
Garbage-Collection Safety for Region-Based
Type-Polymorphic Programs

Martin Elsman

Department of Computer Science

University of Copenhagen

Copenhagen, Denmark

mael@di.ku.dk

Abstract
Region inference offers a mechanism to reduce (and some-

times entirely remove) the need for reference-tracing garbage

collection by inferring where to insert allocation and deal-

location instructions in a program at compile time. When

the mechanism is combined with techniques for reference-

tracing garbage collection, which is helpful in general to

support programs with very dynamic memory behaviours, it

turns out that region-inference is complementary to adding

generations to a reference-tracing collector. However, region-

inference and the associated region-representation analyses

that make such a memory management strategy perform

well in practice are complex, both from a theoretical point-

of-view and from an implementation point-of-view.

In this paper, we demonstrate a soundness problem with

existing theoretical developments, which have to do with en-

suring that, even for higher-order polymorphic programs, no

dangling-pointers appear during a reference-tracing collec-

tion. This problem has materialised as a practical soundness

problem in a real implementation based on region infer-

ence. As a solution, we present a modified, yet simple, region

type-system that captures garbage-collection effects, even

for polymorphic higher-order code, and outline how region

inference and region-representation analyses are adapted to

the new type system. The new type system allows for associ-

ating simpler region type-schemes with functions, compared

to original work, makes it possible to combine region-based

memory management with partly tag-free reference-tracing

(and generational) garbage-collection, and repairs previously

derived work that is based on the erroneous published re-

sults.

CCS Concepts: • Software and its engineering→ Func-
tional languages; Runtime environments.

Keywords: region-inference, garbage-collection, Standard
ML

ACM Reference Format:
Martin Elsman. 2022. Garbage-Collection Safety for Region-Based

Type-Polymorphic Programs. In DIKU Technical Report Series (DIKU
Techreport 2022). DIKU, DK-2100 Copenhagen, Denmark, 20 pages.

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark
2022.

1 Introduction
Region-based memory management allows programmers

to associate life-times of objects with so-called regions and

to reason about how and when such regions are allocated

and deallocated. Region-based memory management, as it

is implemented for instance in Rust [3], can be a valuable

tool for constructing certain kinds of critical systems, such

as real-time embedded systems [37]. Region inference differs

from explicit region-based memory management by taking

a non-annotated program as input and producing a region-

annotated program, including directives for allocating and

deallocating regions [43]. The result is a programming para-

digm where programmers can learn to write region-friendly

code (by following certain patterns [44]) to obtain good space

and time performance for critical parts of the program.

The region-based memory management scheme that we

consider here is based on the stack discipline. Whenever e
is some expression, region inference may decide to replace

e with the term letregion ρ in e ′, where e ′ is the result

of transforming the expression e , which includes annotat-

ing allocating expressions with particular region variables

(e.g., ρ) specifying the region each value should be stored

in. The semantics of the letregion term is first to allocate a

region (initially an empty list of pages) on the region stack,

bind the region to the region variable ρ, evaluate e ′, and,
finally, deallocate the region bound to ρ (and its pages). The

region type system allows regions to be passed to functions

at run time (i.e., functions can be region-polymorphic) and to

be captured in closures. The soundness of region inference

ensures that a region is not deallocated as long as a value

within it may be used by the remainder of the computation.

To remedy the problem that region inference does not

always capture precisely the lifetime properties of objects,

previous work has augmented the static inference scheme

with more dynamic lifetime-based reference-tracing copy-

ing garbage collectors [16, 17, 24]. For such integrations of

region-based memory management and reference-tracing

garbage collection, care must be taken to rule out the possi-

bility of deallocating regions with incoming pointers from

live objects.

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

It turns out, however, that region inference (and the ac-

companying region typing rules) allows for so-called dan-
gling pointers, which are pointers to objects that region in-

ference has determined will not be needed by the remainder

of the computation, yet are captured in objects (e.g., in clo-

sures) that escape a letregion construct and are live from

a reference-tracing point-of-view.

Previous work attempt to rule out the possibility of dan-

gling pointers by adjusting the region typing rules (and re-

gion inference) in such a way that the type of an object will

mention all regions that the object may live in [13] (by en-

larging the latent effect sets of certain function types). As

a consequence, such an adjustment will capture the effect

of a reference-tracing garbage collection appearing when

control enters a function, for instance.

Unfortunately, it turns out that previous attempts at ruling

out dangling pointers fail for certain programs that involve

a combination of higher-order dead values and type poly-

morphism. From a theoretical point-of-view, the problem is

that the region-typing rules, which form the basis of region

inference, are not closed under type substitution, which is

erroneously claimed by previous work [13, 17]. Moreover, as

we shall see, this problem is not straightforward to overcome.

In practice, the erroneous theoretical results are exposed

through the MLKit Standard ML compiler [44], which is a

full Standard ML compiler that combines region inference

and reference-tracing garbage collection. The MLKit com-

piles programs to efficient native machine code for Linux

and macOS [14] and implements a number of techniques

for refining the representations of regions [6, 43], including

dividing regions into stack allocated (bounded) regions (also

called finite regions) and heap allocated regions (also called

infinite regions), which are the regions that are subject to

reference-tracing garbage collections. As we shall see, based

on the theoretical insights described above, it is possible to

construct programs that fail during a reference-tracing col-

lection due to the presence of dangling pointers at runtime.

Fortunately, it is possible to adjust the region type sys-

tem to mitigate the problem and provide guarantees, also

for higher-order type-polymorphic programs, that dangling

pointers do not appear at runtime.

The contributions of this paper are the following:

1. We identify a safety problem with existing techniques

for abandoning dangling-pointers at runtime, which

serves as an assumption for combining region-inference

with reference-tracing garbage collection.

2. We present a non-trivial modification to an existing

region-based type system that rules out dangling point-

ers and allows for combining region-based memory

management with reference-tracing (and even genera-

tional) garbage collection.

3. We describe how the modified type system affects re-

gion inference and the region-representation analyses

that form the basis for a mature practical compiler

infrastructure based on region inference.

4. We demonstrate that, in practice, the necessary modi-

fications have little effect on performance and, in prac-

tice, affect only a small set of functions.

The paper is organised as follows. In the following section,

we first give an informal example demonstrating a program

for which dangling pointers will occur at runtime unless the

region typing rules that form the basis of region inference

are adjusted beyond previous suggestions. In this section, we

also, informally, demonstrate how we may adjust the region

typing rules further to completely eliminate the presence of

dangling pointers.

In Section 3, we present a simplified, but formal, region

type system for a language that serves as a target language

for region inference. We present a number of properties of

the type system, including region type soundness and the

property that no dangling pointers are introduced during

evaluation. In Section 4, we describe various aspects of the

implementation, including how region inference is imple-

mented for the system. We also give a number of examples

demonstrating some non-trivial aspects of the system. In

Section 5, we present a number of experimental results and

evaluate the work. In Section 6, we describe related work,

and in Section 7, we conclude.

2 The Problem
We now demonstrate the unsoundness problem that may oc-

cur when reference-tracing garbage collection is combined

with higher-order functions and type-polymorphism. We

present the problem in the context of a slightly modified

region-based type system, compared to the original Tofte-

Talpin region-type system, but emphasize that the unsound-

ness can be demonstrated also for the original system even

if the typing rules are modified as described in [45, page 50]

and [13], which aim at abandoning dangling pointers (but

fail).

Consider the higher-order function for function composi-

tion, which has the following ML type-scheme:

val o : (γ → β) × (α → γ) → α → β

Here α , β , and γ are (implicitly quantified) type variables

and o is an infix function that takes a pair of two functions

as argument and returns a function as the result.

The region annotated version of the function o has the

following region (and effect) type-scheme:

∀ϵϵ0ϵ1ϵ2ρ0ρ1ρ2ρ3αβγ . (1)

((γ
ϵ2 .∅

−−−−−→ β, ρ2) × (α
ϵ1 .∅

−−−−−→γ , ρ1), ρ0)

ϵ0 . {ρ0,ρ3 }
−−−−−−−−−−→ (α

ϵ . {ϵ1,ϵ2,ρ1,ρ2 }
−−−−−−−−−−−−−→ β, ρ3)

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

fun run () : unit =

let val h : unit -> unit =

(op o)

let val x = "oh" ^ "no"

in (fn x => (), fn () => x)

end

val _ = work () (* trigger gc *)

in h ()

end

Figure 1. Problematic source program involving higher-

order functions, type-polymorphism, and dead values.

Here ϵ , ϵ0, ϵ1, and ϵ2 are effect variables and ρ0, ρ1, ρ2, and ρ3

are region variables. We see that function type constructors

are annotated with so-called arrow effects, each of which is

a set of atomic effects (effect variables and region variables)

identified by an effect variable.
1
Moreover, type constructors

for products (×) and functions are annotated with region vari-

ables that indicate in which region a particular constructed

value resides. The arrow effect ϵ0.{ρ0, ρ3} expresses that

when the function o is applied to a pair of functions, the pair,
which resides in ρ0 is deconstructed and a new closure is

stored in region ρ3. The arrow effect ϵ .{ϵ1, ϵ2, ρ1, ρ2}, which

appears on the arrow of the type of the resulting function, ex-

presses that, when the function is applied, the two argument

functions are accessed (ρ2, ρ1) and evaluated (ϵ2, ϵ1).

When a function such as o is applied, a particular instan-

tiation of the function’s type-scheme is described by a par-

ticular substitution that maps generic effect variables to ar-

row effects, generic region variables to region variables, and

generic type variables to region-annotated types.

Consider now the problematic function run in Figure 1,

which first creates a function h, thereby capturing a dead

value in a closure, calls a function work (for the sake of

triggering a reference-tracing collection), and finally calls

the function h. Notice that the argument to the function o
evaluates to a pair of functions for which the second function

returns a pointer to an already allocated value ("ohno") and

the first function will silently discard its argument.

Next, consider the region-annotated version of the func-

tion run, given in Figure 2(a). We see that region inference

has determined that the closure bound to h will reside in the

region ρ3 and that the value bound to x will reside in the

region ρ, which is deallocated after the function h is con-

structed.
2
The effect is that when the function work is called,

1
As described in details later, allowing arrow effects to be identified by

effect variables (so-called effect-handles) enables the possibility that effects

may grow by applying effect substitutions (which map effect variables to

arrow effects).

2
Notice that string concatenation (^) takes, besides the two argument

strings, the region (ρ) into which the result is allocated.

which may perhaps trigger a reference-tracing collection,

the value bound to h, which is live (and therefore part of

the garbage-collection root set), will contain a pointer to an

object that no longer exists.

Whereas the appearance of such dangling pointers is per-

fectly ok for a region-based memory management scheme

that does not integrate with reference-tracing garbage col-

lection (as long as the program itself does not dereference

dangling pointers), a reference-tracing garbage collector will

stumble over dangling pointers.

An alternative region-annotated version of the program

appears in Figure 2(b). This region-annotated version of the

program does not introduce dangling pointers at runtime as

the region ρ live at least as long as the function h, which is

enforced by ensuring that the type of the function hmentions

the region ρ (in the arrow effect of the function type).

We now describe, informally, the mechanism that enforces

region inference to assign the type unit
ϵ . {ρ1,ρ2,ρ }

−−−−−−−−−−−−→ unit

to the function h. First, notice that the type of h is the result

type of an instance of the type scheme for the function o and
that we must somehow capture, in the type scheme for o,
that the type instance for the type variable γ specifies values

that live in the region ρ. We can capture this property by

giving o the following type scheme:

∀ϵϵ0ϵ1ϵ2ϵ
′ρ0ρ1ρ2ρ3αβ(γ : ϵ ′.∅). (2)

((γ
ϵ2 .∅

−−−−−→ β, ρ2) × (α
ϵ1 .∅

−−−−−→γ , ρ1), ρ0)

ϵ0 . {ρ0,ρ3 }
−−−−−−−−−−→ (α

ϵ . {ϵ1,ϵ2,ϵ ′,ρ1,ρ2 }
−−−−−−−−−−−−−−−→ β, ρ3)

Compared to (1), the modified type scheme expresses a re-

lationship between the type variable γ , through the type
variable descriptor γ : ϵ ′.∅, and the effect of the resulting

function, which can be used to establish that regions appear-

ing in the type of the instantiated type for γ must appear in

the effect identified by the effect variable ϵ ′. In the theoret-

ical development presented in the following sections, this

establishment will be implemented as part of the instance-of

relation between region type-schemes and region-annotated

types. Moreover, the typing rule for functions will ensure

that type variables that appear in the type of a free vari-

able occurring in the body of the function are associated

with effect variables that are added to the arrow effect of the

function type.

An alternative sound type scheme for o is the following:

∀ϵϵ0ϵ1ϵ2ρ0ρ1ρ2ρ3αβ(γ : ϵ .{ϵ1, ϵ2, ρ1, ρ2}). (3)

((γ
ϵ2 .∅

−−−−−→ β, ρ2) × (α
ϵ1 .∅

−−−−−→γ , ρ1), ρ0)

ϵ0 . {ρ0,ρ3 }
−−−−−−−−−−→ (α

ϵ . {ϵ1,ϵ2,ρ1,ρ2 }
−−−−−−−−−−−−−→ β, ρ3)

Compared to (2), the alternative type scheme identifies the

arrow effects associated with the result function type and

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

fun run () : unit =

letregion ρ1,ρ2,ρ3 in

let val h : (unit
ϵ . {ρ1,ρ2 }

−−−−−−−−−−→ unit , ρ3) =

letregion ρ,ρ0 in

(op o [ρ3])

let val x = op ^ [ρ] ("oh","no")

in (fn at ρ1 x => (),

fn at ρ2 () => x) at ρ0

end

end

val _ = work () (* trigger gc *)

in h ()

end

end

(a)

fun run () : unit =

letregion ρ,ρ1,ρ2,ρ3 in

let val h : (unit
ϵ . {ρ1,ρ2,ρ }

−−−−−−−−−−−−→ unit , ρ3) =

letregion ρ0 in

(op o [ρ3])

let val x = op ^ [ρ] ("oh","no")

in (fn at ρ1 x => (),

fn at ρ2 () => x) at ρ0

end

end

val _ = work () (* trigger gc *)

in h ()

end

end

(b)

Figure 2. An unsound region-annotated program (a) and an alternative sound region-annotated program (b).

the type variable γ , which is fine for the function o. Such an

identification, which is perfectly sound, can be problematic

(i.e., cause larger live ranges of regions), however, for type

schemes with multiple type variables occurring free in the

types of free identifiers of a function. On the positive side,

however, the alternative type scheme can be expressed with-

out introducing new secondary effect variables,
3
which can

be problematic for region inference.

