
115

Garbage-Collection Safety for Region-Based

Type-Polymorphic Programs

MARTIN ELSMAN, University of Copenhagen, Denmark

Region inference offers a mechanism to reduce (and sometimes entirely remove) the need for reference-tracing

garbage collection by inferring where to insert allocation and deallocation instructions in a program at compile

time. When the mechanism is combined with techniques for reference-tracing garbage collection, which

is helpful in general to support programs with very dynamic memory behaviours, it turns out that region-

inference is complementary to adding generations to a reference-tracing collector. However, region-inference

and the associated region-representation analyses that make such a memory management strategy perform

well in practice are complex, both from a theoretical point-of-view and from an implementation point-of-view.

In this paper, we demonstrate a soundness problem with existing theoretical developments, which have

to do with ensuring that, even for higher-order polymorphic programs, no dangling-pointers appear during

a reference-tracing collection. This problem has materialised as a practical soundness problem in a real

implementation based on region inference. As a solution, we present a modified, yet simple, region type-system

that captures garbage-collection effects, even for polymorphic higher-order code, and outline how region

inference and region-representation analyses are adapted to the new type system. The new type system allows

for associating simpler region type-schemes with functions, compared to original work, makes it possible

to combine region-based memory management with partly tag-free reference-tracing (and generational)

garbage-collection, and repairs previously derived work that is based on the erroneous published results.

CCS Concepts: • Software and its engineering→ Functional languages; Runtime environments.

Additional Key Words and Phrases: region-inference, garbage-collection, Standard ML

ACM Reference Format:

Martin Elsman. 2023. Garbage-Collection Safety for Region-Based Type-Polymorphic Programs. Proc. ACM

Program. Lang. 7, PLDI, Article 115 (June 2023), 23 pages. https://doi.org/10.1145/3591229

1 INTRODUCTION

Region-based memory management allows programmers to associate life-times of objects with so-
called regions and to reason about how and when such regions are allocated and deallocated. Region-
based memory management, as it is implemented for instance in Rust [Aldrich et al. 2002], can be a
valuable tool for constructing certain kinds of critical systems, such as real-time embedded systems
[Salagnac et al. 2006]. Region inference differs from explicit region-based memory management by
taking a non-annotated program as input and producing a region-annotated program, including
directives for allocating and deallocating regions [Tofte et al. 2004]. The result is a programming
paradigm where programmers can learn to write region-friendly code (by following certain patterns
[Tofte et al. 2022]) to obtain good space and time performance for critical parts of the program.
The region-based memory management scheme that we consider here is based on the stack

discipline. Whenever e is some expression, region inference may decide to replace e with the
term letregion ρ in e ′, where e ′ is the result of transforming the expression e , which includes

Author’s address: Martin Elsman, Department of Computer Science, University of Copenhagen, Universitetsparken 5,

Copenhagen, DK-2100, Denmark, mael@di.ku.dk.

© 2023 Copyright held by the owner/author(s).

2475-1421/2023/6-ART115

https://doi.org/10.1145/3591229

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-and-badging-current
HTTPS://ORCID.ORG/0000-0002-6061-5993
https://doi.org/10.1145/3591229
https://orcid.org/0000-0002-6061-5993
https://doi.org/10.1145/3591229

115:2 Martin Elsman

annotating allocating expressions with particular region variables (e.g., ρ) specifying the region
each value should be stored in. The semantics of the letregion term is first to allocate a region
(initially an empty list of pages) on the region stack, bind the region to the region variable ρ,
evaluate e ′, and, finally, deallocate the region bound to ρ (and its pages). The region type system
allows regions to be passed to functions at run time (i.e., functions can be region-polymorphic)
and to be captured in closures. The soundness of region inference ensures that a region is not
deallocated as long as a value within it may be used by the remainder of the computation.
To remedy the problem that region inference does not always capture precisely the lifetime

properties of objects, previous work has augmented the static inference scheme with more dynamic
lifetime-based reference-tracing copying garbage collectors [Elsman and Hallenberg 2020, 2021;
Hallenberg et al. 2002]. For such integrations, care must be taken to rule out the possibility of
deallocating regions with incoming pointers from live objects.
It turns out, however, that region inference (and the accompanying region typing rules) allows

for so-called dangling pointers, which are pointers to objects that region inference has determined
will not be needed by the remainder of the computation, yet are captured in objects (e.g., in closures)
that escape a letregion construct and are live from a reference-tracing point-of-view.
Previous work attempt to rule out the possibility of dangling pointers by adjusting the region

typing rules (and region inference) in such a way that the type of an object will mention all regions
that the object may live in [Elsman 2003] (by enlarging the latent effect sets of certain function
types). As a consequence, such an adjustment will capture the effect of a reference-tracing garbage
collection appearing when control enters a function, for instance. Unfortunately, the previous
attempts at ruling out dangling pointers fail for certain programs that involve a combination of
higher-order dead values and type polymorphism. From a theoretical point-of-view, the problem is
that the region-typing rules, which form the basis of region inference, are not closed under type
substitution, which is erroneously claimed by previous work [Elsman 2003; Elsman and Hallenberg
2021]. As we shall see, this problem is not straightforward to overcome.
The erroneous theoretical results are exposed through the MLKit Standard ML compiler [Tofte

et al. 2022]. The MLKit compiles programs to native code for Linux and macOS [Elsman and
Hallenberg 1995] and implements techniques for dividing regions into those that are bounded and
may be stack allocated (called finite regions) and those that must be heap allocated (called infinite

regions) [Birkedal et al. 1996; Tofte et al. 2004], which are subject to reference-tracing collections.
Based on the theoretical insights described above, dangling pointers may occur at runtime, which
may cause programs to fail (e.g., segfault) during a reference-tracing collection. Fortunately, it is
possible to adjust the region type system to mitigate the problem and provide guarantees, also for
higher-order type-polymorphic programs, that dangling pointers do not appear at runtime.
The contributions of this paper are the following:

(1) We identify a safety problem with existing techniques for abandoning dangling-pointers
at runtime, which serves as an assumption for combining region-inference with reference-
tracing garbage collection.

(2) We present a non-trivial and novel modification to an existing region-based type system that
rules out dangling pointers and allows for combining region-based memory management
with reference-tracing (and even generational) garbage collection.

(3) We describe how the modified type system affects region inference and the region represen-
tation analyses that form the basis for a practical compiler infrastructure.

(4) We demonstrate that, in practice, the necessarymodifications have little effect on performance,
affect only a small set of functions, and resolve problems with running large programs, such
as MLKit and MLton, two different Standard ML compilers.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:3

The paper is organised as follows. In the following section, we first give an informal example
demonstrating a program for which dangling pointers will occur at runtime unless the region
typing rules that form the basis of region inference are adjusted beyond previous suggestions. In
this section, we also demonstrate, informally, how we may adjust the region typing rules further to
eliminate completely the presence of dangling pointers.
In Section 3, we present a simplified, but formal, region type system for a language that serves

as a target language for region inference. We present a number of properties of the type system,
including region type soundness and the property that no dangling pointers are introduced during
evaluation. In Section 4, we describe various aspects of the implementation, including how region
inference is implemented for the system. We also give examples demonstrating some non-trivial
aspects of the system. In Section 5, we present experimental results and evaluate the work. In
Section 6, we describe related work, and in Section 7, we conclude.

2 THE PROBLEM

We now demonstrate the unsoundness problem that may occur when reference-tracing garbage
collection is combinedwith higher-order functions and type-polymorphism.We present the problem
in the context of a slightly modified region-based type system, compared to the original Tofte-Talpin
region-type system, but emphasise that the unsoundness can be demonstrated also for the original
system even if the typing rules are modified as described in [Tofte and Talpin 1993, page 50] and
[Elsman 2003], which aim at abandoning dangling pointers (but fail).
Consider the function-composition function, which has the following ML type-scheme:

val o : (γ → β) × (α → γ) → α → β

Here α , β , and γ are (implicitly quantified) type variables and o is an infix function that takes a pair
of two functions as argument and returns a function as the result.

The region annotated version of the function o has the following region (and effect) type-scheme:

∀ϵϵ0ϵ1ϵ2ρ0ρ1ρ2ρ3αβγ . (1)

((γ ϵ2 .∅−−−−−→ β, ρ2) × (α ϵ1 .∅−−−−−→γ , ρ1), ρ0)
ϵ0 . {ρ0,ρ3 }−−−−−−−−−−→ (α

ϵ . {ϵ1,ϵ2,ρ1,ρ2 }−−−−−−−−−−−−−→ β, ρ3)

Here ϵ , ϵ0, ϵ1, and ϵ2 are effect variables and ρ0, ρ1, ρ2, and ρ3 are region variables. We see that
function type constructors are annotated with so-called arrow effects, each of which is a set of
atomic effects (effect variables and region variables) identified by an effect variable.1 Moreover,
type constructors for products (×) and functions are annotated with region variables that indicate
in which region a particular constructed value resides. The arrow effect ϵ0.{ρ0, ρ3} expresses that
when the function o is applied to a pair of functions, the pair, which resides in ρ0 is deconstructed
and a new closure is stored in region ρ3. The arrow effect ϵ .{ϵ1, ϵ2, ρ1, ρ2}, which appears on the
arrow of the type of the resulting function, expresses that, when the function is applied, the two
argument functions are accessed (ρ2, ρ1) and evaluated (ϵ2, ϵ1).

When a function such as o is applied, a particular instantiation of the function’s type-scheme is
described by a particular substitution that maps generic effect variables to arrow effects, generic
region variables to region variables, and generic type variables to region-annotated types.

Consider now the problematic function run in Figure 1, which first creates a function h, thereby
capturing a dead value in a closure, calls a function work (for the sake of triggering a reference-
tracing collection), and finally calls the function h. Notice that the argument to the function o

1As described in details later, allowing arrow effects to be identified by effect variables (so-called effect-handles) enables the

possibility that effects may grow by applying effect substitutions (which map effect variables to arrow effects).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:4 Martin Elsman

fun run () : unit =

let val h : unit -> unit = (op o) let val x = "oh" ^ "no"

in (fn x => (), fn () => x)

end

val _ = work () (* trigger gc *)

in h ()

end

Fig. 1. Problematic source program involving higher-order functions, type-polymorphism, and dead values.

fun run () : unit =

letregion ρ1,ρ2,ρ3 in

let val h : (unit
ϵ .{ρ1 ,ρ2}−−−−−−−−−−−→ unit , ρ3) =

letregion ρ ,ρ0 in

(op o [ρ3])

let val x = op ^ [ρ] ("oh","no")

in (fn at ρ1 x => (),

fn at ρ2 () => x) at ρ0
end

end

val _ = work () (* trigger gc *)

in h ()

end

end

(a)

fun run () : unit =

letregion ρ ,ρ1,ρ2,ρ3 in

let val h : (unit
ϵ .{ρ1 ,ρ2 ,ρ }−−−−−−−−−−−−−→ unit , ρ3) =

letregion ρ0 in

(op o [ρ3])

let val x = op ^ [ρ] ("oh","no")

in (fn at ρ1 x => (),

fn at ρ2 () => x) at ρ0
end

end

val _ = work () (* trigger gc *)

in h ()

end

end

(b)

Fig. 2. An unsound region-annotated program (a) and an alternative sound region-annotated program (b).

evaluates to a pair of functions for which the second function returns a pointer to an already
allocated value ("ohno") and the first function will silently discard its argument.

