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Abstract

This document describes the implementation of a bytecode backend for the ML Kit, a Stan-
dard ML compiler based on region inference. The purpose of the bytecode backend is to enable
the ML Kit to produce portable and compact code that can be executed in environments where
control of memory usage is a concern.

The document includes (1) a presentation of the target of the new backend, namely a region-
based abstract machine called the Kit Abstract Machine (KAM), (2) a description of the inter-
mediate language RegExp used in the ML Kit, (3) a presentation of yet an intermediate language
LiftExp, in which all functions are lifted to top level, (4) a translation from the language RegExp
to the language LiftExp, and finally, (5) a translation from the intermediate language LiftExp
into KAM instructions.

The focus of this document is not on providing a formal definition of the KAM or of the
translation into KAM instructions. Instead, this report is meant to document—sometimes
informally—the implementation and the design of the many features of the KAM.
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1 Introduction

The ML Kit is a Standard ML compiler based on region inference [TBE+01]. Region inference
inserts, at compile time, allocation and deallocation directives into the program [TB00, TB98,
BT01]. When the program is executed, memory is allocated and deallocated according to the
memory directives, without the need for traversing memory. In this basic setting, the programmer
is provided with good control of memory.

Region based programming is promising in the area of embedded systems with real time re-
quirements to the software running and where memory is a limited resource. Writing software
for embedded systems in a type safe functional programming language with a rich module sys-
tem helps shortening development time and helps providing reliable embedded systems based on
reusable components. Today, software for embedded systems are often written in programming lan-
guages such as C and C++, which, for the first part, have type systems that are not rich enough to
prevent the program from executing certain erroneous operations, and for the second part, have no
support for verifying safety of the constructed system with respect to dynamic memory allocation
and deallocation.

The region based programming model is also promissing in situations where programs run
shortly and are executed often; in such situations region inference can provide very good cache
behaviour and thus high efficiency. This latter situation arises often in server-centric and net-
centric applications, such as Web servers, where clients request the execution of programs on a
remote server.

To get practical experience with the latter of the above scenarios, we have initiated the SMLserver
project, which aims at building an efficient multi-threaded Web server platform for the Standard
ML programming language [EH02].

In this document, we describe the implementation of an abstract machine, called the Kit Ab-
stract Machine (KAM), and a new backend for the ML Kit, which compiles the ML Kit intermediate
language RegExp into bytecode for the KAM.1 The KAM is a stack based machine where memory
usage is controlled using a small set of region primitives. The KAM is an essential part of the
SMLserver project.

2 Region Based Memory Management

In this section we introduce the region based memory management scheme, which is the basis for
the operations provided by the abstract machine that we present in Section 3.

In the region memory model, the store consists of a stack of regions. Region inference turns
all value producing expressions e in the program into e at ρ, where ρ is a region variable, which
denotes a region in the store at runtime. Moreover, when e is an expression in the source program,
region inference may turn e into the target expression letregion ρ in e′ end, where e′ is the target
of analyzing sub-expressions in e and ρ is a fresh region variable. At runtime, first an empty region
is pushed on the stack and bound to ρ. Then, the sub-expression e′ is executed, perhaps using ρ for
allocation. Finally, upon reaching end, the region is deallocated from the stack. Safety of region
inference guarantees that a region is not freed until after the last use of a value located in that
region [TT94, TT97].

Functions in the target language can be declared to take regions as arguments and may thus,
depending on the actual regions that are passed to the function, produce values in different regions
for each call.

1The ML Kit also has a backend that generates efficient native machine code for the X86 architecture.



After region inference has annotated a program fragment, a series of region analyses [BTV96]
are applied, as to figure out the exact representation of regions. An analysis called multiplicity
inference determines which regions are stored into at most once. Such regions are called finite
regions and the term infinite regions is used for regions into which many values can be stored
simultaneously. Another analysis, called physical size inference, determines, for each finite region,
the maximal physical size in words for a value stored in that region. Multiplicity inference and
physical size inference enables many regions to be allocated directly on the runtime stack. Only
regions with infinite multiplicity need be allocated in the region heap.

Another kind of regions are word-regions, which have the property that they hold values that
can be represented in only one word (e.g., integers and booleans). Such regions can be implemented
in registers and spilled on the stack in case of lack of registers.

Yet an important analysis is the storage mode analysis, which attempts at finding out when a
region is certain to contain no live data and thus can be reset before a new value is stored in the
region. Storage mode analysis and multiplicity inference, are polymorphic analyses.

3 The Kit Abstract Machine

The Kit Abstract Machine (KAM) operates on a stack, a region heap, and a series of registers.
Programs that may be executed by the KAM are constructed from a set of instructions, which
manipulate the stack, the region heap, and the registers.

Instructions that operate on the stack include instructions for pushing and popping and for
accessing and updating arbitrary elements on the stack; the stack is used, not only for activation
records, but also for finite regions and region descriptions for infinite regions. A region description
on the stack points to a region in the region heap. A region in the region heap may grow dynamically
as values are stored in the region and the region may even be reset to the empty region using a
dedicated primitive.

These dynamic properties of regions are implemented by representing a region as a linked list
of constant-sized region pages, which are thunks of memory allocated from the operating system.
When a region is deallocated or reset, region pages in the region are stored in a region free list, also
from which region pages are obtained when more memory is requested for allocation. The KAM,
as described in this section, however, does not model regions at this level of detail; instead, it is
assumed that regions in the region heap extend to hold an arbitrary number of values. For more
information on the implementation of the region heap, see [EH95, Hal99, Tof98, HET02].

Besides from the stack and the region heap, the KAM operates on four KAM registers, a program
counter (pc), which points at the instructions being executed, an accumulator (acc), to hold the
last computed value, a stack pointer (sp), which points at the top of the stack, and an environment
(env), which holds the closure for the function currently being executed. Program flow in the KAM
works by either incrementing the program pointer to point at the next instruction or have the
program pointer point at an instruction following a labeled instruction.

The implementation of the KAM is motivated by the Moscow ML and O’Caml runtime systems
[Ler90].

3.1 Grammar for KAM

The grammar for the KAM is based on a set of basic semantic objects, which are shown in Figure 1.
The set Offset denotes offsets on the stack, which are negative, and offsets in allocated memory,



lab ∈ Label
d,m, n ∈ Int

o ∈ Offset = Int

Figure 1: Basic semantic objects for the KAM

which are positive. The set Label is a set of labels for identifying functions and local addresses in
KAM code.

The grammar for the KAM language is shown in Figure 2. A KAM program (P ) is a sequence
of functions, each of which is a labeled block (B) of instructions (I).

In the following, we assume stack pointers to be word aligned, that is, the two least significant
bits of a stack pointer are zero. The two bits have a special meaning in pointers to finite regions
and region descriptions on the stack. The first bit is used to hold the multiplicity (finite or infinite)
and the second to hold the storage mode (atbot or attop). Setting the infinite bit is done with
the instruction StackAddrInfBit. Setting and clearing the storage mode bit is done with the
instructions SetAtbotBit and ClearAtbotBit.

The KAM has instructions for allocating and deallocating regions and all instructions that
potentially allocate memory take regions as parameters (on the stack). Many of the instructions
also take parameters explicitly.

Lists are represented unboxed. The nil value is distinguishable from any boxed value (i.e.,
pointers). The instruction IfCons(true lbl) tests whether the accumulator holds a value of the
form ::v, for any v, and if so jumps to true lbl. In the implementation, the Cons and Decons

instructions are implemented as Nop instructions; the instructions are included in the presentation
to increase clarity.