Both of the above type schemes are sound candidates

for providing a type scheme for the composition function

o. And indeed, both type schemes are accepted by the GC-

safe region type system that we present in the next section.

Distinguishing between the type system and the inference

algorithm is vital here as it provides us with important im-

plementation flexibility. We will return to the details of the

inference algorithm and implementation choices in Section 4.

3 A GC-Safe Region Type System
In this section, we present a type system that provides us

with the necessary guarantees for integrating region infer-

ence and reference-tracing garbage collection. Compared to

the Tofte-Talpin type system [46], the type system that we

present ensures that no dangling pointers are introduced dur-

ing evaluation even for programs that involve higher-order

type-polymorphic functions.

In the remainder of this section, we present a formal treat-

ment for a small ML-like intermediate language extended

with region annotations.

3
A secondary effect variable is an effect variable that does not appear

syntactically as a handle on an arrow type constructor anywhere in the

type-annotated version of the program.

3.1 Regions and Effects
We assume a denumerably infinite set of program variables,
ranged over by x and f . We also assume a denumerably infi-

nite set of region variables, ranged over by ρ. Moreover, we

assume a denumerably infinite set of effect variables, ranged
over by ϵ . An atomic effect, ranged over by η, is either a re-
gion variable or an effect variable, and an effect, ranged over

by φ, is a set of atomic effects. An arrow effect, written ϵ .φ,
and ranged over by ν , is a pair of an effect variable and an

effect. Finally, we assume a denumerably infinite set of type
variables, ranged over by α .

A type variable context, ranged over by Ω (or ∆), is a finite
map from type variables to arrow effects. WhenM andM ′

are two finite maps, we write M + M ′
to denote the map

with domain dom(M) ∪ dom(M ′) and values (M +M ′)(x) =
M ′(x), if x ∈ dom(M ′) and M(x), otherwise.

For simplicity, we do not distinguish between put- and
get-effects in the formal treatment of effects. However, for

reasons that we shall make clear later, function types are

annotated with arrow effects and not only with effects.

3.2 Types and Type Schemes
The grammars for types (τ), type and places (µ), type schemes
(σ), and type schemes and places (π) are as follows:

µ ::= (τ , ρ) | α | int τ ::= µ1 × µ2 | µ1

ϵ .φ
−−−−→ µ2

σ ::= ∀®ρ®ϵ .σ | ∀∆.τ π ::= (σ , ρ) | µ

For type schemes of the form ∀®ρ®ϵ .σ , the region variables

®ρ and the effect variables ®ϵ are considered bound in σ . More-

over, in type schemes of the form ∀∆.τ , the type variables in
dom(∆) are considered bound in τ . Type schemes are con-

sidered identical up to renaming of bound variables.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

Following the usual definition of bound variables, we de-

fine, for any kind of object o, the free region variables and the
free region and effect variables of o, written frv(o) and frev(o),
respectively. We write fv(o) to denote the free type, region,
and effect variables of o.

A type and place µ (or type τ) is well-formed with respect

to a type variable context Ω, if the sentence Ω ⊢ µ (or Ω ⊢ τ)
can be derived from the following rules:

Well-formed types Ω ⊢ µ

α ∈ dom(Ω)

Ω ⊢ α Ω ⊢ int

Ω ⊢ µ1 Ω ⊢ µ2

Ω ⊢ (µ1 × µ2, ρ)

Ω ⊢ µ1 Ω ⊢ µ2

Ω ⊢ (µ1

ϵ .φ
−−−−→ µ2, ρ)

Further, a type scheme and place π (or type scheme σ) is
well-formed with respect to a type variable context Ω, if the
sentence Ω ⊢ π (or Ω ⊢ σ) can be derived from the following

rules:

Well-formed type schemes Ω ⊢ π

Ω ⊢ (σ , ρ)

Ω ⊢ (∀®ρ®ϵ .σ , ρ)

Ω + ∆ ⊢ (τ , ρ) dom(∆) ∩ dom(Ω) = ∅

Ω ⊢ (∀∆.τ , ρ)

Before we define the notion of substitution, we define a

notion of type containment, which expresses that a given

type τ (and place µ) is contained in an effect φ, under the
assumption of a type variable context Ω. The relation is

written Ω ⊢ µ : φ and is defined according to the following

rules:

Type containment Ω ⊢ µ : φ

Ω ⊢ µ1 : φ Ω ⊢ µ2 : φ ρ ∈ φ

Ω ⊢ (µ1 × µ2, ρ) : φ

Ω ⊢ µ1 : φ Ω ⊢ µ2 : φ φ0 ⊆ φ {ρ, ϵ} ⊆ φ

Ω ⊢ (µ1

ϵ .φ0

−−−−−→ µ2, ρ) : φ

Ω ⊢ int : φ

frev(Ω(α)) ⊆ φ

Ω ⊢ α : φ

Containment is extended to type schemes as follows:

Type scheme containment Ω ⊢ π : φ

Ω ⊢ σ : φ
ρ ∈ φ { ®ρ®ϵ} ∩ frev(Ω, ρ) = ∅

Ω ⊢ (∀®ρ®ϵ .σ , ρ) : φ \ { ®ρ®ϵ}

Ω + ∆ ⊢ (τ , ρ) : φ dom(∆) ∩ dom(Ω) = ∅

Ω ⊢ (∀∆.τ , ρ) : φ

Proposition 1 (Containment Implies Well-formedness). As-
sume o is one of µ or π . If Ω ⊢ o : φ then Ω ⊢ o.

Proof. By simple induction over the structure of o. □

Both well-formedness and containability features con-

text extensibility properties. Assume o is one of µ or π and

dom(Ω) ∩ dom(∆) = ∅. If Ω ⊢ o : φ then Ω + ∆ ⊢ o : φ.
Moreover, if Ω ⊢ o then Ω + ∆ ⊢ o.

It is also straightforward to demonstrate an effect extensi-

bility property for type containment stating that, when o is
one of µ or π , if Ω ⊢ o : φ and φ ⊆ φ ′

then Ω ⊢ o : φ ′
.

Finally, the following effect containment property holds:

Proposition 2 (Containment). Assume o is one of µ or π . If
Ω ⊢ o : φ then frev(o) ⊆ φ.

Proof. By simple induction over the structure of o. □

3.3 Substitutions
A substitution (S) is a triple (S t, Sr, Se), where S t

is a type
substitution, a finite map from type variables to type and

places, Sr
is a region substitution, a finite map from region

variables to region variables, and Se
is an effect substitution,

a finite map from effect variables to arrow effects. The effect

of applying a substitution to a particular object is to carry

out the three substitutions simultaneously to the three kinds

of variables in the object (possibly by renaming of bound

variables within the object to avoid capture) and acting as

the identity outside of its domain. For effect sets and arrow

effects, substitution is defined as follows [42], assuming S =
(S t, Sr, Se):

S(φ) = {Sr(ρ) | ρ ∈ φ} ∪
{η | ∃ϵ .ϵ ∈ φ ∧ η ∈ frev(Se(ϵ))}

S(ϵ .φ) = ϵ ′.(φ ′ ∪ S(φ)), where Se(ϵ) = ϵ ′.φ ′

Notice in particular, that when a substitution is applied to

an effect φ, the result is also an effect.

Applying a substitution S to a type variable context ∆ is

defined only if dom(S) ∩ dom(∆) = ∅, in which case it is

defined as follows:

S({α1 : ν1, · · · ,αn : νn}) = {α1 : S(ν1), · · · ,αn : S(νn)}

For type schemes and for type-schemes and places, substi-

tution is defined as follows, assuming that bound variables

in type schemes have been renamed to avoid capture:

S(∀®ρ®ϵ .σ) = ∀®ρ®ϵ .S(σ)
S(∀∆.τ) = ∀S(∆).S(τ)
S(σ , ρ) = (S(σ), S(ρ))

It turns out that substitution is a monotone operation with

respect to effects:

Proposition 3 (Substitution Effect Monotonicity). If φ ⊆ φ ′

then S(φ) ⊆ S(φ ′), for any substitution S and effects φ and φ ′.

Proof. Follows immediately from the definition of substitu-

tion on effects. □

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

Another property that holds, which we shall call the arrow-
effect-substitution interchange property, is that for any sub-

stitution S and arrow effect ϵ .φ, we have frev(S(ϵ .φ)) =
S({ϵ} ∪ φ).

If S = (S t, Sr, Se), we call S a region-effect substitution if

dom(S t) = ∅. Type containment is closed under region-effect

substitutions:

Proposition 4 (Region-Effect Substitution Closedness). As-
sume o is one of µ or π . If Ω ⊢ o : φ and S is a region-effect
substitution then S(Ω) ⊢ S(o) : S(φ).

Proof. Straightforward induction over the structure of o. □

For type containment to be closed under type substitu-

tions, a substitution coverage requirement is needed. A type

substitution S t
is covered by a type variable contextΩ, through

another type variable context ∆, written Ω ⊢ S t
: ∆, if

dom(S t) = dom(∆) and, for all α ∈ dom(S t), we have Ω ⊢

S t(α) : frev(∆(α)).
In connection with the notion of instantiation, which we

shall define shortly, it is the notion of substitution coverage

that ensures that the arrow effect associated with a bound

type variable captures the free region and effect variables of

the types instantiated for the type variable (which also holds

transitively via the type containment relation.)

Proposition 5 (Type Substitution Closedness). Assume o is
one of µ or π . If Ω +∆ ⊢ o : φ and Ω ⊢ S : ∆ then Ω ⊢ S(o) : φ.

Proof. By induction over the structure of o. The interesting
case is the case for µ = α for some type variable α . There
are now two cases. We first consider the case where α ∈

dom(S). From the definition of coverage, we have ⟨1⟩ Ω ⊢

S(α) : frev(∆(α)) and dom(S) = dom(∆). Moreover, from

assumptions we have Ω+∆ ⊢ α : φ, thus, from the definition

of containment, we have frev((Ω + ∆)(α)) ⊆ φ and thus

⟨2⟩ frev(∆(α)) ⊆ φ. From the extensibility property of type

containment and from ⟨1⟩ and ⟨2⟩, we have Ω ⊢ S(α) : φ,
as required. For the second case where α < dom(S), we
have S(α) = α . It follows from the definition of coverage

that α < dom(∆), which leads us to conclude, based on the

assumptions and the definition of type containment, that

Ω ⊢ S(α) : φ, as required. □

3.4 Instantiation
Given a type variable context Ω and a type schemeσ = ∀∆.τ ′

such that Ω ⊢ σ , a type τ is an instance of σ via a type

substitution S t
, written Ω ⊢ σ ≥ τ via S t

, if

1. Ω ⊢ S t
: ∆

2. S t(τ ′) = τ

Given a type variable context Ω and a type scheme σ =
∀®ρ®ϵ .σ ′

such that Ω ⊢ σ , a type τ is an instance of σ via a

substitution S = (S t, Sr, Se), written Ω ⊢ σ ≥ τ via S , if

1. dom(Sr) = { ®ρ} and dom(Se) = {®ϵ}
2. Ω ⊢ Se(Sr(σ ′)) ≥ τ via S t

When we are interested in only the region instance list,

we write Ω ⊢ σ ≥ τ via ®ρ to mean there exists a substitution

S = (S t, Sr, Se) such that Ω ⊢ σ ≥ τ via S and rng(Sr) = { ®ρ}.
It holds that if Ω ⊢ σ ≥ τ via ®ρ, for some σ , τ , and ®ρ,

and S is a region-effect substitution, then S(Ω) ⊢ S(σ) ≥

S(τ) via S(®ρ). Moreover, if Ω + ∆ ⊢ σ ≥ τ via ®ρ, for some Ω,
∆, σ , τ , and ®ρ, if Ω ⊢ S : ∆, then Ω ⊢ S(σ) ≥ S(τ) via ®ρ. These
properties are corollaries of the following, more general,

propositions:

Proposition 6 (Instantiation Closed Under Region-Effect

Substitution). If S is a region-effect substitution and Ω ⊢ σ ≥

τ via S ′ then S(Ω) ⊢ S(σ) ≥ S(τ) via S ′′, where S ′′ = (S ◦S ′) ↓
dom(S ′).

