ty) (| condesc) constructor
excdesc ::= id (of ty) (and excdesc) exception

The keyword op is allowed but has no effect in a condesc or an excdesc. The Definition requires
that op should be present when the identifier has infix status [MTH90, page 6]. For a file to
be a signature file, the name of the file must end with “.sig”.

7.2.1 Intersections with the core language

In MiniMI it is possible to access declarations in other files, which must have been compiled,
in two ways:

e By use of the open and close (toplevel) declarations.

e By use of long identifiers.

The open-declaration takes as argument the name of the file (without extension) to be opened.
The open declaration does not overwrite declarations already declared in a module (file).

7.3 Predefined identifiers and libraries

Predefined identifiers in MiniMI constitute a subset of the predefined identifiers of Standard
ML. The initial static basis describes the type and the infix status for each identifier [MTH90,
appendix C], whereas the initial dynamic basis describes the dynamic semantics for each iden-
tifier [MTHO90, appendix D]. The lack of overloaded operators makes it necessary to introduce
some new names for some of the identifiers involved. In general all identifiers, that have to do
with reals and for which there is a counterpart involving integers, are preceded by a %-—sign.
There is only one exception from this rule. The MiniMI function abs has type int — int
and the MiniMI function real_abs, that has the same meaning as the identifier abs in The
Definition [MTH90, page 75], has type real — real.

The initial static basis contains the following types:

bool int real string list ref exn wunit
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The basic value constructors are the identifiers:
true false nil ref
The basic exception constructors are:
Chr Div Interupt Mod Ord Match_failure Invalid_argument

Notice that there are no exception constructors for overflow of the result of arithmetic opera-
tions.

The following table shows information about each nonfix identifier in the initial static basis.

var = o var = o

map —  Ya’b.Ca—'b) —» | rev —  Ya. ’alist — ’a list
‘a list — ’b list not +— bool — bool

~ — int — int Yo~ — real — real

abs — int — int abs_real > real — real

floor —  real — int real > int — real

sqrt —  real — real sin — real — real

cos —  real — real arctan +—> real — real

exp —  real — real In — real — real

size > string — int chr —  int — string

ord —  string — int explode > string — string list

implode > string list — string | ! — Ya. ’aref — ’a

ref —  VY’a. ’a — ’aref true —  bool

false —  bool nil —  Ya. ’a list

Notice the type of ref. In The Definition ref is given the type V '_a. "_a — ’_a ref, where "_a is
a weak type variable [MTH90, page 75].

The table below contains the type and the infix precedence of each infixed identifier in the
initial static basis. All infixed operators in the initial static basis associates to the left except
:: and @ that associate to the right?.

var = o var — o

Precedence 7:

/ — real x real — real div > int * int — int
mod — int * int — int * — int * int — int
Yox — real % real — real

Precedence 6:

+ — int * int — int %+ — real % real — real
— — int * int — int %— +~— real % real — real
. >  string * string — string

*According to The Definition [MTH90, appendix D] @ should associate to the left. Letting @ associate to
the right however, makes multiple appendices more efficient. Apart from the order of evaluation, the result is
exactly the same whether it associates to the left or to the right.
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Precedence 5:

— V’a. ’ax’alist = ’alist | @

YV ’a. ’a list
* 'a list — ’a list

I

Precedence 4:

= — V’a.’ax’a— bool <> — V’a.’ax’a— bool
< — int * int — bool %< — real * real = bool
> — int * int — bool %> — real * real — bool
<= — int * int — bool %<= > real ¥ real — bool
>= — int * int — bool %>= > real ¥ real — bool
Precedence 3:

= —  V’a. ’arefx’a — unit |o — VY’a’b’c. ('b—c)

x "a — 'b) = (a — ¢)

7.4 The commands

The commands that can be executed from the terminal prompt are the following®:

ml
mlc

mlrun
mllibr

Interactive session.

Batch compiler and linker.

Execution of binary code (.zo—/.zi-files.)
The librarian.

The ml command starts an interactive session in which the user can write declarations to be
evaluated (see the grammar above.) A topdec declaration is evaluated by the system by entering
the topdec declaration followed by a semicolon and a return [MTH90, page 63].

7.5 Interfacing with C

It is possible to specify a C function in a signature file in MiniMI[ . For documentation on
how to implement the corresponding C functions, see [Ler93, chapter 12].

>The commands are similar to the commands camllight, camlc, camlrun and camllibr of the Caml Light system.
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Part 11

A New Back-end for the ML Kit
System






Chapter 8

The ML Kit System as Point of
Departure

The ML Kit system is a Standard ML implementation written in Standard ML [BRTT93]. The
ML Kit system version 1.0 provides two different kinds of back-ends. There is an interpreter
that almost directly corresponds to the sections in The Definition [MTH90, section 4 and 5]
describing the dynamic semantics of the core language and the dynamic semantics of the module
language. The ML Kit system also includes a compiler. The compiler translates abstract syntax
trees of the core language into constructs of an extended typed lambda language that can be
interpreted by the lambda language interpreter. As opposed to the interpreter the compiler
(and lambda language interpreter) does not include the module language.

In this part of the report we describe how a new back-end for the ML Kit system is
constructed'. We show how programs of the typed lambda language of the ML Kit system
are compiled into relatively small sequences of byte code that can be executed on an abstract
machine.

The ML Kit system is very modular. We describe in chapter 9 how the necessary steps of
compilation and execution are integrated with the existing ML Kit system.

The new back-end of the ML Kit system generates code for an abstract machine. This
machine is a modified version of the Zinc abstract machine that is a part of the Caml Light
system. The abstract machine is described in chapter 10. We describe the representation of
values in memory, the changes that have been necessary, how it integrates with the ML Kit
system and its limitations.

The translation of the typed lambda language of the ML Kit system into sequential byte
code is not done in one pass. Several passes are needed (the compilation by transformation
paradigm). The lambda language of the ML Kit system is a typed lambda language based on
unique names. First we show how this lambda language is translated into a simpler untyped
lambda language based on de Bruijn indexes (chapter 11). We then show how this simple
lambda language is translated into sequential code (chapter 12) and finally how this sequential
code is translated into byte code that can be executed on the abstract machine (chapter 13).

!The version of the ML Kit system that has been used is the 1.0 version with a few extensions (as of April
6, 1994). The lambda language is in this version a typed language and core elaboration is more efficient.
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Value printing is also naturally done by the abstract machine since the data structures to be
printed are only visible to the abstract machine. We show how code for value printing, suitable
for the abstract machine, is generated for each value to be printed (chapter 14).

As mentioned above the compiler of the ML Kit system does not support the module
language at the time of writing. We discuss what changes are needed in order to compile
phrases of the Standard ML module language into the typed lambda language of the ML Kit
system, and how these constructs can be translated into sequential byte code (chapter 15).



Chapter 9

Structure of the Implementation

To understand how this new back end to the ML Kit system is structured it is necessary to
understand how the ML Kit system itself is structured. The ML Kit system is described in
details in [BRTT93], though the version that we work with is somewhat newer. Core elaboration
has been optimized and the compiler compiles the abstract syntax tree into a typed lambda
language instead of the untyped lambda language shown in [BRTT93, figure 6.6].

The ML Kit system is highly modular (functorized) which makes it possible to exchange
parts of the Standard ML compiler with new parts without too many problems.

9.1 Compilation and evaluation

One part of the ML Kit system that we change is the evaluation part. 1t interacts with the rest
of the system through the signature FVALTOPDEC.

signature FVALTOPDEC =
sig
type topdec
type DynamicBasis
type Pack

val RE_RAISE: Pack — unit
exception UNCAUGHT of Pack
val pr_Pack: Pack — string

val eval: DynamicBasis X topdec — DynamicBasis
val FAIL_USE: unit — unit

type StringTree
val layoutDynamicBasis: DynamicBasis — StringTree
end

The function eval takes a dynamic basis and a top level declaration as arguments, evaluates the
top level declaration and returns a dynamic basis (additions to the original dynamic basis).
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If evaluation causes an uncaught exception the exception UNCAUGHT (p) is raised. This
exception is then caught by the top level loop. A dynamic basis is a collection of environments
including a dynamic environment and a tag environment (see below).

The modified functor CompileAndRun returns a structure that matches the signature FVAL-
TOPDEC. 1t binds together all steps of compilation and the running step. Apart from some
basic utility structures it takes as arguments structures that include functions for each step of
the compilation together with a structure that includes a function for running byte code. The
following steps are applied.

1. Compilation of an abstract syntax tree (of type topdec) into a typed lambda program.
2. Optimization of the typed lambda program.

3. Translation of the typed lambda language into a lambda language based on de Bruijn
indexes.

4. Compilation of the lambda language based on de Bruijn indexes into sequential code
(Zam code).

5. Generation of byte code (Zinc code) from sequential code (Zam code).

6. Running the byte code (Zinc code).

The first and second steps have not been changed and will not be described. A structure that
implements the third step should match the signature TRANSLATE_KIT_LAMBDA.

signature TRANSLATE KIT LAMBDA =
sig
type DFEnv
and TFEnv
and LambdaPgm
and dbLambdaPgm

val lambda_de_bruijn : DEnv x TEnv x LambdaPgm —
dbLambdaPgm x TFEnv
end

The function lambda_de_bruijn takes as arguments a dynamic environment, a tag environment
and a typed lambda program. As a result it returns a lambda program based on de Bruijn
indexes and a new tag environment (updates to the original tag environment). The tag en-
vironment is an environment mapping constructor names to tags and type names to lists of
constructor names. The dynamic environment maps lambda variables and long exception con-
structors to global variables (indexes to the global store). These environments are both needed
for construction of the lambda program based on de Bruijn indexes. See chapter 11 for a
detailed description of this step.

A structure that implements the step of compilation of the lambda language based on de
Bruijn indexes into sequential code should match the signature COMPILE_LAMBDA.
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signature COMPILE_LAMBDA =
sig
type ZamCode
and dbLambdaPgm
and DFEnv
and [var
and [ongexcon
and arity

val lambda_to_zam : (DEnv x ((lvar x arity) list) X
(longexcon list) x dbLambdaPgm) —
ZamCode x DEnv
end

The function lambda_to_zam takes as arguments a dynamic environment, lists of lambda vari-
ables and long exception constructors (those that should be visible at top level', and hence code
should be generated to store these values in the global store) and a lambda program based on
de Bruijn indexes. As a result the function returns a Zam code structure and a new dynamic
environment (updates to the original environment). This step is described in details in chapter
12.

A structure that implements the step of generating byte code (Zinc code) from the sequential
code (Zam code) should match the signature EMIT_ZAM.

signature FMIT ZAM =
sig
type ZamCode

val emit_zam_code : ZamCode — string
val set_c_primitives : string list — unit
end

The function emit_zam_code takes as argument a value of type ZamCode and returns a string
of byte code. There is also a function set_c_primitives used for initialization (see section 10.2).
This step is described in details in chapter 13.

A structure that implements the step of running the byte code (Zinc code) should match
the signature RUN_ZINC.

signature RUN_ZINC =

sig
val initialize : unit — unit

exception UNCAUGHT of string
val run_zinc : string — string

val terminate : unit — unit
end

!For the long exception constructors only the exception names (references to strings) should be visible at
top level, and hence only these are stored.
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The function initialize is called when starting an ML Kit session. It starts a separate Unix
process in which the abstract machine runs (see section 10.2). The function run_zinc takes as
argument a string of byte code and returns a string (characters printed on std_out). If an ez-
ception is raised and reaches top level, the exception UNCAUGHT (p) is raised. This exception
is equal to the exception specified in the signature EVALTOPDEC, hence the exception will be
caught by the top level loop. There is also a function terminate that terminates the abstract
machine process.

9.2 Value printing

To print a value stored in the abstract machine, it is necessary to generate Zam code for printing
a value of the given type and then execute the code on the Zinc abstract machine.

There is a structure ValPrint that provides a function print which takes as argument a
dynamic basis and the type of the value to print. It then generates Zam code to print the value
of the given type, translates the Zam code to byte code (Zinc code), executes the byte code on
the abstract machine, and receives the result as a string (see above). The structure ValPrint
is built by the functor Fvaluation that is a linking functor. The structure that the functor
FEvaluation builds then provides the print function in a substructure, and hence it can be used
in the top level loop. Value printing is described in details in chapter 14.
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The Abstract Machine

The abstract machine of the Caml Light system — the Zinc machine — is a byte code inter-
preter which is fairly portable since it is written in C. The abstract machine is described in
[Ler90b]. For the Zinc machine to work with the ML Kit system and to obtain the correct
dynamic semantics of the Standard ML system, some modifications are needed. Also, not all
the machinery of the Zinc machine is necessary.

The Zam (Zinc) abstract machine is basically a call by value Krivine machine [Ler90b,
chapter 3], with extensions. It’s state has an accumulator, an argument stack, an environment,
a return stack, a global store and of course a pointer to some code. Byte-code that can be
directly executed by the Zinc machine is called Zinc code (the actual abstract machine code, see
appendix C), in contrast to Zam code which is a sequence of symbolic instructions, where some
of the instructions take arguments, such as labels, etc. The semantics of most of the instructions
of the Zam abstract machine is given in [Ler90b, chapter 3] and will not be discussed here.