The dynamic semantics of each of the KAM instructions is presented in the following section.

3.2 Dynamic Semantics for KAM

In the following sections, we present the dynamic semantics for the KAM by showing, for each
instruction, the state of the KAM before and after the instruction is executed. The state of the
KAM consists of the stack, the region heap, and the four registers. Program execution starts at
the first instruction in the function labelled ”main”.



I ::= Nop no operation
| Immed(d) | Nil basic constants
| Cons | Decons list construction and deconstruction
| Select(o) record selection

| Push | Pop | Pop(n) | PushLbl(lab) stack operations
| SelectStack(o) | StackAddr(o)

| Label(lab) | Jmp(lab) intra-function control flow
| IfEq(d, lab) | IfCons(lab)

| ApplyFunCall(lab, n) | ApplyFunJmp(lab, n1, n2) calls to known function
| ApplyFnCall(n) | ApplyFnJmp(n1, n2) calls to unknown function
| Return(n1, n2) function return

| SelectEnv(o) | EnvToAcc environment manipulation

| LetregionFin(n) finite region allocation
| LetregionInf | EndregionInf region allocation and deallocation
| StackAddrInfBit(o) region descriptor
| ClearAtbotBit | SetAtbotBit storage mode manipulation

| Alloc(n) | AllocIfInf(n) | AllocSatInf(n) uninitialized allocation
| AllocSatIfInf(n) | AllocAtbot(n)

| BlockAlloc(n) | BlockAllocIfInf(n) record allocation
| BlockAllocSatInf(n) | Block(n)
| BlockAllocSatIfInf(n) | BlockAllocAtbot(n)

B ::= I ; B instruction blocks
| ε empty block

P ::= fun lab is B ; P known function
| fn lab is B ; P unknown function
| ε empty program

Figure 2: The grammar for the KAM



3.3 Basic Constants, Constructors, and Record Selection

Ref. Instruction acc env pc sp Stack

1 Nop v ε pc sp s

v ε pc+ 1 sp s

2 Immed(d) v ε pc sp s

d ε pc+ 1 sp s

3 Nil v ε pc sp s

nil ε pc+ 1 sp s

4 Cons v ε pc sp s

::v ε pc+ 1 sp s

5 Decons ::v ε pc sp s

v ε pc+ 1 sp s

6 Select(o) p ε pc sp s

vo ε pc+ 1 sp s

1. The instruction Nop does not change the state, except by increasing the program counter.

2. The accumulator is loaded with the integer d.

3. The accumulator is loaded with the nil constant.

4. The accumulator is tagged with the constructor tag.

5. The accumulator containing the constructor tag is detagged.

6. The value vo from the record (v1, . . . , vo, . . . , vn) pointed at by p is copied into the accumulator.

3.4 Stack Operations

The stack grows upwards from low addresses to hign addresses. The stack contains function frames,
return labels, closures, and arguments. Figure 3 shows an example stack where a function f is called
from another function g with the body of f currently being evaluated. To access values on the
stack, negative offsets from the stack pointer spare used.

Ref. Instruction acc env pc sp Stack

Push v ε pc sp s

v ε pc+ 1 sp+ 1 v, s

Pop ε pc sp v, s

v ε pc+ 1 sp− 1 s

Pop(n) v ε pc sp v1, . . . , vn, s

v ε pc+ 1 sp− n s

PushLbl(lab) v ε pc sp s

v ε pc+ 1 sp+ 1 lab, s
1 SelectStack(o) ε pc sp v1, . . . , v(−o), s

v(−o) ε pc+ 1 sp v1, . . . , v(−o), s

2 StackAddr(o) ε pc sp s

sp+ o ε pc+ 1 sp s



0
ffg

2 return_lab
3 clos_g
4

arg1

5
arg2

6

fff

- 9sp

6

Figure 3: The Figure shows an example stack where the function frame for g starts at address 0,
a return label is stored at address 2, etc. The function f has been called from inside the body of
function g. The function frame for f starts at address 6.

1. The value v(−o) on the stack is copied into the accumulator. The offset o is a negative offset
from sp, see Figure 3. To access a value stored at address 7 in Figure 3, the instruction
SelectStack(-2) is used.

2. The accumulator is set to the stack address sp+ o. This instruction is used to move a value
that denotes a finite region into the accumulator. Recall that stack offsets are negative.

3.5 Inter-Function Control Flow

The Label(lab) instruction does not change the state—it marks the succeeding instruction. A jump
to a label lab is performed by simply changing the code pointer pc to the address denoted by the
label.

Ref. Instruction acc env pc sp Stack

Jmp(lab) v ε pc sp s

v ε lab sp s

IfEq(d, lab) d ε pc sp s

d ε lab sp s

IfEq(d, lab) d′ ε pc sp s

d′ ε pc+ 1 sp s

IfCons(lab) ::v ε pc sp s

::v ε lab sp s

IfCons(lab) v ε pc sp s

v ε pc+ 1 sp s

3.6 Function Calls and Returns

The following table shows the semantics of the various KAM instructions for function applications
and returns.



Ref. Instruction acc env pc sp Stack

1 ApplyFnCall(n) vn εcaller pc sp vn−1, . . . , v1, εcallee, s

vn εcallee lab sp+ 1 vn, . . . , v1, εcaller, s

2 ApplyFnJmp(m,n) vm εcaller pc sp
vm−1, . . . , v1, εcallee,

v′n, . . . , v
′

1, s

vm εcallee lab sp− n vm, . . . , v1, s

3 ApplyFunCall(lab, n) vn εcaller pc sp vn−1, . . . , v1, εcallee, s

vn εcallee lab sp+ 1 vn, . . . , v1, εcaller, s

4 ApplyFunJmp(lab,m, n) vm εcaller pc sp
vm−1, . . . , v1, εcallee,

v′n, . . . , v
′

1, s

vm εcallee lab sp− n vm, . . . , v1, s

5 Return(m,n) rn εcurrent pc sp
rn−1, . . . , r1, vm, . . . , v1,

εcaller, labret, s

rn εcaller labret sp−m− 2 rn−1, . . . , r1, s

1. The label lab is extracted from the closure εcallee = (lab, f1, . . . , fl). The stack s takes the
form labret, s

′, where labret is a return label and s′ is the remainder of the stack.

2. The label lab is extracted from the closure εcallee = (lab, f1, . . . , fl). The arguments for the
current function v′n, . . . , v

′
1 are removed from the stack. The closure εcaller is thrown away

because it is a tail call—we return to the caller of the current function. The stack s takes the
form εret, labret, s

′, where εret is a stored return environment, labret is a return label, and s′ is
the remainder of the stack.

3. Here s takes the form labret, s
′ where labret is a return label and s′ is the remainder of the

stack. The arguments vn, . . . , v1 appear with ordinary arguments allocated on top of the
stack.

4. Here s takes the form εret, labret, s
′, where εret is a stored return environment, labret is a return

label, and s′ is the remainder of the stack. The old arguments v′n, . . . , v
′
1 are thrown away,

which include both ordinary arguments and region arguments.

5. If the function from which we are returning is a region polymorphic function, some of the
arguments vm, . . . , v1 are region arguments.