Next, consider the region-annotated version of the function run, given in Figure 2(a). We see that
region inference has determined that the closure bound to h will reside in the region ρ3 and that the
value bound to xwill reside in the region ρ, which is deallocated after the function h is constructed.2

The effect is that when the function work is called, which may perhaps trigger a reference-tracing
collection, the value bound to h, which is live (and therefore part of the garbage-collection root
set), will contain a pointer to an object that no longer exists.
Whereas the appearance of such dangling pointers is perfectly ok for a region-based memory

management scheme that does not integrate with reference-tracing garbage collection (as long as
the program itself does not dereference dangling pointers), a reference-tracing garbage collector will
stumble over dangling pointers. An alternative region-annotated version of the program appears
in Figure 2(b). This version of the program, which is the result of region inference based on our
modified type system, does not introduce dangling pointers at runtime as the region ρ is live at least
as long as the function h, which is enforced by ensuring that the type of the function h mentions
the region ρ (in the arrow effect of the function type).
We now describe, informally, the mechanism that enforces region inference to assign the type

unit
ϵ . {ρ1,ρ2,ρ }−−−−−−−−−−−−→ unit to the function h. First, notice that the type of h is the result type of an

instance of the type scheme for the function o and that we must somehow capture, in the type
scheme for o, that the type instance for the type variable γ specifies values that live in the region ρ.

2Notice that string concatenation (^) takes, besides the two argument strings, the region (ρ) into which the result is allocated.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:5

We can capture this property by giving o the following type scheme:

∀ϵϵ0ϵ1ϵ2ϵ
′ρ0ρ1ρ2ρ3αβ(γ : ϵ ′.∅). (2)

((γ ϵ2 .∅−−−−−→ β, ρ2) × (α ϵ1 .∅−−−−−→γ , ρ1), ρ0)
ϵ0 . {ρ0,ρ3 }−−−−−−−−−−→ (α

ϵ . {ϵ1,ϵ2,ϵ
′
,ρ1,ρ2 }−−−−−−−−−−−−−−−→ β, ρ3)

Compared to (1), the modified type scheme expresses a relationship between the type variable γ ,
through the type variable descriptor γ : ϵ ′.∅, and the effect of the resulting function, which can be
used to establish that regions appearing in the type of the instantiated type for γ must appear in the
effect identified by the effect variable ϵ ′. In the theoretical development presented in the following
sections, this establishment will be implemented as part of the instance-of relation between region
type-schemes and region-annotated types. Moreover, the typing rule for functions will ensure that
type variables that appear in the type of a free variable occurring in the body of the function are
associated with effect variables that are added to the arrow effect of the function type.
An alternative sound type scheme for o is the following:

∀ϵϵ0ϵ1ϵ2ρ0ρ1ρ2ρ3αβ(γ : ϵ .{ϵ1, ϵ2, ρ1, ρ2}). (3)

((γ ϵ2 .∅−−−−−→ β, ρ2) × (α ϵ1 .∅−−−−−→γ , ρ1), ρ0)
ϵ0 . {ρ0,ρ3 }−−−−−−−−−−→ (α

ϵ . {ϵ1,ϵ2,ρ1,ρ2 }−−−−−−−−−−−−−→ β, ρ3)

Compared to (2), the alternative type scheme identifies the arrow effects associated with the result
function type and the type variable γ , which is fine for the function o. Such an identification, which
is perfectly sound, can be problematic (i.e., cause larger live ranges of regions), however, for type
schemes with multiple type variables occurring free in the types of free identifiers of a function.
On the positive side, however, the alternative type scheme can be expressed without introducing
new secondary effect variables,3 which can be problematic for region inference.
Both of the above type schemes are sound candidates for the composition function o and both

type schemes are accepted by the GC-safe region type system that we present in the next section.
Distinguishing between the type system and the inference algorithm is vital here as it provides
us with important implementation flexibility. For the theoretical development, we associate all
bound type variables with arrow effects, whereas, for implementation purposes, we first identify
the so-called spurious type variables for which we need to associate arrow effects. We return to the
details of the inference algorithm and the concept of spurious type variables in Section 4.

3 A GC-SAFE REGION TYPE SYSTEM

In this section, we present a type system that provides us with the necessary guarantees for
integrating region inference and reference-tracing garbage collection. Compared to the Tofte-
Talpin type system [Tofte and Talpin 1997], the type system that we present ensures that no
dangling pointers are introduced during evaluation even for programs that involve higher-order
type-polymorphic functions. In the remainder of this section, we present a formal treatment for a
small ML-like intermediate language extended with region annotations.

3.1 Regions and Effects

We assume a denumerably infinite set of program variables, ranged over by x and f . We also
assume a denumerably infinite set of region variables, ranged over by ρ. Moreover, we assume a
denumerably infinite set of effect variables, ranged over by ϵ . An atomic effect, ranged over by η,
is either a region variable or an effect variable, and an effect, ranged over by φ, is a set of atomic
effects. An arrow effect, written ϵ .φ, and ranged over by ν , is a pair of an effect variable and an

3A secondary effect variable is an effect variable that does not appear syntactically as a handle on an arrow type constructor

anywhere in the type-annotated version of the program.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:6 Martin Elsman

effect. For simplicity, we do not distinguish between put- and get-effects. Finally, we assume a
denumerably infinite set of type variables, ranged over by α .
A type variable context, ranged over by Ω (or ∆), is a finite map from type variables to arrow

effects. When M and M ′ are two finite maps, we write M +M ′ to denote the map with domain
dom(M) ∪ dom(M ′) and values (M +M ′)(x) = M ′(x), if x ∈ dom(M ′) andM(x), otherwise.

3.2 Types and Type Schemes

The grammars for types (τ), type and places (µ), type schemes (σ), and type schemes and places (π)
are as follows:

µ ::= (τ , ρ) | α | int τ ::= µ1 × µ2 | µ1
ϵ .φ

−−−−→ µ2
σ ::= ∀®ρ®ϵ .σ | ∀∆.τ π ::= (σ , ρ) | µ

For type schemes of the form∀®ρ®ϵ .σ , the region variables ®ρ and the effect variables ®ϵ are considered
bound in σ . In type schemes of the form ∀∆.τ , which are novel, the type variables in dom(∆) are
considered bound in τ . Type schemes are considered identical up to renaming of bound variables.
Following the usual definition of bound variables, we define, for any kind of object o, the free

region variables and the free region and effect variables of o, written frv(o) and frev(o), respectively.
We write fv(o) to denote the free type, region, and effect variables of o.

A type and place µ (or type τ) is well-formed with respect to a type variable context Ω, if the
sentence Ω ⊢ µ (or Ω ⊢ τ) can be derived from the following rules:
A type and place µ (or type scheme and place π) is well-formed with respect to a type variable

context Ω, if the sentence Ω ⊢ µ (or Ω ⊢ π) can be derived from the following rules:

Well-formed types and type scheme and places Ω ⊢ µ and Ω ⊢ π

α ∈ dom(Ω)

Ω ⊢ α Ω ⊢ int

Ω ⊢ µ1 Ω ⊢ µ2

Ω ⊢ (µ1 × µ2, ρ)

Ω ⊢ µ1 Ω ⊢ µ2

Ω ⊢ (µ1
ϵ .φ

−−−−→ µ2, ρ)

Ω ⊢ (σ , ρ)

Ω ⊢ (∀®ρ®ϵ .σ , ρ)

Ω + ∆ ⊢ (τ , ρ) dom(∆) ∩ dom(Ω) = ∅

Ω ⊢ (∀∆.τ , ρ)

Before we define the notion of substitution, we define a notion of containment, which expresses
that a type and place µ (or type scheme and place π) is contained in an effectφ, under the assumption
of a type variable context Ω. The relation is written Ω ⊢ µ : φ (or Ω ⊢ π : φ) and is defined according
to the following rules:

Type (scheme) and place containment Ω ⊢ µ : φ and Ω ⊢ π : φ

Ω ⊢ µ1 : φ

Ω ⊢ µ2 : φ ρ ∈ φ

Ω ⊢ (µ1 × µ2, ρ) : φ

φ0 ⊆ φ {ρ, ϵ} ⊆ φ

Ω ⊢ µ1 : φ Ω ⊢ µ2 : φ

Ω ⊢ (µ1
ϵ .φ0−−−−−→ µ2, ρ) : φ Ω ⊢ int : φ

frev(Ω(α)) ⊆ φ

Ω ⊢ α : φ

Ω ⊢ σ : φ ρ ∈ φ { ®ρ®ϵ} ∩ frev(Ω, ρ) = ∅

Ω ⊢ (∀®ρ®ϵ .σ , ρ) : φ \ { ®ρ®ϵ}

Ω + ∆ ⊢ (τ , ρ) : φ dom(∆) ∩ dom(Ω) = ∅

Ω ⊢ (∀∆.τ , ρ) : φ

Containment implies well-formedness, which can be demonstrated by simple structural induction:

Proposition 1 (Containment ImpliesWell-formedness). Assume o is one of µ or π . If Ω ⊢ o : φ

then Ω ⊢ o.

Both well-formedness and containability features context extensibility properties. Assume o
is one of µ or π and dom(Ω) ∩ dom(∆) = ∅. If Ω ⊢ o : φ then Ω + ∆ ⊢ o : φ. Moreover, if Ω ⊢ o

then Ω + ∆ ⊢ o. It is also straightforward to demonstrate an effect extensibility property for type

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:7

containment stating that, when o is one of µ or π , if Ω ⊢ o : φ and φ ⊆ φ ′ then Ω ⊢ o : φ ′. Finally,
the following effect containment property can be shown by simple structural induction:

Proposition 2 (Containment). Assume o is one of µ or π . If Ω ⊢ o : φ then frev(o) ⊆ φ.

3.3 Substitutions

A substitution (S) is a triple (S t, Sr, Se), where S t is a type substitution, a finite map from type variables
to type and places, Sr is a region substitution, a finite map from region variables to region variables,
and Se is an effect substitution, a finite map from effect variables to arrow effects. The effect of
applying a substitution to a particular object is to carry out the three substitutions simultaneously
to the three kinds of variables in the object (possibly by renaming of bound variables within the
object to avoid capture) and acting as the identity outside of its domain. For effect sets and arrow
effects, substitution is defined as follows [Tofte and Birkedal 2000], assuming S = (S t, Sr, Se):

S(φ) = {Sr(ρ) | ρ ∈ φ} ∪ {η | ∃ϵ .ϵ ∈ φ ∧ η ∈ frev(Se(ϵ))}
S(ϵ .φ) = ϵ ′.(φ ′ ∪ S(φ)), where Se(ϵ) = ϵ ′.φ ′

Notice in particular, that when a substitution is applied to an effect φ, the result is also an effect.
Applying a substitution S to a type variable context ∆ is defined only if dom(S) ∩ dom(∆) = ∅:

S({α1 : ν1, · · · ,αn : νn}) = {α1 : S(ν1), · · · ,αn : S(νn)}

For type schemes and for type-schemes and places, substitution is defined as follows, assuming
that bound variables in type schemes have been renamed to avoid capture:

S(∀®ρ®ϵ .σ) = ∀®ρ®ϵ .S(σ) S(∀∆.τ) = ∀S(∆).S(τ) S(σ , ρ) = (S(σ), S(ρ))

It turns out that substitution is a monotone operation with respect to effects, which follows
immediately from the definition of substitution on effects:

Proposition 3 (Substitution Effect Monotonicity). If φ ⊆ φ ′ then S(φ) ⊆ S(φ ′), for any
substitution S and effects φ and φ ′.