One important topic regarding the abstract machine is how to represent different kinds of
data in memory [Ler90b, chapter 4]. This is discussed in section 10.1.

We show in section 10.2 how the abstract machine communicates with the ML Kit system
and in section 10.3 we discuss the limits of the Zinc abstract machine.

10.1 Representation of data in memory

A lot of efficiency can be gained by optimizing the representation of data in memory. Rep-
resentations can be split into two sorts — unboxed representations such as an integer, a value
denoting a constructor and so on, and boxed representations that is simply a pointer to a un-
boxed representation of a value. If we were dealing with a language with no polymorphism,
all values could simply be represented by their unboxed representation. This is not possible
when dealing with a language that provides polymorphism, since all values have to be of the
same size (in this case one word). A lot of work has been done regarding optimization of data
representations and it turns out that not all data need to be boxed for polymorphism to work
[Ler90a, JL92, App89, AM87, App94].
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The Zinc abstract machine deallocates dead, unreachable data by use of a garbage collector!.
When planning the representation of data the garbage collector has to be taken into account.
The garbage collector for the Caml Light system is a copying garbage collector that simply
runs through (and copies) all valid data to a new address space while adjusting pointers. When
all valid data have been copied the old address space can be de-allocated and the new address
space used. In such garbage collectors it must be possible to distinguish between boxed and
unboxed values, for the garbage collector to work.

Some kinds of data need to be distinguishable at runtime (e.g. constructors of a datatype
declaration). For this purpose tagged values are used. A tagged value is a number of contiguous
words in memory.

One word N words
‘ tag ‘ GC ‘ size H first word ‘ ‘ N’th word ‘
One block

The first word is a header that includes a tag (eight bit), some information regarding garbage
collection (two bits) and the size (in words) of the data (22 bits). Tagged values with a tag
less than the constant No_scan_tag (252) are garbage collected. That is, the following words
are treated as (pointers to) values, possibly large data structures, and not as raw data such as
four characters.

We now show how the different kinds of data are represented in memory. Only integers are
unboxed. Other values are pointers to allocated objects (tagged values).

10.1.1 Integers

Integers are unboxed. For the garbage collector to distinguish between integers and pointers to
other data structures, an integer 7 is represented as the value 2 x 7 + 1, written:

Al = 2 % i +. 1

Operators with a subscript C are C language operators. Boxed values (pointers to other data
structures) are even numbers, hence they have a low-order bit of zero. Simple arithmetic
operations are not hard with such a representation?:

Af~i] = 2 - Al

Ali + J] AL +e AT - 1

!This has been thought of as being necessary, but recently it has been discovered that for a strict functional
language it is possible to generate code that dynamically allocates and de-allocates data. That is, allocation and
de-allocation of data can be planned statically in a strict functional language [Tof94], hence garbage collection
can be avoided.

2The Standard ML of New Jersey implementation uses a similar representation [App8&9].
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Ali = Jl

Al — Al +c 1

Lt (Al = 1) /e2) % (AT —c 1)

Operations such as div and mod however, are not as simple. For these operations to work
for both positive and negative operands it is necessary to divide the operations into several
parts. This is because of the special semantics of these operators [MTH90, page 79]. The
following scheme shows how div can be defined:

Alidivj] = [Div j=0

I
—_

A [i div j] j#0,i=0
Aflidivi] = 2% (AL — V) /(AL = 1) + 1
1>0,7>0V 1<0, <0

A i div j] 2% (Al 4 /e (AD] — 1) —c 1

i<0,j>0

Alidivi = 2% (Al] —3) /(AU = 1) =1
1 >0, 7<0

Overflow can be checked for as done when using the simple representation; simply by check-
ing the carry flag dynamically after every integer operation. The range of integers is lower
however (only 31 bits available for an integer on a machine with 32 bit words), than if a boxed
representation was chosen.

10.1.2 Reals

Reals are tagged values with a real-tag that is greater than the constant No_scan_tag since the
representation is non-structural. The size is two words, hence a real value takes up three words
in memory:

One word Two words
‘ real-tag ‘ GC ‘ size = 2 H data ‘ data ‘
One block

The words following the header can be directly converted to a C-like double value, hence
overflow can be checked easily.
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10.1.3 Strings

Strings are tagged values. The string-tag need to be greater than the constant No_scan_tag,
since the representation is non-structural, and the garbage collector should not interpret the
string characters as (pointers to) values. The size field is variable and denotes the length of the
string in words. The words following the header can be directly converted to a C string, since
the string is null-terminated.

10.1.4 Closures

Functional values are represented by closures which are pairs of code pointers and environments.
Code is not allocated in the heap but statically allocated and hence not garbage collected. If
code were garbage collected as data in the heap it would be necessary for the garbage collector
to change return addresses on the return stack, and so the garbage collector would become very
complex and slow [Ler90b, page 41].

Closures are, as strings and reals, tagged values.

One word Two words
‘ closure—tag ‘ GC ‘ size = 2 H code pointer ‘ environment ‘

One block

Closures are treated specially by the garbage collector, since the first word proceeding the
header should not be collected while the second word (a pointer to a vector) should.

10.1.5 Records and tuples

Records and tuples need not be distinguished at run-time, hence they have the same repre-
sentation. Records are statically sorted with respect to the labels, and the labels are removed
from the representation. In this way records and tuples can be represented as zero-tagged values
where size equals the number of fields in the record (or tuple).

10.1.6 Value constructors

There are two kinds of value constructors. Either a constructor takes an argument or it takes
no argument (constant constructor). Constant constructors are blocks with size zero, hence
they only consist of a header. Constructors that take an argument are blocks with size one.

Constructors of a given datatype are associated with a unique tag (within the type), such
that it is possible to differ between different constructors (of the same type) at run time. Hence
the maximal number of different constructors in a given datatype is limited (currently 250).
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10.1.7 References

A reference value is basically a constructor ref that takes an argument. For the equality test to
work correctly at run-time a reference value is given a special tag, such that a reference value
can be identified at run time.

10.1.8 Exception names

A declaration of an exception causes an exception name to be introduced at runtime. Exception
names for constructors taking an argument and exception names for constant constructors have
the same representation, namely a reference to a string (the name of the exception constructor,
used for printing).

10.1.9 Exception constructors

As for value constructors there are two kinds of exception constructors. All exception construc-
tors are represented in memory as a tuple with two components. For constant constructors
the first field of the tuple is an empty place holder, a value of type unit. For exception con-
structors that take an argument the argument (a value) is stored in this field. The second
field of the tuple is the exception name (a reference to a string that is simply the name of the
exception constructor) [App92, page 49]. Representing exception constructors this way allows
us to implement the required generative behavior of exceptions.

10.2 Integrating the ML Kit system and the abstract
machine

Currently the ML-Kit system and the abstract machine are two concurrent processes connected
by pipes:

User Unix
interaction pipes

User The ML Kit system The Abstract Machine

<
<

A

The abstract machine is written completely in C. It is a modified version of the abstract machine
of the Caml Light system in that some of the operations differ and in that it operates differently.
At an earlier stage the initialization code and the execution loop were written in Caml Light,
hence this Caml Light program and the byte code generated in the ML Kit system were run
on the exact same Zinc abstract machine. Since it is necessary to modify some of the basic
operations of the Zinc abstract machine to make it correct with respect to The Definition
of Standard ML, the initialization process and the execution loop were rewritten in C and
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integrated with the Zinc abstract machine. Modifying those operations while still using the
machine to execute Caml Light programs would be very hard.

When starting the abstract machine, an initialization phase begins. Besides from initializing
internal tables etc., the following steps occur:

e Write all available C primitives to stdout separated by newlines and terminated by two
newlines. Note that the abstract machine’s stdout is read by the ML Kit process.

e Write the address of the first available global store to stdout (four bytes, most significant
byte first).

At this point the abstract machine goes into a loop. Each iteration follows the protocol:

e Read the length of the byte code to execute (four bytes) from stdin.
If this length equals zero then terminate.

e Read the number of required global allocations (four bytes) from stdin.
e Read the byte code from stdin.

e Write result on stdout (the result is the printed ASCII representation of the result of the
evaluation).

e Write a null character on stdout.
e If an exception is raised and not caught by a handler, the name is written to stdout.

e Write a null character on stdout.

The above protocol has the advantage of being simple, but also has some major disadvan-
tages, as we shall see in chapter 12, since it takes an unacceptable amount of code to introduce
string and real constants in the abstract machine. To minimize the size of the code used to
introduce string and real constants these constants should be statically allocated and bound to
global variables before execution of the byte code. This optimization could easily be adopted
in the abstract machine. It would be necessary however, to extend the protocol.

10.3 Limitations of the Zinc abstract machine

There are a few limitations to what can be done when using the Zinc abstract machine of
the Caml Light system. Some of these limitations are due to the way data are represented in
memory, and other are caused by the way the Zinc abstract machine is built. It is important
however, that all these limitations of the representation of data and of the Zinc abstract machine
can be eliminated.

The way constructors are represented in memory only allows 250 constructors of a single
datatype. This problem however is not severe since only very few (in practice none) programs



10.3. LIMITATIONS OF THE ZINC ABSTRACT MACHINE 59

have datatype declarations with more than 250 constructors. If it at some point becomes a
problem (perhaps because of code generators) another representation of constructors could be
chosen. This choice might cause a lack in performance but the change could easily be worked
out.

The number of global variables in the abstract machine is limited to 2'°. Only values that
must be visible on top level are stored in the global store, hence the limitation will cause
no problems even for compilation and execution of very large programs (e.g. the ML Kit
system itself). If however, it shows that the limit causes problems it would be relatively easy
to extend the limit. Only two instructions (GETGLOBAL and SETGLOBAL) of the Zinc
abstract machine need to be changed.

Jumps in the Zinc code are relative signed jumps. These jumps are limited to 2% bytes
in the code (small jumps). This limitation may cause problems when compiling and executing
large programs. To extend this limit, in an easy way, all branch instructions of the Zinc abstract
machine could be extended to take arguments of four bytes (long jumps). It may be possible
to allow for both small and long jumps though it requires that the back-patching functions are
extended (rewritten).

Blocks in the Zinc abstract machine are limited to 256 fields (0-255). This limit is easily
extended by introduction of three new Zinc instructions; one instruction that sets the n’th field
of a block for n > 255, one that extracts the n’th field of a block for n > 255, and one that
builds a block of size 7, # > 256 from the value in the accumulator and the ¢ — 1 elements on
the argument stack.
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Chapter 11

A Lambda Language Based on de
Bruijn Indexes

The ML Kit system translates all phrases of core Standard ML into a typed lambda language
for which all variables are named. The abstract machine requires sequential code. To translate
the typed lambda language into sequential code we first show how the typed lambda language
can be translated into a simpler lambda language using de Bruijn indexes as variables.

At this step it is also appropriate to calculate the size of each subexpression in the bind-
ings in a fiz-expression. This can be done using the type information, included in the typed
lambda calculus. If we did not calculate these sizes at this step we would have to include type
information in the target language in order to resolve the sizes later. The size is the number of
machine words needed to represent the value of the expression at runtime.

During this translation phase, constructor tags are deduced from the type information given
in the typed lambda language. These tags are then introduced in the lambda language based
on de Bruijn indexes.

11.1 The source language

The source language, which is given below, is the typed lambda language of the ML Kit system!.

datatype LambdaPgm = PGM of datbinds x LambdaFxp
and datbinds = DATBINDS of
(tyvar list x TyName x (con x Type Option) list) list list
and LambdaFExp =
VAR of {lvar: lvar, instances : Type list}
| INTEGER of int
| STRING of string
| REAL of real

!The lambda language is the lambda language of ML Kit version 1.0 [BRTT93, page 74], but modified by
Lars Birkedal and Mads Tofte to be a typed language.
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FN of {bound_lvar: {lvar : lvar,
tyvars: tyvar list,
Type: Type},
body : LambdaEzp}
LET of {bound_lvar: {lvar : lvar,
tyvars: tyvar list,
Type: Type},
bind : LambdaExp, scope: LambdaEzp}
FIX of {bound_lvars : {lvar : lvar,
tyvars: tyvar list,
Type: Type} list,
binds : LambdaExp list, scope : LambdaFzp}
APP of LambdaFEzp x LambdaFzp
EXCEPTION of excon x Type Option X LambdaFExp
RAISE  of LambdaFExp
HANDLE  of LambdaEzp x LambdaFzp
SWITCH_I of int Switch
SWITCH_S of string Switch
SWITCH_R of real Switch
SWITCH_C of longcon Switch
SWITCH_E of longexcon Switch
PRIM of Type prim x LambdaFzxp list

and 'a Switch = SWITCH of LambdaFzp x

("a x LambdaFzp) list x LambdaFEzp Option

The type datbinds is a list of groups of mutually recursive datatype bindings while the types
longcon and longexcon are the types for a long constructor and a long exception constructor, re-
spectively. The type lvar must be an equality type and the type primitive includes constructors
for construction and de-construction of records, constructors, and exceptions, together with the
pervasive functions of Standard ML. Some of these constructs are represented in the following
(not complete) datatype:

datatype 'Type prim =

CONprim of {longcon : longcon, instances : *Type list}
DECONprim of {longcon : longcon, instances : *Type list}

PLUS_INTprim

EXCONprim of longexcon
DEEXCONprim of longexcon
RECORDprim

SELECTprim of int

The type tyvar is the type of a type variable and the type Type denotes the type of an expression
or a lambda variable (lvar):
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datatype Type =
TYVARtype of tyvar
| ARROWtype of Type x Type
| CONStype  of Type list x TyName
| RECORDtype of Type list

The type TyName is the type of the name of a declared type.