3.7 Environment Manipulation

Ref. Instruction acc env pc sp Stack

1 SelectEnv(o) acc v1, . . . , vo, . . . , vn pc sp s

vo v1, . . . , vo, . . . , vn pc+ 1 sp s

2 EnvToAcc acc ε pc sp s

ε ε pc+ 1 sp s

1. The value vo in the environment (i.e., closure) is copied into the accumulator.

2. The environment pointer ε is copied into the accumulator.



3.8 Regions and Region Descriptors

Ref. Instruction acc env pc sp Stack

1 LetregionFin(n) acc ε pc sp s

sp ε pc+ 1 sp+ n 01, . . . , 0n, s

2 LetregionInf acc ε pc sp s

sp ε pc+ 1 sp+ sizerDesc R1, . . . , RsizerDesc
, s

3 EndregionInf acc ε pc sp R1, . . . , RsizerDesc
, s

acc ε pc+ 1 sp− sizerDesc s

4 StackAddrInfBit(o) acc ε pc sp s

sp+ o+inf_bit ε pc+ 1 sp s

5 ClearAtbotBit ρ ε pc sp s

ρ′ ε pc+ 1 sp s

6 SetAtbotBit ρ ε pc sp s

ρ′ ε pc+ 1 sp s

1. The finite region is allocated directly on the stack, that is, the stack pointer is offset by n.
The accumulator acc is set to point at the first allocated word on the stack, which is the
previous value of sp.

2. The infinite region is allocated in the region heap and a region descriptor of size sizerDesc is
pushed on the stack. The accumulator acc is set to point at the first allocated word on the
stack, which is the previous value of sp.

3. The infinite region is deallocated from the region heap and the region descriptor is removed
from the stack.

4. The accumulator is set to the stack address sp+ o with the infinite bit set. The stack address
will contain the first word of a region descriptor

5. The region pointer ρ′ is ρ with the atbot bit cleared.

6. The region pointer ρ′ is ρ with the atbot bit set.

3.9 Allocating in Regions

Ref. Instruction acc env pc sp Stack

1 Alloc(n) ρ ε pc sp s

p ε pc+ 1 sp s

2 AllocIfInf(n) ρ ε pc sp s

p ε pc+ 1 sp s

3 AllocSatInf(n) ρ ε pc sp s

p ε pc+ 1 sp s

4 AllocSatIfInf(n) ρ ε pc sp s

p ε pc+ 1 sp s

5 AllocAtbot(n) ρ ε pc sp s

p ε pc+ 1 sp s

1. The pointer p is a pointer to a block of n words allocated attop in the infinite region ρ in the
region heap.



2. The pointer p is a pointer to a block of n words either allocated attop in ρ if ρ is infinite or
allocated directly on the stack.

3. The pointer p is a pointer to a block of n words allocated attop or atbot in the infinite region
ρ, depending on the storage mode bit of ρ.

4. The pointer p is a pointer to a block of n words allocated attop or atbot in the region ρ,
depending on the storage mode bit of ρ. The region ρ may be finite or infinite.

5. The pointer p is a pointer to a block of n words allocated atbot in the infinite region ρ.

For each alloc-instruction there is a block-instruction that besides allocating a block in region
ρ copies the n top words from the stack into the block.

Ref. Instruction acc env pc sp Stack

1 BlockAlloc(n) ρ ε pc sp vn, . . . , v1, s

p ε pc+ 1 sp− n s

1 BlockAllocIfInf(n) ρ ε pc sp vn, . . . , v1, s

p ε pc+ 1 sp− n s

1 BlockAllocSatInf(n) ρ ε pc sp vn, . . . , v1, s

p ε pc+ 1 sp− n s

1 BlockAllocSatIfInf(n) ρ ε pc sp vn, . . . , v1, s

p ε pc+ 1 sp− n s

1 BlockAllocAtbot(n) ρ ε pc sp vn, . . . , v1, s

p ε pc+ 1 sp− n s

2 Block(n) p ε pc sp vn, . . . , v1, s

p ε pc+ 1 sp− n s

1. The pointer p is a pointer to a record (v1, . . . , vn) allocated in region ρ. The record is allocated
as specified for the alloc–instructions above.

2. The pointer p points at a block of size n in which the record (v1, . . . , vn) is created. The
Block instruction is used for finite regions.

4 The Language RegExp

In this section we present the source language RegExp2, which is the language passed on from
region inference and the region representation analyses [BTV96] to the back end. We give only a
short introduction to the language; please see [Hal99, Chapter 2] for a full presentation of RegExp.

In Section 5 we present the language LiftExp and in Section 6, we show how RegExp programs
are translated into LiftExp programs, in which all functions are lifted (hoisted) to top level. In
Section 7 we show how LiftExp programs are compiled into KAM programs.

The semantic objects for the RegExp language are shown in Figure 4. The grammar is shown
in Figure 6. The grammar resembles a limited version of the core language of Standard ML and
shares many of the same properties. For instance, evaluation is call-by-value and evaluation order
is left to right.3

2The term RegExp is an abbreviation for Region Expression.
3The ML Kit implements all features of Standard ML; the RegExp language presented here is a subset of the

RegExp language used in the ML Kit.



x, f, y ∈ LamVar
d, n ∈ Int

ρ ∈ RegVar
fv ∈ Var = LamVar ∪ RegVar

free ∈ List(Var)

Figure 4: The semantic objects used in RegExp

List(A) = ∪{[x1, . . . , xn]|xi 6= xj , i 6= j, xk ∈ A}

Figure 5: Each element can appear only once in a list. The order in which elements appear in a
list matters; so for instance, the two lists [x1, x2] and [x2, x1] are different.

The syntactic classes are allocation directives (a), region binders (b), constants (c), boxed expres-
sions (be), patterns (pat), binary operators (bop), and expressions (e). We use RegExp to denote
the set of all RegExp terms.

Value variables, ranged over by x, f and y are bound either by the let-expressions or by
function-constructs (λ- and letrec-expressions). There are two types of constants; integers are
ranged over by d and the constant nil is used for the construction of lists. Region variables,
ranged over by ρ, are bound by letregion-expressions and letrec-expressions.

To simplify the presentation, we assume that the free variables of ordinary functions (λ) and
for letrec bound functions have been computed beforehand. The free variables are represented by
free. We use an ordered list for the free variables, see Figure 5.

For a full treatment of RegExp, including a dynamic semantics for the language, consult [Hal99,
Chapter 2].

4.1 Example Program

We shall use the following Standard ML program as a running example.

fun foldl f b xs =

case xs of

[] => b

| x::xs’ => foldl f (f x b) xs’

The same program in RegExp is shown in Figure 7.
The example program is taken from [Hal99, Chapter 2 and 3], where one can also find a full

discussion of the region annotations (e.g., multiplicities, storage modes and call kinds).