Proof. We first consider the case where σ = ∀∆.τ ′. From the

definition of instantiation, we have ⟨1⟩ S ′(τ ′) = τ and ⟨2⟩

Ω ⊢ S ′ : ∆, and, thus, ⟨3⟩ dom(S ′) = dom(∆). Because S is a

region-effect substitution, we have ⟨4⟩ S(σ) = ∀S(∆).S(τ ′)
and ⟨5⟩ dom(∆) = dom(S(∆)) and ⟨6⟩ dom(∆)∩ fv(rng(S)) =
∅. Now, let S ′′ = ((S ◦ S ′) ↓ dom(S ′)). It follows that we have
⟨7⟩ dom(S ′′) = dom(S(∆)). We also have S(S ′(τ ′)) = S(τ)
from ⟨1⟩ and ⟨8⟩ S ◦ S ′ = S ′′ ◦ S because of ⟨6⟩ and ⟨3⟩. It

follows that we have ⟨9⟩ S ′′(S(τ ′)) = S(τ). We now need to

show S(Ω) ⊢ S ′′ : S(∆). From ⟨2⟩ and the definition of substi-

tution coverage, we have ⟨10⟩ Ω ⊢ S ′(α) : frev(∆(α)), for all
α ∈ dom(S ′). From Proposition 4 and ⟨10⟩, we have S(Ω) ⊢
S(S ′(α)) : S(frev(∆(α))) and thus, from ⟨8⟩ and because

dom(S ′) = dom(S ′′) follows from the definition of S ′′, we
have ⟨11⟩ S(Ω) ⊢ S ′′(α) : frev(S(∆)(α)), for all α ∈ dom(S ′′).
It follows from ⟨11⟩ that we have ⟨12⟩ S(Ω) ⊢ S ′′ : S(∆). Now,
from the definition of instantiation and from ⟨9⟩ and ⟨12⟩,

we have S(Ω) ⊢ S(σ) ≥ S(τ ′) via S ′′, as required. □

Proposition 7 (Instantiation Closed Under Type Substi-

tution). If Ω + ∆ ⊢ σ ≥ τ via S ′ and Ω ⊢ S : ∆ then
Ω ⊢ S(σ) ≥ S(τ) via S ′′, where S ′′ = (S ◦ S ′) ↓ dom(S ′).

A type environment (Γ) maps program variables to type

schemes and places. Given a type variable context Ω, a type
environment Γ is well-formed in Ω, written Ω ⊢ Γ, if Ω ⊢ π ,
for all type schemes and places π ∈ rng(Γ).

3.5 The Role of Arrow Effects
We emphasize that function types are annotated with arrow

effects ϵ .φ and not only with effects φ; with arrow effects,

we can allow for effects to grow and we can make sure that

if a non-region-annotated type is given two distinct region-

annotations, then there exists a substitution, a unifier, that,
when applied to the two types, will make the two resulting

region-annotated types equal. This property is essential for

the applied unification-based region inference algorithm [41],

which we shall discuss further later.

Moreover, notice that, for each object that we deal with,

when an effect variable appears free in the object, it is made

explicit what effect it denotes, except when an effect variable

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

appears free in an effect; in this case, however, we know that,

due to an assumed transitivity of effects, the effect already

includes the effect denoted by the included effect variable. It

is for this reason that we annotate quantified type variables

with arrow effects and not only with effect variables; we

often (e.g., in the typing rules) need to know what effect the

effect variable denotes. An alternative would be, in the typ-

ing rules, to keep track of the denotation of effect variables

in an external effect basis, similarly to how effects are treated

in the description of region inference [41, 42]; making the

effect basis explicit makes it straightforward to formulate

certain well-formedness and consistency constraints on the

effect variables and their denotations in the rules. For in-

stance, if ϵ .φ and ϵ ′.φ ′
are two arrow effects appearing in

the derivation of some judgement, then ϵ = ϵ ′ impliesφ = φ ′

(the basis is functional) and ϵ ′ ∈ φ implies φ ′ ⊆ φ (the basis

is transitive).

3.6 Terms
The grammars for expressions (e) and values (v) are as follows:

v ::= d | ⟨v1,v2⟩
ρ | ⟨λx .e⟩ρ | ⟨fun f [®ρ] x = e⟩ρ

e ::= v | x | let x = e1 in e2 | e1 e2 | λx .e at ρ

| letregion ρ in e

| fun f [®ρ] x = e at ρ | e [®ρ] at ρ

| (e1, e2) at ρ | #i e

Values include unboxed integers (d), pairs, ordinary closures,
and recursive function closures (which may also take regions

as parameters). All values, except integers, are boxed and

associated with distinguished regions. An expression can be

a value, a variable, a let-expression, a function application, a

lambda-expression, a letregion-construct, a recursive func-

tion binding, an application of a recursive function to a list

of region parameters, a pair-construct, and a pair-projection

expression. Notice that allocating expressions are annotated

with an at-specifier, which specifies in which region the

value should be allocated. Notice also that expressions may

contain values. A program does not contain values initially.

During evaluation, however, variables in the program may

be substituted with values, which is captured precisely by

the small-step dynamic semantics that we shall define later.

In expressions of the forms let x = e1 in e and λx .e at ρ,
the variable x is bound in e . In expressions of the form

fun f [®ρ] x = e at ρ, the variables f , ®ρ, and x are bound in

e . Similarly for values. In expressions letregion ρ in e , the
variable ρ is bound in e . As usual, we identify terms up to

renaming of bound variables. The free (program) variables of
some expression (or value) e is written fpv(e).

3.7 Value Containment and GC Safety
To guarantee safety of garbage collection, we must ensure

that no dangling pointers are introduced during evaluation,

which is not guaranteed by the Tofte-Talpin region type

system [46]. The solution that we apply here is to add addi-

tional side conditions to the typing rules for functions that

guarantee the absence of dangling pointers [13].

First, we define a notion of value containment; all values
in an expression e are contained in a set of regions φ, if the
sentence φ |=v e is derivable from the rules in Figure 3. It is

straightforward to demonstrate that if φ |=v e and φ ⊆ φ ′

then φ ′ |=v e (value containment extensibility). Moreover, for

any substitution S , it follows that S(φ) |=v S(e). Finally, if
φ |=v e and φ |= v then φ |=v e[v/x] (value containment
substitution).

We now introduce a GC-Safety relation G, which we shall

use to strengthen the typing rules for functions to avoid

dangling pointers during evaluation. The relation is derived

from the side condition for functions suggested by Tofte

and Talpin in [45, page 50] and is parameterised over a type

variable context Ω, an environment Γ, a function body e , a
set of function parameters X , and the type scheme and place

π of the function:

G(Ω, Γ, e,X , π) = frv(π) |=v e ∧ (4)

∀y ∈ fpv(e) \ X .

Ω ⊢ Γ(y) : frev(π)

The garbage-collection safety relation is closed under

region-effect substitution:

Proposition 8 (GC-Safety Relation Closed Under Region–

Effect Substitution). IfG(Ω, Γ, e,X , π) and S is a region-effect
substitution then G(S(Ω), S(Γ), S(e),X , S(π)).

Proof. Follows immediately from the definition of garbage-

collection safety, the property that value-containment is

closed under substitution, and Proposition 4. □

The garbage-collection safety relation is also closed under

type substitution, assuming that the substitution is properly

covered:

Proposition 9 (GC-Safety Relation Closed Under Type Sub-

stitution). Assume Ω ⊢ S : ∆. If G(Ω + ∆, Γ, e,X , π) then
G(Ω, S(Γ), e,X , S(π)).

Proof. From assumptions and because frv(S(π)) ⊇ S(frv(π)),
for any substitution S , we have, because value containment

is closed under substitution and due to value containment

extensibility, that

frv(S(π)) |=v S(e)

Because fpv(S(e)) = fpv(e), it remains to be shown that

∀y ∈ fpv(e) \ X .

Ω ⊢ S(Γ(y)) : frev(S(π))

From assumptions, we have that for all y ∈ fpv(e) \ X ,

Ω + ∆ ⊢ Γ(y) : frev(π)

From Proposition 5 and assumptions, we have

Ω ⊢ S(Γ(y)) : S(frev(π))

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

Values φ |= v

φ |= d
φ |=v e ρ ∈ φ

φ |= ⟨λx .e⟩ρ
φ |= v1 φ |= v2 ρ ∈ φ

φ |= ⟨v1,v2⟩
ρ

ρ ∈ φ φ |=v e { ®ρ} ∩ φ = ∅

φ |= ⟨fun f [®ρ] x = e⟩ρ

Expressions φ |=v e

φ |= v

φ |=v v
φ |=v x

φ |=v e1 φ |=v e2

φ |=v (e1, e2) at ρ

φ |=v e

φ |=v #i e

φ |=v e

φ |=v λx .e at ρ

φ |=v e1 φ |=v e2

φ |=v e1 e2

φ |=v e { ®ρ} ∩ φ = ∅

φ |=v fun f [®ρ] x = e at ρ

φ |=v e

φ |=v e [®ρ] at ρ

φ |=v e1 φ |=v e2

φ |=v let x = e1 in e2

ρ < φ φ |=v e

φ |=v letregion ρ in e

Figure 3. Value containment.

Now, because frev(S(π)) ⊇ S(frev(π)) and because of type-

containment effect-extensibility, we have

Ω ⊢ S(Γ(y)) : frev(S(π))

as required. □

Proposition 10 (GC-Safety Relation Closed Under Value

Substitution). If x < X and G(Ω, Γ + {x : π }, e,X , π ′) and
frv(π) |= v and fpv(v) = ∅ then G(Ω, Γ, e[v/x],X , π ′).

Proof. From assumptions and (4), we have

frv(π ′) |=v e (5)

∀y ∈ fpv(e) \ X .Ω ⊢ (Γ + {x : π })(y) : frev(π ′) (6)

First, assume x ∈ fpv(e). Because x < X , by choosing x for

y, we have from (6) that Ω ⊢ π : frev(π ′). It follows from

Proposition 2 that frev(π) ⊆ frev(π ′) and, thus

frv(π) ⊆ frv(π ′) (7)

It follows from assumption, (7), and the value containment

extensibility property that we have

frv(π ′) |= v (8)

Now, from (5), (8), and the value containment substitution

property, we have

frv(π ′) |=v e[v/x] (9)

We also have from (6) and because fpv(v) = ∅ that

∀y ∈ fpv(e[v/x]) \ X .Ω ⊢ Γ(y) : frev(π ′) (10)

From (4), (9), and (10), we have G(Ω, Γ, e[v/x],X , π ′), as re-

quired. □

3.8 Typing Rules
The typing rules for values and expressions are mutually

dependent and are shown in Figure 4. The typing rules for

values allow inference of sentences of the form ⊢ v : π ,
which states that “the value v has type scheme and place

π ”. The typing rules for expressions allow inference of sen-

tences of the form Ω, Γ ⊢ e : π ,φ, which states that “in the

type variable context Ω and in the type environment Γ, the

expression e has type scheme and place π and effect φ.

There are a number of observations to be made about

the typing rules. First, notice that the typing of values is

specified without a variable environment, which, implicitly,

specifies that well-typed values must be closed with respect

to program variables. Moreover, values have no effect. No-

tice also that the typing rules for closures and for region-

and effect-polymorphic function values specify that values

within function bodies are contained in regions that appear

in the type schemes for the functions (ensured using the

value-containment judgement).

For lambda-expressions and region- and effect-polymorphic

function expressions, gc-safety properties are specified using

the gc-safety relation, which generalises the containment

conditions specified in the corresponding value typing rules.

Moreover, notice that there are two rules for typing region-

and effect-polymorphic function expressions (and values),

one that supports recursion (and even region- and effect-

polymorphic recursion) and one that supports parameter-

isation of effects that are associated with quantified type

variables. The reason for this duplication is that we must be

careful that polymorphic recursion only quantify over re-

gion and effect variables that do not appear in type variable

contexts that specify quantified type variables in the type

scheme of the function.

For simplicity, the typing rule for let-bindings does not
allow for generalisation.

3.9 Typing Properties
The typing rules are closed under region-effect substitution.

Proposition 11 (Typing Closed Under Region-Effect Substi-

tution). Assume S is a region-effect substitution.

1. If Ω, Γ ⊢ e : π ,φ then S(Ω), S(Γ) ⊢ S(e) : S(π), S(φ).
2. If ⊢ v : π then ⊢ S(v) : S(π).

Proof. By simultaneous induction over the derivation ofΩ, Γ ⊢

e : π ,φ and the derivation of ⊢ v : π . □

The typing rules are also closed under type substitution

provided the substitution is properly covered:

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

Values ⊢ v : π

⊢ d : int

{}, {x : µ1} ⊢ e : µ2,φ

µ = (µ1

ϵ .φ
−−−−→ µ2, ρ) ⊢ µ frv(µ) |=v e

⊢ ⟨λx .e⟩ρ : µ
[TvLam]

⊢ v1 : µ1 ⊢ v2 : µ2

⊢ ⟨v1,v2⟩
ρ

: (µ1 × µ2, ρ)
[TvPair]

∆, {x : µ1} ⊢ e : µ2,φ ⊢ π

frev(®ρ®ϵ) ∩ {ρ} = ∅ π = (∀®ρ®ϵ∆.µ1

ϵ .φ
−−−−→ µ2, ρ) frv(π) |=v e

⊢ ⟨fun f [®ρ] x = e⟩ρ : π
[TvFun]

∆, { f : (∀®ρ®ϵ .µ1

ϵ .φ
−−−−→ µ2, ρ), x : µ1} ⊢ e : µ2,φ ⊢ π

frev(®ρ®ϵ) ∩ frev(∆) = ∅ frev(®ρ®ϵ) ∩ {ρ} = ∅ π = (∀®ρ®ϵ∆.µ1

ϵ .φ
−−−−→ µ2, ρ) frv(π) |=v e

⊢ ⟨fun f [®ρ] x = e⟩ρ : π
[TvRec]

Expressions Ω, Γ ⊢ e : π ,φ

⊢ v : π

Ω, Γ ⊢ v : π , ∅
[TeVal]

φ ′ ⊇ φ Ω, Γ ⊢ e : π ,φ

Ω, Γ ⊢ e : π ,φ ′ [TeSub]

Γ(x) = π

Ω, Γ ⊢ x : π , ∅
[TeVar]