11.2 The target language

The target language is very similar to the source language. It is a simple untyped lambda
language and instead of lvars variables are either de Bruijn indexes (see e.g. [Ses91, page 22])
or indexes to the global store, called gvars. The reason for having two kinds of variables is that
Standard ML is an interactive language; it should be possible to access values (and exceptions)
declared on top-level, earlier in an ML-session.

datatype dbLambdaFxp =
dbVAR of int
dbGLOBAL of guvar
dbINTEGER  of int
dbSTRING of string

dbREAL of real

dbFN of dbLambdaFEzxp

dbLET of dbLambdaFzp x dbLambdaFEzp

dbFIX of (dbLambdaExp x int) list x dbLambdaExp
dbAPPS of dbLambdaFExp x dbLambdaFxp list

dbRAISE of dbLambdaFxp
dbHANDLE of dbLambdaExp x dbLambdaFExp
dbSWITCH_I  of int dbSwitch
dbSWITCH.S  of string dbSwitch
dbSWITCH_R  of real dbSwitch
dbSWITCH_C  of int dbSwitch
dbSTATICFAIL
dbPRIM of db_prim x dbLambdaEzp list
and ’a dbSwitch = dbSWITCH of dbLambdaFzxp X
("a x dbLambdaEzxp) list x dbLambdaEzp Option

|
|
|
|
|
|
|
|
| dbEXCEPTION of excon x dbLambdaFEzp
|
|
|
|
|
|
|
|

The type gvar is basically an address of a variable in the global store. The type excon is the
type of an exception constructor and the type db_prim is a datatype denoting different kinds of
primitives. A subset of the primitives (corresponding to those shown for the source language)
for the target language follows:

datatype db_prim =
dbCONprim of int
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| dbDECONprim
| dbPLUS_INTprim

| dbEXCONprim of int

| dbGLOBALEXCONprim of gvar
| dbDEEXCONprim

| dbRECORDprim

| dbSELECTprim of int

As for variables exception constructors are divided into two kinds. Exception constructors
denoted as dbEXCONprim are local exception constructors whereas exception constructors
denoted as dbGLOBALEXCONprim are declared on top-level earlier in an ML-session, and
hence global.

11.3 The 7 translation scheme

In the translation a compile time environment ce is needed to translate lambda variables (LV)
and exception constructors (EXC') into de Bruijn indexes. The ce environment must be passed
to each of the mutually defined functions in the translation process.

There is also need for another environment, the de environment. This environment however,
can be global to the mutually defined compilation functions, since it is not altered during the
translation process. The environment de is the dynamic environment and it includes only values
and exceptions, previously declared on top level. This environment maps lambda variables
(lvars) and long exception constructors (longexcons) to gvars (really integers) that represents
locations (addresses) in the global store. If there were no such dynamic environment it would
not be possible to access variables declared on top-level earlier in an ML-session. To look up an
address in the dynamic environment, given a lambda variable or a long exception constructor
the two lookup-functions lookup_gvar_from_lvar and lookup_gvar_from_longexcon are given.

Most of the primitives are translated trivially. That is, the representation is the same in
both the typed lambda language and the lambda language based on de Bruijn indexes. In the
following translation scheme most of the trivially translated primitives are not included. Note
however, that it is the job of one of these trivially translated primitives to store a variable in
the global store.

The translation scheme, 7 can now be given. There are two different schemes for variables.

T [VAR{lvar = x;,...}] [do,ds,...,di 1, LV ziy...,dy ;]| =
dbVAR i x; & dom(de)

T [VAR{lvar = z,...}] ce =
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dbGLOBAL (lookup_gvar_from_lvar )  x € dom(de), = ¢ dom(ce)

Constants are translated trivially as shown below.

T [INTEGER n] ce = dbINTEGER n
T [STRING s] ce = dbSTRING s
T [REAL 7] ce = dbREAL r

When translating the body of a lambda abstraction the environment ce must be extended
with the lambda variable bound by the abstraction.

T [FN{bound_lvar = {lvar = lv, ...}, body = body}] ce =
dbFN (T [body] (LV v :: ce))

The environment for the scope of a let-expression also need to be extended with the lambda,
variable to be bound in the let-binding.

T [LET{bound_lvar = {lvar = I, ...}, bind = bind, scope = scope}] ce =
dbLET (T [bind] ce, T [scope] (LV v :: ce) )

When translating a fiz-expression we first create an environment including all variables to
be bound. Each subexpression will then be translated in this environment.

T [FIX {bound_lvars = blvars, binds = binds, scope = scope}] ce =

let
val ce’ = (map (fn {lvar=lvar, ...} = LV lvar) blvars) Q ce
val types = map (fn {Type=Type, ...} = Type) blvars
fun makepairs || - = ||
| makepairs (b::bs) (t::ts) = (size-of-type t, T [b] ce’):
makepairs bs ts
| makepairs _ _ = raise Impossible
val pairlist = makepairs binds types
val s = T [scope] ce’
in
dbFIX (pairlist, s)
end

The exception Impossible should not be raised since the list of bindings and the list of bound
lambda variables have the same length by construction. The function size_of type is defined
below and it returns the number of machine words, needed to represent a value of the given
type at runtime.
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fun size_of type TYVARtype - =1
| size_of-type ARROWtype - = 2
| size_of-type CONStype = =1

size_of-type RECORDtype | = List.size [

Translation of an application is trivial.

T [APP(body, arg)] ce =
dbAPP(T [body] ce, T [arg] ce)

Translations of expressions involving exceptions follow.

T [EXCEPTION (excon, None, lexp)] ce =
dbEXCEPTION (excon, T [lexzp] (EXC excon :: ce))

T [RAISE lexp] ce = dbRAISE(T [lezp] ce)

T [HANDLE (lexp_body, lexp_handle)] ce =
dbHANDLE(T [lezp_body] ce, T [lexp_handle] (DUMMY :: ce))

All switch expressions are basically translated the same way. As an example the translation

scheme for a constructor switch is as follows.
T [SWITCH _C(SWITCH (lexp, longcon_lexp_list, opt))] ce =

let
val trlezp = T [lexp] ce
val tr list = map (fn (longcon, 1) =
(get_longcon_tag longcon, T [I] ce)) longcon_lexp_list

val tr_opt =

case opt of
Some | = Some (T [I] ce)
| None = None
in
dbSWITCH_C(dbSWITCH (tr_lexp, tr_list, tr_opt))
end

The function get_longcon_tag takes as argument a longcon and lookups a tag value (really an

integer) in the tag environment (see chapter 9).

As mentioned earlier most of the translations of primitives are trivial. For some of the
primitives however, the translation schemes are stated below.
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T [PRIM(CONprim, lexps)] ce =
dbPRIM (dbCONprim(get_longcon_tag longecon),
map (fn lexp = T [lexp] ce) lexps)

T [PRIM(DECONprim _, [lexp])] ce =
dbPRIM (dbDECONprim, [T [lexp] ce])

The translation of an exception constructor is twofold. The first translation scheme is used
when an exception is declared on top level earlier in the ML-session. The second translation
scheme is used when an exception is declared in a local scope. The reason for dividing exception
constructors into two cases is the same as for dividing variables into two cases. It should also
be possible to access exception constructors, declared earlier in an ML-session.

ce

T [PRIM(EXCONprim longexcon, lexps)] [vo,v1,...,v; 1, EXC x;,... 0, 1] =

dbPRIM (dbEXCONprim i, map (fn lexp = T [lexp] ce) lexps)

x; = excon_of _longexcon longercon, EXC x; & {vy,v1,...,v; 1}

T [PRIM (EXCONprim longexcon, lexps)] ce =
dbPRIM (dbGLOBALEXCONprim(lookup_gvar_from_longexcon longezcon),
map (fn lexp = T [lexp] ce) lexps)
x = excon_of _longexcon longexcon,

longezcon € dom(de), EXC x & dom(ce)

The function excon_of-longexcon extracts the exception constructor from a long exception
constructor. If an exception constructor is in the domain of the ce environment the first scheme
is chosen. This ensures that an exception constructor of a local exception declaration, with
the same name as the exception constructor for a global exception declaration will be wisible.
Also note that since exception constructors (excons) are not unique, as lambda variables in
the typed lambda language are, it is required that the lookup function of the ce environment
returns the first instance of any matching exception constructor (the latest one introduced) if
any. This ensures that the correct exception constructor is extracted from the environment.

Translations of the primitives for introduction of records and for selecting a sub-term of a
record are simple.

T [PRIM(RECORDprim, lexps)] ce =
dbPRIM (dbRECORDprim, map (fn lexp = T [lexp] ce) lexps)
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T [PRIM(SELECTprim n, [lexp])] ce =
dbPRIM (dbSELECTprim n, [T [lexp] ce])

In the above translation schemes map is defined as usual and the compile time environment
ce is represented as a list. The lookup function is given below.

fun lookup ([], -) = raise Unbound_lvar
| lookup (y == yr, ) = if z = y then 0
else 1 + lookup (yr, )

Representing the environment ce this way causes the indexes of all variables of the list to
be updated, as required, when adding a variable to the environment. Each entry in the ce
environment is either a lambda variable (LV), an exception constructor (EXC) or a dummy
variable (DUMMY):

datatype ce_entry =
LV of lvar
| EXC of excon
| DUMMY

To improve efficiency this transformation step can be integrated in the pass where the
lambda language based on de Bruijn indexes is compiled into Zam instructions, but this has
not been done for clarity reasons.



Chapter 12

Generating Sequential Code

In this chapter we show how the simple lambda language based on de Bruijn indexes is compiled
into sequential code. The syntax of the lambda language based on de Bruijn indexes was
presented in chapter 11. The syntax of the sequential code is a modification of the syntax of
the sequential code (Zam code) used in the Caml Light system.

The sequential code is split into three parts. These are initial code, function code and
binding code. The binding code binds all variables that should be visible on top level to global
variables. To generate the binding code however, it is necessary to know which variables should
be visible and where these variables should be stored. Generation of binding code is discussed
in section 12.3. The reason for dividing function code and initial code is that “jumping around
functions” can be avoided this way. Generation of initial code and function code is discussed
in section 12.2.

12.1 Syntax of the sequential code

As mentioned above the sequential code is split into three parts each containing a list of Zam
instructions.

datatype ZamCode = ZAMCODE of {init_code : zam_instruction list,
bind_code : zam_instruction list,
functions : zam_instruction list}

A Zam instruction follows the syntax below.

datatype zam_instruction =
Kquote of struct_constant
| Kget_global of gvar | Kset_global of gvar
| Kaccess of int | Kgrab
| Kpush | Kpop | Kpushmark
| Klet | Kendlet of int
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Kapply | Ktermapply

Kcheck_signals

Kreturn | Kclosure of int

Kletrec1 of int

Kmakeblock of constr_tag x int

Kprim of primitive

Kpushtrap of int | Kpoptrap

Klabel of int

Kbranch of int | Kbranchif of int | Kbranchifnot of int
Kstrictbranchif of int | Kstrictbranchifnot of int
Ktest of bool_test x int

Kbranchinterval of int x int x int X int
Kswitch of int Array.Array

A structured constant (struct_constant) is either a string constant, a real constant, an integer
constant or a constant block, and a gvar denotes an address in the global store. A constructor
tag (constr_tag) is basically an integer denoting the runtime tag of a constructor (see chapter

10).

The (incomplete) syntax of the primitives (the type primitive) is given below.

datatype primitive =

Pdummy of int

Pupdate | Ptag-of | Praise
Ptest of bool_test

Pfield of int | Psetfield of int
Pccall of string x int

Paddint | Pdivint

Pfloatprim of float_primitive

and float_primitive =

Pfloatofint
Pnegfloat | Paddfloat | Psubfloat | Pmulfloat | Pdivfloat

and bool_test =

Peq_test | Pnoteq_test
Pint_test of prim_test
Pfloat_test of prim_test
Pstring_test of prim_test
Pnoteqtag_test of constr_tag

A primitive test (prim_test) has the following form.

datatype prim_test = PTeq | PTnoteq | PTIit | PTle | PTgt | PTge

At the time of writing the complete syntax of the sequential code corresponds closely to
the syntax of the sequential code for the Caml Light system (Zam code). The link facility of
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the Caml Light system (see [Ler90b, chapter 6]) is not used in our implementation, hence some
arguments of some of the Zam instructions (Zam instructions that have to do with global vari-
ables) are simplified. The syntax of the primitives could be arranged to fit with the pervasives
of Standard ML.

12.2 Generation of initial code and function code

A lambda program is compiled into Zam code by traversal of the lambda program. When
creating code for an ezecutor (in contrast to creating code for an interpreter) [Han91], such as
the Zinc abstract machine, it is necessary to generate jumps in the sequential code.