5 The Language LiftExp

It is possible to compile RegExp programs directly to bytecode. However, to avoid one complicated
compilation phase, compilation is split into two phases. The first phase lifts all functions to top level,



a ::= sma ρ allocation point
sma ::= attop | atbot | sat storage mode annotation

b ::= ρ : m region binder
m ::= n | ∞ multiplicity
c ::= d | nil constant
be ::= (e1, . . . , en) | λ

free 〈x1, . . . , xn〉 => e boxed expressions
pat ::= c | :: x patterns
bop ::= + | - | < | . . . primitive binary operations
ck ::= funjmp | funcall | fnjmp | fncall call kinds

e ::= x value variable
| be a boxed expression
| c constant
| :: e list construction
| e bop e primitive binary operation
| #n(e) record selection
| letrec f free 〈x1, . . . , xn〉 [b1, . . . , bm] a = e in e end function binding
| eck e unknown function application
| fck 〈e1, . . . , en〉 [a1, . . . , am] known function application
| letregion b in e end region binding
| let val 〈x1, . . . , xn〉 = e1 in e2 end value binding
| case e1 of pat => e2 | pat => e3 case construct
| 〈e1, . . . , en〉 unboxed record

Figure 6: The grammar for RegExp



letrec foldl [ ] 〈f〉 [r7 : 4, r8 : 4] attop r1 =

λ[f,r8,foldl] 〈b〉 attop r7 =>

λ[b,f,foldl] 〈xs〉 attop r8 =>

(case xs of

nil => b
| :: (v942 ) =>

let

val x = #0(v942 )
val xs’ = #1(v942 )

in

letregion r22 :4 in

(letregion r24 :4 in

(foldlfuncall 〈f〉 [atbot r24, atbot r22])fncall
〈(f fncall 〈x〉)fncall 〈b〉〉

end (*r24*))fncall 〈xs’ 〉
end (*r22*)

end (*let*))
in

foldlfuncall 〈sum〉 [atbot r4, atbot r5]
end (*letrec*)

Figure 7: Our running example program written in RegExp. We assume sum, r1, r4, and r5 to be
previously defined.

thereby making closures more explicit in the program. Moreover, in LiftExp, region annotations
appear on the constructs on which they are used by the code generator. In this way, two less
complicated phases are obtained, each of which is easy to debug and maintain.

The language LiftExp, presented here, is very similar to the language ClosExp used in the other
backends of the ML Kit [Hal99, Chapter 3]. Actually, the implementation of the bytecode compiler
uses the ClosExp language, so LiftExp is used for presentation only.

5.1 Calling Conventions

A calling convention, which specifies how arguments are passed to a function, is specified by a
triple:

ce ∈ CallConv = LamVar× List(LamVar)× List(RegVar)

We shall often write calling conventions on the form

{clos = x, args = [x1, . . . , xn], regargs = [ρ1, . . . , ρm]}

where x, x1, . . . , xn, n ≥ 0, are value variables and ρ1, . . . , ρm, m ≥ 0, are region variables. We use
ce to range over calling conventions and CallConv to denote the set of all calling conventions. We
use the notation {clos = x, args = [x1, . . . , xn]} as an abbreviation for calling conventions of the
form {clos = x, args = [x1, . . . , xn], regargs = []}. We use compatible calling conventions for all
functions: Ordinary arguments and region arguments are passed on the stack. Free variables are
always passed in a closure record, and the KAM uses a dedicated register (env) to hold the closure
record. We note that a list may be empty (see Figure 5). We use CallConv to denote the set of
possible calling conventions.



A calling convention fully describes how both ordinary and letrec functions are called. With
all functions at top level and with the calling convention specified above, we get the following
grammar for top-level declarations:

topdec ::= λfunlab cc => e

| λfnlab cc => e

The two constructs are identical except that we syntactically differentiate between letrec (abbre-
viated fun) and ordinary functions (abbreviated fn). The label lab is a unique identifier (i.e., name)
for the function; lab ∈ Label. The set TopDec denotes the set of top-level declarations ranged over
by topdec.

Application points must follow the calling convention for the called function. We use the
following grammar at application points:

e ::= eck 〈e1, . . . , en〉
| labck 〈e1, . . . , en〉 〈e

′
1, . . . , e

′
m〉 〈eclos〉

Here eck and eclos evaluate to a closure and a shared closure, respectively. Ordinary arguments are
written 〈e1, . . . , en〉 and region arguments are written 〈e′1, . . . , e

′
m〉. Notice that ck ranges over call

kinds.
We note that RegExp is in so-called K-normal form (see [BTV96]), thus, all value-creating

expressions are either bound to a variable, ranged over by x and f , or the value is a constant. In
LiftExp, we do not use the extra let-bindings introduced in RegExp. The target machine is a stack
machine where we want as few variables as possible, that is, only the let-bindings introduced by the
programmer. The RegExp language has been carefully designed so that unnecessary let-bindings
can be avoided.

5.2 Functions

With all functions at top level, λ-expressions and letrec expressions are replaced with two new
boxed expressions. The λ-expression is replaced with a boxed expression that explicitly builds a
closure:

be ::= λlab [e1, . . . , en]

This boxed expression evaluates to a closure record (lab, v1, . . . , vn), where vi is the value resulting
from evaluating ei, i = 1..n. The label lab refers to the function at top level. The letrec construct
is replaced by the boxed expression

be ::= [e1, . . . , en]sclos

which builds a shared closure record (v1, . . . , vn). The LiftExp language also has a letrec construct,
which makes the scope for a function identifier explicit:

e ::= letrec flab = be a in e end

The label lab connects the top-level function λfunlab with f . We shall often omit the label in examples
where f and the label are identical. The boxed expression be is always a shared closure, which, in
this case, is bound to the variable f .



5.3 Storage Mode Annotations

In the LiftExp language, the set of storage modes is refined to make code generation easier. The
storage modes attop, atbot, and sat are extended to eight new storage mode annotations, namely
attop_ff, attop_fi, attop_lf, attop_li, atbot_lf, atbot_li, sat_ff, and sat_ff. The letter
combinations added to the storage modes have the following meanings:

ff: a formal region parameter with finite multiplicity

fi: a formal region parameter with infinite multiplicity

lf: a letregion bound region variable with finite multiplicity

li: a letregion bound region variable with infinite multiplicity

The set SMA is the set of storage mode annotations ranged over by sma. Consult [Hal99, Chapter 3]
for more details on the storage mode annotations.

5.4 Grammar for LiftExp

The grammar for LiftExp is shown in Figure 8. The semantic objects for the grammar are shown
in Figure 9.

Our running example translated into the LiftExp language is shown in Figure 10 and Figure 11.
The translation results in the creation of four top-level functions.

6 Translating RegExp Programs Into LiftExp Programs

The translation from RegExp programs into LiftExp programs, denoted by the translation function
L, is fairly straightforward. Before we present the translation, however, we introduce the notion of
a translation environment and a few auxiliary translation functions.

6.1 Translation Environments

The translation from RegExp programs to LiftExp programs uses a value environment (ve), a
function environment for letrec bound functions (fe), and a region environment for mapping
region variables into representation information (re).

Value environments take the following form:

ve ∈ VE = Var→ Var ∪ {#n(x)|n ∈ N ∧ x ∈ Var}

When translating the body of a function f , free variables of f are by ve mapped into entries of the
form #n(env). Function environments take the form:

fe ∈ FE = Var→ Label

Function environments connects a function identifier with the associated top-level function, which
is uniquely identified by a label.