Ω, Γ + {x : µ1} ⊢ e : µ2,φ µ = (µ1

ϵ .φ
−−−−→ µ2, ρ) Ω ⊢ µ G(Ω, Γ, e, {x}, µ)

Ω, Γ ⊢ λx .e at ρ : µ, {ρ}
[TeLam]

Ω, Γ ⊢ e : (σ , ρ ′),φ
Ω ⊢ σ ≥ τ via ®ρ Ω ⊢ τ

Ω, Γ ⊢ e [®ρ] at ρ : (τ , ρ),φ ∪ {ρ, ρ ′}
[TeRapp]

Ω, Γ ⊢ e1 : (µ ′
ϵ .φ0

−−−−−→ µ, ρ),φ1

Ω, Γ ⊢ e2 : µ ′,φ2

Ω, Γ ⊢ e1 e2 : µ,φ0 ∪ φ1 ∪ φ2 ∪ {ϵ, ρ}
[TeApp]

Ω, Γ ⊢ e1 : µ1,φ1 Ω, Γ ⊢ e2 : µ2,φ2

Ω, Γ ⊢ (e1, e2) at ρ : (µ1 × µ2, ρ),φ1 ∪ φ2 ∪ {ρ}
[TePair]

i ∈ {1, 2} Ω, Γ ⊢ e : (µ1 × µ2, ρ),φ

Ω, Γ ⊢ #i e : µi ,φ ∪ {ρ}
[TeSel]

Ω, Γ ⊢ e : µ,φ {ρ, ®ϵ} ∩ frev(Ω, Γ, µ) = ∅

Ω, Γ ⊢ letregion ρ in e : µ,φ \ {ρ, ®ϵ}
[TeReg]

Ω, Γ ⊢ e1 : π ,φ1 Ω, Γ + {x : π } ⊢ e2 : µ,φ2

Ω, Γ ⊢ let x = e1 in e2 : µ,φ1 ∪ φ2

[TeLet]

Ω + ∆, Γ + {x : µ1} ⊢ e : µ2,φ Ω ⊢ π

(dom(∆) ∪ frev(®ρ®ϵ)) ∩ fv(Ω, Γ, ρ) = ∅ π = (∀®ρ®ϵ∆.µ1

ϵ .φ
−−−−→ µ2, ρ) G(Ω, Γ, e, { f , x}, π)

Ω, Γ ⊢ fun f [®ρ] x = e at ρ : π , {ρ}
[TeFun]

Ω + ∆, Γ + { f : (∀®ρ®ϵ .µ1

ϵ .φ
−−−−→ µ2, ρ), x : µ1} ⊢ e : µ2,φ Ω ⊢ π

frev(®ρ®ϵ) ∩ frev(∆) = ∅ (dom(∆) ∪ frev(®ρ®ϵ)) ∩ fv(Ω, Γ, ρ) = ∅ π = (∀®ρ®ϵ∆.µ1

ϵ .φ
−−−−→ µ2, ρ) G(Ω, Γ, e, { f , x}, π)

Ω, Γ ⊢ fun f [®ρ] x = e at ρ : π , {ρ}

Figure 4. Typing rules for values and expressions.

Proposition 12 (Typing Closed Under Type Substitution).
If Ω + ∆, Γ ⊢ e : π ,φ and Ω ⊢ S : ∆ then Ω, S(Γ) ⊢ S(e) :

S(π), S(φ).

Proof. By induction on the derivation of Ω + ∆, Γ ⊢ e : π ,φ.
A detailed proof appears in Appendix A. □

Proposition 13 (Environment Extensibility). If Ω, Γ ⊢ e :

π ,φ and dom(Γ) ∩ dom(Γ′) = ∅ then Ω, Γ + Γ
′ ⊢ e : π ,φ.

Proof. By induction on the derivation of Ω, Γ ⊢ e : π ,φ.
Notice in particular that the gc-safety relation is closed under

environment extensibility. □

Proposition 14 (Type-Variable Context Extensibility). If
Ω, Γ ⊢ e : π ,φ and dom(Ω) ∩ dom(Ω′) = ∅ then Ω + Ω′, Γ ⊢

e : π ,φ.

Proof. By induction on the derivation of Ω, Γ ⊢ e : π ,φ.
Notice in particular that the gc-safety relation is closed under

type-variable context extensibility. □

Typed values contain no free program variables and the

free variables of typed expressions are captured by the envi-

ronment:

Proposition 15 (Free Variables). If ⊢ v : π then fpv(v) = ∅.
Moreover, if Ω, Γ ⊢ e : π ,φ then fpv(e) ⊆ dom(Γ).

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

Eφ ::= [·] (φ = ∅)

| letregion ρ in Eφ\{ρ } (ρ ∈ φ)
| Eφ e | v Eφ | Eφ [®ρ] at ρ
| let x = Eφ in e
| (Eφ , e) at ρ | (v, Eφ) at ρ | #i Eφ

ι ::= d | λx .e at ρ
| (v1,v2) at ρ
| #1 ⟨v1,v2⟩

ρ | #2 ⟨v1,v2⟩
ρ

| ⟨λx .e⟩ρ v
| ⟨fun f [®ρ] x = e⟩ρ [®ρ ′] at ρ ′

Figure 5. The grammars for evaluation contexts (E) and in-
structions (ι).

Proof. By simultaneous induction on the derivations of ⊢ v :

π and Ω, Γ ⊢ e : π ,φ. □

Proposition 16 (Value Substitution). If Ω, Γ + {x : π } ⊢ e :

π ′,φ and ⊢ v : π then Ω, Γ ⊢ e[v/x] : π ′,φ.

Proof. By induction on the derivation of Ω, Γ + {x : π } ⊢ e :

π ′,φ. For the cases that involve the gc-safety relation, Propo-
sition 15 and Proposition 10 are applied. See Appendix A for

details. □

3.10 A Small Step Dynamic Semantics
The dynamic semantics that we present is in the style of a

contextual dynamic semantics [33] and is similar to the se-

mantics given by Helsen and Thiemann [10, 26], although it

differs in the way that inaccessibility to values in deallocated

regions is modeled.Whereas Helsen and Thiemann “null out”

references to deallocated regions (to avoid future access), our

semantics keep track of a set of currently allocated regions

and disallow access to regions that are not in this set.

The grammars for evaluation contexts (E) and instructions
(ι) are shown in Figure 5. Contexts Eφ make explicit the set of

regions φ bound by letregion constructs that encapsulate
the hole in the context.

The evaluation rules are given in Figure 6 and consist of

allocation and deallocation rules, reduction rules, and a context
rule. The rules are of the form e

φ
7−→ e ′, which says that, given

a set of allocated regions φ, the expression e reduces (in one

step) to the expression e ′. Next, the evaluation relation
φ

7−→∗
is

defined as the least relation formed by the reflexive transitive

closure of the relation

φ
7−→. We further define e ⇓φ v to mean

e
φ

7−→∗ v , and e ⇑φ to mean that there exists an infinite

sequence, e
φ

7−→ e1

φ
7−→ e2

φ
7−→ · · · .

3.11 Type Safety
The proof of type safety is based on well-known techniques

for proving type safety for statically typed languages [33, 50].

Allocation and Deallocation e
φ

7−→ v

λx .e at ρ
φ∪{ρ }
7−→ ⟨λx .e⟩ρ [Lam]

(v1,v2) at ρ
φ∪{ρ }
7−→ ⟨v1,v2⟩

ρ [Pair]

fun f [®ρ] x = e at ρ
φ∪{ρ }
7−→ ⟨fun f [®ρ] x = e⟩ρ [Fun]

letregion ρ in v
φ

7−→ v [Reg]

Reduction and Context e
φ

7−→ e ′

⟨λx .e⟩ρ v
φ∪{ρ }
7−→ e[v/x] [App]

let x = v in e
φ

7−→ e[v/x] [Let]

⟨fun f [®ρ] x = e⟩ρ [®ρ ′] at ρ ′
φ∪{ρ }
7−→

λx .e[®ρ ′/®ρ][(⟨fun f [®ρ] x = e⟩ρ)/f] at ρ ′
[Rapp]

#1 ⟨v1,v2⟩
ρ φ∪{ρ }

7−→ v1
[Sel1]

#2 ⟨v1,v2⟩
ρ φ∪{ρ }

7−→ v2
[Sel2]

e
φ ′∪φ
7−→ e ′ φ ∩ φ ′ = ∅ Eφ , [·]

Eφ [e]
φ ′

7−→ Eφ [e
′]

[Ctx]

Figure 6. Evaluation rules.

We shall not present the complete proofs here, but refer the

reader to [13], which includes proofs for a similar system.

We first state a property saying that a well-typed expres-

sion is either a value or can be separated into an evaluation

context and an instruction:

Proposition 17 (Unique Decomposition). If ⊢ e : π ,φ, then
either (1) e is a value, or (2) there exist a unique Eφ ′ , e ′, and
π ′ such that e = Eφ ′[e ′] and ⊢ e ′ : π ′,φ ∪ φ ′ and e ′ is an
instruction.

Proof. By induction on the structure of e . □

A type preservation property (i.e., subject reduction) for

the language, as well as progress and type soundness, can

be stated as follows:

Proposition 18 (Type Preservation). If ⊢ e : π ,φ and e
φ

7−→

e ′ then ⊢ e ′ : π ,φ.

Proof. By induction on the derivation e
φ

7−→ e ′. Details are
provided in Appendix A. □

Proposition 19 (Progress). If ⊢ e : π ,φ then either e is a
value or else there exists some e ′ such that e

φ
7−→ e ′.

Proof. If e is not a value, then by Proposition 17 there exist a

unique Eφ ′ , ι, and π ′
such that e = Eφ ′[ι] and ⊢ ι : π ′,φ ∪ φ ′

.

The remainder of the proof argues that ι
φ∪φ ′

7−→ e2, for some

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

e2, so that Eφ ′[ι]
φ

7−→ Eφ ′[e2] follows from [Ctx] in Figure 6.

Details are provided in Appendix A. □

Theorem 1 (Type Soundness). If ⊢ e : π ,φ, then either e ⇑φ
or else there exists some v such that e ⇓φ v and ⊢ v : π ,φ.

Proof. By induction on the number of rewriting steps, using

Proposition 18 and Proposition 19. □

We now introduce the notion of context containment, writ-
ten φ |=c e , which expresses that when e can be written

in the form Eφ ′[e ′], values in e ′ must be contained in the

regions in the set φ ∪ φ ′
, where φ ′

are regions on the stack

represented by the evaluation context Eφ ′ . The definition of

context containment is given in Figure 7.

The following containment theorem states that, for well-

typed programs, containment is preserved under evaluation:

Theorem 2 (Containment). If ⊢ e : π ,φ and φ |=c e and
e

φ
7−→ e ′ then φ |=c e

′.

Proof. By induction on the structure of e . □

Essentially, the containment theorem states that evaluation

allocates only in regions that are either global or present

on the region stack, represented by the evaluation context.

Moreover, at any time during evaluation, live reachable val-

ues are stored in regions that are either global or present on

the region stack. This last property is essential for reference-

tracing garbage collection, which relies on the safety of deref-

erencing live reachable values [34]. In particular, the con-

tainment theorem allows for a reference-tracing garbage

collector to be interleaved with evaluation (as captured by

the small-step evaluation semantics).

4 Implementation
For practical purposes, it is desirable to identify a quanti-

fied type variable to be spurious if it either appears free in
the type of identifiers occurring free in a function expres-

sion (but not in the type of the function) or occurs free in a

type that is instantiated for another spurious type variable.

In particular, it turns out that only spurious type variables

need to be associated with arrow effects in type variable con-

texts, which, in general, leads to simpler region type schemes,

while limiting the computational overhead of applying effect

substitutions. In the following we shall refer to a spurious
function as one with spurious type variables in its inferred

type scheme. It turns out that spurious functions occur only

rarely in real programs. For example, the MLKit implemen-

tation of the entire Standard ML Basis Library [20] contains

only three spurious functions, which include the top-level

composition function o and the functions Option.compose
and Option.mapPartial.

The region type system presented in the previous section

extends to other ML-language features, including references,

algebraic datatypes, and exceptions.

4.1 Region Inference
Region inference takes as input a well-typed source program

and returns a region annotated version of the program that

is well-typed according to the region typing rules. A simple

region inference algorithm stores all values in the global

region ρ and associates all function arrows and quantified

occurrences of spurious type variables with the arrow effect

ϵ .{ρ}, where ϵ is a global effect variable. It is straightforward
to prove that this trivial region inference algorithm leads

to well-typed region-annotated programs and works for all

source programs that are well-typed according to a classic

Hindley-Milner style type system.

A proper region-inference algorithm introduces regions

locally and seek to quantify over region variables and effect

variables in order to pass regions to functions at runtime

and to make it possible to use functions in different con-

texts without necessarily having to keep function arguments

and results alive as long as the function is alive. In order

to guarantee an upper limit to the number of introduced

region variables and effect variables (to ensure termination),

region inference can be divided into two phases. Here, the

first phase, called the spreading phase, adds distinct fresh

region variables to all allocation points and distinct fresh

effect variables to all function type arrows. The second phase,

called the fix-point phase, runs repeatedly until a fix-point is

found by unifying region types according to the requirement

of the region type system and by abstracting over region and

effect variables, when possible, either by inserting letregion

expressions or by abstracting over region variables and ef-

fect variables in fun expressions. The result is a well-typed

region-annotated program. Implementing a proper region-

inference algorithm for the region type system presented

in the previous section differs from previous approaches by

having to deal properly with spurious type variables and

their associated arrow effects.