Another property that holds, which we shall call the arrow-effect-substitution interchange property,
is that for any substitution S and arrow effect ϵ .φ, we have frev(S(ϵ .φ)) = S({ϵ} ∪ φ).

If S = (S t, Sr, Se), we call S a region-effect substitution if dom(S t) = ∅. Type containment is closed
under region-effect substitutions, which also follows by straightforward induction:

Proposition 4 (Region-Effect Substitution Closedness). Assume o is one of µ or π . If

Ω ⊢ o : φ and S is a region-effect substitution then S(Ω) ⊢ S(o) : S(φ).

For type containment to be closed under type substitutions, on the other hand, a substitution
coverage requirement is needed. A type substitution S t is covered by a type variable context Ω,
through another type variable context ∆, written Ω ⊢ S t : ∆, if dom(S t) = dom(∆) and, for all
α ∈ dom(S t), we have Ω ⊢ S t(α) : frev(∆(α)).

In connection with the notion of instantiation, which we shall define shortly, it is the notion
of substitution coverage that ensures that the arrow effect associated with a bound type variable
captures the free region and effect variables of the types instantiated for the type variable (which
also holds transitively via the type containment relation.)
Provided the type substitution is properly covered, type containment is closed under type

substitution, for which a proof by structural induction appears in Appendix A (auxiliary material):

Proposition 5 (Type Substitution Closedness). Assume o is one of µ or π . If Ω + ∆ ⊢ o : φ

and Ω ⊢ S : ∆ then Ω ⊢ S(o) : φ.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:8 Martin Elsman

3.4 Instantiation

Given a type variable context Ω and a type scheme σ = ∀∆.τ ′ such that Ω ⊢ σ , a type τ is an
instance of σ via a type substitution S t, written Ω ⊢ σ ≥ τ via S t, if (1) Ω ⊢ S t : ∆ and (2) S t(τ ′) = τ .
Given a type variable context Ω and a type scheme σ = ∀®ρ®ϵ .σ ′ such that Ω ⊢ σ , a type τ is an

instance of σ via a substitution S = (S t, Sr, Se), written Ω ⊢ σ ≥ τ via S , if (1) dom(Sr) = { ®ρ} and
dom(Se) = {®ϵ} and (2) Ω ⊢ Se(Sr(σ ′)) ≥ τ via S t.

When we are interested in only the region instance list, we write Ω ⊢ σ ≥ τ via ®ρ to mean there
exists a substitution S = (S t, Sr, Se) such that Ω ⊢ σ ≥ τ via S and rng(Sr) = { ®ρ}.
It holds that if Ω ⊢ σ ≥ τ via ®ρ, for some σ , τ , and ®ρ, and S is a region-effect substitution, then

S(Ω) ⊢ S(σ) ≥ S(τ) via S(®ρ). Moreover, if Ω + ∆ ⊢ σ ≥ τ via ®ρ, for some Ω, ∆, σ , τ , and ®ρ, if
Ω ⊢ S : ∆, then Ω ⊢ S(σ) ≥ S(τ) via ®ρ. These properties are corollaries of the following, more
general, propositions, for which proofs appear in Appendix A:

Proposition 6 (Instantiation Closed Under Region-Effect Substitution). If S is a region-

effect substitution andΩ ⊢ σ ≥ τ via S ′ then S(Ω) ⊢ S(σ) ≥ S(τ) via S ′′, where S ′′ = (S◦S ′) ↓ dom(S ′).

Proposition 7 (Instantiation Closed Under Type Substitution). If Ω + ∆ ⊢ σ ≥ τ via S ′

and Ω ⊢ S : ∆ then Ω ⊢ S(σ) ≥ S(τ) via S ′′, where S ′′ = (S ◦ S ′) ↓ dom(S ′).

3.5 The Role of Arrow Effects

We emphasise that function types are annotated with arrow effects ϵ .φ and not only with effects
φ; with arrow effects, we can allow for effects to grow (by applying substitutions) and we can
make sure that if a non-region-annotated type is given two distinct region-annotations, then there
exists a substitution, a unifier, that, when applied to the two types, will make the two resulting
region-annotated types equal. This property is essential for the applied unification-based region
inference algorithm [Tofte and Birkedal 1998], which we shall discuss further later.
Moreover, for each object that we deal with, when an effect variable appears free in the object,

it is made explicit what effect it denotes, except when an effect variable appears free in an effect;
in this case, however, we know that, due to an assumed transitivity of effects, the effect already
includes the effect denoted by the included effect variable. It is for this reason that we annotate
quantified type variables with arrow effects and not only with effect variables; we often (e.g., in the
typing rules) need to know what effect the effect variable denotes. An alternative would be, in the
typing rules, to keep track of the denotation of effect variables in an external effect basis, similarly
to how effects are treated in the description of region inference [Tofte and Birkedal 1998, 2000];
making the effect basis explicit makes it straightforward to formulate certain well-formedness and
consistency constraints on the effect variables and their denotations in the rules. For instance, if
ϵ .φ and ϵ ′.φ ′ are two arrow effects appearing in the derivation of some judgement, then ϵ = ϵ ′

implies φ = φ ′ (the basis is functional) and ϵ ′ ∈ φ implies φ ′ ⊆ φ (the basis is transitive).

3.6 Terms

The grammars for expressions (e) and values (v) are as follows:

v ::= d | ⟨v1,v2⟩
ρ | ⟨λx .e⟩ρ | ⟨fun f [®ρ] x = e⟩ρ

e ::= v | x | let x = e1 in e2 | e1 e2 | λx .e at ρ | letregion ρ in e

| fun f [®ρ] x = e at ρ | e [®ρ] at ρ | (e1, e2) at ρ | #i e

Values include unboxed integers (d), pairs, ordinary closures, and recursive function closures
(which may also take regions as parameters). All values, except integers, are boxed and associated
with distinguished regions. An expression can be a value, a variable, a let-expression, a function

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:9

Values φ |= v

φ |= d
φ |=v e ρ ∈ φ

φ |= ⟨λx .e⟩ρ
ρ ∈ φ φ |= v1 φ |= v2

φ |= ⟨v1,v2⟩
ρ

ρ ∈ φ φ |=v e { ®ρ} ∩ φ = ∅

φ |= ⟨fun f [®ρ] x = e⟩ρ

Expressions φ |=v e

φ |= v

φ |=v v
φ |=v x

φ |=v e1 φ |=v e2

φ |=v (e1, e2) at ρ

φ |=v e

φ |=v #i e

φ |=v e

φ |=v λx .e at ρ

φ |=v e1 φ |=v e2

φ |=v e1 e2

φ |=v e { ®ρ} ∩ φ = ∅

φ |=v fun f [®ρ] x = e at ρ

φ |=v e

φ |=v e [®ρ] at ρ

φ |=v e1 φ |=v e2

φ |=v let x = e1 in e2

ρ < φ φ |=v e

φ |=v letregion ρ in e

Fig. 3. Value containment.

application, a lambda-expression, a letregion-construct, a recursive function binding, an application
of a recursive function to a list of region parameters, a pair-construct, and a pair-projection
expression. Notice that allocating expressions are annotated with an at-specifier, which specifies
in which region the value should be allocated. Notice also that expressions may contain values. A
program does not contain values initially. During evaluation, however, variables in the program
may be substituted with values, which is captured precisely by the small-step dynamic semantics
that we shall define later.
In expressions of the forms let x = e1 in e and λx .e at ρ, the variable x is bound in e . In

expressions of the form fun f [®ρ] x = e at ρ, the variables f , ®ρ, and x are bound in e . Similarly
for values. In expressions letregion ρ in e , the variable ρ is bound in e . We identify terms up to
renaming of bound variables. The free (program) variables of an expression e is written fpv(e).

A type environment (Γ) maps program variables to type schemes and places. It is well-formed in a
type variable context Ω, written Ω ⊢ Γ, if Ω ⊢ π , for all type schemes and places π ∈ rng(Γ).

3.7 Value Containment and GC Safety

To guarantee safety of garbage collection, we must ensure that no dangling pointers are introduced
during evaluation, which is not guaranteed by the Tofte-Talpin region type system [Tofte and
Talpin 1997]. The solution that we apply here is to add additional side conditions to the typing
rules for functions that guarantee the absence of dangling pointers [Elsman 2003].

First, we define a notion of value containment; all values in an expression e are contained in a set
of regions φ, if the sentence φ |=v e is derivable from the rules in Figure 3. It is straightforward to
demonstrate that if φ |=v e and φ ⊆ φ ′ then φ ′ |=v e (value containment extensibility). Moreover,
for any substitution S , it follows that S(φ) |=v S(e). Finally, if φ |=v e and φ |= v then φ |=v e[v/x]
(value containment substitution).

We now introduce a GC-Safety relation G, which we shall use to strengthen the typing rules
for functions to avoid dangling pointers during evaluation. The relation is derived from the side
condition for functions suggested by Tofte and Talpin in [Tofte and Talpin 1993, page 50] and is
parameterised over a type variable context Ω, an environment Γ, a function body e , a set of function
parameters X , and the type scheme and place π of the function:

G(Ω, Γ, e,X , π) = frv(π) |=v e ∧ ∀y ∈ fpv(e) \ X . Ω ⊢ Γ(y) : frev(π) (4)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:10 Martin Elsman

The relation combines value containment for a function body and type containment for free
variables of the function. It is closed under region-effect substitution, which follows immediately
from the definition of garbage-collection safety, the property that value-containment is closed
under substitution, and Proposition 4:

Proposition 8 (GC-Safety Relation Closed Under Region-Effect Substitution). If

G(Ω, Γ, e,X , π) and S is a region-effect substitution then G(S(Ω), S(Γ), S(e),X , S(π)).

Assuming that the type substitution is properly covered, the garbage-collection safety relation
is also closed under type substitution, which follows from properties of value containment, type-
containment effect-extensibility, and Proposition 5, with a detailed proof appearing in Appendix A:

Proposition 9 (GC-Safety Relation Closed Under Type Substitution). Assume Ω ⊢ S : ∆.

If G(Ω + ∆, Γ, e,X , π) then G(Ω, S(Γ), e,X , S(π)).

Finally, we can establish that the garbage-collection safety relation is closed under value substi-
tution, which follows from the definition of garbage-collection and Proposition 2, with a detailed
proof appearing in Appendix A:

Proposition 10 (GC-Safety Relation Closed Under Value Substitution). If x < X and

G(Ω, Γ + {x : π }, e,X , π ′) and frv(π) |= v and fpv(v) = ∅ then G(Ω, Γ, e[v/x],X , π ′).