To compile the lambda program into sequential code the lambda program is flattened recur-
sively. Compilation of functions and default expressions in switch constructs is delayed until
the remaining lambda program has been traversed, recursively. Strictly speaking, it is not
necessary to delay compilation of these lambda expressions until the whole lambda program
has been traversed, but it helps the compiler generating efficient and small code since code for
“jumping over” the code compiled for a function can be avoided!. Practically this procedure
is done by use of a stack for holding delayed lambda expressions. Later, when the initial code
has been generated the lambda expressions on the stack are popped and compiled, until the
stack is empty. During compilation of expressions popped from the stack, compilation of new
lambda expressions may be delayed and hence pushed onto the stack.

First we describe some basic functions that are needed for the compilation. We need to be
able to generate a fresh label. This is done by the function new_label:

local
val lab = ref 0
in
fun new_label () =
(lab := llab + 1;
ab - 1)
end

The stack mentioned above should be global to the compilation functions. It is simply
represented as a value of type (Lambda_Exp x int) list ref and is initially a reference to the
empty list. There is a function push_exp that takes a pair of a lambda expression and a label
(really an integer) as argument and returns a value of type unit. As a side effect the pair is
pushed onto the stack. Similarly, there is a function pop_ezp that takes a value of type unit as
argument and returns the top element of the stack (a pair of a lambda expression and a label)
while removing this element from the stack. If the stack is empty the exception StackEmpty
will be raised.

To avoid generating code that after introducing a value in the accumulator immediately
replaces it by another, the following compilation function is introduced:

! This technique is adopted from the Caml Light system.
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fun into_accu v C =
case C of
(Kquote _:: ) = C

| (Kget_global _:: ) = C
| (Kaccess _:: _) = C

| (Kpushmark == _) = C
| .= v @

Both arguments of the above function must be lists of Zam instructions. The second argument
C'is the continuation and the first argument v should be a list of instructions that introduces
a value in the accumulator and besides from this has no side effects. This example shows how
a continuation can be used for code optimization. We say that the accumulator is dead, at a
given point in the Zam code if it is overwritten before it is used. This optimization assures that
no value is stored in a dead accumulator. Code that introduces values in an accumulator that
is dead [ASUS86, page 595] is eliminated from the code. The first three cases of optimization of
the continuation C'in the above function are easily verified; the accumulator is overwritten by
the first instruction in the continuation.

To understand that the last case of optimization of the continuation is safe, first see that
a Kpushmark instruction will always (by construction) be followed by a Kapply instruction
in the generated Zam code. In between these instructions are instructions that will introduce
values in the accumulator and on the stack (by Kpush instructions). The value that is in
the accumulator prior to execution of the Kpushmark instruction will not be used in between
the Kpushmark instruction and the Kapply instruction (it will actually be overwritten by code
following the Kpushmark instruction). Execution of the Kapply instruction causes a new value
to be introduced in the accumulator and hence an instruction with no side effects, introducing
a value in the accumulator prior to the Kpushmark instruction will have no effect. That is, the
accumulator is dead if the continuation starts with a Kpushmark instruction, hence avoiding
introducing a value in the accumulator at this place in the Zam code is safe.

The reason that this optimization works is that the value that is in the accumulator prior
to execution of the Kpushmark instruction is not used in between the Kpushmark instruction
and the Kapply instruction. If code sequences like

...Kaccess 1 :: Kpushmark :: Kpush :: Kaccess 3 :: Kapply :: ...

could be generated by our compiler, then the optimization would be unsafe since the value that
is in the accumulator prior to execution of the Kpushmark instruction is used in between the
Kpushmark instruction and the Kapply instruction. Instead our compiler will generate code
sequences like?:

... Kpushmark :: Kaccess 1 :: Kpush :: Kaccess 3 :: Kapply :: ...

Note that this code sequence has the same meaning as the above code sequence.

Whenever a branch is needed in the code, the following function from the Caml Light
compiler is used to avoid a jump to a jump in the code.

2There is one case where this is not the case. For compilation of a handler (see below) the accumulator is
not dead at the point in the code where the Kpushmark instruction resides since the accumulator is pushed
onto the stack immediately after. This is not a problem since no optimization is done on the generated code
for a handler.
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fun make_branch (C as (Kreturn :: _)) = (Kreturn, C)
| make_branch (C as ((branch as (Kbranch _)) :: _)) = (branch, C)
C

| make_branch

let

val bl = new_label()
in

(Kbranch Ibl, Klabel (bl :: C)
end

Other optimizations (e.g. optimization on function application) needs to check whether the
construction being compiled is in tail position; it is if the continuation starts with a Kreturn
instruction. For this purpose the following test is provided.

fun is_return (Kreturn :: _) = true
| is_return _ = false

We now show how a lambda expression is compiled into Zam code. The compilation scheme
is given by the C compilation function. It takes as arguments a lambda expression and a
continuation of Zam code (of type zam_instruction list) and returns a list of Zam code.

12.2.1 Variables and constants

A variable based on a de Bruijn index is compiled into code that accesses the value with de
Bruijn index ¢ 4+ 1 in the environment and puts it into the accumulator.

C [dbVAR i] C =

into_accu [Kaccess i] C

A global variable is compiled into code that puts the value corresponding to the gvar into
the accumulator.
C [dbGLOBAL gvar] C =
into_accu [Kget_global gvar| C

Compilation of an integer constant is also trivial.

C [dbINTEGER n] C =
into_accu [Kquote(SCatom (ACint n))] C

At the time of writing, string and real constants are compiled in a very inefficient way.
At a later stage, string and real constants should be bound statically in the abstract machine
before byte code is run. This is currently not possible since the compiler (ML Kit) and the Zinc
abstract machine run concurrently in different Unix processes, communicating over two pipes
on a simple protocol. It is possible however, to extend the protocol and hence obtain more
efficient code. The following function introduces a string in the accumulator of the abstract
machine.
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fun comp_string s C =
let
fun blit_chars [| - = []
| blit_chars (c::rest) n =
[Kquote(SCatom(ACint c)), Kpush,
Kquote(SCatom(ACint n)), Kpush,
Kaccess 0, Kprim(Psetstringchar)] @
(blit_chars rest (n+1))
val charlist = map (fn a = ord a) (explode s)
val len = List.size charlist
in
into_accu (Kquote(SCatom(ACint len)) :
Kprim(Pccall(” create_string”, 1)) ::
Klet :: (blit_chars charlist 0) @
[Kaccess 0, Kendlet 1]) C
end

The string is compiled into code that first allocates a string of the given size (create_string) in
the abstract machine and then updates each character of the string with the correct value.

The compilation functions for string constants and real constants then become trivial.

C [dbSTRING s] C =

comp_string s C

To compile a real constant we first convert the real constant into a string, then change
the characters that need to be changed for the C primitive float_of_string to work. We then
generate code that introduces the string and calls the C primitive float_of_string.

C [dbREAL r] C =

let

val s = Real.string r

val s1 = String.subst String.MatchCase ”~" 7-" s

val s2 = String.subst String.MatchCase "E” 7e” sl
in

comp_string s2 (Kprim(Pccall(” float_of_string”, 1)) == C)
end

The functions List.size, Real.string, String.subst and String. MatchCase are all from the Edin-
burgh Library [Ber91].

12.2.2 Function application

An application is compiled into code that first evaluates the argument, pushes it onto the stack,
then evaluates the function and finally applies the function to the argument. If the application
is not in tail position, code is built that first pushes a mark on the stack and then proceeds as
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above. The mark insures (in our case) that the function is applied to only one argument. The
Kpushmark instruction works together with the Kapply instruction and is originally from the
Caml Light system where function application on this level could be curried.

C [dbAPP (body, [arg])] C =

(case C of
(Kreturn = C') =
C [arg]
| (Kpush = (C [body] (Ktermapply :: C”)))
_ =
Kpushmark :: (C [arg]
(Kpush :: (C [body] (Kapply == C)))))

If the application is in tail position (the continuation starts with a Kreturn instruction) there
is no need to push a closure onto the return stack and then immediately pop it off the return
stack again. To implement this optimization the Zam instruction Ktermapply is provided. In
case of an application in tail position no mark should be pushed onto the argument stack since
there will be no Kreturn instruction to pop it off the argument stack again.

12.2.3 Functions and let-bindings

A simple non-recursive function is compiled as follows.

C [dbFN body] C =

if is_return C then
Kgrab :: (C [body] C)
else
let
val bl = new_label ()
in
push_exp (body, Ibl);
Kclosure bl :: C
end

If the abstraction is in tail position the more efficient Kgrab instruction is used instead of the
Kclosure instruction (see [Ler90b, page 30]). The body of the function expression is compiled
in-line instead of being pushed onto the stack of delayed lambda expressions (see below).

The compilation scheme for a let-construct follows.

C [dbLET (bind, scope)] C =
let
val C1 = if is_return C then C
else Kendlet 1 :: C
in
C [bind] (Klet :: (C [scope] C1))
end
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If the [et-construct is in tail position there is no need to end the construct with a Kendlet (1)
instruction since the environment will be replaced when the Kreturn instruction is executed.

A single recursive function binding has the following compilation scheme.

C [dbFIX ([(dbFN f,.)], body)] C =
let

val C1 = if is_return C then C

else Kendlet 1 :: C

val [bl = new_label ()
in

push_exp (f, Ibl);

Kletrec1 bl :: (C [scope] C1)
end

This is a special case of the compilation of a set of mutually recursive functions (see below).
In this special case there is no need to allocate dummy variables and then later update these
dummy variables. Note that since the abstraction is recursive the name of the function should
be visible inside the body of the abstraction. This is ensured by using the Kletrecl instruction

(see [Ler90b, page 30]). As for a let-construct the construct need not end with a Kendlet!
instruction if the construct is in tail position.

To compile a set of mutually recursive function bindings all (names of the) functions must
be visible inside every function body. We compile a set of mutually recursive function bindings
into code that first introduces a dummy variable in the environment for each function in the
set and then updates each entry in the environment for each corresponding function.

C [dbFIX (args, body)] C =
let
val s = List.size args
val C1 = if is_return C then C
else Kendlet s :: C
fun comp_args _ [| = C [body] C1
| comp_args i ((exp, sz):rest) = C [exp]
(Kpush :: Kaccess i :: Kprim Pupdate :
(comp_args (i-1) rest))
in
List.foldR (fn (e, sz) = fn C =
Kprim(Pdummy sz) = Klet :: C)
(comp_args (s-1) args) args
end

The function List.foldR is from the Edinburgh Library [Ber91].

12.2.4 Exception constructs

An exception declaration is compiled using the following scheme.
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let
val C1 = if is_return C' then C
else Kendlet 1 :: C
in
comp_string (FEzcon.pr_excon excon)
(Kmakeblock (Ref-tag, 1) :: Klet ::
(C [lexp] C1))

end

This compilation scheme ensures that the ezception name (a reference to a string) is visible (in
the dynamic environment) inside the scope of the exception. Code is generated that creates a
string (the name of the exception constructor), builds a reference to this string (creating an
exception name) and then binds this value in the scope of the exception declaration (lexp).

The compilation scheme for raising an exception is simple since the abstract machine has a
primitive for this purpose.

C [dbRAISE lexp] C =
C [lexp] (Kprim Praise :: discard-dead_code C')

The function discard_dead_code discards all code in the continuation up to the next Klabel
instruction.

fun discard_dead_code || = ||
| discard_dead_code (C as (Klabel _:: _)) = C

| discard_dead_code (_ :: rest) = discard_dead_code rest

Compilation of a handle construction follow the compilation scheme below.