A region environment (re) maps a region variable into a member of the set {ff,fi,lf,li},
depending on the representation of the region, namely, how the region is bound and its multiplicity;
see Section 5.3:

re ∈ RE = RegVar→ {ff, fi, lf, li}

The auxiliary translation function convert_sma converts a storage mode attop, atbot, or sat

into a storage mode annotation, based on the representation information associated with a region
variable in a region environment:



topdec ::= λfunlab cc => e known function

| λfnlab cc => e unknown function
| topdec1 ; topdec2 sequence

ck ::= funjmp | funcall | fnjmp | fncall call kind

sma ::= attop_li | attop_lf | attop_fi | attop_ff storage mode
| atbot_li | atbot_lf | sat_ff | sat_ff annotation

a ::= sma e allocation
m ::= n | ∞ multiplicity
b ::= ρ : m region binder

c ::= d | nil constant
pat ::= c | :: x pattern
bop ::= + | - | < | . . . binary primitive operation

be ::= (e1, . . . , en) boxed record
| λlab [e1, . . . , en] closure for unknown function
| [e1, . . . , en]sclos closure for known functions

e ::= x value variable
| ρ region variable
| be a boxed expression
| c constant
| :: e list construction
| e1 bop e2 binary operation
| #n(e) record selection
| letrec flab = be a in e end function binding
| eck 〈e1, . . . , en〉 unknown function call
| labck 〈e1, . . . , en〉 〈a1, . . . , am〉 〈eclos〉 known function call
| letregion b in e end region binding
| let val 〈x1, . . . , xn〉 = e1 in e2 end value binding
| case e1 of pat => e2 | pat => e3 case construct
| 〈e1, . . . , en〉 unboxed record

Figure 8: The grammar for LiftExp. The calling convention cc is defined in Section 5.1. Allocation
points (a) are restricted to the forms sma ρ, sma x, and sma (#n(env)).



topdec ∈ TopDec e ∈ LiftExp
x, f, y, env ∈ LamVar lab ∈ Label

d ∈ Int ρ ∈ RegVar
cc ∈ CallConv xv ∈ Var = LamVar ∪ RegVar

Figure 9: The semantic objects used in LiftExp

λfunfoldl {clos=env , args=[f ], regargs=[r7, r8]} => λfn b [f , r8, env ] attop_ff r7

λfnfn b {clos=env , args=[b]} => λfn xs [b, #1(env), #3(env)] attop_ff #2(env)

λfnmain { } =>

letrec foldl foldl = [ ]sclos attop_li r1

in

foldlfuncall 〈sum〉 〈attop_lf r4 , atbot_lf r5 〉 〈foldl〉
end

Figure 10: The first three top-level functions in our running example program translated into
LiftExp. In the letrec binding we introduce both the label foldl and the variable foldl (holding
the empty shared closure). In the application, the first term foldl is the label and the shared closure
is accessed in the third bracket. Actually, the shared closure is empty so it should be omitted and
will be in the implementation. The closure record env for fn b is (fn b, f , r8, foldl).

λfnfn xs {clos=env , args=[xs]} =>

(case xs of

nil => #1(env)
| :: (v942 ) =>

let

val x = #0(v942 )
val xs’ = #1(v942 )

in

letregion r22 :4 in

(letregion r24 :4 in

(foldlfuncall 〈#2(env)〉 [atbot_lf r24, atbot_lf r22] 〈#3(env)〉)fncall
〈(#2(env)fncall 〈x〉)fncall 〈#1(env)〉〉

end (*r24*))fncall 〈xs’ 〉
end (*r22*)

end (*let*))

Figure 11: The main function fn xs. The label in the call to foldl is known at compile time and
is therefore not free in the function, however, the shared closure foldl is free in the function. The
closure record env is (fn xs, b, f , foldl).



convert_sma: RE × {atbot,attop,sat} × RegVar → SMA
convert_sma(re,sat,ρ) = sat_re(ρ)
convert_sma(re,atbot,ρ) = atbot_re(ρ)
convert_sma(re,attop,ρ) = attop_re(ρ)

When entries are added to a region environment, we shall make use of the auxiliary translation
function mult to generate the appropriate region environment entries for a particular region vari-
able:

mult: {f,l} × Mult → {ff,fi,lf,li}
mult(f,n) = ff

mult(f,∞) = fi

mult(l,n) = lf

mult(l,∞) = li

The function takes two arguments, a token (f or l), which specifies whether the region is letregion
bound or a formal region parameter, and a multiplicity. A region variable that appears free in a
function inherits the storage mode from the region environment in which the region variable is
defined at the function declaration.

6.2 Top-Level Declarations

The translation function LT translates the RegExp language into the LiftExp language using an
auxiliary translation function L:

L : RegExp → VE → FE → RE → LiftExp

To simplify the presentation, the translation LT makes use of two functions add_new_fn and
add_new_fun, which are used to collect all functions in a sequence at top level as described by
the grammar for top-level declarations (see Figure 8):

add_new_fn : Label × CallConv × LiftExp → {()}
add_new_fun : Label × CallConv × LiftExp → {()}

We write () for unit and {} for an empty calling convention. As a side effect, the functions update
a topdec list reference. The top-level translation function LT is defined as follows:

LT (e) = ( topdec := nil;
add_new_fn(”main”, {},L [[e]] {} {} {});
!topdec )

Here ”main” is the label used for the main function and e is the RegExp expression.

6.3 Variables and Constants

L [[x ]] ve fe re = ve(x )

L [[ρ]] ve fe re = ve(ρ)

L [[c]] ve fe re = c



6.4 Boxed Expressions

L [[(e1, . . . , en) sma ρ]] ve fe re =

let

val e′i = L [[ei]] ve fe re i = 1..n
val v = L [[ρ]] ve fe re
val sma′ = convert_sma(sma, re, ρ)

in

(e′1, . . . , e
′
n) sma′ v

end

L [[λ[f1,...,fm] 〈x1, . . . , xn〉 => e sma ρ]] ve fe re =

let

val lab = new_label(”anon”)
val cc = {clos = env , args = [x1, . . . , xn]}
val ve′ = {fi 7→ #i(env)}i=1..m ∪ {xi 7→ xi}i=1..n

val v = L [[ρ]] ve fe re
val e′ = L [[e]] ve′ fe re
val = add_new_fn(lab, cc, e′)
val sma′ = convert_sma(sma, re, ρ)

in

λlab [ve(f1), . . . , ve(fm)] sma′ v′

end

The auxiliary function new_label generates a new label distinct from other labels generated so
far.

6.5 Binary Operators, List Construction, and Record Selection

L [[e1 bop e2]] ve fe re =

let

val e′1 = L [[e1]] ve fe re
val e′2 = L [[e2]] ve fe re

in

e′1 bop e′2
end

L [[::e]] ve fe re = :: (L [[e]] ve fe re)

L [[#n(e)]] ve fe re = #n(L [[e]] ve fe re)

6.6 Recursive Function Bindings

L [[letrec f [y0,...,ym] 〈x1, . . . , xn〉 [ρ0 : m0, . . . , ρl : ml] sma ρ = e1 in e2 end]] ve fe re =

let

val lab = new_label(”f”)
val sma′ = convert_sma(sma, re, ρ)
val re′ = re + {ρ0 7→mult(f,m0), . . . , ρl 7→mult(f,ml)}
val v′ = L [[ρ]] ve fe re



val cc = {clos = env , args = [x1, . . . , xn], regargs = [ρ0, . . . , ρl]}
val ve′ = {f 7→ env} ∪ {yi 7→ #i(env)}i=0..m ∪ {xi 7→ xi}i=1..n ∪ {ρi 7→ ρi}i=1..l

val fe′ = fe + {f 7→ lab}
val e′1 = L [[e1]] ve

′ fe′ re′

val = add_new_fun(lab, cc, e′1)
in

letrec flab = [ve(y0), . . . , ve(ym)]sclos sma
′ v′

in

L [[e2]] (ve + {f 7→ f}) fe′ re
end

end

The function f is in scope in the body e1, so we map f into the closure variable env in ve′. Moreover,
we extend the function environment with information about the label associated with the variable
f , so that the label can be obtained at the functions call sites. We do not use fresh variables for
the arguments x1, . . . , xn and ρ0, . . . , ρl.