3.8 Typing Rules

The typing rules for values and expressions are mutually dependent and are shown in Figure 4.
The typing rules for values allow inference of sentences of the form ⊢ v : π , which states that
“the value v has type scheme and place π”. The typing rules for expressions allow inference of
sentences of the form Ω, Γ ⊢ e : π ,φ, which states that “in the type variable context Ω and in the
type environment Γ, the expression e has type scheme and place π and effect φ.

There are a number of observations to be made about the typing rules. First, notice that the typing
of values is specified without a variable environment, which, implicitly, specifies that well-typed
values must be closed with respect to program variables. Moreover, values have no effect. Notice
also that the typing rules for closures and for region- and effect-polymorphic function values
specify that values within function bodies are contained in regions that appear in the type schemes
for the functions (ensured using the value-containment judgement).
For lambda-expressions and region- and effect-polymorphic function expressions, gc-safety

properties are specified using the gc-safety relation, which generalises the containment conditions
specified in the corresponding value typing rules. Moreover, notice that there are two rules for typing
region- and effect-polymorphic function expressions (and values), one that supports recursion
(and even region- and effect-polymorphic recursion) and one that supports parameterisation of
effects that are associated with quantified type variables. The duplication ensures that polymorphic
recursion only quantify over region and effect variables that do not appear in type variable contexts
that specify quantified type variables in the type scheme of the function.
For simplicity, the typing rule for let-bindings does not allow for generalisation.

3.9 Typing Properties

The typing rules are closed under region-effect substitution, which can be demonstrated by straight-
forward simultaneous induction over the typing judgments for values and expressions:

Proposition 11 (Typing Closed Under Region-Effect Substitution). Assume S is a region-

effect substitution.

(1) If Ω, Γ ⊢ e : π ,φ then S(Ω), S(Γ) ⊢ S(e) : S(π), S(φ).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:11

Values ⊢ v : π

⊢ d : int

{}, {x : µ1} ⊢ e : µ2,φ ⊢ µ

µ = (µ1
ϵ .φ

−−−−→ µ2, ρ) frv(µ) |=v e

⊢ ⟨λx .e⟩ρ : µ
[TvLam]

µ = µ1 × µ2
⊢ v1 : µ1 ⊢ v2 : µ2

⊢ ⟨v1,v2⟩
ρ : (µ, ρ)

[TvPair]

∆, { f : (∀®ρ®ϵ .µ1
ϵ .φ

−−−−→ µ2, ρ), x : µ1} ⊢ e : µ2,φ ⊢ π

frev(®ρ®ϵ) ∩ frev(∆) = ∅ frev(®ρ®ϵ) ∩ {ρ} = ∅ π = (∀®ρ®ϵ∆.µ1
ϵ .φ

−−−−→ µ2, ρ) frv(π) |=v e

⊢ ⟨fun f [®ρ] x = e⟩ρ : π
[TvRec]

∆, {x : µ1} ⊢ e : µ2,φ ⊢ π frv(π) |=v e

frev(®ρ®ϵ) ∩ {ρ} = ∅ π = (∀®ρ®ϵ∆.µ1
ϵ .φ

−−−−→ µ2, ρ)

⊢ ⟨fun f [®ρ] x = e⟩ρ : π
[TvFun]

Expressions Ω, Γ ⊢ e : π ,φ

⊢ v : π

Ω, Γ ⊢ v : π , ∅
[TeVal]

φ ′ ⊇ φ Ω, Γ ⊢ e : π ,φ

Ω, Γ ⊢ e : π ,φ ′ [TeSub]
Γ(x) = π

Ω, Γ ⊢ x : π , ∅
[TeVar]

Ω, Γ + {x : µ1} ⊢ e : µ2,φ µ = (µ1
ϵ .φ

−−−−→ µ2, ρ) Ω ⊢ µ G(Ω, Γ, e, {x}, µ)

Ω, Γ ⊢ λx .e at ρ : µ, {ρ}
[TeLam]

Ω, Γ ⊢ e : (σ , ρ ′),φ
Ω ⊢ σ ≥ τ via ®ρ Ω ⊢ τ

Ω, Γ ⊢ e [®ρ] at ρ : (τ , ρ),φ ∪ {ρ, ρ ′}
[TeRapp]

Ω, Γ ⊢ e1 : (µ
′ ϵ .φ0−−−−−→ µ, ρ),φ1

Ω, Γ ⊢ e2 : µ
′,φ2 φ = {ϵ, ρ}

Ω, Γ ⊢ e1 e2 : µ,φ0 ∪ φ1 ∪ φ2 ∪ φ
[TeApp]

Ω, Γ ⊢ e1 : µ1,φ1

Ω, Γ ⊢ e2 : µ2,φ2 φ = φ1 ∪ φ2 ∪ {ρ}

Ω, Γ ⊢ (e1, e2) at ρ : (µ1 × µ2, ρ),φ
[TePair]

i ∈ {1, 2}
Ω, Γ ⊢ e : (µ1 × µ2, ρ),φ

Ω, Γ ⊢ #i e : µi ,φ ∪ {ρ}
[TeSel]

Ω, Γ ⊢ e : µ,φ ′ φ = φ ′ \ {ρ, ®ϵ}
{ρ, ®ϵ} ∩ frev(Ω, Γ, µ) = ∅

Ω, Γ ⊢ letregion ρ in e : µ,φ
[TeReg]

Ω, Γ ⊢ e1 : π ,φ1

Ω, Γ + {x : π } ⊢ e2 : µ,φ2

Ω, Γ ⊢ let x = e1 in e2 : µ,φ1 ∪ φ2
[TeLet]

Ω + ∆, Γ + {x : µ1} ⊢ e : µ2,φ Ω ⊢ π G(Ω, Γ, e, { f , x}, π)

(dom(∆) ∪ frev(®ρ®ϵ)) ∩ fv(Ω, Γ, ρ) = ∅ π = (∀®ρ®ϵ∆.µ1
ϵ .φ

−−−−→ µ2, ρ)

Ω, Γ ⊢ fun f [®ρ] x = e at ρ : π , {ρ}
[TeFun]

Ω + ∆, Γ + { f : (∀®ρ®ϵ .µ1
ϵ .φ

−−−−→ µ2, ρ), x : µ1} ⊢ e : µ2,φ Ω ⊢ π G(Ω, Γ, e, { f , x}, π)

frev(®ρ®ϵ) ∩ frev(∆) = ∅ (dom(∆) ∪ frev(®ρ®ϵ)) ∩ fv(Ω, Γ, ρ) = ∅ π = (∀®ρ®ϵ∆.µ1
ϵ .φ

−−−−→ µ2, ρ)

Ω, Γ ⊢ fun f [®ρ] x = e at ρ : π , {ρ}

Fig. 4. Typing rules for values and expressions.

(2) If ⊢ v : π then ⊢ S(v) : S(π).

The typing rules are also closed under type substitution provided the substitution is properly
covered, which is demonstrated by induction on the typing derivation, with a detailed proof
appearing in Appendix A:

Proposition 12 (Typing Closed Under Type Substitution). If Ω+∆, Γ ⊢ e : π ,φ and Ω ⊢ S : ∆

then Ω, S(Γ) ⊢ S(e) : S(π), S(φ).

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:12 Martin Elsman

Eφ ::= [·] (φ = ∅)
| letregion ρ in Eφ\{ρ } (ρ ∈ φ)
| Eφ e | v Eφ | Eφ [®ρ] at ρ | let x = Eφ in e

| (Eφ , e) at ρ | (v, Eφ) at ρ | #i Eφ

ι ::= d | λx .e at ρ | (v1,v2) at ρ | #1 ⟨v1,v2⟩
ρ | #2 ⟨v1,v2⟩

ρ

| ⟨λx .e⟩ρ v | ⟨fun f [®ρ] x = e⟩ρ [®ρ ′] at ρ ′

Fig. 5. The grammars for evaluation contexts (E) and instructions (ι).

Two other essential properties, which are demonstrated by induction over the typing judgments,
is an environment extensibility property and a type-variable context extensibility property:

Proposition 13 (Environment Extensibility). If Ω, Γ ⊢ e : π ,φ and dom(Γ) ∩ dom(Γ′) = ∅
then Ω, Γ + Γ′ ⊢ e : π ,φ.

Proposition 14 (Type-Variable Context Extensibility). If Ω, Γ ⊢ e : π ,φ and dom(Ω) ∩
dom(Ω′) = ∅ then Ω + Ω

′, Γ ⊢ e : π ,φ.

Central to the proofs is that the gc-safety relation is closed under environment extensibility and
under type-variable context extensibility.

Typed values contain no free program variables and the free variables of typed expressions are
captured by the environment, which are also demonstrated by induction over typing derivations:

Proposition 15 (Free Variables). If ⊢ v : π then fpv(v) = ∅. Moreover, if Ω, Γ ⊢ e : π ,φ then

fpv(e) ⊆ dom(Γ).

A final, but essential, property is the following value substitution property:

Proposition 16 (Value Substitution). If Ω, Γ + {x : π } ⊢ e : π ′,φ and ⊢ v : π then Ω, Γ ⊢
e[v/x] : π ′,φ.

Proof. By induction on the derivation of Ω, Γ+ {x : π } ⊢ e : π ′,φ. For the cases that involve the
gc-safety relation, Proposition 15 and Proposition 10 are applied. See Appendix A for details. □

3.10 A Small Step Dynamic Semantics

The dynamic semantics that we present is in the style of a contextual dynamic semantics [Morrisett
1995] and is similar to the semantics given by Helsen and Thiemann [Calcagno et al. 2002; Helsen
and Thiemann 2001], although it differs in the way that inaccessibility to values in deallocated
regions is modeled. Whereas Helsen and Thiemann “null out” references to deallocated regions (to
avoid future access), our semantics keep track of a set of currently allocated regions and disallow
access to regions that are not in this set.

The grammars for evaluation contexts (E) and instructions (ι) are shown in Figure 5. Contexts Eφ
make explicit the set of regions φ bound by letregion constructs encapsulating context holes.

The evaluation rules are given in Figure 6 and consist of allocation and deallocation rules, reduction

rules, and a context rule. The rules are of the form e
φ
−֒−→ e ′, which says that, given a set of allocated

regions φ, the expression e reduces (in one step) to the expression e ′. Next, the evaluation relation
φ
−֒→∗ is defined as the least relation formed by the reflexive transitive closure of the relation

φ
−֒−→.