4.2 The MLKit
The MLKit is a Standard ML compiler that compiles pro-

grams to efficient native machine code for Linux and macOS

[14] and implements a number of techniques for refining the

representations of regions [6, 43], including dividing regions

into stack allocated (bounded) regions (also called finite re-
gions) and heap allocated regions (also called infinite regions),
which are the regions that are subject to reference-tracing

garbage collections.

The region type system presented in Section 3 is imple-

mented in theMLKit in terms of a region-inference algorithm

that deals properly with spurious type variables. The changes

to the region inference algorithm are orthogonal to many of

the later region-representation phases of the MLKit, includ-

ing dropping of quantified parameter regions that are not

stored into by a function and distinguishing between regions

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

φ |=c x
φ |= v

φ |=c v

ρ < φ φ ∪ {ρ} |=c e

φ |=c letregion ρ in e

φ |=c e φ |=v e
′

φ |=c let x = e in e ′
φ |=c e φ |=v e

′

φ |=c e e
′

φ |= v φ |=c e

φ |=c v e

φ |=c e

φ |=c e [®ρ] at ρ

φ |=c e φ |=v e
′

φ |=c (e, e
′) at ρ

φ |= v φ |=c e

φ |=c (v, e) at ρ

φ |=c e

φ |=c #i e

Figure 7. Context containment.

holding different types of values (for supporting tag-free

representations of values of certain types).

We emphasize here that the implementation changes, as

proposed by the modified region-type system, are of manda-

tory importance for ensuring soundness of integrating region-

inference and reference-tracing garbage collection.

The MLKit compiles all of Standard ML, including itself

and the MLton compiler. MLton and the MLKit are two very

different compilers with different characteristics. Whereas

MLton generates very compact (and often very efficient) ex-

ecutables, by featuring aggressive inlining and optimisation

strategies, the MLKit features efficient recompilation and

relative fast compilation for large programs. For instance,

compiling the MLKit from scratch with MLKit itself takes

201 seconds (real time) whereas the same task takes 1039

seconds with MLton.
4
Moreover, upon changes of source

code, recompiling the the MLKit with the MLKit compiler

often takes less than 10 seconds.

In some cases, a spurious function can be rewritten as a

non-spurious function. Consider first the function List.app

from the Standard ML Basis Library. This function has type

scheme ∀α .(α → unit) → α list → unit with the follow-

ing possible implementation:

fun app f =

let fun loop nil = ()

| loop (x::xs) = (f x ; loop xs)

in loop

end

Unfortunately, a Standard ML compiler based on algorithm

W [32] will give app the type scheme ∀αβ .(α → β) →

α list → unit and loop the typeα list → unit (amodule

signature constraint may later constrain the type scheme of

app to be less generic). Because f has type α → β and occurs

free in loop, β is inferred to be a spurious type variable. In

general, the number of inferred spurious type variables may

be decreased by applying a type minimization algorithm

[7]. For the example with app, it suffices to give a direct

type constraint to the function, specifying that f has type

α → unit.

4
All measurements are performed on a MacBook Pro (15-inch, 2016), 16GB

RAM, 2.7 GHz Quad-Core Intel Core i7, running MLKit v4.7.2 and MLton

20220831.211529-gd6080abba with option -disable-pass deepFlatten.

As a second example, the Standard ML Basis Library con-

tains a function Array.copy, which copies elements from

a generic source array (of type α array) into locations in a

target array (also of type α array). One possible implementa-

tion of this function uses a local utility function loop that, as-
suming no overlaps, loops through the indexes of the source

and at each index, fetches the corresponding value from the

source array and updates the appropriate location in the

target array. This local function will have type int → unit,
which means that the type variable α will be inferred to be

spurious. In practice, the inference of α to be spurious will

likely have little influence on region-inference for programs

that use the Array.copy function. It is possible, however,

also in this case, to modify the code slightly, by passing the

source array as an additional argument to the loop function,

in order to ensure that α is not considered spurious.

4.3 Tracking Spurious Type-Variable Dependencies
It may be enlightening to see how the type system tracks

spurious type variable dependencies. Consider the program

in Figure 8(a). This program is much similar to the pro-

gram presented in the introduction, except that the spu-

rious type variable bound by the composition function o
is here not instantiated to a ground type immediately. In-

stead, it is instantiated to a new spurious type variable,

which is bound by the function g with the type scheme

∀α .(unit → α) → unit → unit.
There are a couple of interesting aspects about the region-

annotated version of the program, which appears in Fig-

ure 8(b). First, notice how the inference algorithm has ar-

ranged for the two intermediate functions (passed to the

composition function o) to be stored in the same region

ρ5, which is bound by (and passed to) the function g. This
unification is due to the region inference algorithm unify-

ing secondary quantified region and effect variables in type

schemes, which is a central part of ensuring termination of

region inference. Second, consider the region type scheme

for the function g:

∀ρ5ρ6ρ7ϵ1ϵ2ϵϵ4(α : ϵ .∅).

(unit
ϵ1 .∅

−−−−−→α, ρ7)
ϵ2 . {ϵ1,ρ7,ρ5,ρ6 }

−−−−−−−−−−−−−−→

(unit
ϵ4 . {ϵ ,ρ5 }

−−−−−−−−−→ unit, ρ6)

We see that α is inferred to be a spurious type variable and

that it is associated with the arrow effect ϵ .∅. The reason α

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

fun g (f : unit ->'a)

: unit ->unit =

op o

let val x = f()

in (fn x => (),

fn () => x)

end

val h =

g (fn () => "oh" ^ "no")

(a)

fun g [ρ5, ρ6] f =

letregion ρ3

in op o[ρ6] let val x = f ()

in (fn at ρ5 x => (),

fn at ρ5 v110 => x) at ρ3

end

end

val h =

letregion ρ4

in g[ρ1,ρ1] (fn at ρ4 () => op ^[ρ2] ("oh", "no"))

end

(b)

Figure 8. A problematic source code program featuring a dependency between two spurious type variables (a) and a sound

region-annotated version of the program (b).

is inferred to be spurious is not because it appears free in

the type of a variable captured in a closure but because it

appears free in a type instantiated for another spurious type

variable, namely that occurring in the type scheme for the

function o. Notice that the type scheme for g captures that
the argument function is applied immediately (ϵ1 appears in

the effect ϵ2.{ϵ1, ρ7, ρ5, ρ6}. Here is the type instance of the

type scheme, with ϵ ′
1
, ϵ ′

2
, ϵ ′, ϵ ′

4
being fresh effect variables:

(unit
ϵ ′

1
.∅

−−−−−→(string, ρ2), ρ4)
ϵ ′

2
. {ϵ ′

1
,ρ4,ρ1,ρ2 }

−−−−−−−−−−−−−−→

(unit
ϵ ′

4
. {ϵ ′,ρ1,ρ2 }

−−−−−−−−−−−−→ unit, ρ1)

We see that region ρ4 does not occur in the type of the

function returned by g, which perfectly aligns with the fact

that the function passed to g, which is stored in ρ4, is applied

immediately and not accessed again. For this reason, region

inference can surround the call to g with a letregion ρ4 in
. . . end construct. Contrary, the region type scheme for g
captures the relationship between the spurious quantified

type variable α and the capture of a value of type α in the

returned closure through the associated effect variable ϵ ,
which occurs in the effect of the resulting function. As a

consequence, the string "ohno" is rightfully forced into a

global region (i.e., ρ2).

4.4 Type Variables in Exception Types
For the full Standard ML language, there is one other lan-

guage feature that may lead to dangling pointers and that can

also be controlled through the notion of spurious type vari-

ables. In Standard ML, local exception constructors may be

declared with free type variables occuring in their argument

types. For example, if a type variable 'a is bound explicitly

by a function, a local exception declaration, occuring inside

the body of the function, may take the form

exception E of 'a

Because a constructed exception value may escape to top-

level (in case the exception value is raised), it is paramount

that all regions holding the exception value (and perhaps its

argument) are top-level regions.
5
By treating 'a as a spurious

type variable and by associating it with a top-level effect

variable, we are guaranteed that whenever the function with

the local exception declatation is instantiated, all regions

occuring in the type instantiated for 'a are forced to be

top-level regions. Without threating 'a as a spurious type

variable, it is straightforward to construct a program that

will introduce a dangling pointer at runtime and cause the

reference tracing garbage collector to fail.

5 Benchmarks
In this section, we report on the consequences of the type

system changes for a variety of benchmark programs. We

compare the benchmark programs using three different com-

pilation strategies using the MLKit (v4.7.2) and a single com-

pilation strategy using MLton (20220831.211529-gd6080abba)

[49], a whole-program optimising Standard ML compiler,

which serves to relate the performance of the code gener-

ated by the MLKit with the performance of a state-of-the-art

compiler. We emphasise again that the MLKit and MLton are

two very different compilers that, however, both generate

native x64 machine code.

All benchmark programs are executed on a MacBook Pro

(15-inch, 2016) with a 2.7GHz Intel Core i7 processor and

16GB of memory running macOS. Times reported are wall

clock times and memory usage is measured using the ma-

cOS /usr/bin/time program. The benchmark programs

span from micro-benchmarks such as fib37 and tak (7 and

5
The MLKit implementation does not attempt to infer when or if raised

exceptions are properly handled.

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

12 lines), which use only the runtime stack for allocation, to

larger programs, such as vliw and mlyacc (3681 and 7385

lines), that solve real-world problems.

The three MLKit compilation strategies include the rg
compilation strategy, which is based on the region type-

system presented in this paper and which combines region-

inference and reference-tracing garbage collection, the rg-
compilation strategy, which is like rg but without taking

spurious type variables into account (and which is therefore

unsound), and, finally, the r compilation strategy, which is

based alone on region-inference.

Figure 9 lists the benchmark programs and reports on how

the type system changes influence the generated code for

each of the benchmarks. Measurements are averages over 10

runs. The real time columns list the average execution time

in seconds, annotated with relative standard deviations. For

the rss and gc # columns, the relative standard deviations

are less than 1 percent. There are a number of observations

to made. First notice that, for many of the programs, the type

system has no influence on the generated code (and thus on

region live ranges) even in cases where many of the func-

tions are spurious and when boxed types are instantiated for

spurious type variables (column diff). We also see that for

programs that contain no spurious functions (column fcns),
the type system changes have no influence on the generated

code (column diff). However, for certain programs contain-

ing spurious functions, even when there are no instantiations

of boxed types for spurious type variables (column inst), the
type system changes may have resulted in different gener-

ated code in terms of longer region live ranges (programs

barnes-hut, kbc, simple, zebra, and zern). There are two
reasons why generated code may be different in these cases.

The first reason may be that the implementation identifies

the effect variable associated with a spurious type variable

with the effect variable associated with the function type for

which the type variable appears free in the type of a free

variable, as illustrated by (3). The second reason may be that

the implementation unifies secondary effect variables, which

may lead to unifying of effects that are otherwise unrelated.

Concerning execution times (the real time columns), we

see that there are no significant differences between the ex-

ecution times for the rg and rg- strategies, even for cases

where the generated code differs (due to different region

live ranges). Notice also that for none of the benchmarks

do we experience failures due to the possibility of dangling-

pointers in the rg- compilation strategy. We also see that the

r compilation strategy performs better than the rg and rg-
strategies. Sometimes MLKit generates faster code than ML-

ton, which is the case for DLX, fib37, mlyacc, msort, simple,
and tsp), but, for most benchmarks, MLton outperforms the

MLKit.

With respect to memory usage (the rss columns), we see

that the rg and rg- compilation strategies have similar behav-

ior. We also see that the r compilation strategy sometimes

perform better (e.g., fft), which is due to its more compact

(tag-free) value representation and the less-restrictive region

type system (dangling pointers are permitted). Sometimes,

however, reference-tracing garbage collection is essential,

which is exemplified by the benchmarks barnes-hut, logic,
nucleic, and zebra. We also see that the memory usage

of MLton generated executables is often higher than the

memory usage of the rg compilation strategy (we have not

explored MLKit’s and MLton’s runtime flags for adjusting

heap-to-live ranges, etc.)

Finally, from the gc # columns, we see that, across the

benchmarks, the rg and rg- compilation strategies lead to ex-

ecutables that trigger similar numbers of garbage collections

(we cannot explain the difference for the zebra benchmark.)

6 Related Work
Most related to this work is the previous work on combining

region inference and garbage collection in the MLKit [24],

the work on integrating region-based memory management

and generational garbage collection [16], and the previous

work on guaranteeing the absence of dangling pointers for

region-based memory management [13]. Compared to pre-

vious work, the present work does not aim at distinguishing

between regions containing different types of values, but is

concerned purely about establishing a sound foundation for

integrating region inference and reference-tracing garbage

collection. The region type system (and the region inference

algorithm) presented in this paper integrates well with the

techniques for typing regions. These techniques allow for

a tag-free representation of pairs, triples, and references,

which provides dramatic savings on allocated memory and

execution time.

Another strand of related work is the large body of related

work concerning general garbage collection techniques [28]

and garbage collection techniques for functional languages,

including [11, 27, 36, 48]. Incremental, concurrent, and real-

time garbage collection techniques for functional languages

have recently obtained much attention. In particular, the

presence of generations has been shown useful for collecting

parts of the heap incrementally and in a concurrent and

parallel fashion [4, 30, 31]. We leave it to future work to

investigate the use of regions and generations in the MLKit

for supporting concurrency and parallelism in the language.