6.7 Function Applications

L [[eck 〈e1, . . . , en〉]] ve fe re =

let

val e′ = L [[e]] ve fe re
val e′i = L [[ei]] ve fe re i = 1..n

in

e′ck 〈e
′
1, . . . , e

′
n〉

end

L [[fck 〈e1, . . . , en〉 [sma0 ρ0, . . . , smal ρl]]] ve re fe =

let

val eρi
= L [[ρi]] ve fe re i = 0..l

val f lab = fe(f)
val e′i = L [[ei]] ve fe re i = 1..n
val sma′i = convert_sma(smai, re, ρi) i = 0..l

in

f labck 〈e
′
1, . . . , e

′
n〉 〈sma

′
0 eρ0

, . . . , sma′l eρl
〉 〈ve(f)〉

end

Notice that the label for f is obtained by looking in fe.

6.8 Letregion

L [[letregion ρ:m in e end]] ve fe re =

letregion ρ:m
in

L [[e]] (ve + {ρ 7→ ρ}) fe (re + {ρ 7→mult(l,m)})
end



6.9 Declaring Value Variables

L [[let val 〈x1, . . . , xn〉 = e1 in e2 end]] ve fe re =

let

val 〈x1, . . . , xn〉 = L [[e1]] ve fe re
in

L [[e2]] (ve + {xi 7→ xi}i=1..n) fe re
end

6.10 Unboxed Records

L [[〈e1, . . . , en〉]] ve fe re =

〈L [[e1]] ve fe re,. . .,L [[en]] ve fe re〉

6.11 Case

L [[case e of pat1 => e1 | pat2 => e2]] ve fe re =

let

fun pat_ve (c, ve) = ve
| pat_ve (:: x, ve) = ve + {x 7→ x}

in

case L [[e]] ve fe re of

pat1 => L [[e1]] (pat_ve(pat1,ve)) fe re
| pat2 => L [[e2]] (pat_ve(pat2,ve)) fe re

end

7 Compiling LiftExp Programs Into KAM Programs

LiftExp programs are compiled into programs for the Kit Abstract Machine (KAM), which is
presented in Section 3. Recall that the KAM is a stack based machine with four registers (env ,
acc, sp, pc), a stack, and a region heap.

The compilation function CT compiles LiftExp top-level expressions into KAM programs:

CT : TopDec → KAMProg

Here KAMProg denotes the set of KAM programs, ranged over by P . The compilation function
CT uses the auxiliary compilation function C:

C : LiftExp → CompEnv → Int → KAMBlock

Here KAMBlock, ranged over by B, denotes the set of possible sequences of KAM instructions. The
compilation function takes as argument a compiler environment (see Section 7.1) and an integer,
which denotes the stack pointer offset in the current functions activation record. The next few
sections define auxiliary functions used by the compilation function C.

7.1 Compiler Environments

A compiler environment ce maps lambda and region variables into how these variables are accessed
at runtime:

ce : (LamVar ∪ RegVar) → {reg_i(o), reg_f(o), stack(o), env(o), env}



We use CompEnv to denote the set of all possible compiler environments. The possible values in
the range of a compiler environment have the following meanings:

Environment value Description

reg_i(o) The region variable denotes an infinite region where the re-
gion descriptor is at offset o in the current activation frame.

reg_f(o) The region variable denotes a finite region where the region
itself is at offset o in the current activation frame.

stack(o) The variable is a local variable and present in the current
activation record with offset o.

env(o) The variable is free in the function and its associated value
is located in the environment register with offset o.

env The variable is bound to the environment register.

Given a variable x, a compiler environment ce, and the top of the stack relative to the start
of the current activation record sp, the auxiliary translation function access returns appropriate
code for accessing the variable x:

fun access(x, ce, sp) =

case ce(x) of

stack(o) ⇒ SelectStack(−sp+ o)
| env(o) ⇒ SelectEnv(o)
| reg_i(o) ⇒ StackAddrInfBit(−sp+ o)
| reg_f(o) ⇒ StackAddr(−sp+ o)
| env ⇒ EnvToAcc

7.2 Allocating in Regions

In this section we present an auxiliary compilation function block_alloc for allocating memory in
regions and storing content from the stack into the allocated memory. The concept of storage mode
annotations were introduced in Section 5.3. Storage mode annotations are categorized according
to the table in Figure 12.

When generating code for boxed expressions, code for allocating blocks of memory in regions
and for copying values into the blocks need be generated (see Section 7.5). The code returned
by alloc_block assumes that the accumulator acc holds a pointer to a region and that the stack
contains the values to be copied into the block. The function takes as argument a storage mode
annotation sma and the number n of words to allocate.

fun alloc_block(sma, n) =

case sma of

attop_li ⇒ BlockAlloc(n)
| attop_lf ⇒ Block(n)
| attop_ff ⇒ BlockAllocIfInf(n)
| attop_fi ⇒ BlockAlloc(n)
| sat_ff ⇒ BlockAllocSatInf(n)
| sat_ff ⇒ BlockAllocSatIfInf(n)
| atbot_li ⇒ BlockAllocAtbot(n)
| atbot_lf ⇒ Block(n)



sma Description

attop_li The region is letregion bound and infinite. Memory is allocated attop with
the KAM instruction Alloc.

attop_lf The region is letregion bound and finite so storage has already been set aside
on the stack.

attop_ff The region is an actual region argument to the current function or another
function and free in the current function. The region can either be finite
or infinite and the generated code must check the actual multiplicity before
allocating.

attop_fi The region is infinite and memory is allocated with the KAM instruction
Alloc. A formal region parameter to a region polymorphic function may
either be finite or infinite but in the case that the function stores more than
one time in the region (denoted by the last i in the annotation) then the region
is known to be infinite.

sat_ff The region is infinite. The generated code must check the storage mode bit
to see wheter or not the region should be reset before allocating in it.

sat_ff The region is either finite or infinite. The generated code must check the
multiplicity; if infinite then the storage mode must be tested and if this is
atbot then the region is reset before allocation. The test on multiplicity and
storage mode may be performed simultaneously.

atbot_li The region is letregion bound and infinite. The region is reset before memory
is allocated in the region.

atbot_lf The region is letregion bound and finite. Memory has already been allocated
on the stack and no resetting is necessary.

Figure 12: Categorization of storage mode annotations



sma Change in storage mode

attop_li No change is necessary because the region is letregion bound, thus the atbot
bit is not set.

attop_lf The region is finite and the atbot bit is therefore insignificant.

attop_ff The region may or may not be infinite so we have to check the multiplicity
and then clear the atbot bit if the multiplicity is infinite. Actually, we may
blindly clear the atbot bit no matter the multiplicity.

attop_fi The region is infinite and the atbot bit is cleared.

sat_ff The atbot bit is already set appropriately.

sat_ff The atbot bit is already set appropriately.

atbot_li The atbot bit is set.

atbot_lf The region is finite and the atbot bit is therefore insignificant.

Figure 13: Change in storage mode when an actual region is passed as argument to a region
polymorphic function

After executing the generated code, the accumulator contains a pointer to the block, allocated
either in the region heap or on the stack.

7.3 Setting Storage Modes

Storage modes are set when passing regions as arguments to letrec bound functions. Figure 13
specifies how storage bits are set according to storage mode annotations. Notice, that the atbot
bit is never set on letregion bound regions when they are created so we do not have to explicitly
clear the atbot bit for those regions.