C [dbHANDLE (lexp_body, lexp_handle)] C =
let
val (branch1, C1) = make_branch C
val [bl = new_label ()
val C2 = if is_return C1 then (1
else Kendlet 1 :: C1

in
Kpushtrap bl ::
(C [lexp-body]
(Kpoptrap :: branchl :: Klabel bl :
Kpushmark :: Kpush ::
(C [lexp_handle] (Kapply :: C2))))
end

We use the instructions Kpushtrap(lbl) and Kpoptrap to enclose the body of the handler. The
Kpushtrap(Ibl) instruction sets the current handler to [bl. If an exception (exception name,
value) is raised by the Zam instruction Kprim(Praise) the code will continue at label [bl and
the tuple (exception name, value) will be in the accumulator. Code is built that applies the
handler (lezp_handle) to the tuple (exception name, value). The Zam instruction Kpoptrap
removes the label [bl as the current handler and reinstalls the old handler.
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12.2.5 Switch constructs

Not all switch constructs are compiled the same way. Integer switches and value constructor
switches are compiled similarly since value constructors are tagged values and hence differen-
tiated by integers. Because of the special nature of integers it is possible to compile integer
switches and value constructor switches into very efficient code. Code can be organized as a
decision tree where every node is a switch on integers which are not far apart (the distance
between integers has to be less than a given constant). The compilation of a given integer or
value constructor switch is done by transformation. First a decision tree is built. It is described
by the datatype given below.

datatype decision_tree =
DTfail
| DTinterval of decision_tree X
{low:int, act:dbLambdaFEzp Array.Array, high:int} X
decision_tree

The structure Array is from the Edinburgh Library [Ber91]. The algorithm to construct such
a balanced decision tree is fairly complex and will not be discussed here®. The function that
implements this algorithm is compile_nbranch. 1t takes as arguments a function that maps
entries to integers and a list of entries paired with lambda expressions, and it returns a decision
tree (as described above). When a decision tree has been built it is possible to generate code for
the switch construct. This is done (partly) by the compilation function comp_decision_default.

fun comp_decision_default tree default_lbl C =
let
open Array
val (branch1, C1) = make_branch C
fun comp_dec (DTfail) C = Kbranch default_lbl ::
discard_dead_code C
| comp_dec (DTinterval(left, dec, right)) C' =
let
val (Ibl_right, Cright) =
(case right of
DTfail = (default_lbl, C')
| - = label_code (comp_dec right C))
val (Iblleft, Cleft) =
(case left of
DTfail = (default_lbl, Cright)
| - = label_code (comp_dec left Cright))
in
Kbranchinterval(#low dec, #high dec,
Ibl_left, Ibl_right) ::
(case size (#act dec) of
1 = C [(#act dec) sub 0] (branchl :: Cleft)

3The algorithm is originally from the Caml Light system [Ler90b], but it has been translated into Standard
ML.
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| - = comp_switch_default (#act dec)
branchl default_lbl Cleft)
end
in
comp_dec tree C1
end

There is a Zam instruction Kbranchinterval(low, high, (bl_left, Ibl_right) that causes the control
to jump to [bl_left if the integer value in the accumulator is less than the integer value low,
to Ibl_right if the integer value in the accumulator is greater than the integer value right and
otherwise to the next instruction. Code for a decision tree is generated recursively by use of the
function comp_dec. For a decision tree of the form DTinterval(left, dec, right) code is generated
that given an integer value in the accumulator “jumps” to the corresponding subtree by use of
the Zam instruction Kbranchinterval(low, high, [bl_left, [bl_right). If the decision tree is of the
form DTfail code that branches to a default label (default_bl) is generated.

The compilation function comp_switch_default is defined below.

fun comp_switch_default v branchl default_[bl C =
let
open Array
val switchtable = create (size v) 0
fun comp_cases n =
if n >= size v then C

else
let
val lamb = v sub n
val C’ = branchl :: comp_cases (n+1)
val (Ibl, C1) =
if lamb = dbSTATICFAIL then (default_lbl, C’)
else label_code (C [lamb] C”)
in
update (switchtable, n, [bl);
C1
end
val code = discard_dead_code(comp_cases 0)
in
add_switchtable switchtable code
end

This compilation function creates code for all lambda expressions in the array v and it also
stores a label to each of these compiled expressions in a separate table prior to calling the
add_switchtable compilation function. The lambda instruction dbSTATICFAIL is inserted in
the lambda expression arrays by the compile_nbranch function at places where there are holes
in the switch, and such a lambda expression compiles into a branch to the compiled code for
the default expression. The add_switchtable compilation function is defined below.
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fun add_switchtable switchtable C =
let
fun check_equal switchtab 0 = true
| check_equal switchtab n =
if ((switchtab sub 0) <> (switchtab sub n))
then false
else check_equal switchtab (n-1)
in
if (check_equal switchtable ((size switchtable) - 1)) then
(case C of
(Klabel bl :: C1) =
if (Ibl = (switchtable sub 0)) then C
else Kbranch (switchtable sub 0) :: C
| - =
Kbranch (switchtable sub 0) :: C)
else
Kswitch switchtable :: C
end

The Kswitch instruction takes an integer (label) array as argument. The informal semantics
of this Zam instruction is to jump to the label located in the k’th cell in the array, where k is
the integer value located in the accumulator. If all labels (integers) in the array (switchtable)
are equal we simply make a branch to this label (integer), otherwise a Kswitch instruction is
inserted in the code prior to the continuation. Note that the first part of the continuation will
include code associated with the labels in the switch table (switchtable).

As an example we now show how an integer switch is compiled. There are two cases. One
that has a default expression and one that does not. We first show how an integer switch having
no default expression is compiled.

C [dbSWITCH _1(dbSWITCH (arg, casel, None))] =

let
val Ibl = 0
val C1 = comp_decision_default
(compile_nbranch (fn i = i) casel) bl C
in
C [arg] C1
end

Since no jumps will be executed to the label (bl a dummy label is used in the compilation.
First code is generated to evaluates the argument to be compared to the entries in the case list
(casel). Then code for the compilation tree is built as described above. Note that since the
case list is a list of integers and lambda expressions the function to pass to compile_nbranch is
simply the identity function.

The compilation scheme for an integer switch having a default expression is given below.

C [dbSWITCH _1(dbSWITCH (arg, casel, Some lexp_default))] =



12.2. GENERATION OF INITIAL CODE AND FUNCTION CODE 77

let
val bl = new_label ()
val C1 = comp_decision_default (compile_nbranch
(fn i = i) casel) bl C
in
push_exp (lexp_default, 1bl);
C [arg] C1
end

Besides from delaying the compilation of the default lambda expression the compilation is as
above.

Other switch constructs (real switches, string switches and exception constructor switches)
are simply compiled as a sequence of branching tests. Real switches and string switches could be
compiled more efficiently since an ordering relation exists. For exception constructor switches
this cannot be done since no ordering exist on compile time. As an example we show how an
exception switch is compiled. All exception switches in the lambda language have a default
expression, hence there is only one case to consider.

C [dbSWITCH _E(dbSWITCH (arg, casel, Some lexp_default))] =

let
val (branch_out, C1) = make_branch C
in
C [arg] (Kprim (Pfield 1) :: Kpush ::
comp_exc_casel casel branch_out
(Kpop == (C [lexp-default] C1)))
end

First code is generated that evaluates the argument (an exception constructor) and then the
exception name (a reference to a string) is extracted from the exception constructor. This
is done since switches on exceptions is done on exception names. The exception case list
is compiled by the compilation function comp_ezc_casel and finally the default expression is
compiled (lezp_default). The comp_exc_casel compilation function is defined below.

fun comp_exc_casel casel branch_out C =

let
fun comp || = C
| comp ((v, lexp) :: rest) =
let

val bl = new_label ()
val getv = case v of
GV gv = Kget_global gv
| DB i = Kaccess i
in
Kpop :: Kpush :: Kpush :: getv ::
Ktest(Pnoteq_test, bl) = Kpop :: C [lexp]
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(branch_out :: Klabel bl :: comp rest)
end
in
comp casel
end

This compilation function generates code that tests (sequentially) if the argument exception
name of the switch construct is equal to the exception name of an entry in the exception case
list. If such a test succeeds the compiled code for the corresponding lambda expression will
be executed. If no test succeeds the compiled code for the default lambda expression will be
executed.

12.2.6 Primitives

Most primitives are compiled trivially. In the following we show how the primitives in the
lambda language, mentioned in section 11.2, are compiled into Zam code. A value constructor
that takes no argument is compiled as follows.

C [dbPRIM (dbCONprim i, [|)] C =
into_accu [Kquote(SCblock(ConstrRegular(i, 1), []))] C

The compilation scheme for a value constructor applied to an argument is given below.

C [dbPRIM (dbCONprim i, [lezp])] C =
C [lexp] (Kmakeblock(ConstrRegular(i, 1), 1) :: C)

De-construction of a value constructor carrying an argument is compiled as below.

C [dbPRIM (dbDECONprim, [lexp])] C =
C [lexp] (Kprim (Pfield 0) :: C)

A constructor that takes an argument is a block with the argument value in the first field. To
de-construct such a constructor we simply extract the argument value from this field.

As for variables there are two kinds of exception constructors in the lambda language based
on de Bruijn indexes. The first kind extracts the corresponding exception name (a reference to
a string) from a local variable (a de Bruijn index). The second kind extracts the corresponding
exception name from a global variable (a gvar). The first kind takes as argument, in addition
to an optional argument expression, a de Bruijn index of an exception name. An exception
constructor of this kind that does not take an argument is compiled as follows.

C [dbPRIM (dbEXCONprim, i, [)] C =

into_accu [Kaccess i, Kpush,
Kquote(SCblock( ConstrRegular(0,1), [])),
Kmakeblock ( ConstrRegular(0,0), 2)] C
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The exception constructor compiles into code that constructs a block consisting of the excep-
tion name (a reference to a string) and a place holder (a wnit value). The Zam instruction
Kquote(SCblock( ConstrRegular(0,1), [])) simply introduces a unit value (of type unit) into the
accumulator.

The compilation scheme below is for an exception constructor (of the same kind) that takes
an argument.
C [dbPRIM (dbEXCONprim i, [lexp])] C =
Kaccess i :: Kpush :: C [lexp]
(Kmakeblock( ConstrRegular(0,0), 2) :: C)

In this case the exception constructor compiles into code that constructs a block consisting of
the exception name (a reference to a string) and a value.

An exception constructor that extracts the exception name from a global variable and that
does not take an argument is compiled as shown below.

C [dbPRIM (dbGLOBALEXCONprim gv, [))] C =

into_accu [Kget_global gv, Kpush,
Kquote(SCblock( ConstrRegular(0,1), [])),
Kmakeblock( ConstrRegular(0,0), 2)] C

Below is the compilation scheme for an exception constructor that takes an argument and
extracts the exception name from a global variable.

C [dbPRIM (dbGLOBALEXCONprim gv, [lezp])] C =

Kget_global gv :: Kpush :: C [lexp]
(Kmakeblock( ConstrRegular(0,0), 2) = C)

De-construction of an exception constructor that takes an argument is compiled by the

following scheme.
C [dbPRIM (dbDEEXCONprim, [lexp])] C =

C [lexp] (Kprim (Pfield 0) :: C)
The field holding the argument value is simply extracted from the exception constructor (a
block of size two).
Empty records are compiled using the scheme below.

C [dbPRIM (dbRECORDprim, [))] C =
into_accu [Kquote(SCblock(ConstrRegular(0,1), []))] C

Nonempty records are compiled as follows.

C [dbPRIM (dbRECORDprim, lexps)] C =
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let
fun compezp_list [| C = C
| compexp_list [lexp] C = C [lexp] C
| compexp_list (lexp::rest) C =
compexp_list rest (Kpush :: (C [lexp] C))
in
compexp_list lexps (Kmakeblock ((ConstrRegular(0,0)),
List.size lexps) = C)
end

First the values of all components, except the first one, are computed and pushed onto the
stack (note the reverse order). The first one is evaluated and put in the accumulator, then the
Kmakeblock instruction pops all arguments from the stack and creates a record containing the
values of the arguments.

Compilation of selection of a value from a record is as follows.

C [dbPRIM (dbSELECTprim n, [lexp])] C =
C [lexp] (Kprim (Pfield n) :: C)

The pervasives are compiled trivially. We show below how the construct for integer addition
is compiled.
C [dbPRIM (dbPLUS _INTprim, [lexpl, lexp2])] C =
C [lexp2] (Kpush :: (C [lexp2] (Kprim Paddint :: C)))

For pervasives like div that may raise an exception the corresponding exception constructor
is passed as an extra argument to the primitive. When compiling such pervasives code is
generated such that the primitive in the abstract machine can raise the exception if needed.
How the construct for integer division is compiled is shown below.

C [dbPRIM (dbDIV _INTprim, [lexpl, lexp2, lezp3))] C =

C [lexp2] (Kpush :: (C [lexp2] (Kpush :: C [lexp3]
(Kprim Pdivint :: C)))

12.3 Generating binding code

It is the purpose of the binding code to bind values and exception names® to global variables
(gvars). Only variables and exception names that should be visible on top level (their scope is
the rest of the session) should be bound. The names of these lambda variables and exception
constructors are found statically and are hence available for use in the compilation. The
compiler contains a dynamic environment mapping lambda variables (lvars) to gvars and names
of long exception constructors (longexcons) to gvars (see section 11.3 for a description).

4Only the exception names (references to strings), not the entire exception constructors, are bound. Similarly,
only exception names are bound to de Bruijn indexes.
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When the initial code for a top level declaration has been executed there is a record located
in the accumulator. This record includes all values and exception names, introduced by the
top level declaration that should be visible on top level. The binding code simply extracts the
values and exception names from the record and stores the values and the exception names in
the global variables to which they are associated in the dynamic environment.
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Chapter 13

Code for the Abstract Machine

The symbolic sequential code (the Zam code) need to be translated into numeric byte code (Zinc
code) for the Zinc abstract machine to run it. Most of the Zam instructions correspond directly
to one byte of Zinc code. However, there are some Zinc instructions that take arguments.
For these instructions the Zinc abstract machine interprets the next byte(s) in the code as
argument(s) and not as instruction(s). An argument of a Zinc instruction can either be of size
one byte, two bytes (a short) or four bytes (a word). The instructions are listed in appendix C
where each instruction (byte) is given a symbolic name.

Not all instructions available in the abstract machine are used and not all pervasives of
Standard ML are translated into Zinc instructions at the time of writing. In the following we
use the letter Z to denote a translation from Zam code (a list of Zam instructions) to Zinc
code (a string of bytes).

The implementation of the Z translation step in the new back-end of the ML Kit system
uses a buffer (a byte array) to obtain higher efficiency instead of the concatenation operator
(") used below. For a discussion of the abstract machine and its limitations see chapter 10.