There is also a series of proposals for tag-free garbage col-

lection schemes [1, 5, 22, 23, 47] and nearly tag-free garbage

collection schemes [35, 40]. The partly tag-free garbage col-

lection scheme supported by the region type system does

not involve untagging of all values. In particular, unboxed

objects (e.g., integers and booleans) are tagged in our sys-

tem, which makes it possible to distinguish pointers from

unboxed objects at runtime. However, the scheme allows for

commonly used data structures, such as tuples, reals, and

reference cells, to be untagged, which, as mentioned, can

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

real time (s) rss (Mb ± 1.2%) gc #
Program loc fcns inst diff rg rg- r rg rg- r rg rg-

DLX 2841 2/149 0/690 ✓ 0.15 ± 6% 0.15 ± 5% 0.14 ± 10% 0.41 ± 5% 7 7 7 32 3 3

barnes-hut 1245 2/140 0/459 ✓ 0.60 ± 2% 0.64 ± 3% 0.58 ± 2% 0.15 ± 7% 4 4 170 2 473 473

fft 73 0/19 0/45 0.56 ± 1% 0.58 ± 3% 0.45 ± 3% 0.25 ± 8% 69 69 56 128 11 11

fib37 7 0/1 0/0 0.41 ± 5% 0.41 ± 7% 0.27 ± 3% 0.36 ± 4% 2 2 2 1 1 1

kbc 679 1/90 0/249 ✓ 0.24 ± 7% 0.24 ± 7% 0.21 ± 3% 0.10 ± 8% 11 9 9 2 11 10

lexgen 1322 0/108 0/531 0.71 ± 8% 0.68 ± 4% 0.57 ± 2% 0.40 ± 4% 14 14 67 18 109 109

life 202 0/35 0/146 0.53 ± 5% 0.54 ± 6% 0.45 ± 3% 0.44 ± 4% 2 2 14 2 58 58

logic 351 0/22 0/806 0.49 ± 2% 0.50 ± 4% 0.34 ± 2% 0.13 ± 10% 3 3 255 2 1844 1844

mandelbrot 62 0/5 0/0 0.38 ± 5% 0.37 ± 3% 0.37 ± 5% 0.32 ± 6% 2 2 2 1 1 1

mlyacc 7385 10/966 5/3256 ✓ 0.32 ± 4% 0.31 ± 3% 0.32 ± 3% 0.34 ± 2% 17 14 116 11 29 28

mpuz 124 0/13 0/44 0.76 ± 6% 0.73 ± 2% 0.49 ± 3% 0.29 ± 3% 2 2 2 1 2 2

msort-rf 119 0/14 0/27 0.63 ± 4% 0.64 ± 3% 0.51 ± 4% 1.00 ± 6% 118 118 98 654 16 16

msort 113 0/13 0/22 0.89 ± 4% 0.87 ± 2% 0.57 ± 5% 1.02 ± 4% 132 132 381 388 26 26

nucleic 3215 1/40 475/1273 0.30 ± 2% 0.31 ± 9% 0.33 ± 3% 0.20 ± 10% 4 4 235 2 645 645

professor 282 0/57 0/99 0.45 ± 3% 0.45 ± 5% 0.38 ± 2% 0.33 ± 7% 3 3 10 1 263 263

ratio 620 0/54 0/848 1.39 ± 2% 1.38 ± 2% 1.27 ± 6% 0.38 ± 3% 16 16 36 47 14 14

ray 529 1/48 0/120 0.69 ± 3% 0.72 ± 5% 0.62 ± 1% 0.25 ± 1% 13 13 13 14 12 12

simple 1053 15/327 0/448 ✓ 0.28 ± 3% 0.25 ± 8% 0.15 ± 3% 0.28 ± 7% 4 4 3 7 4 4

tak 12 0/2 0/0 0.80 ± 2% 0.84 ± 6% 0.81 ± 2% 0.63 ± 9% 2 2 2 1 1 1

tsp 493 0/26 0/19 0.13 ± 3% 0.14 ± 9% 0.12 ± 8% 0.16 ± 3% 10 10 5 11 7 7

vliw 3681 5/563 4/2133 ✓ 0.60 ± 4% 0.60 ± 3% 0.50 ± 5% 0.31 ± 4% 13 14 44 9 15 15

zebra 313 2/50 0/288 ✓ 1.35 ± 2% 1.35 ± 3% 1.29 ± 3% 0.45 ± 4% 3 3 123 1 336 404

zern 605 3/103 0/34 ✓ 0.66 ± 3% 0.71 ± 5% 0.46 ± 5% 0.34 ± 5% 4 4 4 11 4503 4503

Figure 9. Benchmark programs. The second column (loc) lists the size of the benchmark in terms of lines of code, excluding

Basis Library code. The third column (fcns) lists the number of spurious functions, relative to the total number of functions.

The fourth column (inst) lists the number of times a spurious type variable is instantiated with a boxed type, relative to the

total number of type variable instantiations. The fifth column (diff) indicates if the notion of spurious type variables made a

difference to the generated target program. The next four columns (real time) list execution times in seconds for different

benchmark compilation strategies. The next three columns (rss) list memory usage (in Mb) for the compilation strategies.

Finally, the last two columns list the number of reference tracing garbage collections for the strategies rg and rg-.

lead to significant time and memory savings, in particular

because pairs and triples are used for the implementation of

many dynamic data structures, including lists and trees.
6

As other techniques that support full untagging, our tech-

nique does not involve traversing the runtime stack to deter-

mine types during garbage collection [5, 22, 23] or require

special type information to be passed to functions at runtime

[47]. By requiring values in certain regions to be of the same

kind, our approach has much in common with BIBOP (Big

Bag Of Pages) systems, with regions as pages [25].

Another body of related work investigates the notion of

escape analysis for improving stack allocation in garbage

6
The scheme works well together with support for unboxed data construc-

tors, such as cons (::), which, for instance, leads to a compact representation

of linked lists [12].

collected systems [8, 38]. Region inference and MLKit’s poly-

morphic multiplicity analysis [6] allow more objects to be

stack allocated than traditional escape analyses, which al-

lows only local, non-escaping values to be stack allocated.

Other work investigates the use of static prediction tech-

niques and linear typing for inferring heap space usage [29].

Cyclone [39] is a region-based type-safe C dialect, for

which, the programmer can decide if an object should reside

in the GC heap or in a region. Cyclone is constructed to

disallow program code to dereference dangling pointers. For

the GC heap, Cyclone uses a conservative reference-tracing

collector and no guarantee is given that it does not trace

dangling pointers (safety is ensured by the collector being

conservative). Another region-based language is Gay and

Aiken’s RC system, which features limited explicit regions

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

for C, combined with reference counting of regions [21]. A

modern language for system programming is Rust, which is

based on ownership types for controlling the use of resources,

including memory [3]. Ownership types are also used for

real-time implementations of Java [9]. None of the above

systems are combined with techniques for reference-tracing

garbage collection of each individual region (Cyclone al-

lows values to be stored in the global garbage collected heap

region, but other regions are not collected using reference-

tracing collection). Ownership types also lead to problems

with constructing cyclic data structures, which are straight-

forward to work with in effect-based systems.

Also related to the present work is the work by Aiken et

al. [2], who show how region inference may be improved for

some programs by removing the constraints of the stack dis-

cipline, which may cause a garbage collector to run less often.

Other work in this area includes [19], which removes the

constraints of the region stack discipline for an intermediate

language using a linear type system.

Region inference has also been used in practical settings

without combining it with reference-tracing garbage collec-

tion. In particular, it has been used as the primary memory

management scheme for a web server [15, 18].

7 Conclusion and Future Work
We have identified and fixed a soundness problem with com-

bining region inference and reference-tracing garbage col-

lection. The solution involves associating so-called spurious

type variables with effect sets and tracking effect dependen-

cies to ensure that no dangling pointers appear during eval-

uation of a program. The work thus justifies earlier work by

(1) suggesting how the unsafe type system is modified into a

sound type system and (2) demonstrating that the necessary

modifications to the region type system have little influence

on the generated code and thus, on previous reported re-

sults on combining region inference and reference-tracing

garbage collection.

There are multiple paths of relevant future work. Whereas

the type system presented in this paper has been proven

sound on paper, we do not have a mechanised version of

the proof, which would be a major engineering task. We

consider efforts in this direction as possible future work.

Another possibility for future work is on allowing program-

mers to interfere with region inference by being explicit

about regions and effects in types and expressions. Finally, a

possibility for future work would be to improve instruction

selection and optimisations of MLKit programs to match the

performance of MLton executables in more cases.

From a sustainability point-of-view, region inference seems

like a viable technique for limiting the memory footprint of

programs as garbage collections can occur less frequently if

a part of the heap is managed by explicit memory allocation

and deallocation. Future work may investigate this path in

more details.

References
[1] Shail Aditya, Christine H. Flood, and James E. Hicks. 1994. Garbage

Collection for Strongly-Typed Languages Using Run-Time Type Re-

construction. In LISP and Functional Programming. 12–23. citeseer.nj.
nec.com/32465.html

[2] Alexander Aiken, Manuel Fähndrich, and Raph Levien. 1995. Better

Static Memory Management: Improving Region-Based Analysis of

Higher-Order Languages. In ACM Conference on Programming Lan-
guages and Implementation (PLDI ’95).

[3] Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002.

Alias Annotations for Program Understanding. In ACM Conference on
Object-oriented Programming, Systems, Languages, and Applications
(OOPSLA ’02).

[4] Todd A. Anderson. 2010. Optimizations in a Private Nursery-based

Garbage Collector. In ACM International Symposium on Memory Man-
agement (ISMM ’10).

[5] Andrew W. Appel. 1989. Runtime tags aren’t necessary. Lisp and
Symbolic Computation 2 (1989), 153–162.

[6] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. 1996. From Region

Inference to von Neumann Machines via Region Representation In-

ference. In ACM Symposium on Principles of Programming Languages
(POPL ’96).

[7] Nikolaj Skallerud Bjørner. 1994. Minimal Typing Derivations. In ACM
SIGPLAN Workshop on ML and its Applications. 120–126.

[8] Bruno Blanchet. 1998. Escape Analysis : Correctness Proof, Implemen-

tation and Experimental Results. In ACM Symposium on Principles of
Programming Languages (POPL’98). ACM Press, 25–37.

[9] Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, Jr., and

Martin Rinard. 2003. Ownership Types for Safe Region-based Memory

Management in Real-time Java. In ACM Conference on Programming
Language Design and Implementation (PLDI ’03).

[10] Cristiano Calcagno, Simon Helsen, and Peter Thiemann. 2002. Syntac-

tic Type Soundness Results for the Region Calculus. Information and
Computation 173, 2 (2002).

[11] Damien Doligez and Xavier Leroy. 1993. A Concurrent, Generational

Garbage Collector for a Multithreaded Implementation of ML. In ACM
Symposium on Principles of Programming Languages (POPL ’93).

[12] Martin Elsman. 1998. Polymorphic Equality—No Tags Required. In

Second International Workshop on Types in Compilation.
[13] Martin Elsman. 2003. Garbage Collection Safety for Region-based

Memory Management. In ACMWorkshop on Types in Language Design
and Implementation (TLDI ’03).

[14] Martin Elsman and Niels Hallenberg. 1995. An Optimizing Backend for

the ML Kit Using a Stack of Regions. Student Project 95-7-8, University

of Copenhagen (DIKU).

[15] Martin Elsman and Niels Hallenberg. 2003. Web Programming with

SMLserver. In International Symposium on Practical Aspects of Declar-
ative Languages (PADL’03). Springer-Verlag.

[16] Martin Elsman and Niels Hallenberg. 2020. On the Effects of Integrat-

ing Region-Based Memory Management and Generational Garbage

Collection in ML. In Practical Aspects of Declarative Languages (PADL
’20). Springer International Publishing, 95–112.

[17] Martin Elsman and Niels Hallenberg. 2021. Integrating region memory

management and tag-free generational garbage collection. Journal
of Functional Programming 31 (2021), e4. https://doi.org/10.1017/
S0956796821000010

[18] Martin Elsman, Philip Munksgaard, and Ken Friis Larsen. 2018. Ex-

perience Report: Type-Safe Multi-Tier Programming with Standard

ML Modules. In Proceedings of the ML Family Workshop (St. Louis,

Missouri, USA) (ML ’18).
[19] Matthew Fluet, GregMorrisett, and Amal Ahmed. 2006. Linear Regions

Are All You Need. In Programming Languages and Systems (ESOP ’06).
Springer Berlin Heidelberg, Berlin, Heidelberg, 7–21.

citeseer.nj.nec.com/32465.html
citeseer.nj.nec.com/32465.html
https://doi.org/10.1017/S0956796821000010
https://doi.org/10.1017/S0956796821000010

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

[20] Emden R. Gansner and John H. Reppy. 2004. The Standard ML Ba-
sis Library. Cambridge University Press. https://doi.org/10.1017/
CBO9780511546846

[21] David Gay and Alexander Aiken. 2001. Language Support for Regions.

In ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI’01). ACM Press, Snowbird, Utah.

[22] Benjamin Goldberg. 1991. Tag-free garbage collection for strongly

typed programming languages. In ACM Conference on Programming
Language Design and Implementation. 165–176.

[23] Benjamin Goldberg and Michael Gloger. 1992. Polymorphic

Type Reconstruction for Garbage Collection Without Tags. In

LISP and Functional Programming. 53–65. citeseer.nj.nec.com/
goldberg92polymorphic.html

[24] Niels Hallenberg, Martin Elsman, and Mads Tofte. 2002. Combining

Region Inference and Garbage Collection. In ACM Conference on Pro-
gramming Language Design and Implementation (PLDI’02). ACM Press.

Berlin, Germany.

[25] David R. Hanson. 1980. A portable storage management system for

the Icon programming language. Software—Practice and Experience 10
(1980), 489–500.

[26] Simon Helsen and Peter Thiemann. 2000. Syntactic Type Soundness

for the Region Calculus. In International Workshop on Higher Order
Operational Techniques in Semantics. Published in Volume 41(3) of the

Electronic Notes in Theoretical Computer Science..