The auxiliary compilation function set_sm assumes that the accumulator holds a pointer to a
region and afterwards the accumulator holds the same pointer with the storage mode set.

fun set_sm(sma) =

case sma of

attop_li ⇒ Nop

| attop_lf ⇒ Nop

| attop_ff ⇒ ClearAtbotBit

| attop_fi ⇒ ClearAtbotBit

| sat_ff ⇒ Nop

| sat_ff ⇒ Nop

| atbot_li ⇒ SetAtbotBit

| atbot_lf ⇒ Nop

In the following we show the function C, which compiles LiftExp expressions into sequences of
KAM instructions.

7.4 Variables and Constants

C [[x ]] ce sp = access(x , ce, sp)
C [[ρ]] ce sp = access(ρ, ce, sp)
C [[c]] ce sp = Immed(c)



7.5 Boxed Expressions

There are three kinds of boxed expressions: records, closures, and shared closures. Code generation
for records and shared closures are identical.

C [[(e1, . . . , en) sma e]] ce sp =

C [[e1]] ce sp ;

Push;
...
C [[en]] ce (sp+ n− 1) ;
Push;

C [[e]] ce (sp+ n) ;
alloc_block(sma, n)

C [[λlab [e1, . . . , en] sma e]] ce sp =

PushLbl(lab);
C [[e1]] ce (sp+ 1) ;
Push;
...
C [[en]] ce (sp+ n) ;
Push;

C [[e]] ce (sp+ n+ 1) ;
alloc_block(sma, n+ 1)

C [[[e1, . . . , en]sclos sma e]] ce sp =

C [[(e1, . . . , en) sma e]] ce sp

7.6 Binary Operators and List Construction

C [[e1 bop e2]] ce sp =

C [[e1]] ce sp ;

Push;

C [[e2]] ce (sp+ 1) ;
Bop

C [[:: e]] ce sp =

C [[e]] ce sp ;

Cons

7.7 Record Selection

C [[#n(e)]] ce sp =

C [[e]] ce sp ;

Select(n)

7.8 Declaration of Recursive Functions

C [[letrec flab = be a in e end]] ce sp =
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Figure 14: At left we have the stack before the application. At center we have the stack, env and
acc before the ApplyFnCall instruction. At right the stack, env and acc at entry to the called
function. The stack grows upwards. Three arguments are passed in the function call.

C [[be a]] ce sp ;

Push;

C [[e]] (ce+ {f 7→ stack(sp)}) (sp+ 1) ;
Pop

7.9 Function Applications

The LiftExp language features four kinds of applications: ordinary calls and tail calls for unknown
and known functions. Functions may pass any number of arguments.

Generally, the return address is stored on the stack together with the closure of the calling
function just below the arguments. The KAM features four function-call instructions, namely
ApplyFnCall, ApplyFnJmp, ApplyFunCall, and ApplyFunJmp, which, in turn, are explained below.

C [[efncall 〈e1, . . . , en〉]] ce sp =

let

val return_lbl = new_label(“return_lbl”)
in

PushLbl(return_lbl);
C [[e]] ce (sp+ 1) ;
Push;

C [[〈e1, . . . , en〉]] ce (sp+ 2) ;
ApplyFnCall(n);
Label(return_lbl)

end

Figure 14 shows the stack before the ApplyFnCall instruction and after the instruction (i.e., at
entry to the called function). All arguments are passed on the stack. The closure for the calling
function is also stored on the stack so that it can be restored at return from the function.
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Figure 15: At left we have the stack (with sp = 4) before the application. At center we have the
stack, env and acc before the ApplyFnJmp instruction. At right the stack, env and acc at entry
to the called function. The stack grows upwards. Three arguments are passed in the function
call. The values a1 and a2 are the original arguments passed to the function that we are leaving.
The values v1 and v2 are let-bound variables that have not been popped from the stack yet; the
ApplyFnJmp instruction must therefore also pop v1 and v2.

C [[efnjmp 〈e1, . . . , en〉]] ce sp =

C [[e]] ce sp ;

Push;

C [[〈e1, . . . , en〉]] ce (sp+ 1) ;
ApplyFnJmp(n,sp)

Figure 15 shows the stack before the application, before the ApplyFnJmp instruction and after (i.e.,
at entry to the called function). There are two arguments (a1 and a2) passed to the current function
in the example. Allthough the application is in tail position, it may happen that local variables are
still pushed on the stack (v1 and v2), which must also be popped by the ApplyFnJmp instruction.

A known function call is similar to an unknown function call except that both ordinary and
region arguments are passed on the stack. We set the storage mode on region pointers, as described
in Section 7.3, before they are pushed on the stack. Figure 16 shows the stack, environment and
accumulator at various stages in a call with four region arguments and three ordinary arguments.

C [[labfuncall 〈e1, . . . , en〉 〈sma1e
′
1, . . . , smame

′
m〉 〈eclos〉]] ce sp =

let

val return_lbl = new_label(“return_lbl”)
in

PushLbl(return_lbl);
C [[eclos]] ce (sp+ 1) ;
Push;

C [[e′1]] ce (sp+ 2) ;
set_sm(sma1);
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Figure 16: At left we have the stack before the application. At center we have the stack, env and
acc before the ApplyFunCall instruction. At right the stack, env and acc at entry to the called
function. The stack grows upwards. Three ordinary arguments and four region arguments are
passed to the function.

Push;
...
C [[e′m]] ce (sp+m+ 1) ;
set_sm(smam);
Push;

C [[〈e1, . . . , en〉]] ce (sp+m+ 2) ;
ApplyFunCall(lab,n+m);
Label(return_lbl)

end

A tail call to a known function may pass region arguments as well as ordinary arguments.
For certain kinds of tail calls it is possible to figure out that some region argument is already
possitioned correctly on the stack, making it possible to avoid an update to the stack. The present
implementation makes no attempt at figuring this out; experiments with the x86 backend showed
that the extra complexity did not help much. For more information on this possible optimization,
see [TBE+98, Chapter 14].

C [[labfunjmp 〈e1, . . . , en〉 〈sma1 e′1, . . . , smam e′m〉 〈eclos〉]] ce sp =

C [[eclos]] ce sp ;

Push;

C [[e′1]] ce (sp+ 1) ;
set_sm(sma1);
Push;
...
C [[e′m]] ce (sp+m) ;
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Figure 17: At left we have the stack before the application where e′1, . . . , e
′
l are ordinary arguments

to the current function and ρ′1, . . . , ρ
′
j are region arguments to the current function. At center we

have the stack, env, and acc before the ApplyFunJmp instruction, where e1, . . . , en are the ordinary
arguments in the call. The region arguments ρ′1, . . . , ρ

′
m to pass in the call are positioned below the

ordinary arguments on the stack. At right the stack, env, and acc at entry to the called function.
The values v1 and v2 are let-bound and are popped by the ApplyFunJmp instruction before jumping.
The stack grows upwards.

set_sm(smam);
Push;

C [[〈e1, . . . , en〉]] ce (sp+m+ 1) ;
ApplyFunJmp(lab,n+m,sp)

Figure 17 shows the stack, environment, and accumulator at various stages in the call.