13.1 Primitive output functions

The compiler includes a few primitive output functions which are used in the translation func-
tion (the Z scheme). The function out: int — string converts an integer to a string of length
one, holding the integer as a character. This function is used for converting names of Zinc
instructions (really integers) and bytes of integer arguments to characters (strings of length
one). Similarly the functions out_short and out_long convert integer arguments to strings of
length two and four, respectively (most significant byte first).

To introduce integer constants in the abstract machine the function out_int_const is pro-
vided.

fun out_int_const 1 =
if (i <= 127 andalso i >= 0) then
(out CONSTBYTE) = (out (i+i+1))
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else
if (i <= 16383 andalso i >= ~16384) then
(out CONSTSHORT) = (out_short (i+i+1))
else
Crash.unimplemented ” out_int_const : out of range”
end

At the time of writing integer constants larger than 16383 or lower than ~ 16384 cannot be
introduced in the Zinc abstract machine!.

13.2 The Z translation scheme

Most Zam instructions are translated trivially, though there are some nontrivial (read: not
so trivial) translation steps. Because of the similarity of most of the translations only a few
examples will be given.

As an example of a trivially translated instruction we show below how the Zam instruction
Kprim(Paddint) is translated into Zinc code.

Z [Kprim(Paddint) :: C] = (out ADDINT) ~ (Z [C])

All Zam instructions taking arguments are translated into Zinc instructions taking argu-
ments. We show below how the Zam instruction Kget_global (gv) is translated.

Z [Kget_global gv :: C] = (out GETGLOBAL) = (out_short gv) =~ (Z [C] )

To translate the introduction of an integer value into the accumulator the following trans-
lation scheme is given.

Z [Kquote(SCatom(ACint 7)) :: C] = (out_int_const i) ~ (Z [C] )

Jumps in the abstract machine are relative jumps. Translation of a Klabel(lbl) Zam instruc-
tion generates no Zinc code. The function define_label enters the label ({bl) and the code pointer
(the index in the Zinc code string) in a table for use when a branch instruction is translated.

Z [Klabel Ibl :: C] =

let
val _ = define_label bl

'In the Caml Light system larger integer constants are stored in global variables (statically) at link time
prior to execution of the code.
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The function define_label also takes care of back-patching (updating) previously translated for-
warding branches to the label [bl. This can be done since if a label bl is undefined when
translating a branch to this label the branch must be a forward branch. In this case a dummy
label (a short) is emitted and the code pointer at this place of the Zinc code is appended to a list
associated with the label [bl. This is done by the function out_label. The function define_label
updates (back-patches) all points in the code pointed to by the members of the list associated
to the label [bl with relative addresses to the point in the code associated with the label. As an
example of how a branch is translated we show below how the Zam instruction Kbranch (Ibl)
is translated into Zinc code.

Z [Kbranch Ibl :: C] = (out BRANCH) ~ (out_label Ibl) ~ (Z [C] )

The translation scheme of the Zam instruction Kbranchinterval(low, high, [bl_-low, [bl_high)
is given below.

Z [Kbranchinterval(low, high, Ibl_low, Ibl_high) :: C] =

(out PUSH) " (out_int_const low) "~ (out PUSH) °
(if low <> high then out_int_const high else ””) ~
(out BRANCHINTERVAL) ~ (out_label Ibl_low) ~
(out_label Ibl_high) ~ (Z [C] )

The generated code pushes the test value onto the stack, introduces the low and high inte-
ger values (the high integer value only if necessary) and finally executes the Zinc instruction
BRANCHINTERVAL which takes two arguments. The first argument of the BRANCHIN-
TERVAL instruction is the address in the generated code to jump to if the test value is lower
than the value low, whereas the second argument is the address to jump to if the test value is
higher than the value high. If the test value is between the two values the code following the
BRANCHINTERVAL instruction is executed.
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Chapter 14

Value Printing

In the new back-end of the ML Kit system values are computed and stored in the global store
in the Zinc abstract machine. For the user to see these values we must generate code to print
every value resulting from evaluation. We generate Zinc code that prints the value located in
the given index of the global store. Given the type of the value, Zam code for printing can be
generated and then translated to Zinc code (see chapter 13).

There are two ways in which the type of a value in the ML Kit system can be extracted.
One way is to extract the type directly from the static environment of the ML Kit system
[BRTT93, page 50]. Another way is to extract the type from the typed lambda language. The
first way gives us the advantage of being able to print records with labels. This is not possible
if the second way is chosen since the typed lambda language has no notion of labels. However,
if instead we chose to extract the type of a value from the static environment of the ML Kit
system, it is not possible to print arguments to constructors. Unfortunately, it is not possible
to join the two methods since we need to extract subtypes recursively from a given type.

At the time of writing the value printer extracts the type of a given value from the static
environment of the ML Kit system. Therefore, it is not currently possible to print arguments
to constructors. In the future the value printer should extract the type of a given value from
the typed lambda language. If this approach is used, labels must be associated to each field of
a record type in the typed lambda language to print records with labels.

First we describe how a type is extracted from the static environment and also how subtypes
of this type are extracted. We then show how Zam code (which is translated into Zinc code
and run) is constructed to print a value of a given type.

14.1 Types of values to print

The main printing function is passed a tag environment (see chapter 9), a global variable (an
index to a global store), and a typescheme from which a Type can be extracted. The structure
StatObject that gives access to the type Type and the extraction functions matches a signature
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STATOBJECT!. The part of the signature that is important for value printing is shown below.

signature STATOBJECT =
sig

type TypeScheme
val unTypeScheme : TypeScheme — TyVar list x Type

type Type and FunType and ConsType and RecType
val equal_Type : Type x Type — bool

val unTypeRecType : Type — RecType Option
val unTypeFunType : Type — FunType Option
val unTypeConsType : Type — ConsType Option

val unRecTypeSorted : RecType — (lab x Type) list
val unConsType : ConsType — (Type list x TyName) Option

val TypeUnit : Type
val Typelnt : Type
and TypeReal : Type

end

The types TyVar, TyName and lab are the types for a type variable, a name of a type and
a label. The type extraction functions mentioned in the signature allow us to traverse a type
recursively until we reaches a basic type (TypeUnit, Typelnt or TypeReal), an empty record
type or a constructed type. When reaching a constructed type we generate code that checks
what constructor to print. This is done by looking up constructor tags (integers) in the tag en-
vironment (see chapter 9). To get the constructors (longcons) for a given type name (TyName)
these can also be looked up in the tag environment. The tag environment has been added to
the dynamic basis of the compiler (see [BRTT93, page 67]).

As mentioned above it is not possible to generate code that prints the arguments of a
constructor since the type of such an argument cannot be extracted. The Type list part of
the optional result returned by the function unConsType, mentioned in the signature above,
only contains the types instantiated for the type variables of the type scheme inferred for the
original datatype declaration. If there were an environment mapping constructors (longcons)
to optional types (the type of the optional argument of a constructor) it would be possible to
substitute the type variables in such types with the types given in the Type list part of the
optional result returned by the function unConsType and hence get the type of the argument
of a given constructor.

14.2 (Generating printing code

First we describe some basic code sequences for printing. These basic code sequences are
put together and integrated with a set of mutually recursive functions for generating code for

!The structure StatObject and the signature STATOBJECT are parts of the ML Kit system.
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printing values of different types. There is a main function that surrounds the set of mutually
recursive functions. The purpose of this function is to generate code that extracts the value
to print from the global store. The printing code that is generated will then, by use of the
stack, traverse the value and use specific primitives of the Zinc (Zam) abstract machine to
print sub-values of different types.

14.2.1 Auxiliary functions

All basic printing primitives write their output to an output channel. This channel is bound in
the environment for the entire printing code by initial code generated by the following function.

fun code_get_gv gv =
[Kquote (SCatom (ACint 1)),
Kprim (Pccall (” open_descriptor” 1)),
Klet, Kget_global gv]

The generated code first introduces the integer value one, indicating standard output (std-out),
and then calls the primitive open_descriptor that returns a channel on which output from code
generated by printing functions can be written. This channel is bound in the current environ-
ment and the value to print (located in the global store) is initially put in the accumulator.

To flush the output of the Zinc abstract machine the following code sequence is used.

val code_flush =
[Kaccess 0, Kprim (Pccall (" flush” 1)), Kendlet 1]

This code sequence should only be appended at the end of the printing code since the Kendlet
1 instruction will remove the environment containing the output channel.

14.2.2 Printing base values

For each of the code sequences below the value to print is pushed onto the stack by the Zam
instruction Kpush. Then the output channel is accessed in the local environment and finally
the necessary output primitive (C primitive) is called.

To print an integer value, a real value, or a string value (located in the accumulator), the
following code sequences are used.

val code_print_int =
[Kpush, Kaccess 0, Kprim (Pccall (" output_int_val”, 2))]

val code_print_real =
[Kpush, Kaccess 0, Kprim (Pccall (" output_float_val”, 2))]

val code_print_string =
[Kpush, Kaccess 0, Kprim (Pccall (" output_string_val”, 2))]
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To print an exception constructor the exception name to print is first extracted from a block
containing as a component a reference to a string (also a block).

val code_print_exn =
[Kprim(Pfield 1), Kprim(Pfield 0), Kpush, Kaccess 0,
Kprim (Pccall (" output_string-val”, 2))]

When generating printing code it is necessary to generate code to print characters and
strings known only to the ML Kit system. These strings could be labels, parentheses etc. To
generate code that prints such strings the code generating function code_string is provided.

fun code_string s =
let
val [ = explode s
fun code_char ¢ =
[Kquote(SCatom (ACint (ord c))), Kpush, Kaccess 0,
Kprim (Pccall (” output_char”, 2))]
fun code_string_list || = |]
| code_string_list (a::r) =
code_char a @ code_string_list r
in
[Kpush] @ (code_string_list 1) @ [Kpop]
end

The code generated by this function first pushes the value in the accumulator onto the stack
for later use. Then code is generated that will print each character in the string one at a time
and finally the value in the accumulator is restored (popped from the stack).

14.2.3 Printing structured values

The code generating functions for printing structured values are described below. These func-
tions use the type extracting functions described in section 14.1 to determine what kind of
code should be generated. There is a function that generates code to print a value of any
given type. This function then calls appropriate functions to generate code that prints records,
constructors, etc. The function code_print_val takes as argument a type and generates code to
print a corresponding value of that type.

fun code_print_val typ =

if equal_Type (typ,Typelnt) then code_print_int
else

if equal_Type (typ,TypeReal) then code_print_real

else

(case unTypeFunType typ of

Some _ = (code_string " fn”)
| None =
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(case unTypeRecType typ of
Some rectyp =
code_print_rec (unRecTypeSorted rectyp)
| None =
(case unTypeConsType typ of
Some constyp =
(case unConsType constyp of
Some (types, tyname) =
(case tyname of
TyName.tyName_STRING =
code_string ”\"” @
code_print_string Q
code_string ”\"”
| TyName.tyName_ REF =
code_string " ref”
| TyName.tyName_.EXN =
code_print_exn Q
code_string 7 (-)”
| - = code_print_con tyname
)
| None = code_string "#”)
| None = code_string "#”))

The function “branches out” on the given type and calls the corresponding function for gen-
erating printing code. For functional values code is generated that prints the string ”fn”, and
for record values (and tuples) the function code_print_rec is called. To check whether a given
constructed type is a string, a reference value or an exception constructor, the type names Ty-
Name.tyName_STRING, TyName.tyName_REF and TyName.tyName_EXN are tested against
the type name of the constructed type. To generate code that prints the name of a value
constructor the function code_print_con is called.

The code generating function used to generate code for printing records and tuples is shown
below.

and code_print_rec rectyp =
let
fun is_rec_tuple rectyp =
let
fun tupleness [| - = true
| tupleness ((lab, _) == r) n =
if is_.LabN (lab, n) then tupleness r (n + 1)
else false
in
case rectyp of
[-] = false
| - = tupleness rectyp 1
end
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fun code_print_tup || - = ||
| code_print_tup [(-, typ)] n =
[Kprim (Pfield n)] @ (code_print_val typ)
| code_print_tup ((-, typ) = p2 :: rest) n =
[Kpush, Kprim (Pfield n)] @ (code_print_val typ) Q
(code_string ”,”) @ [Kpop] @
(code_print_tup (p2 :: rest) (n + 1))
fun code_print_rec2 [| - = |]
| code_print_rec2 [(lab, typ)] n =
(code_string (pr_Lab lab ~ 7=")) @
[Kprim (Pfield n)] @ (code_print-val typ)
| code_print_rec2 ((lab, typ) :: p2 :: rest) n =
(code_string (pr_Lab lab ~ 7=")) @
[Kpush, Kprim (Pfield n)] @ (code_print_val typ) Q@
(code_string ")) @ [Kpop] @
(code_print_rec2 (p2 :: rest) (n + 1))
in
if is_rec_tuple rectyp then
((code_string ” (") Q (code_print_tup rectyp 0) Q
(code_string ”)"))
else
((code_string ”{") @ (code_print_rec2 rectyp 0) Q
(code_string " }"))
end

If the value to be printed is determined to be a tuple (each label is equal to the index in
the record, starting with 1 and the number of values in the record does not equal 2) code is
generated that prints the value on the form

(Ula Vgt oty Un)

where n equals the number of values in the record (tuple). Otherwise code is generated that
prints the value on the form

{llzvla l2:v27"'7 lnzvn}

where n equals the number of values in the record and where Iy, & € {1, 2,..., n} is the £’th
label of the record.