[27] Lorenz Huelsbergen and Phil Winterbottom. 1998. Very Concurrent

Mark-&-sweep Garbage Collection Without Fine-grain Synchroniza-

tion. In ACM International Symposium on Memory Management (ISMM
’98).

[28] Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage
Collection Handbook: The Art of Automatic Memory Management. Chap-
man & Hall/CRC.

[29] Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hof-

mann. 2010. Static Determination of Quantitative Resource Usage for

Higher-order Programs. In ACM Symposium on Principles of Program-
ming Languages (POPL ’10).

[30] Simon Marlow and Simon Peyton Jones. 2011. Multicore Garbage

Collection with Local Heaps. In ACM International Symposium on
Memory Management (ISMM ’11).

[31] Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime

Support for Multicore Haskell. In ACM International Conference on
Functional Programming (ICFP ’09).

[32] Robin Milner. 1978. A theory of type polymorphism in programming.

J. Comput. System Sci. 17 (1978), 348–375.
[33] Greg Morrisett. 1995. Compiling with Types. Ph. D. Dissertation.

School of Computer Science, Carnegie Mellon University, Pittsburgh,

PA 15213.

[34] Greg Morrisett, Matthias Felleisen, and Robert Harper. 1995. Abstract

Models of Memory Management. In International Conference on Func-
tional Programming Languages and Computer Architecture. 66–77. San
Diego.

[35] GregMorrisett, David Tarditi, Perry Cheng, Chris Stone, Robert Harper,

and Peter Lee. 1996. The TIL/ML Compiler: Performance and Safety

through Types. citeseer.nj.nec.com/morrisett96tilml.html
[36] John H. Reppy. 1994. A High-performance Garbage Collector for Stan-

dard ML. Technical Report. AT&T Bell Laboratories.

[37] Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, and Ser-

gio Yovine. 2006. Efficient Region-Based Memory Management for

Resource-limited Real-Time Embedded Systems.. In Workshop on Im-
plementation, Compilation, Optimization of Object-Oriented Languages,
Programs and Systems.

[38] G. Salagnac, S. Yovine, and D. Garbervetsky. 2005. Fast Escape Analysis

for Region-based Memory Management. Electron. Notes Th. C. S. 131
(May 2005), 99–110.

[39] Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and

Trevor Jim. 2006. Safe Manual Memory Management in Cyclone. Sci.
Comput. Program. 62, 2 (Oct. 2006), 122–144.

[40] David Tarditi, Greg Morrisett, Perry Cheng, Christopher Stone, Robert

Harper, and Peter Lee. 1996. TIL: A Type-Directed Optimizing Com-

piler for ML. In Proc. ACM SIGPLAN ’96 Conference on Programming
Language Design and Implementation. 181–192. citeseer.nj.nec.com/
tarditi95til.html

[41] Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm.

Transactions on Programming Languages and Systems (TOPLAS) 20, 4
(July 1998), 734–767.

[42] Mads Tofte and Lars Birkedal. 2000. Unification and Polymorphism in

Region Inference. Proof, Language, and Interaction. Essays in Honour
of Robin Milner (May 2000). (25 pages).

[43] Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004.

A Retrospective on Region-Based Memory Management. Higher-Order
and Symbolic Computation 17, 3 (01 Sep 2004), 245–265.

[44] Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg,

Tommy Højfeld Olesen, and Peter Sestoft. 2021. Programming with
Regions in the MLKit (Revised for Version 4.6.0). Technical Report. De-
partment of Computer Science, University of Copenhagen, Denmark.

[45] Mads Tofte and Jean-Pierre Talpin. 1993. A Theory of Stack Allocation
in Polymorphically Typed Languages. Technical Report DIKU-report
93/15. Department of Computer Science, University of Copenhagen.

[46] Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Man-

agement. Information and Computation 132, 2 (1997), 109–176.

[47] Andrew P. Tolmach. 1994. Tag-Free Garbage Collection Using Explicit

Type Parameters. In LISP and Functional Programming. 1–11. citeseer.
nj.nec.com/52227.html

[48] Katsuhiro Ueno and Atsushi Ohori. 2016. A Fully Concurrent Garbage

Collector for Functional Programs on Multicore Processors. In ACM
International Conference on Functional Programming (ICFP ’16).

[49] Stephen Weeks. 2006. Whole-Program Compilation in MLton. In

Proceedings of the 2006 Workshop on ML (Portland, Oregon, USA) (ML
’06). Association for Computing Machinery, New York, NY, USA, 1.

https://doi.org/10.1145/1159876.1159877
[50] Andrew K. Wright and Matthias Felleisen. 1994. A Syntactic Approach

to Type Soundness. Information and Computation 115, 1 (1994), 38–94.

citeseer.nj.nec.com/wright92syntactic.html

https://doi.org/10.1017/CBO9780511546846
https://doi.org/10.1017/CBO9780511546846
citeseer.nj.nec.com/goldberg92polymorphic.html
citeseer.nj.nec.com/goldberg92polymorphic.html
citeseer.nj.nec.com/morrisett96tilml.html
citeseer.nj.nec.com/tarditi95til.html
citeseer.nj.nec.com/tarditi95til.html
citeseer.nj.nec.com/52227.html
citeseer.nj.nec.com/52227.html
https://doi.org/10.1145/1159876.1159877
citeseer.nj.nec.com/wright92syntactic.html

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

A Detailed proofs
The below detailed proofs follow closely the structure of the

proofs provided in [13], but adjusted to treat type variable

contexts properly.

Proposition 12 (Typing Closed Under Type Substitution).

If Ω + ∆, Γ ⊢ e : π ,φ and Ω ⊢ S : ∆ then Ω, S(Γ) ⊢ S(e) :

S(π), S(φ).

Proof. By induction on the derivation of Ω + ∆, Γ ⊢ e : π ,φ.
The cases for integers (values), pairs (values and expressions),

projections (expressions), and identifiers are trivial.

Case e = ⟨λx .e ′⟩ρ . From [TvLam], we have Ω + ∆, Γ ⊢

e : (µ1

ϵ .φ
−−−−→ µ2, ρ), ∅ and {}, {x : µ1} ⊢ e ′ : µ2,φ and ⊢ π .

Because ftv(π , e ′,φ) ∩ dom(S) = ∅, we have {}, {x : S(µ1)} ⊢

S(e ′) : S(µ2), S(φ) and ⊢ S(π). Moreover, because frv(π) =
frv(S(π)), we have frv(S(π)) |=v S(e ′). We can now apply

[TvLam] to get Ω, S(Γ) ⊢ S(e) : S(π), ∅, as required.
Case e = e1 e2. From [TeApp], we have Ω + ∆, Γ ⊢ e :

µ,φ0 ∪φ1 ∪φ2 ∪ {ϵ, ρ} and Ω+∆, Γ ⊢ e1 : (µ ′
ϵ .φ0

−−−−−→ µ, ρ),φ1

and Ω + ∆, Γ ⊢ e2 : µ ′,φ2. By induction we have Ω, S(Γ) ⊢

S(e1) : (S(µ ′)
S (ϵ .φ0)

−−−−−−−→S(µ), S(ρ)), S(φ1) and Ω, S(Γ) ⊢ S(e2) :

S(µ ′), S(φ2). It follows from the definition of type substitu-

tion that S(ϵ .φ0) = ϵ .φ0. We can now apply [TeApp] to get

Ω, S(Γ) ⊢ S(e) : S(µ), S(φ), as required.
Case e = letregion ρ in e ′. From [TeReg], we have

Ω+∆, Γ ⊢ e : µ,φ \ {ρ, ®ϵ} and Ω+∆, Γ ⊢ e ′ : µ,φ and {ρ, ®ϵ}∩
frev(Γ, µ) = ∅. By renaming of bound names and because ρ
and ®ϵ do not appear free in the concluding type judgment,

we can assume {ρ, ®ϵ}∩frev(S(Γ), S(µ)) = ∅. By induction, we

have Ω, S(Γ) ⊢ S(e ′) : S(µ), S(φ). We can now apply [TeReg],

to get Ω, S(Γ) ⊢ letregion ρ in S(e ′) : S(µ), S(φ) \ {ρ, ®ϵ}.
It follows trivially that we have Ω, S(Γ) ⊢ S(e) : S(µ), S(φ \

{ρ, ®ϵ}), as required.
Case e = e ′ [®ρ] at ρ. From [TeRapp], we have Ω + ∆, Γ ⊢

e ′ : (σ , ρ ′),φ and Ω + ∆ ⊢ σ ≥ τ via ®ρ and Ω ⊢ τ . By
induction, we have Ω, S(Γ) ⊢ S(e ′) : (S(σ), S(ρ ′)), S(φ). From
Proposition 7, we have Ω ⊢ S(σ) ≥ S(τ) via ®ρ, thus, from
[TeRapp], we can conclude Ω, S(Γ) ⊢ S(e) : S(τ , ρ), S(φ ∪

{ρ, ρ ′}), as required.
Case Rule [TeSub]. We have Ω + ∆, Γ ⊢ e : π ,φ and Ω +

∆, Γ ⊢ e : π ,φ ′
and φ ′ ⊇ φ. By induction. we have Ω, S(Γ) ⊢

S(e) : S(µ), S(φ). From the definition of type substitution, it

follows that φ ′ ⊇ φ implies S(φ ′) ⊇ S(φ), thus, we can apply

[TeSub] to get Ω, S(Γ) ⊢ S(e) : S(µ), S(φ ′), as required.

□

Proposition 16 (Value Substitution). If Ω, Γ + {x : π } ⊢ e :

π ′,φ and ⊢ v : π then Ω, Γ ⊢ e[v/x] : π ′,φ.

Proof. By induction on the derivation Ω, Γ + {x : π } ⊢ e :

π ′,φ.
Case e = y. From assumptions and [TeVar], we have

Ω, Γ + {x : π } ⊢ y : π ′,φ and (Γ + {x : π })(y) = π ′
and

φ = ∅. If y , x , we have e[v/x] = y, thus, because Γ(y) = π ′
,

we can conclude from [TeVar] that Ω, Γ ⊢ e[v/x] : π ′,φ,
as required. Otherwise, y = x , thus e[v/x] = v and π = π ′

.

From assumptions, [TeVal], and [TeSub], we have Ω, Γ ⊢

e[v/x] : π ′,φ, as required.
Case e = λy.e ′ at ρ. From assumptions and [TeLam],

we have Ω, Γ + {x : π ,y : µ} ⊢ e ′ : µ ′,φ ′
and φ = {ρ} and

π ′ = (µ
ϵ .φ ′

−−−−−→ µ ′, ρ). By renaming of bound variables, we can

assume x , y, thus, we can apply the induction hypothesis

to get Ω, Γ + {y : µ} ⊢ e ′[v/x] : µ ′,φ ′
. By applying [TeLam],

we have Ω, Γ ⊢ λy.e ′[v/x] : π ′,φ, as required.
The remaining cases follow similarly. □

Proposition 17 (Unique Decomposition). If ⊢ e : π ,φ, then
either (1) e is a value, or (2) there exist a unique Eφ ′ , e ′, and
π ′ such that e = Eφ ′[e ′] and ⊢ e ′ : π ′,φ ∪ φ ′ and e ′ is an
instruction.

Proof. By induction on the structure of e . Suppose e is not
a value. There are 8 cases to consider. We proceed by case

analysis.

Case e = letregion ρ in e1. A derivation ⊢ e : π ,φ
must end in a use of [TeReg] followed by a number of uses

of [TeSub]. It follows that there exist φ1 and φ2 such that

φ = φ1\{ρ}∪φ2 and ρ < frv(π) and ⊢ e1 : π ,φ1. By renaming

of bound variables, we can assume ρ < frv(φ2). By induction,

either e1 is a value or there exist a unique E
′
φ ′′ , ι1, and π

′
1
such

that e1 = E ′
φ ′′[ι1] and ⊢ ι1 : π ′

1
,φ1 ∪ φ ′′

. If e1 is not a value

then we take Eφ ′ = letregion ρ in E ′
φ ′′ , φ ′ = φ ′′ ∪ {ρ},

ι = ι1, π
′ = π ′

1
, and from [TeSub], we have ⊢ ι1 : π ′

1
,φ ∪ φ ′

,

because φ1 ∪φ ′′ ⊆ φ ∪φ ′
. Otherwise, e1 = v1 for some value

v1. Thus, Eφ ′ = [·], ι = letregion ρ in v1, π
′ = π , and

φ ′ = ∅.

Case e = e1 e2. A derivation ⊢ e : π ,φ must end in a

use of [TeApp], followed by a number of uses of [TeSub]. It

follows that there exist µ, φ1, φ2, µ
′
, ϵ , φ0, and φ3 such that

φ = φ0 ∪ φ1 ∪ φ2 ∪ {ϵ, ρ} ∪ φ3 and ⊢ e1 : (µ
ϵ .φ0

−−−−−→ µ ′, ρ),φ1

and ⊢ e2 : µ,φ2 and π = µ ′. By induction, either e1 is a value

or else there exist E ′
φ ′

1

, ι1, and π ′
1
such that e1 = E ′

φ ′
1

[ι1] and

⊢ ι1 : π ′
1
,φ1∪φ

′
1
. If e1 is not a value, then we take Eφ ′ = E ′

φ ′
1

e2,

ι = ι1, π
′ = π ′

1
, and because φ ′ = φ ′

1
and φ1 ⊆ φ, we can

apply [TeSub] to get ⊢ ι1 : π ′
1
,φ ∪ φ ′

. Otherwise, e1 = v1 for

some value v1. We can now apply the induction hypothesis

to get that either e2 is a value or else there exist E ′
φ ′

2

, ι2,

and π ′
2
such that e2 = E ′

φ ′
2

[ι2] and ⊢ ι2 : π ′
2
,φ2 ∪ φ ′

2
. If e2

is not a value, then we take Eφ ′ = v1 E ′
φ ′

2

, ι = ι2, π
′ = π ′

2
,

and because φ ′ = φ ′
2
and φ2 ⊆ φ, we can apply [TeSub] to

get ⊢ ι2 : π ′
2
,φ ∪ φ ′

. Otherwise e2 = v2 for some value v2.