We further define e ⇓φ v to mean e
φ
−֒→∗v , and e ⇑φ to mean that there exists an infinite sequence,

e
φ
−֒−→ e1

φ
−֒−→ e2

φ
−֒−→ · · · .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:13

Allocation and Deallocation e
φ
−֒−→v

λx .e at ρ
φ∪{ρ }
−֒−−−−−→⟨λx .e⟩ρ [Lam] (v1,v2) at ρ

φ∪{ρ }
−֒−−−−−→⟨v1,v2⟩

ρ [Pair]

fun f [®ρ] x = e at ρ
φ∪{ρ }
−֒−−−−−→⟨fun f [®ρ] x = e⟩ρ [Fun] letregion ρ in v

φ
−֒−→v [Reg]

Reduction and Context e
φ
−֒−→ e ′

⟨λx .e⟩ρ v
φ∪{ρ }
−֒−−−−−→ e[v/x] [App] let x = v in e

φ
−֒−→ e[v/x] [Let]

⟨fun f [®ρ] x = e⟩ρ [®ρ ′] at ρ ′
φ∪{ρ }
−֒−−−−−→ λx .e[®ρ ′/®ρ][(⟨fun f [®ρ] x = e⟩ρ)/f] at ρ ′ [Rapp]

#1 ⟨v1,v2⟩
ρ φ∪{ρ }
−֒−−−−−→v1 [Sel1]

#2 ⟨v1,v2⟩
ρ φ∪{ρ }
−֒−−−−−→v2 [Sel2]

e
φ′∪φ
−֒−−−−→ e ′ φ ∩ φ ′

= ∅ Eφ , [·]

Eφ [e]
φ′

−֒−−→Eφ [e
′]

[Ctx]

Fig. 6. Evaluation rules.

3.11 Type Safety

The proof of type safety is based on well-known techniques for proving type safety for statically
typed languages [Morrisett 1995; Wright and Felleisen 1994].

We first state a property saying that a well-typed expression is either a value or can be separated
into an evaluation context and an instruction (shown by induction on the structure of e):

Proposition 17 (Uniqe Decomposition). If ⊢ e : π ,φ, then either (1) e is a value, or (2) there

exist a unique Eφ′ , e ′, and π ′ such that e = Eφ′[e ′] and ⊢ e ′ : π ′,φ ∪ φ ′ and e ′ is an instruction.

A type preservation property (i.e., subject reduction) for the language, as well as progress and
type soundness, can be stated as follows:

Proposition 18 (Type Preservation). If ⊢ e : π ,φ and e
φ
−֒−→ e ′ then ⊢ e ′ : π ,φ.

Proof. By induction on the derivation e
φ
−֒−→ e ′. Details are provided in Appendix A. □

Proposition 19 (Progress). If ⊢ e : π ,φ then either e is a value or e
φ
−֒−→ e ′, for some e ′.

Proof. If e is not a value, then by Proposition 17 there exist a unique Eφ′ , ι, and π ′ such that

e = Eφ′[ι] and ⊢ ι : π ′,φ ∪ φ ′. The remainder of the proof argues that ι
φ∪φ′

−֒−−−−→ e2, for some e2, so

that Eφ′[ι]
φ
−֒−→Eφ′[e2] follows from [Ctx] in Figure 6. Details are provided in Appendix A. □

Theorem 1 (Type Soundness). If ⊢ e : π ,φ, then either e ⇑φ or e ⇓φ v and ⊢ v : π ,φ, for some v .

Proof. By induction on the number of rewriting steps, using Propositions 18 and 19. □

We now introduce the notion of context containment, written φ |=c e , which expresses that when
e can be written in the form Eφ′[e ′], values in e ′ must be contained in the regions in the set φ ∪ φ ′,
where φ ′ are regions on the stack represented by the evaluation context Eφ′ . The definition of
context containment is given in Figure 7. For well-typed programs, containment is preserved under
evaluation, which is demonstrated by straightforward structural induction:

Theorem 2 (Containment). If ⊢ e : π ,φ and φ |=c e and e
φ
−֒−→ e ′ then φ |=c e

′.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:14 Martin Elsman

φ |=c x
φ |= v

φ |=c v

ρ < φ φ ∪ {ρ} |=c e

φ |=c letregion ρ in e

φ |=c e φ |=v e
′

φ |=c let x = e in e ′
φ |=c e φ |=v e

′

φ |=c e e
′

φ |= v φ |=c e

φ |=c v e

φ |=c e

φ |=c e [®ρ] at ρ

φ |=c e φ |=v e
′

φ |=c (e, e
′) at ρ

φ |= v φ |=c e

φ |=c (v, e) at ρ

φ |=c e

φ |=c #i e

Fig. 7. Context containment.

Essentially, the containment theorem states that evaluation allocates only in regions that are either
global or present on the region stack, represented by the evaluation context. Moreover, at any time
during evaluation, live reachable values are stored in regions that are either global or present on
the region stack. This last property is essential for reference-tracing garbage collection, which
relies on the safety of dereferencing live reachable values [Morrisett et al. 1995]. In particular,
the containment theorem allows for a reference-tracing garbage collector to be interleaved with
evaluation (as captured by the small-step evaluation semantics).

4 IMPLEMENTATION

For practical purposes, it is desirable to identify a quantified type variable to be spurious if it either
appears free in the type of identifiers occurring free in a function expression (but not in the type
of the function) or occurs free in a type that is instantiated for another spurious type variable. In
particular, it turns out that only spurious type variables need to be associated with arrow effects in
type variable contexts, which, in general, leads to simpler region type schemes, while limiting the
computational overhead of applying effect substitutions. We shall refer to a spurious function as
one with spurious type variables in its inferred type scheme. It turns out that spurious functions
occur only rarely in real programs. For example, the MLKit implementation of the Standard ML
Basis Library [Gansner and Reppy 2004] contains only three spurious functions, which include the
top-level composition function o and the functions Option.compose and Option.mapPartial.

The region type system presented in the previous section extends to other ML-language features,
including references, exceptions, and algebraic datatypes.

4.1 Region Inference

Region inference takes as input a well-typed source program and returns a region annotated
version of the program that is well-typed according to the region typing rules. A simple region
inference algorithm stores all values in the global region ρ and associates all function arrows and
quantified occurrences of spurious type variables with the arrow effect ϵ .{ρ}, where ϵ is a global
effect variable. It is straightforward to prove that this trivial region inference algorithm leads to
well-typed region-annotated programs and works for all source programs that are well-typed
according to a classic Hindley-Milner style type system.

A proper region-inference algorithm introduces regions locally and seek to quantify over region
variables and effect variables in order to pass regions to functions at runtime and to make it possible
to use functions in different contexts without necessarily having to keep function arguments and
results alive as long as the function is alive. In order to guarantee an upper limit to the number of
introduced region variables and effect variables (to ensure termination), region inference can be
divided into two phases. Here, the first phase, called the spreading phase, adds distinct fresh region
variables to all allocation points and distinct fresh effect variables to all function type arrows. The
second phase, called the fix-point phase, runs repeatedly until a fix-point is found by unifying
region types according to the requirement of the region type system and by abstracting over region

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:15

and effect variables, when possible, either by inserting letregion expressions or by abstracting over
region variables and effect variables in fun expressions. The result is a well-typed region-annotated
program. Implementing a proper region-inference algorithm for the region type system presented
in the previous section differs from earlier work [Tofte and Birkedal 1998] by having to deal with
spurious type variables and their associated arrow effects.

4.2 The MLKit

The MLKit is a Standard ML compiler that compiles programs to efficient native machine code
for Linux and macOS [Elsman and Hallenberg 1995] and implements a number of techniques for
refining the representations of regions [Birkedal et al. 1996; Tofte et al. 2004], including dividing
regions into stack allocated (bounded) regions (also called finite regions) and heap allocated regions
(also called infinite regions), which are subject to reference-tracing garbage collections.

The region type system presented in Section 3 is implemented in the MLKit in terms of a
region-inference algorithm that deals properly with spurious type variables. The changes to the
region inference algorithm are orthogonal to many of the later region-representation phases of the
MLKit, including dropping of quantified parameter regions that are not stored into by a function
and distinguishing between regions holding different types of values (for supporting tag-free
representations of values of certain types).
We emphasise that the implementation changes enforced by the modified region-type system

are of mandatory importance for ensuring soundness of integrating region-inference and reference-
tracing garbage collection. The MLKit compiles all of Standard ML, including itself and the MLton
compiler. With the implementation changes, the generated executable, resulting from compiling
MLKit with MLKit, no longer fails during a minor collection. Moreover, compiling MLton with
MLKit no longer results in an executable that fails under a major collection.
MLton and the MLKit are two very different compilers with different characteristics. Whereas

MLton generates very compact (and often very efficient) executables, by featuring aggressive
inlining and optimisation strategies, the MLKit features efficient recompilation and relative fast
compilation for large programs. For instance, compiling the MLKit from scratch with MLKit itself
takes 201 seconds (real time) whereas the same task takes 1039 seconds with MLton.4 Moreover,
upon changes of source code, recompiling the MLKit with the MLKit compiler often takes less than
10 seconds.

In some cases, a spurious function can be rewritten as a non-spurious function (function compo-
sition cannot, unless it is given a less polymorphic type). Consider first the function List.app from
the Standard ML Basis Library. This function has type scheme ∀α .(α → unit) → α list → unit

with the following possible implementation:

fun app f = let fun loop nil = ()

| loop (x::xs) = (f x ; loop xs)

in loop

end

Unfortunately, a Standard ML compiler based on algorithm W [Milner 1978] will give app the type
scheme ∀αβ .(α → β) → α list → unit and loop the type α list → unit (a module signature
constraint may later constrain the type scheme of app to be less generic). Because f has type
α → β and occurs free in loop, β is inferred to be a spurious type variable. In general, the number

4All measurements are performed on a MacBook Pro (15-inch, 2016), 16GB RAM, 2.7 GHz Quad-Core Intel Core i7, running

MLKit v4.7.2 and MLton 20210117 with option -disable-pass deepFlatten.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:16 Martin Elsman

fun g (f : unit ->'a)

: unit ->unit =

op o

let val x = f()

in (fn x => (),

fn () => x)

end

val h =

g (fn () => "oh" ^ "no")

(a)

fun g [ρ5, ρ6] f =

letregion ρ3
in op o[ρ6] let val x = f ()

in (fn at ρ5 x => (),

fn at ρ5 v110 => x) at ρ3
end

end

val h =

letregion ρ4
in g[ρ1,ρ1] (fn at ρ4 () => op ^[ρ2] ("oh", "no"))

end

(b)

Fig. 8. A problematic source code program featuring a dependency between two spurious type variables (a)

and a sound region-annotated version of the program (b).

of inferred spurious type variables may be decreased by applying a type minimization algorithm
[Bjørner 1994]. For the example with app, it suffices to constrain f to have type α → unit.
As a second example, the Standard ML Basis Library contains a function Array.copy, which

copies elements from a generic source array (of type α array) into locations in a target array (also
of type α array). One possible implementation of this function uses a local utility function loop

that, assuming no overlaps, loops through the indexes of the source and at each index, fetches
the corresponding value from the source array and updates the appropriate location in the target
array. This local function will have type int → unit, which means that the type variable α will be
inferred to be spurious. In practice, the inference of α to be spurious will likely have little influence
on region-inference for programs that use the Array.copy function. It is possible, however, also in
this case, to modify the code slightly, by passing the source array as an additional argument to the
loop function, in order to ensure that α is not considered spurious.

4.3 Tracking Spurious Type-Variable Dependencies

It may be enlightening to see how the type system tracks spurious type variable dependencies.
Consider the program in Figure 8(a). This program is much similar to the program presented in the
introduction, except that the spurious type variable bound by the composition function o is here
not instantiated to a ground type immediately. Instead, it is instantiated to a new spurious type
variable, which is bound by the function g with the type scheme ∀α .(unit → α) → unit → unit.