To generate code that prints the name of a constructor the following function is provided.

and code_print_con tyname =
let
val cons = (TagEnv.lookupCons tagenv tyname
handle TagEnv.LookUp = Crash.impossible
” code_print_con.cons”)
val tags = (map (fn con = TagEnv.lookupTag tagenv con) cons
handle TugFEnv.LookUp = Crash.unimplemented
” code_print_con.tags”)
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val (lbl_end, C) = label_code [Kpop]
val v = Array.create (List.size tags) 0
fun gen_switch_code || [| = ||
| gen_switch_code (con :: cons’) (tag :: tags’) =
let
val (Ibl, C1) =
label_code (code_string (Con.pr_con con))
val _ = Array.update (v, tag, Ibl)
in
C1 @ [Kbranch Ibl_end] @
(gen_switch_code cons’ tags’)
end
| gen_switch_code _ _ = Crash.impossible ” code_print_con”
in
[Kpush, Kprim(Ptag_of), Kswitch v, Kbranch [bl_end] @
(gen_switch_code cons tags) @ C
end

When generating code for printing the name of a constructor the list of constructors (longcons)
for the given constructed type is first looked up in the tag environment. Then the tag for each
constructor is looked up in the same environment. The constructed code is simply a switch on
the tags of the constructors. Code associated with each branch in the switch prints the name
of the corresponding constructor.

At the time of writing it is not possible to print arguments to constructors, and especially
arguments to the reference constructor ref cannot be printed. At a later stage however, when
this is possible, we must check for cycles in data structures containing ref-constructions in
substructures, when generating printing code. This is necessary to ensure that execution of the
generated printing code terminates. Another (and easier) approach is to generate code that
only prints a given number of levels of a data structure.
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Chapter 15

The Module Language

The module language of Standard ML has a complicated static semantics. The static semantics
of Standard ML corresponds to the elaboration part of the ML Kit system, for which phrases
of the module system succeed to elaborate. The dynamic semantics for the module language
[MTH90, chapter 7] is relatively simple. At present the ML Kit system does not compile
phrases of the Standard ML module language into the typed lambda language described in
section 11. Literature regarding implementation of the Standard ML module system includes
[App92, AM87, AM91, Mac88|.

The declaration compiler of the core language in the ML Kit system is implemented in
monadic style [Wad92]. A similar technique can be used in an implementation of the top-level
declaration (topdec) compiler.

In this chapter we first discuss how constructs of the module language can be compiled into
an untyped lambda language. We then proceed to suggest how the compilation step may be
extended such that a type for each construct in the lambda language can be determined.

15.1 Compilation of the module language

As mentioned above, the dynamic semantics of the module language of Standard ML is de-
scribed in [MTHO90, chapter 7]. To implement the compiler correctly we need to generate code
that operates according to this dynamic semantics. There are a few errors in the dynamic
semantics described in [MTH90]. Datatype specifications cannot be omitted from the dynamic
semantics of the module language [Kah93, page 26| as suggested in [MTH90, chapter 7].

Signatures in the dynamic semantics evaluate to interfaces. However, as mentioned in
[MTH90, page 58] interfaces are naturally obtained from the static elaboration'. Hence, only
the rules 160-169, 187-191 and 193 of [MTH90] may cause code to be introduced.

We first discuss how to represent different objects of the module system at runtime and then
discuss the operations that are necessary on these objects.

L Signature rules are included in the dynamic semantics, in [MTH90], to separate the dynamic and static
semantics for presentation reasons.
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15.1.1 Representation

We need no notion of signatures (or interfaces) at runtime since the required information can
be obtained from the static elaboration. A structure in the module system is represented as a
frame. A frame is a collection of ML values and exception names listed in an order statically
inferred from the signature (interface) of the corresponding structure. In an untyped lambda
language a frame could be represented as a tuple (record).

A functor of the Standard ML module language is represented as a function taking as
argument a frame and returning as a result a new frame.

15.1.2 Operations

Several operations regarding the module system need to be defined [MTH90, chapter 7|. In
this section we use an untyped form of the typed lambda language of chapter 11 to sketch what
kind of code is generated for each operation. The derived forms [MTH90, page 68] are not
considered.

Apart from the sub-environments of the compile time environment of the core declaration
compiler, there is a need for a sub-environment mapping structure identifiers (strids) to lambda
variables (lvars) and a sub-environment mapping functor identifiers (funids) to lambda variables
(lvars).

Compiling structure expressions (strezp)

To compile a structure expression of the form
struct strdec end

we first compile the structure-level declaration strdec [MTH90, rule 160]. This results in a list
of lambda expressions lezps (a structure-level declaration can be a sequence of structure-level
declarations [MTH90, rule 168]). We then build a record (tuple) in the lambda language. The
generated code for this operation is as follows.

PRIM(RECORDprim, lexps)

For a structure expression of the form
longstrid

we need to look up the lambda variable (lvar) associated with the long structure identifier
(longstrid) [MTH90, rule 161]. If the identifier is simple (if it is not enclosed by a structure)
the construct compiles into

VAR(lvar)

Otherwise, if the identifier is not simple we need to extract the value (sub-frame) from the
frame, recursively. The structure expression compiles into

PRIM (SELECTprim ay, |..., [PRIM(SELECTprim a,, [VAR lvar])] ...])
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where ay, k > 0 is the index for the k’th structure of the long structure identifier (longstrid).

For a structure expression of the form
funid ( strexp )

we need to generate code that applies the functor (funid) to the frame (strid) [MTH90, rule
162].

First we need to define a trimming operation that at runtime trims a frame and as a result
produces a new frame. A trimming operation is a lambda construct that is produced given an
interface for the argument frame and an interface for the resulting frame. The generated lambda
construct must, given an argument frame, create a new frame lay-outed as required by the result
interface. This operation includes cut-down and reordering of the argument frame by selecting
and reordering components of the argument frame. And if an identifier, say A, is a constructor
in the argument interface and a value in the result interface, then a new corresponding field
must occur in the result frame, roughly corresponding to the binding “val A = §.A”, where S
is the (structure) identifier for the argument frame. Sub-frames (substructures) of the frame to
be trimmed must be trimmed, recursively, by the constructed code.

The functor application should generate code that first evaluates the structure expression
strexp, then trims the resulting frame to suit the functor argument signature, and then applies
the functor funid to this trimmed frame. The result is a new frame. We need to look up the
lambda variable (lvar) associated with the functor identifier funid. The generated code for this

operation is as follows.
APP(VAR lvar, trimmed_frame)

where trimmed_frame is code for trimming the frame associated with the structure expression
strexp.

Structure expressions of the form
let strdec in strexp end

are compiled as the corresponding expression of the core language [MTH90, rule 163]. The
generated code must first evaluate the structure-level declaration strdec (see below), bind it in
the enclosing environment and then evaluate the structure expression strexp.

Compiling structure-level declarations (strdec)

A structure-level declaration of the form
dec

should cause code for the core declaration dec to be generated.
For a structure-level declaration of the form
structure strbind
where strbind is of the form

strid (: sigexp) = strexp (( and strbind ))
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we need to generate code that for each structure binding (separated by and) binds the resulting
frame in the enclosing environment [MTH90, rule 165, 169]. For each structure binding strbind,
we first generate code that evaluates the structure expression strexp. If the structure identifier
strid is constrained by a signature expression (an interface), the frame is trimmed (see above)
to suit the interface.

Structure-level declarations of the form
local strdec; in strdecs end

are compiled as the corresponding declaration of the core language [MTH90, rule 166]. The
generated code must first evaluate the first structure-level declaration strdec; (see below), bind
it in the enclosing environment and then evaluate the second structure-level declaration strdecs.

The empty structure-level declaration [MTH90, rule 167] causes, as the empty declaration
of the core language, no code to be generated.

A structure-level declaration of the form
strdecy { ;) strdecy

is compiled as the corresponding declaration of the core language [MTH90, rule 168]. The
generated code evaluates the first structure-level declaration strdec; and then evaluates the
second structure-level declaration strdecs.

Compiling functor declarations (fundec)

A functor declaration of the form
functor funbind

where funbind is of the form
funid ( strid : sigezp ) (: sigexp’) = strezp {( and funbind ))

is compiled into a closure (a function closure can be used in an implementation) that when
applied to an argument evaluates the structure expression strexp in the environment contained
in the closure [MTH90, rule 187, 188]. Compilation of the functor body strezp can assume
that the argument has the form prescribed by the argument interface inferred for the signa-
ture expression sigexrp. If the declaration is constrained by a signature expression sigexp’ the
generated code should apply the trimming operation to the resulting frame.

No code is generated for an empty functor declaration [MTH90, rule 189].
A functor declaration of the form
fundec; ;) fundecsy

is compiled as the corresponding declaration of the core language [MTH90, rule 190]. The
generated code evaluates the first functor declaration fundec; and then evaluates the second
functor declaration fundec,.
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Compiling top-level declarations (topdec)

For each top-level declaration code for the corresponding declaration is generated [MTH90, rule
191, 193]. No code is generated for a signature declaration sigdec.

Compilation of the open declaration of the core language (dec)

When extending the core language of Standard ML with the module language an open decla-
ration is introduced in the core language. For a core declaration of the form

open longstrid; --- longstrid,

where n > 1, we need to bind all components mentioned in the interfaces for the long structure
identifiers longstrid, --- longstrid, in the enclosing environment [MTH90, rule 132].

Compilation of atomic expressions of the core language (atezp)

When extending the core language of Standard ML with the module language, atomic expres-
sions of the core language need to be changed slightly. Atomic expressions of the form

longvar

are split into two cases [MTH90, rule 104]. If the long variable name is simple (if it has no
structure name prefixes) then the atomic expression is compiled as usual. Otherwise, we need
to extract the variable recursively from the corresponding frames.

For atomic expressions of the form
longexcon

a similar approach is used [MTH90, rule 106]. If the long exception constructor is simple (if it
has no structure name prefixes) then the atomic expression is compiled as usual. Otherwise,
we need to extract the exception name en recursively from the corresponding frames.

15.2 Typing the constructs in the lambda language

As described above a frame can be represented as a tuple (record) in the untyped lambda
language. To be able to type all constructs of this lambda language and to keep a simple
correspondence between structures and tuples and between functors and functions, we must
choose how to represent exception names, since exception names may become fields in a tuple
in our scheme. Fortunately, there is a simple way of representing exception names. Representing
exception names as references to strings has many advantages [App92|, and this representation
is chosen by most Standard ML implementations. It is worth noticing that when choosing a
representation for exception names (e.g. string ref), frames become records also in a scheme
compiling abstract syntax constructs into the typed lambda language. Choosing representation
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however, may restrict what can be said about the translation. And certainly, if choosing
representation, we loose abstraction.

A typed lambda program of the ML Kit system supplies the lambda language construct
with a list of mutually recursive datatype bindings such that constructor names and types of
arguments to constructors can be extracted. This scheme may have to be changed in some way
when implementing the top-level declaration compiler. At the time of writing it is not clear
what changes are necessary.



Chapter 16

Conclusion

The goal was to implement a portable Standard ML compiler that generates compact code.
The first approach to this goal was to change the front-end of an existing compiler into a
Standard ML compiler. The result of this work is a compiler that compiles a large subset of
the core Standard ML language and that has its own module system that supports separate
compilation. This compiler is capable of compiling many core Standard ML programs, though
it lacks features such as overloading.

During this work many aspects of implementation of a core Standard ML compiler have
been investigated. These aspects include static aspects such as lexical analysis, parsing, er-
ror handling, infix resolution and type checking, but also dynamic aspects such as order of
evaluation and semantics of primitives such as equality.

However, to achieve a full Standard ML compiler this way, it would be necessary to imple-
ment a type checker completely from scratch and also to implement elaboration of modules.
All this work was already done for the ML Kit system.

The second approach to the above goal was to write a new back-end for the ML Kit system!.
The ML Kit system is very modular and it is relatively easy to replace parts of the system with
new parts (chapter 9). At the time of writing the ML Kit system elaborates all phrases
(including phrases of the module language) of Standard ML, and it compiles phrases of core
Standard ML into a typed lambda language.

The new back-end translates phrases of the typed lambda language of the ML Kit system
into phrases of a simpler lambda language based on de Bruijn indexes (chapter 11). Such
phrases are then compiled into symbolic sequential code (chapter 12) which is translated into
a string of byte code (chapter 13). This string of byte code is then executed on the modified
Zinc abstract machine (chapter 10) and for each value to be printed byte code is generated and
executed (chapter 14).

Though compilation of some of the lambda constructs need to be optimized the generated
code for the ML Kit system integrated with the new back-end is rather small. As an example
one may notice that a naive Fibonacci function compiles into a string of less than 60 bytes.