Because ⊢ v1 : (µ
ϵ .φ0

−−−−−→ µ ′, ρ),φ1, we can conclude from

inspecting the typing rules for values (canonical forms) that

v1 = ⟨λx .e ′⟩ρ . Thus, Eφ ′ = [·], φ ′ = ∅, ι = ⟨λx .e ′⟩ρ v2, and

π ′ = π .

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark

The remaining 6 cases follow similarly. □

Proposition 18 (Type Preservation). If ⊢ e : π ,φ and e
φ

7−→

e ′ then ⊢ e ′ : π ,φ.

Proof. By induction on the structure of e . We proceed by case

analysis.

Case e = λx .e0 at ρ. From assumptions and [TeLam], we

have π = (µ1

ϵ .φ0

−−−−−→ µ2, ρ) and {x : µ1} ⊢ e0 : µ2,φ0 and

⊢ π and G({}, {}, e0, {x}, π) and φ = {ρ}. From [Lam], we

have ρ ∈ φ and e ′ = ⟨λx .e0⟩
ρ
. From definition (4), we have

frv(π) |=v e0. Now, by use of [TvLam] and [TeSub], we have

⊢ e ′ : π ,φ, as required.
Case e = (v1,v2) at ρ. As above.
Case e = fun f [®ρ] x = e at ρ. As above.
Case e = letregion ρ in v . From assumptions and from

[TeReg], there exist φ ′
and µ such that φ = φ ′ \ {ρ} and ⊢ v :

µ,φ ′
and π = µ. It follows from [TeVal] that ⊢ v : µ, ∅, thus,

from [Reg] and [TeSub], we have ⊢ e ′ : π ,φ, as required.
Case e = ⟨λx .e1⟩

ρ v . From assumptions, [TeApp], and

[TvLam], there exist µ, µ1, ϵ , and φ0 such that π = µ and

{x : µ1} ⊢ e1 : µ,φ0 and ⊢ v : µ1,φ1, and φ = φ0 ∪ {ϵ, ρ}.
From [TeVal], we have ⊢ v : µ1, ∅. Thus, from Proposition 16,

we have ⊢ e1[v/x] : µ,φ0. Now, because φ ⊇ φ0, we can

apply [TeSub] to get ⊢ e ′ : π ,φ, as required.
Case e = let x = v in e ′. As above.
Case e = ⟨fun f [®ρ] x = e1⟩

ρ [®ρ ′] at ρ ′. There are two
possibilities. Either [TvFun] applies or [TvRec] applies.

case Rule [TvFun]. From assumptions, [TeRapp], and [Tv-

Fun], we haveπ = (τ , ρ ′),φ = {ρ, ρ ′},v = ⟨fun f [®ρ]x = e1⟩
ρ

and σ = ∀®ρ®ϵ∆.µ1

ϵ .φ0

−−−−−→ µ2, and

⊢ v : (σ , ρ) (11)

⊢ σ ≥ τ via ®ρ ′
(12)

{}, {x : µ1} ⊢ e1 : µ2,φ0 (13)

From (13), we have f < fpv(e1), thus, we have

{}, {x : µ1} ⊢ e1[v/f] : µ2,φ0 (14)

From the definition of instantiation and from (12), there

exists a substitution S = (S t, [®ρ ′/®ρ], Se) such that

S(µ1

ϵ .φ0

−−−−−→ µ2) = τ (15)

{} ⊢ S t
: ∆ (16)

From (14) and [TeLam], we have

⊢ λx .e1[v/f] at ρ ′ : (µ1

ϵ .φ0

−−−−−→ µ2, ρ
′), {ρ ′} (17)

By renaming of bound names, we can assume S(v) = v
and S(ρ ′) = ρ ′, thus, from (15), (16), (17), Proposition 11,

and Proposition 12, we have ⊢ λx .e1[®ρ
′/®ρ][v/f] at ρ ′ :

(τ , ρ ′), {ρ ′}. We can now apply [TeSub] to get ⊢ e ′ : π ,φ, as
required.

caseRule [TvRec]. From assumptions, [TeRapp], and [TvRec],

we have π = (τ , ρ ′), φ = {ρ, ρ ′}, v = ⟨fun f [®ρ] x = e1⟩
ρ

and σ = ∀®ρ®ϵ∆.µ1

ϵ .φ0

−−−−−→ µ2, and

⊢ v : (σ , ρ) (18)

σ ′ = ∀®ρ®ϵ .µ1

ϵ .φ0

−−−−−→ µ2 (19)

⊢ σ ≥ τ via ®ρ ′
(20)

{ f : (σ ′, ρ)}, x : µ1} ⊢ e1 : µ2,φ0 (21)

From (18), (19), and [TvRec], we have

⊢ v : (σ ′, ρ) (22)

From Proposition 16 and (22) and (21), we have

{x : µ1} ⊢ e1[v/f] : µ2,φ0 (23)

From the definition of instantiation and from (20), there

exists a substitution S = (S t, [®ρ ′/®ρ], Se) such that

S(µ1

ϵ .φ0

−−−−−→ µ2) = τ (24)

{} ⊢ S t
: ∆ (25)

From (23) and [TeLam], we have

⊢ λx .e1[v/f] at ρ ′ : (µ1

ϵ .φ0

−−−−−→ µ2, ρ
′), {ρ ′} (26)

By renaming of bound names, we can assume S(v) = v
and S(ρ ′) = ρ ′, thus, from (24), (25), (26), Proposition 11,

and Proposition 12, we have ⊢ λx .e1[®ρ
′/®ρ][v/f] at ρ ′ :

(τ , ρ ′), {ρ ′}. We can now apply [TeSub] to get ⊢ e ′ : π ,φ, as
required.

Case e = #1 (v1,v2). From assumptions, [TeSel], and

[TvPair], we have ⊢ v1 : µ, ∅. We can now apply [TeSub]

to get ⊢ v1 : µ,φ, as required.

Case e = Eφ ′[e ′′]. We have e ′′
φ∪φ ′

7−→ e ′′′ and φ ∩ φ ′ = ∅

and e ′ = Eφ ′[e ′′′]. We now proceed by case analysis on the

structure of Eφ ′ .

case Eφ ′[e ′′] = (e ′′, e2) at ρ. We have φ ′ = ∅. From as-

sumptions and [TePair] we have ⊢ e ′′ : µ1,φ1, ⊢ e2 : µ2,φ2,

µ = (µ1 × µ2, ρ), and φ = φ1 ∪φ2 ∪ {ρ}. By applying [TeSub],
we have ⊢ e ′′ : µ1,φ. We can now apply the induction hy-

pothesis to get ⊢ e ′′′ : µ1,φ. By applying [TePair], we have

⊢ Eφ ′[e ′′′] : µ,φ, as required.
case Eφ ′[e ′′] = (v1, e

′′) at ρ. We have φ ′ = ∅. From as-

sumptions and [TePair] we have ⊢ v1 : µ1,φ1, ⊢ e
′′

: µ2,φ2,

µ = (µ1 × µ2, ρ), and φ = φ1 ∪φ2 ∪ {ρ}. By applying [TeSub],
we have ⊢ e ′′ : µ2,φ. We can now apply the induction hy-

pothesis to get ⊢ e ′′′ : µ2,φ. By applying [TePair], we have

⊢ Eφ ′[e ′′′] : µ,φ, as required.
case Eφ ′[e ′′] = #i e ′′, i ∈ {1, 2}. We have φ ′ = ∅. From

assumptions and [TeSel], we have ⊢ e ′′ : (µ1 × µ2, ρ),φ
′
,

µ = µi andφ = φ ′∪{ρ}. By applying [TeSub], we have ⊢ e ′′ :

(µ1 × µ2, ρ),φ, thus, we can apply the induction hypothesis

to get ⊢ e ′′′ : (µ1 × µ2, ρ),φ. We can now apply [TeSel] to

get ⊢ Eφ ′[e ′′′] : µ,φ, as required.
case Eφ ′[e ′′] = let x = e ′′ in e2. We have φ ′ = ∅. From

assumptions and [TeLet], there exists π such that ⊢ e ′′ :

π ,φ1, {x : π } ⊢ e2 : µ,φ2, and φ = φ1∪φ2. Applying [TeSub],

we have ⊢ e ′′ : π ,φ. By induction, we have ⊢ e ′′′ : π ,φ. We

can now apply [TeLet] to get ⊢ Eφ ′[e ′′′] : µ,φ, as required.

DIKU Techreport 2022, December 29, 2022, Copenhagen, Denmark Martin Elsman

case Eφ ′[e ′′] = e ′′ e2. From assumptions and [TeApp], it

follows that there exist ϵ , φ0, φ1, φ2, and ρ such that ⊢ e ′′ :

(µ2

ϵ .φ0

−−−−−→ µ, ρ),φ1, ⊢ e2 : µ2,φ2, andφ = φ0∪φ1∪φ2∪{ϵ, ρ}.

From [TeSub], we have ⊢ e ′′ : (µ2

ϵ .φ0

−−−−−→ µ, ρ),φ, thus, by

induction, we have ⊢ e ′′′ : (µ2

ϵ .φ0

−−−−−→ µ, ρ),φ. We can now

apply [TeApp] to get ⊢ Eφ ′[e ′′′] : µ,φ, as required.
case Eφ ′[e ′′] = v e ′′. As above.
case Eφ ′[e ′′] = e ′′ [®ρ] at ρ. As above.
case Eφ ′[e ′′] = letregion ρ in e ′′. We have φ ′ = {ρ}.

From assumptions and from [TeReg], there exist φ ′′
and ®ϵ

such that φ = φ ′′ \ {ρ, ®ϵ}, and ⊢ e ′′ : µ,φ ′′
. From [TeSub],

we have ⊢ e ′′ : µ,φ ∪ φ ′
. We can now apply the induction

hypothesis to get ⊢ e ′′′ : µ,φ ∪ φ ′
. Now, because φ = (φ ∪

φ ′) \ {ρ, ®ϵ}, we can apply [TeReg] to get ⊢ Eφ ′[e ′′′] : µ,φ, as
required.

The remaining cases follow similarly. □

Proposition 19. (Progress). If ⊢ e : π ,φ then either e is a
value or else there exists some e ′ such that e

φ
7−→ e ′.

Proof. If e is not a value, then by Proposition 17 there exist a

unique Eφ ′ , ι, and π ′
such that e = Eφ ′[ι] and ⊢ ι : π ′,φ ∪ φ ′

.

We argue that ι
φ∪φ ′

7−→ e2, for some e2, so that Eφ ′[ι]
φ

7−→ Eφ ′[e2]

follows from [Ctx]. We now consider all cases where ι could
possibly be stuck.

Case ι = λx .e ′
1
at ρ. We have ⊢ λx .e ′

1
at ρ : π ′,φ∪φ ′

. This

derivation must be an application of [TeLam] followed by a

number of applications of [TeSub]. Thus, we have ρ ∈ φ∪φ ′
.

It follows that we can apply [Lam] to get e2 = ⟨λx .e ′
1
⟩ρ .

Case ι = ⟨λx .ex⟩
ρ v . We have ⊢ ⟨λx .ex⟩

ρ v : π ′,φ ∪

φ ′
. This derivation must end in an application of [TeApp]

followed by a number of applications of [TeSub]. Thus, by

applying [TeVal], there exist µ, µ ′, ϵ , and φ0 such that ⊢

⟨λx .ex⟩
ρ

: (µ
ϵ .φ0

−−−−−→ µ ′, ρ), ∅ and ⊢ v : µ, ∅ and π ′ = µ ′ and
φ0 ∪ {ϵ, ρ} ⊆ φ ∪ φ ′

. Now, because ρ ∈ φ ∪ φ ′
, we can apply

[App] to get e2 = ex[v/x].
Case ι = ⟨fun f [®ρ] x = e0⟩

ρ′ [®ρ ′] at ρ. The derivation
⊢ ι : π ′,φ ∪ φ ′

must end in an application of [TeRapp]

followed by a number of applications of [TeSub], thus, from

[TeVal], there exist σ and τ ′ such that π ′ = (τ ′, ρ) and

⊢ ⟨fun f [®ρ] x = e0⟩
ρ′

: (σ , ρ ′), ∅ (27)

{ρ, ρ ′} ⊆ φ ∪ φ ′
(28)

Because ρ ′ ∈ φ∪φ ′
follows from (28), we can apply [Rapp] to

get e2 = λx .e0[®ρ
′/®ρ][v/f] at ρ, wherev = ⟨fun f [®ρ]x = e0⟩

ρ′
.

Case ι = letregion ρ in v . It follows immediately from

[Reg] that e2 = v .
The remaining cases follow similarly. □

	Abstract
	1 Introduction
	2 The Problem
	3 A GC-Safe Region Type System
	3.1 Regions and Effects
	3.2 Types and Type Schemes
	3.3 Substitutions
	3.4 Instantiation
	3.5 The Role of Arrow Effects
	3.6 Terms
	3.7 Value Containment and GC Safety
	3.8 Typing Rules
	3.9 Typing Properties
	3.10 A Small Step Dynamic Semantics
	3.11 Type Safety

	4 Implementation
	4.1 Region Inference
	4.2 The MLKit
	4.3 Tracking Spurious Type-Variable Dependencies
	4.4 Type Variables in Exception Types

	5 Benchmarks
	6 Related Work
	7 Conclusion and Future Work
	References
	A Detailed proofs