There are a couple of interesting aspects about the region-annotated program in Figure 8(b). First,
notice how the inference algorithm has arranged for the two intermediate functions (passed to the
composition function o) to be stored in the same region ρ5, which is bound by (and passed to) the
function g. This unification is due to the region inference algorithm unifying secondary quantified
region and effect variables in type schemes, which is a central part of ensuring termination of
region inference. Second, consider the region type scheme for the function g:

∀ρ5ρ6ρ7ϵ1ϵ2ϵϵ4(α : ϵ .∅). (unit ϵ1 .∅−−−−−→α, ρ7)
ϵ2 . {ϵ1,ρ7,ρ5,ρ6 }−−−−−−−−−−−−−−→ (unit

ϵ4 . {ϵ ,ρ5 }−−−−−−−−−→ unit, ρ6)

We see that α is inferred to be a spurious type variable and that it is associated with the arrow
effect ϵ .∅. The reason α is inferred to be spurious is not because it appears free in the type of
a variable captured in a closure but because it appears free in a type instantiated for another
spurious type variable, namely that bound in the type scheme for the function o. Notice that the
type scheme for g captures that the argument function is applied immediately (ϵ1 appears in the

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:17

effect ϵ2.{ϵ1, ρ7, ρ5, ρ6}. Here is the type instance of the type scheme, with ϵ ′1, ϵ
′
2, ϵ

′, ϵ ′4 being fresh:

(unit
ϵ ′1 .∅−−−−−→(string, ρ2), ρ4)

ϵ ′2 . {ϵ
′
1,ρ4,ρ1,ρ2 }−−−−−−−−−−−−−−→ (unit

ϵ ′4 . {ϵ
′
,ρ1,ρ2 }

−−−−−−−−−−−−→ unit, ρ1)

We see that region ρ4 does not occur in the type of the function returned by g, which perfectly aligns
with the fact that the function passed to g, which is stored in ρ4, is applied immediately and not
accessed again. For this reason, region inference can surround the call to g with a letregion ρ4 in
. . . end construct. Contrary, the region type scheme for g captures the relationship between the
spurious quantified type variable α and the capture of a value of type α in the returned closure
through the associated effect variable ϵ , which occurs in the effect of the resulting function. As a
consequence, the string "ohno" is rightfully forced into a global region (i.e., ρ2).

5 BENCHMARKS

In this section, we report on the consequences of the type system changes for a variety of benchmark
programs. We compare the benchmark programs using three different compilation strategies using
the MLKit (v4.7.2) and a single compilation strategy using MLton 20210117 [Weeks 2006], a whole-
program optimising Standard ML compiler, which serves to relate the performance of the code
generated by the MLKit with the performance of a state-of-the-art compiler. We emphasise again
that the MLKit and MLton are two very different compilers.
All benchmark programs are executed on a MacBook Pro (15-inch, 2016) with a 2.7GHz Intel

Core i7 processor and 16GB of memory. Times reported are wall clock times and memory usage is
measured using the macOS /usr/bin/time program. The benchmark programs span from micro-
benchmarks such as fib37 and tak (7 and 12 lines), which use only the runtime stack for allocation,
to larger programs, such as vliw and mlyacc (3681 and 7385 lines), that solve real-world problems.
The three MLKit compilation strategies have identical compilation times and include the rg

compilation strategy, which is based on the region type-system presented in this paper and which
combines region-inference and reference-tracing garbage collection, the rg- compilation strategy,
which is like rg but without taking spurious type variables into account (and which is therefore
unsound), and, finally, the r compilation strategy, which is based alone on region-inference.
Figure 9 lists the benchmark programs and reports on how the type system changes influence

the generated code for each of the benchmarks. Measurements are averages over 10 runs. The
real time columns list the average execution time in seconds, annotated with relative standard
deviations. For the rss and gc # columns, the relative standard deviations are less than two percent.
There are a number of observations to make. First notice that, for many of the programs, the type
system has no influence on the generated code (and thus on region live ranges) even in cases
where many of the functions are spurious and when boxed types are instantiated for spurious type
variables (column ∂). We also see that for programs that contain no spurious functions (column
fcns), the type system changes have no influence on the generated code (column ∂). However, for
certain programs containing spurious functions, even when there are no instantiations of boxed
types for spurious type variables (column inst), the type system changes may have resulted in
different generated code in terms of longer region live ranges (programs b-hut, kbc, simple, zebra,
and zern). There are two reasons why generated code may be different in these cases. The first
reason may be that the implementation identifies the effect variable associated with a spurious
type variable with the effect variable associated with the function type for which the type variable
appears free in the type of a free variable, as illustrated by (3). The second reason may be that the
implementation unifies secondary effect variables, which may lead to unifying of unrelated effects.

Concerning execution times (the real time columns), we see that there are no significant differ-
ences between the execution times for the rg and rg- strategies, even for cases where the generated

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:18 Martin Elsman

real time (s) rss (Mb ± 1.2%) gc #

Program loc fcns inst ∂ rg rg- r rg rg- r rg rg-

DLX 2841 2/149 0/690 ✓ 0.14 ± 0% 0.15 ± 4% 0.12 ± 6% 0.40 ± 5% 8 8 7 31 3 3

b-hut 1245 2/140 0/459 ✓ 0.67 ± 1% 0.70 ± 4% 0.63 ± 1% 0.14 ± 3% 5 5 169 3 471 471

fft 71 0/9 0/34 0.64 ± 1% 0.66 ± 2% 0.51 ± 1% 0.26 ± 2% 69 69 56 125 10 10

fib37 7 0/1 0/0 0.98 ± 1% 0.98 ± 1% 0.21 ± 2% 0.85 ± 1% 3 3 3 1 1 1

kbc 679 1/90 0/249 ✓ 0.21 ± 2% 0.21 ± 0% 0.19 ± 0% 0.07 ± 0% 10 10 10 2 10 10

lexgen 1322 0/108 0/531 0.74 ± 3% 0.81 ± 5% 0.62 ± 2% 0.43 ± 3% 15 15 67 18 109 109

life 202 0/35 0/146 0.44 ± 5% 0.46 ± 2% 0.43 ± 3% 0.43 ± 1% 3 3 14 2 58 58

logic 351 0/22 0/806 0.63 ± 2% 0.64 ± 1% 0.43 ± 1% 0.13 ± 0% 4 4 251 2 1843 1843

mandel 62 0/5 0/0 0.53 ± 2% 0.53 ± 2% 0.38 ± 1% 0.31 ± 1% 3 3 3 1 1 1

mlyacc 7385 10/966 5/3256 ✓ 0.36 ± 7% 0.34 ± 0% 0.30 ± 1% 0.33 ± 3% 18 15 115 10 29 28

mpuz 124 0/13 0/44 0.68 ± 1% 0.66 ± 1% 0.46 ± 2% 0.27 ± 2% 3 3 3 1 2 2

msort-r 119 0/14 0/27 0.69 ± 1% 0.67 ± 2% 0.47 ± 2% 0.93 ± 3% 116 116 97 577 16 16

msort 113 0/13 0/22 0.89 ± 1% 0.89 ± 1% 0.54 ± 2% 0.93 ± 1% 131 131 375 421 26 26

nucleic 3215 1/40 475/1273 0.34 ± 2% 0.34 ± 1% 0.33 ± 2% 0.17 ± 0% 5 5 231 3 645 645

prof 282 0/57 0/99 0.49 ± 2% 0.48 ± 1% 0.38 ± 1% 0.42 ± 2% 4 4 11 1 263 263

ratio 620 0/54 0/848 1.71 ± 2% 1.67 ± 0% 1.33 ± 1% 0.48 ± 1% 16 16 36 46 14 14

ray 529 1/48 0/120 0.69 ± 2% 0.67 ± 1% 0.64 ± 1% 0.25 ± 2% 14 14 14 15 12 12

simple 1053 15/327 0/448 ✓ 0.19 ± 6% 0.16 ± 7% 0.13 ± 9% 0.28 ± 4% 5 5 4 8 4 4

tak 12 0/2 0/0 2.09 ± 1% 2.04 ± 1% 0.55 ± 1% 2.12 ± 0% 3 3 3 1 1 1

tsp 493 0/26 0/19 0.14 ± 5% 0.14 ± 3% 0.11 ± 0% 0.14 ± 0% 11 11 6 11 7 7

vliw 3681 5/563 4/2133 ✓ 0.78 ± 3% 0.73 ± 2% 0.56 ± 2% 0.30 ± 3% 14 14 44 9 15 15

zebra 313 2/50 0/288 ✓ 1.58 ± 2% 1.58 ± 3% 1.15 ± 0% 0.45 ± 1% 3 3 122 1 1066 1504

zern 605 3/103 0/34 ✓ 0.80 ± 1% 0.80 ± 2% 0.52 ± 1% 0.30 ± 2% 6 5 5 11 4503 4503

Fig. 9. Benchmark programs. The second column (loc) lists the size of the benchmark in terms of lines of

code, excluding Basis Library code. The third column (fcns) lists the number of spurious functions, relative to

the total number of functions. The fourth column (inst) lists the number of times a spurious type variable is

instantiated with a boxed type, relative to the total number of type variable instantiations. The fi�h column

(∂) indicates if the notion of spurious type variables made a difference to the generated target program. The

next four columns (real time) list execution times in seconds for different benchmark compilation strategies.

The next three columns (rss) list memory usage (in Mb) for the compilation strategies. Finally, the last two

columns list the number of reference tracing garbage collections for the strategies rg and rg-.

code differs (due to different region live ranges). Notice also that for none of the benchmarks do we
experience failures due to the possibility of dangling-pointers in the rg- compilation strategy. We
also see that the r compilation strategy performs better than the rg and rg- strategies. Sometimes
MLKit generates faster code than MLton, which is the case for DLX, msort-r, msort, simple, and
tak), but, for most benchmarks, MLton outperforms the MLKit.

With respect to memory usage (the rss columns), we see that the rg and rg- compilation strategies
have similar behavior. We also see that the r compilation strategy sometimes perform better (e.g.,
fft), which is due to its more compact (tag-free) value representation and the less-restrictive region
type system (dangling pointers are permitted). Sometimes, however, reference-tracing garbage
collection is essential, which is exemplified by the benchmarks b-hut, logic, nucleic, and zebra.
We also see that the memory usage of MLton generated executables is often higher than the memory
usage of the rg compilation strategy (we have not explored MLKit’s and MLton’s runtime flags for
adjusting heap-to-live ranges, etc.)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:19

Finally, from the gc # columns, we see that, across benchmarks, except zebra, the rg and rg-

compilation strategies lead to executables that trigger similar numbers of garbage collections.