7.10 Letregion

C [[letregion ρ : n in e end]] ce sp =

LetregionFin(n);
C [[e]] (ce+{ρ 7→ reg_f(sp)}) (sp+ n) ;
Pop(n)

C [[letregion ρ :∞ in e end]] ce sp =

LetregionInf;



C [[e]] (ce+{ρ 7→ reg_i(sp)}) (sp+ sizerDesc) ;
EndregionInf

7.11 Declaring Variables

C [[let val 〈x1, . . . , xn〉 = e1 in e2 end]] ce sp =

C [[e1]] ce sp ;

Push;

C [[e2]] (ce+ {x1 7→ stack(sp), . . . , xn 7→ stack(sp+ n− 1)}) (sp+ n) ;
Pop(n)

C [[〈e1, . . . , en〉]] ce sp =

C [[e1]] ce sp ;

Push;
...
C [[en−1]] ce (sp+ n− 2) ;
Push;

C [[en]] ce (sp+ n− 1)

7.12 Case

C [[case e of pat1 => e1 | pat2 => e2]] ce sp =

let

fun comp_sel(pat ,e) =

case pat of

c ⇒ C [[e]] ce sp
|::x ⇒ Decons;

Push;

C [[e]] (ce+ {x 7→ stack(sp)}) (sp+ 1) ;
Pop

fun comp_match(pat ,true_lbl) =

case pat of

c ⇒ IfEq(c,true_lbl)
|::x ⇒ IfCons(true_lbl)

val true_lbl = new_label(“true_lbl”)
val join_lbl = new_label(“join_lbl”)

in

C [[e]] ce sp ;

comp_match(pat1,true_lbl);
comp_sel(pat2,e2);
Jmp(join_lbl);
Label(true_lbl)
comp_sel(pat1,e1);
Label(join_lbl)

end
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Figure 18: At left we have the stack, env, and acc before the Return instruction. Four region
arguments, three ordinary arguments have been passed to the current function and three values are
returned. At right we have the stack, env, and acc after the Return instruction. The stack grows
upwards.

7.13 Top-Level Declarations

The Return instruction removes arguments passed to the current function and replaces return
values on the stack. Figure 18 shows the stack before and after a Return instruction. Arguments
on the stack are ordinary arguments, region arguments, or both.

CT [[λfunlab cc => e]] =

fun lab is

C [[e]] ({ρ1 7→ stack(0), . . . , ρl 7→ stack(l − 1),
x1 7→ stack(l), . . . , xn 7→ stack(l + n− 1),
env 7→ env}) (l + n) ;

Return(l + n,no_returns(e))

CT [[λfnlab cc => e]] =

fun lab is

C [[e]] ({x1 7→ stack(0), . . . , xn 7→ stack(n− 1), env 7→ env}) n ;

Return(n,no_returns(e))

where cc is on the following form: {clos=env , args=[x1, . . . , xn], regargs=[ρ1, . . . , ρl]}). The func-
tion no_returns returns the number of values that e evaluates to.

7.14 Example Program

The result of translating the example program shown in Figures 10 and 11 into KAM code is
shown in Figure 19. The figure does not show the main function. There are many posible peephole



optimizations that can be applied to the generated code, including eliminations of jumps to jumps
and combination of stack- and push-instructions.

8 Extensions to the KAM

Besides the KAM instructions mentioned in the previous sections, an implementation of the KAM
for compiling Standard ML must provide instructions for managing exceptions and various primi-
tives.

Exceptions are implemented using a register to point to the current exception handler on the
stack. Each exception handler on the stack is associated with a closure, which represents the actual
handler, and exception handlers on the stack are linked, so that a previous exception handler can
be restored upon raising an exception. The runtime system uses C’s longjmp and setjmp features
to make it possible to raise exceptions from primitives written in C. Consult [EH95] for more
information about the implementation of the exception mechanism.

9 SMLserver

SMLserver is a Web server platform that allows dynamic Web pages written in Standard ML
to be served efficiently via bytecode interpretation within the Web server. SMLserver builds on
AOLserver, which is a Web server with a rich set of utility features including URL filtering, virtual
hosting, script scheduling, and easy connectivity to a variety of database systems. SMLserver thus
has easy access to all of these features.

There are at least two advantages of using Standard ML for Web applications:

1. Standard ML is a type safe language, which means that more bugs are discovered early in
the development process.

2. The rich set of language features, including polymorphism, higher order functions, and the
Standard ML modules language, provides means for increasing source-code reusability.

More information about SMLserver is available from the SMLserver tutorial [EH02] and from
the SMLserver Web page http://www.smlserver.org.

10 Conclusion

In this document we have presented the Kit Abstract Machine (KAM), a region-based abstract
machine, which serves as a target for the region-based Standard ML compiler, the ML Kit. The
document also presents a translation from an intermediate region-explicit language RegExp into
the language LiftExp, in which closures are made explicit and functions are hoisted to top level.
Finally, the document presents how LiftExp programs are compiled into code for the KAM.

The KAM is available as a target for the ML Kit compiler and it is an essential part of the
SMLserver project, which aims at building an efficient multi-threaded Web server platform for the
Standard ML programming language [EH02].
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fun foldl is
PushLbl(fn b);
SelectStack(-2); (*f*)

Push;

SelectStack(-3); (*r8*)

Push;

EnvToAcc; (*env*)

Push;

SelectStack(-5);
BlockAllocIfInf(4);
Return(3,1);

fn fn b is

PushLbl(fn xs);
SelectStack(-2); (*b*)

Push;

SelectEnv(1);
Push;

SelectEnv(3);
Push;

SelectEnv(2);
BlockAllocIfInf(4);
Return(1,1);

fn fn xs is (*xs->s(0)*)

SelectStack(-1); (*xs*)

IfEq(nil,ltrue);
Decons;

Push; (*v942*)

SelectStack(-1); (*v942*)

Select(0);
Push; (*x*)

SelectStack(-2); (*v942*)

Select(1);
Push; (*xs’*)

LetregionFin(4); (*r22*)

PushLbl(lreturn1) ; (*[fncall 1*)

LetregionFin(4); (*r24*)

PushLbl(lreturn2) ; (*[fncall 2*)

LetregionFin(2); (*r25*)

PushLbl(lreturn3) ; (*[funcall*)

SelectEnv(3);

Push; (*clos_funcall*)

StackAddr(-9); (*r24*)

Nop; atbot_lf

Push; atbot_lf(*r24*)

StackAddr(-15); (*r22*)

Nop; atbot_lf

Push; atbot_lf(*r22*)

SelectEnv(2); (*arg funcall*)

ApplyFunCall(foldl ,3);
Label(lreturn3); (*funcall]*)

Pop(2); (*r25*)

Push; (*clos fncall 2*)

PushLbl(lreturn4) ; (*[fncall 4*)

PushLbl(lreturn5) ; (*[fncall 5*)

SelectEnv(2);
Push; (*clos fncall 5*)

SelectStack(-10); (*x*)

ApplyFnCall(1);
Label(lreturn5); (*fncall 5]*)

Push; (*clos fncall 4*)

SelectEnv(1); (*arg fn call4*)

ApplyFnCall(1);
Label(lreturn4); (*fncall 4]*)

ApplyFnCall(1);
Label(lreturn2); (*fncall 2]*)

Pop(4); (*r24*)

Push; (*clos fncall 1*)

SelectStack(-5); (*xs’*)

ApplyFnCall(1);
Label(lreturn1); (*fncall 1]*)

Pop(4); (*r22*)

Pop; (*x*)

Pop; (*xs’*)

Pop; (*v942*)

Jmp(ljoin);
Label(ltrue);

SelectEnv(1);
Label(ljoin);

Return(1,1);

Figure 19: The functions foldl , fn b and fn xs compiled into KAM code. Comments are added to
the program in the style of Standard ML.
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