!The version of the ML Kit system that has been used is the 1.0 version with a few extensions (as of April
6, 1994). The lambda language is now a typed language and core elaboration is more efficient.
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Many dynamic aspects of an implementation of a Standard ML compiler have been inves-
tigated during this work. These aspects include representation of data in memory, dynamic
semantics of phrases of Standard ML, integration of the compiler and the runtime system, and
value printing.

We have suggested, in chapter 15, how the ML Kit system could be extended such that the
compiler also compiles phrases of the module language into the typed lambda language. This
extension is necessary, among other efficiency optimizations, to bootstrap the ML Kit system
and hence achieve a portable Standard ML compiler that generates small efficient code.

Having reached the end of this work, the least I can say is that I have learned a lot about
the semantics of Standard ML and that implementation of a Standard ML compiler is not at
all a trivial task.

Further work

Lots of work need to be done before a full bootstrapped Standard ML compiler building on the
ML Kit system is available for general use. First of all we need to implement the suggested
extension to the compiler, such that phrases of the module language of Standard ML compiles
into phrases of the typed lambda language (chapter 15). It is also necessary to optimize the
elaboration of modules in the ML Kit system, since naive implementations of some algorithms
for the elaboration of modules cause the compiler to be practically unusable for large code
segments.

At the time of writing the ML Kit system and the abstract machine runs concurrently
on two Unix processes, communicating over two pipes (section 10.2). At some point (when
bootstrapping the system) it must be possible to execute code located in a file, and it must be
possible from within the byte code to execute separate sequences of byte code (possibly located
in a separate file) on the abstract machine. This is the key to bootstrapping.

Apart from these needs it is also necessary to implement the complete set of primitives
of Standard ML including primitives for input/output (streams). Implementation of these
primitives is a fairly trivial task. Partly because many of the primitives are very simple and
partly because corresponding primitives are already parts of the Zinc abstract machine.

The Zinc abstract machine of the Caml Light system has a few limitations (section 10.3). It
is necessary to eliminate most of these limitations of the Zinc abstract machine for bootstrapping
to be possible. Fortunately, as we have seen in section 10.3, these limitations can relatively
easily be eliminated.



Appendix A

Executable and Source Code for Mini
ML

This appendix includes a description of how to test the Mini M| system and a list of all source
code files that have been constructed or altered.

Execution file

To start the MiniMI system you should be able to access the directory /home/mael/bin
located on idfs4 at the Technical University of Denmark. To start the MiniMI system execute
the following Unix commands (after login):

cd /home/mael/bin
./ml

These commands should startup the MiniMI interactive system and the following lines
will appear:

mml 0.1 The Technical University of Denmark
Based on Caml Light 0.6 and the ML Kit 1.0

mml1>

It should now be possible to enter expressions and declarations of the MiniMI language
(see chapter 7).

Source code

The tables below lists all files that have been altered or constructed during construction of the
MiniMI system. There is a table for each subdirectory of the /sre-directory. Only the file
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Makefile (the main makefile) in the /src-directory has been altered. There is an archive file
(a tar file) named mml.tar containing these and other files concerning the MiniMI system in
directory /home/mael/project.

.../src/compiler/
‘ File name ‘ Description

Makefile Makefile for the compiler
builtins.ml Access to built-in constructors etc.
compiler.ml The compiler
config.mlp Configuration
errors.ml Handling of errors
front.ml The front-end of the compiler
lexer.mli Interface for the lexer
lexer.mlp Lexical analysis
location.mlp Handling of location information
main.ml Main source file for the compiler
match.ml The match compiler
misc.ml Auxiliary functions and values
par_aux.ml Auxiliary parser functions
parser.mly Interface for the parser
pr_decl.ml Declaration printing
syntax.ml Abstract syntax
tr_env.ml Handling of the translation environment
ty_decl.ml Typing of a declaration
ty_error.ml Type errors
typing.ml Type checking
version.ml Version description
opcodes.ml Zinc instructions
infixbas.ml (new) Infix resolution
infixcom.ml (new) Infix resolution
infixexp.ml (new) Infix resolution
infixexp.mli (new) Infix resolution
infixing.ml (new) Infix resolution
infixpat.ml (new) Infix resolution
infixpat.mli (new) Infix resolution
infixtab.ml (new) Infix resolution
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.../src/lib/
‘ File name ‘ Description
Makefile Makefile for the library
eq.mli Interface to equality primitive
ref.mli Interface to reference constructor
initbas.ml (new) Initial basis, primitives
initbas.mli (new) Interface to the initial basis
mlint.ml (new) Functions on integers
.../src/toplevel/
‘ File name ‘ Description
Makefile Makefile for the interactive system
do_phr.ml Execution of a compiled phrase
main.ml Main file for the interactive system
pr_value.ml Value printing
toplevel.ml The toplevel loop
toplevel.mli Interface for the toplevel loop
version.ml Version description
.../src/runtime/
‘ File name ‘ Description
Makefile Makefile for the abstract machine
mlvalues.h Representation of values
equal.c The equality primitive
io.c Input/output
main.c The main source file of the abstract machine
prims.c Primitives
Sys.cC System interaction
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Appendix B

Executable and Source Code for the
ML Kit system

This appendix includes a description of how to test the new back-end of the ML Kit system
and it also includes a list of all source code files that have been constructed or altered.

Execution file

To start a version of the ML Kit system which is integrated with the Zinc abstract machine,
you must be able to access the directory /home/mael/bin located on idfsj at the Technical
University of Denmark. To start this version of the ML Kit system execute the following Unix
commands (after login):

cd /home/mael/mlkit/KitZam
./StartKitAgain

These commands should startup the Standard ML of New Jersey compiler with the new
version of the ML Kit system loaded. The following lines will appear:

ML-Kit 1.x. --- 28.08.94

This version generates lambda code and compiles it into zinc code
and executes it on the Zinc abstract machine.

Use ’interact ()’ to toggle debugging flags.

val it = () : unit

To start the compiler type eval () at the prompt. This function starts the abstract machine,
compiles and executes a prelude and returns the control to the user. It is now possible to enter
phrases of core Standard ML. The session is terminated with control-C. Another function,
interact (), is available at the Standard ML of New Jersey prompt. This function allows for
toggling of the debugging flags.
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Source code

The tables below lists all files that have been altered or constructed during construction
of the new back-end of the ML Kit system. There is a table for each subdirectory of the
.../mlkit/KitZam-directory and a table for the .../mlkit/KitZam-directory itself. There is an
archive file (a tar file) named kitzam.tar containing these and other files concerning the new

back-end of the ML Kit system in the directory /home/mael/project.

.../mlkit /KitZam
‘ File name ‘ Description
Compiler/ Updated and new files for the compiler
FLAGS.sml Debugging flags (signature)
Flags.sml Debugging flags (functor)
HOOKS.sml Hooks for the parser and the lexer

KIT_BUGS.txt

(new) Current bugs in the system

KitCompiler.sml

Linking of the compiler

ML_CONSULT_COMP.Ece.To

Files in the make project

Prelude.sml

The current prelude

Prelude.sml.gem

Another prelude

Prelude.sml.orig

The original prelude

README

(new) General information

Runtime/

The abstract machine

use_me_comp.ece.to

Initial use file for the make system

The ML Kit system is built by importing (use) the file use_me_comp.ece.to into a Standard
ML system with the Edinburgh Library [Ber91| loaded. This file then imports (in the cor-
rect order), by use of the make system of the Edinburgh Library, all files listed in the file
ML_CONSULT_-COMP.Ece.To.

.../mlkit /KitZam /Runtime

Only files of the Zinc abstract machine of Caml Light that have been changed are listed in the
table below.

‘ File name ‘ Description ‘
Makefile Makefile for the runtime system
config.h Configuration
mlvalues.h Representation of values
equal.c The equality primitive




interp.c The Zinc code interpreter

main.c The main source file for the abstract machine
prims.c List of C primitives

sys.c System interaction

sml_prim.c (new) Primitives for value printing
LOGFILE.txt (new) A logfile

.../mlkit /KitZam /Compiler
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| File name

Description

COMPILER_-DYNAMIC_BASIS.sml

Dynamic basis for the compiler (signature)

CompileAndRun.sml

Linking of the compilation steps

CompilerDynamicBasis.sml

Dynamic basis for the compiler (functor)

DYNAMIC_ENV.sml

Dynamic environment (signature)

DynamicEnv.sml

Dynamic environment (functor)

Evaluation.sml

A linking functor

GVARS.sml (new) Global variables (signature)
Gvars.sml (new) Global variables (functor)
TAG_ENV.sml (new) Tag environment (signature)
TagEnv.sml (new) Tag environment (functor)
ValPrint.sml (new) Value printing (functor)
ZamBackEnd/ (new) The new back-end of the compiler

.../mlkit /KitZam /Compiler /ZamBackEnd

The files listed in the table below are all new.

File name

Description

BUFF_CODE.sml

Byte code buffer (signature)

BuffCode.sml

Byte code buffer (functor)

COMPILE_LAMBDA .sml

Generation of Zam code (signature)

CONFIG_ZAM.sml

Configuration file (signature)

CompileLambda.sml

Generation of Zam code (functor)

ConfigZam.sml

Configuration file (functor)

EMIT_ZAM.sml

Generation of Zinc code (signature)

EmitZam.sml

Generation of Zinc code (functor)

INSTRUCT_ZAM.sml

Zam instructions (signature)
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InstructZam.sml

Zam instructions (functor)

LABELS.sml

Label generation (signature)

LAMBDA_EXP_DEBRUIJN.sml

de Bruijn lambda language (signature)

Labels.sml

Label generation (functor)

LambdaExpDeBruijn.sml

de Bruijn lambda language (functor)

OPCODES.sml

Zinc instructions (signature)

Opcodes.sml

Zinc instructions (functor)

RUN_ZINC.sml

Execution of Zinc code (signature)

RunZinc.sml

Execution of Zinc code (functor)

TOOLS_ZAM.sml

Auxiliary functions for Zam code generation

(signature)

TRANSLATE_KIT_LAMBDA .sml Translation of the typed lambda language
(signature)

ToolsZam.sml Auxiliary functions for Zam code generation
(functor)

TranslateKitLambda.sml

Translation of the typed lambda language
(functor)




Appendix C

Zinc instructions

The table below lists the instructions for the Zinc abstract machine [Ler90b]. Arguments to
each of the instructions can either be bytes, shorts (two bytes) or words (four bytes).

| Instruction | Instruction |
CONSTBYTE (byte) CONSTSHORT (short)
GETGLOBAL (short) SETGLOBAL (short)
CUR (short) SWITCH (byte, short, ..., short)
BRANCH (short) BRANCHIF (short)
BRANCHIFNOT (short) POPBRANCHIFNOT (short)
BRANCHIFNEQTAG (short) BRANCHIFEQ (short)
BRANCHIFNEQ (short) BRANCHIFLT (short)
BRANCHIFGT (short) BRANCHIFLE (short)
BRANCHIFGE (short) BRANCHINTERVAL (short, short)
C_CALLI (short) C_CALL2 (short)
C_CALLS3 (short) C_CALLA4 (short)
C_CALLS5 (short) C_CALLN (byte, short)

MAKEBLOCK (word) MAKEBLOCKI (byte)
MAKEBLOCK2 (byte) MAKEBLOCKS (byte)
MAKEBLOCK4 (byte) TAGOF

ACCESS (byte) ACCO

ACCI ACC2

ACC3 ACC4

ACC5 ATOM (byte)

ATOMO ATOM1

ATOM2 ATOM3

ATOM1 ATOM5

ATOMG6 ATOMT
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ATOMS ATOMO9
GETFIELD (byte) GETFIELDO
GETFIELD1 GETFIELD2
GETFIELD3 SETFIELD (byte)
SETFIELDO SETFIELD1
SETFIELD2 SETFIELD3
STOP CHECK_SIGNALS
APPLY RETURN
APPTERM GRAB

LET LETRECI
DUMMY (byte) UPDATE
ENDLET (byte) ENDLET]1
PUSHTRAP (short) RAISE
POPTRAP PUSH

POP PUSHMARK
PUSH.GETGLOBAL_APPLY (short) BOOLNOT
PUSH.GETGLOBAL_APPTERM (short) | NEGINT
SUCCINT PREDINT
ADDINT SUBINT

MULINT DIVINT
MODINT ANDINT

ORINT XORINT
SHIFTLEFTINT SHIFTRIGHTINTSIGNED
SHIFTRIGHTINTUNSIGNED EQ

NEQ LTINT

GTINT LEINT

GEINT INCR

DECR FLOATOP
INTOFFLOAT EQFLOAT
NEQFLOAT LTFLOAT
GTFLOAT LEFLOAT
GEFLOAT STRINGLENGTH
GETSTRINGCHAR SETSTRINGCHAR
EQSTRING NEQSTRING
LTSTRING GTSTRING
LESTRING GESTRING
MAKEVECTOR VECTLENGTH
GETVECTITEM SETVECTITEM
FLOATOFINT NEGFLOAT
ADDFLOAT SUBFLOAT
MULFLOAT DIVFLOAT

For the SWITCH instruction the first argument tells the number of arguments to follow. The
FLOATOP instruction must be followed by one of the floating point (real) instructions (INTOF-
FLOAT, ADDFLOAT, SUBFLOAT or MULFLOAT) and these instructions must be preceded
by the FLOATOP instruction.
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