6 RELATED WORK

Most related to this work is the previous work on combining region inference and garbage collection
in the MLKit [Hallenberg et al. 2002], the work on integrating region-based memory management
and generational garbage collection [Elsman and Hallenberg 2020], and the previous work on
guaranteeing the absence of dangling pointers for region-based memory management [Elsman
2003]. Compared to previous work, the present work does not aim at distinguishing between
regions containing different types of values, but is concerned purely about establishing a sound
foundation for integrating region inference and reference-tracing garbage collection. The region
type system (and the region inference algorithm) presented in this paper integrates well with the
techniques for typing regions. These techniques allow for a tag-free representation of pairs, triples,
and references, which provides dramatic savings on allocated memory and execution time.
Another strand of related work is the large body of related work concerning general garbage

collection techniques [Jones et al. 2011] and garbage collection techniques for functional languages,
including [Doligez and Leroy 1993; Huelsbergen and Winterbottom 1998; Reppy 1994; Ueno and
Ohori 2016]. Incremental, concurrent, and real-time garbage collection techniques for functional
languages have recently obtained much attention. In particular, the presence of generations has
been shown useful for collecting parts of the heap incrementally and in a concurrent and parallel
fashion [Anderson 2010; Marlow and Peyton Jones 2011; Marlow et al. 2009]. We leave it to future
work to investigate the use of regions and generations for supporting concurrency and parallelism.

There is also a series of proposals for tag-free garbage collection schemes [Aditya et al. 1994;
Appel 1989; Goldberg 1991; Goldberg and Gloger 1992; Tolmach 1994] and nearly tag-free garbage
collection schemes [Morrisett et al. 1996; Tarditi et al. 1996]. The partly tag-free garbage collection
scheme supported by the region type system does not involve untagging of all values. In particular,
unboxed objects (e.g., integers and booleans) are tagged in our system, which makes it possible to
distinguish pointers from unboxed objects at runtime. However, the scheme allows for commonly
used data structures, such as tuples, reals, and reference cells, to be untagged, which, as mentioned,
can lead to significant time and memory savings, in particular because pairs and triples are used
for the implementation of many dynamic data structures, including lists and trees.5

As other techniques that support full untagging, our technique does not involve traversing the
runtime stack to determine types during garbage collection [Appel 1989; Goldberg 1991; Goldberg
and Gloger 1992] or require special type information to be passed to functions at runtime [Tolmach
1994]. By requiring values in certain regions to be of the same kind, our approach has much in
common with BIBOP (Big Bag Of Pages) systems, with regions as pages [Hanson 1980].
Another body of related work investigates the notion of escape analysis for improving stack

allocation in garbage collected systems [Blanchet 1998; Salagnac et al. 2005]. Region inference and
MLKit’s polymorphic multiplicity analysis [Birkedal et al. 1996] allow more objects to be stack
allocated than traditional escape analyses, which allow only local, non-escaping values to be stack
allocated. Other work investigates the use of static prediction techniques and linear typing for
inferring heap space usage [Jost et al. 2010].

Cyclone [Swamy et al. 2006] is a region-based type-safe C dialect, for which, the programmer can
decide if an object should reside in the GC heap or in a region. Cyclone is constructed to disallow
program code to dereference dangling pointers. For the GC heap, Cyclone uses a conservative

5The scheme works well together with support for unboxed data constructors, such as cons (::), which, for instance, leads

to a compact representation of linked lists [Elsman 1998].

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:20 Martin Elsman

reference-tracing collector and no guarantee is given that it does not trace dangling pointers
(safety is ensured by the collector being conservative). Another region-based language is Gay
and Aiken’s RC system, which features limited explicit regions for C, combined with reference
counting of regions [Gay and Aiken 2001]. A modern language for system programming is Rust
[Jung et al. 2017], which is based on ownership types for controlling the use of resources, including
memory [Aldrich et al. 2002]. Ownership types are also used for real-time implementations of
Java [Boyapati et al. 2003]. None of the above systems are combined with techniques for reference-
tracing garbage collection of each individual region (Cyclone allows values to be stored in the
global garbage collected heap region, but other regions are not collected using reference-tracing
collection). Ownership types also lead to problems with constructing cyclic data structures, which
are straightforward to work with in effect-based systems.
Also, Aiken et al. [Aiken et al. 1995] show how region inference may be improved for some

programs by removing the constraints of the stack discipline, which may cause a garbage collector
to run less often. Other work in this area includes [Fluet et al. 2006], which removes the constraints
of the region stack discipline for an intermediate language using a linear type system.

7 CONCLUSION AND FUTURE WORK

We have identified and fixed a soundness problem with combining region inference and reference-
tracing garbage collection. The solution involves associating so-called spurious type variables with
effect sets and tracking effect dependencies to ensure that no dangling pointers appear during
evaluation of a program. The work thus justifies earlier work by (1) suggesting how the unsafe type
system is modified into a sound type system and (2) demonstrating that the necessary modifications
to the region type system have little influence on the generated code (and thus on previous reported
results on combining region inference and reference-tracing garbage collection), although they
are essential for sound execution (MLKit now compiles itself and MLton without the generated
compilers failing during reference-tracing garbage collections).
There are multiple paths of relevant future work. Whereas the type system presented in this

paper has been proven sound on paper, we do not have a mechanised version of the proof, which
would be a major engineering task. We consider efforts in this direction as possible future work.
Another possibility for future work is on allowing programmers to interfere with region inference
by being explicit about regions and effects in types and expressions. Finally, a possibility for future
work would be to improve instruction selection and optimisations of MLKit programs to match the
performance of MLton executables in more cases.

From a sustainability point-of-view, region inference may limit the memory footprint of programs
as garbage collections can occur less frequently if a part of the heap is managed by explicit memory
allocation and deallocation. Future work may investigate this path in more details.

DATA AVAILABILITY STATEMENT

An artifact demonstrating the results of Figure 9 is archived in Zenodo [Elsman 2023].

REFERENCES

Shail Aditya, Christine H. Flood, and James E. Hicks. 1994. Garbage Collection for Strongly-Typed Languages Using Run-Time

Type Reconstruction. In Proceedings of the 1994 ACM Conference on LISP and Functional Programming (Orlando, Florida,

USA) (LFP ’94). Association for Computing Machinery, New York, NY, USA, 12–23. https://doi.org/10.1145/182409.182414

Alexander Aiken, Manuel Fähndrich, and Raph Levien. 1995. Better Static Memory Management: Improving Region-Based

Analysis of Higher-Order Languages. In Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language

Design and Implementation (La Jolla, California, USA) (PLDI ’95). Association for Computing Machinery, New York, NY,

USA, 174–185. https://doi.org/10.1145/207110.207137

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

https://doi.org/10.1145/182409.182414
https://doi.org/10.1145/207110.207137

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:21

Jonathan Aldrich, Valentin Kostadinov, and Craig Chambers. 2002. Alias Annotations for Program Understanding. In

Proceedings of the 17th ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Applications

(Seattle, Washington, USA) (OOPSLA ’02). Association for Computing Machinery, New York, NY, USA, 311–330. https:

//doi.org/10.1145/582419.582448

Todd A. Anderson. 2010. Optimizations in a Private Nursery-Based Garbage Collector. In Proceedings of the 2010 International

Symposium on Memory Management (Toronto, Ontario, Canada) (ISMM ’10). Association for Computing Machinery, New

York, NY, USA, 21–30. https://doi.org/10.1145/1806651.1806655

Andrew W. Appel. 1989. Runtime tags aren’t necessary. Lisp and Symbolic Computation 2 (1989), 153–162. https:

//doi.org/10.1007/BF01811537

Lars Birkedal, Mads Tofte, and Magnus Vejlstrup. 1996. From Region Inference to von Neumann Machines via Region

Representation Inference. In Proceedings of the 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (St. Petersburg Beach, Florida, USA) (POPL ’96). Association for Computing Machinery, New York, NY, USA,

171–183. https://doi.org/10.1145/237721.237771

Nikolaj Skallerud Bjørner. 1994. Minimal Typing Derivations. In ACM SIGPLAN Workshop on ML and its Applications.

120–126.

Bruno Blanchet. 1998. Escape Analysis: Correctness Proof, Implementation and Experimental Results. In Proceedings of the

25th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (San Diego, California, USA) (POPL ’98).

Association for Computing Machinery, New York, NY, USA, 25–37. https://doi.org/10.1145/268946.268949

Chandrasekhar Boyapati, Alexandru Salcianu, William Beebee, and Martin Rinard. 2003. Ownership Types for Safe Region-

Based Memory Management in Real-Time Java. In Proceedings of the ACM SIGPLAN 2003 Conference on Programming

Language Design and Implementation (San Diego, California, USA) (PLDI ’03). Association for Computing Machinery,

New York, NY, USA, 324–337. https://doi.org/10.1145/781131.781168

Christiano Calcagno, Simon Helsen, and Peter Thiermann. 2002. Syntactic Type Soundness Results for the Region Calculus.

Inf. Comput. 173, 2 (mar 2002), 199–221. https://doi.org/10.1006/inco.2001.3112

Damien Doligez and Xavier Leroy. 1993. A Concurrent, Generational Garbage Collector for a Multithreaded Implementation

of ML. In Proceedings of the 20th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Charleston,

South Carolina, USA) (POPL ’93). Association for Computing Machinery, New York, NY, USA, 113–123. https://doi.org/

10.1145/158511.158611

Martin Elsman. 1998. Polymorphic Equality—No Tags Required. In Second International Workshop on Types in Compilation.

https://doi.org/10.1007/BFb0055516

Martin Elsman. 2003. Garbage Collection Safety for Region-Based Memory Management. In Proceedings of the 2003 ACM

SIGPLAN International Workshop on Types in Languages Design and Implementation (New Orleans, Louisiana, USA) (TLDI

’03). Association for Computing Machinery, New York, NY, USA, 123–134. https://doi.org/10.1145/604174.604190

Martin Elsman. 2023. Artifact for the PLDI 2023 paper: Garbage-Collection Safety for Region-Based Type-Polymorphic

Programs. Zenodo. https://doi.org/10.5281/zenodo.7803910

Martin Elsman and Niels Hallenberg. 1995. An Optimizing Backend for the ML Kit Using a Stack of Regions. Student Project

95-7-8, University of Copenhagen (DIKU).

Martin Elsman and Niels Hallenberg. 2020. On the Effects of Integrating Region-Based Memory Management and Gen-

erational Garbage Collection in ML. In Practical Aspects of Declarative Languages (PADL ’20). Springer International

Publishing, 95–112. https://doi.org/10.1007/978-3-030-39197-3_7

Martin Elsman and Niels Hallenberg. 2021. Integrating region memory management and tag-free generational garbage

collection. Journal of Functional Programming 31 (2021), e4. https://doi.org/10.1017/S0956796821000010

Matthew Fluet, Greg Morrisett, and Amal Ahmed. 2006. Linear Regions Are All You Need. In Proceedings of the 15th European

Conference on Programming Languages and Systems (Vienna, Austria) (ESOP’06). Springer-Verlag, Berlin, Heidelberg,

7–21. https://doi.org/10.1007/11693024_2

Emden R. Gansner and John H. Reppy. 2004. The Standard ML Basis Library. Cambridge University Press. https:

//doi.org/10.1017/CBO9780511546846

David Gay and Alex Aiken. 2001. Language Support for Regions. In Proceedings of the ACM SIGPLAN 2001 Conference

on Programming Language Design and Implementation (Snowbird, Utah, USA) (PLDI ’01). Association for Computing

Machinery, New York, NY, USA, 70–80. https://doi.org/10.1145/378795.378815

Benjamin Goldberg. 1991. Tag-Free Garbage Collection for Strongly Typed Programming Languages. In Proceedings of the

ACM SIGPLAN 1991 Conference on Programming Language Design and Implementation (Toronto, Ontario, Canada) (PLDI

’91). Association for Computing Machinery, New York, NY, USA, 165–176. https://doi.org/10.1145/113445.113460

Benjamin Goldberg and Michael Gloger. 1992. Polymorphic Type Reconstruction for Garbage Collection without Tags. In

Proceedings of the 1992 ACM Conference on LISP and Functional Programming (San Francisco, California, USA) (LFP ’92).

Association for Computing Machinery, New York, NY, USA, 53–65. https://doi.org/10.1145/141471.141504

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

https://doi.org/10.1145/582419.582448
https://doi.org/10.1145/582419.582448
https://doi.org/10.1145/1806651.1806655
https://doi.org/10.1007/BF01811537
https://doi.org/10.1007/BF01811537
https://doi.org/10.1145/237721.237771
https://doi.org/10.1145/268946.268949
https://doi.org/10.1145/781131.781168
https://doi.org/10.1006/inco.2001.3112
https://doi.org/10.1145/158511.158611
https://doi.org/10.1145/158511.158611
https://doi.org/10.1007/BFb0055516
https://doi.org/10.1145/604174.604190
https://doi.org/10.5281/zenodo.7803910
https://doi.org/10.1007/978-3-030-39197-3_7
https://doi.org/10.1017/S0956796821000010
https://doi.org/10.1007/11693024_2
https://doi.org/10.1017/CBO9780511546846
https://doi.org/10.1017/CBO9780511546846
https://doi.org/10.1145/378795.378815
https://doi.org/10.1145/113445.113460
https://doi.org/10.1145/141471.141504

115:22 Martin Elsman

Niels Hallenberg, Martin Elsman, and Mads Tofte. 2002. Combining Region Inference and Garbage Collection. In Proceedings

of the ACM SIGPLAN 2002 Conference on Programming Language Design and Implementation (Berlin, Germany) (PLDI ’02).

Association for Computing Machinery, New York, NY, USA, 141–152. https://doi.org/10.1145/512529.512547

David R. Hanson. 1980. A portable storage management system for the Icon programming language. Software—Practice and

Experience 10 (1980), 489–500. https://doi.org/10.1002/spe.4380100607

Simon Helsen and Peter Thiemann. 2001. Syntactic Type Soundness for the Region Calculus. Electronic Notes in Theoretical

Computer Science 41, 3 (2001), 1–19. https://doi.org/10.1016/S1571-0661(04)80870-3 HOOTS 2000, 4th International

Workshop on Higher Order Operational Techniques in Semantics (Satellite to PLI 2000).

Lorenz Huelsbergen and Phil Winterbottom. 1998. Very Concurrent Mark-&-Sweep Garbage Collection without Fine-Grain

Synchronization. In Proceedings of the 1st International Symposium on Memory Management (Vancouver, British Columbia,

Canada) (ISMM ’98). Association for Computing Machinery, New York, NY, USA, 166–175. https://doi.org/10.1145/

286860.286878

Richard Jones, Antony Hosking, and Eliot Moss. 2011. The Garbage Collection Handbook: The Art of Automatic Memory

Management. Chapman & Hall/CRC.

Steffen Jost, Kevin Hammond, Hans-Wolfgang Loidl, and Martin Hofmann. 2010. Static Determination of Quantitative

Resource Usage for Higher-Order Programs. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages (Madrid, Spain) (POPL ’10). Association for Computing Machinery, New York, NY,

USA, 223–236. https://doi.org/10.1145/1706299.1706327

Ralf Jung, Jacques-Henri Jourdan, Robbert Krebbers, and Derek Dreyer. 2017. RustBelt: Securing the Foundations of the

Rust Programming Language. Proc. ACM Program. Lang. 2, POPL, Article 66 (dec 2017), 34 pages. https://doi.org/10.

1145/3158154

Simon Marlow and Simon Peyton Jones. 2011. Multicore Garbage Collection with Local Heaps. In Proceedings of the

International Symposium on Memory Management (San Jose, California, USA) (ISMM ’11). Association for Computing

Machinery, New York, NY, USA, 21–32. https://doi.org/10.1145/1993478.1993482

Simon Marlow, Simon Peyton Jones, and Satnam Singh. 2009. Runtime Support for Multicore Haskell. In Proceedings of the

14th ACM SIGPLAN International Conference on Functional Programming (Edinburgh, Scotland) (ICFP ’09). Association for

Computing Machinery, New York, NY, USA, 65–78. https://doi.org/10.1145/1596550.1596563

Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput. System Sci. 17, 3 (1978), 348–375.

https://doi.org/10.1016/0022-0000(78)90014-4

Greg Morrisett. 1995. Compiling with Types. Ph. D. Dissertation. School of Computer Science, Carnegie Mellon University,

Pittsburgh, PA 15213.

Greg Morrisett, Matthias Felleisen, and Robert Harper. 1995. Abstract Models of Memory Management. In Proceedings of the

Seventh International Conference on Functional Programming Languages and Computer Architecture (La Jolla, California,

USA) (FPCA ’95). Association for Computing Machinery, New York, NY, USA, 66–77. https://doi.org/10.1145/224164.

224182

Greg Morrisett, David Tarditi, Perry Cheng, Chris Stone, Robert Harper, and Peter Lee. 1996. The TIL/ML Compiler:

Performance and Safety through Types. In Workshop on Compiler Support for Systems Software, Tucson..

John H. Reppy. 1994. A High-performance Garbage Collector for Standard ML. Technical Report. AT&T Bell Laboratories.

Guillaume Salagnac, Chaker Nakhli, Christophe Rippert, and Sergio Yovine. 2006. Efficient Region-Based Memory Manage-

ment for Resource-limited Real-Time Embedded Systems.. In Workshop on Implementation, Compilation, Optimization of

Object-Oriented Languages, Programs and Systems.

G. Salagnac, S. Yovine, and D. Garbervetsky. 2005. Fast Escape Analysis for Region-Based Memory Management. Electron.

Notes Theor. Comput. Sci. 131 (may 2005), 99–110. https://doi.org/10.1016/j.entcs.2005.01.026

Nikhil Swamy, Michael Hicks, Greg Morrisett, Dan Grossman, and Trevor Jim. 2006. Safe manual memory management in

Cyclone. Science of Computer Programming 62, 2 (2006), 122–144. https://doi.org/10.1016/j.scico.2006.02.003 Special

Issue: Five perspectives on modern memory management - Systems, hardware and theory.

D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee. 1996. TIL: A Type-Directed Optimizing Compiler

for ML. In Proceedings of the ACM SIGPLAN 1996 Conference on Programming Language Design and Implementation

(Philadelphia, Pennsylvania, USA) (PLDI ’96). Association for Computing Machinery, New York, NY, USA, 181–192.

https://doi.org/10.1145/231379.231414

Mads Tofte and Lars Birkedal. 1998. A Region Inference Algorithm. ACM Trans. Program. Lang. Syst. 20, 4 (jul 1998), 724–767.

https://doi.org/10.1145/291891.291894

Mads Tofte and Lars Birkedal. 2000. Unification and Polymorphism in Region Inference. Proof, Language, and Interaction.

Essays in Honour of Robin Milner (May 2000). (25 pages).

Mads Tofte, Lars Birkedal, Martin Elsman, and Niels Hallenberg. 2004. A Retrospective on Region-Based Memory

Management. Higher-Order and Symbolic Computation 17, 3 (01 Sep 2004), 245–265. https://doi.org/10.1023/B:

LISP.0000029446.78563.a4

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

https://doi.org/10.1145/512529.512547
https://doi.org/10.1002/spe.4380100607
https://doi.org/10.1016/S1571-0661(04)80870-3
https://doi.org/10.1145/286860.286878
https://doi.org/10.1145/286860.286878
https://doi.org/10.1145/1706299.1706327
https://doi.org/10.1145/3158154
https://doi.org/10.1145/3158154
https://doi.org/10.1145/1993478.1993482
https://doi.org/10.1145/1596550.1596563
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1145/224164.224182
https://doi.org/10.1145/224164.224182
https://doi.org/10.1016/j.entcs.2005.01.026
https://doi.org/10.1016/j.scico.2006.02.003
https://doi.org/10.1145/231379.231414
https://doi.org/10.1145/291891.291894
https://doi.org/10.1023/B:LISP.0000029446.78563.a4
https://doi.org/10.1023/B:LISP.0000029446.78563.a4

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:23

Mads Tofte, Lars Birkedal, Martin Elsman, Niels Hallenberg, Tommy Højfeld Olesen, and Peter Sestoft. 2022. Programming

with Regions in the MLKit (Revised for Version 4.7.2). Technical Report. Department of Computer Science, University of

Copenhagen, Denmark.

Mads Tofte and Jean-Pierre Talpin. 1993. A Theory of Stack Allocation in Polymorphically Typed Languages. Technical Report

DIKU-report 93/15. Department of Computer Science, University of Copenhagen.

Mads Tofte and Jean-Pierre Talpin. 1997. Region-Based Memory Management. Information and Computation 132, 2 (1997),

109–176.

Andrew Tolmach. 1994. Tag-Free Garbage Collection Using Explicit Type Parameters. In Proceedings of the 1994 ACM

Conference on LISP and Functional Programming (Orlando, Florida, USA) (LFP ’94). Association for Computing Machinery,

New York, NY, USA, 1–11. https://doi.org/10.1145/182409.182411

Katsuhiro Ueno and Atsushi Ohori. 2016. A Fully Concurrent Garbage Collector for Functional Programs on Multicore

Processors. In Proceedings of the 21st ACM SIGPLAN International Conference on Functional Programming (Nara, Japan)

(ICFP 2016). Association for ComputingMachinery, New York, NY, USA, 421–433. https://doi.org/10.1145/2951913.2951944

Stephen Weeks. 2006. Whole-Program Compilation in MLton. In Proceedings of the 2006 Workshop on ML (Portland, Oregon,

USA) (ML ’06). Association for Computing Machinery, New York, NY, USA, 1. https://doi.org/10.1145/1159876.1159877

A.K. Wright and M. Felleisen. 1994. A Syntactic Approach to Type Soundness. Inf. Comput. 115, 1 (nov 1994), 38–94.

https://doi.org/10.1006/inco.1994.1093

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

https://doi.org/10.1145/182409.182411
https://doi.org/10.1145/2951913.2951944
https://doi.org/10.1145/1159876.1159877
https://doi.org/10.1006/inco.1994.1093

	Abstract
	1 Introduction
	2 The Problem
	3 A GC-Safe Region Type System
	3.1 Regions and Effects
	3.2 Types and Type Schemes
	3.3 Substitutions
	3.4 Instantiation
	3.5 The Role of Arrow Effects
	3.6 Terms
	3.7 Value Containment and GC Safety
	3.8 Typing Rules
	3.9 Typing Properties
	3.10 A Small Step Dynamic Semantics
	3.11 Type Safety

	4 Implementation
	4.1 Region Inference
	4.2 The MLKit
	4.3 Tracking Spurious Type-Variable Dependencies

	5 Benchmarks
	6 Related Work
	7 Conclusion and Future Work
	References

