Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:

APPENDIX A: PROOF DETAILS

This appendix contains proof details for the paper “Garbage-Collection Safety for Region-Based
Type-Polymorphic Programs” (PLDI "23) by Martin Elsman.

ProprosITION 5 (TYPE SUBSTITUTION CLOSEDNESS). Assume o is one of porr. If Q + A+ o0 : ¢ and
QFS:AthenQF S(o): .

Proor. By induction over the structure of o. The interesting case is the case for y = a for
some type variable a. There are now two cases. We first consider the case where a € dom(S).
From the definition of coverage, we have (1) Q + S(a) : frev(A(a)) and dom(S) = dom(A).
Moreover, from assumptions we have Q + A + « : ¢, thus, from the definition of containment,
we have frev((Q + A)(@)) C ¢ and thus (2) frev(A(a)) € ¢. From the extensibility property of
type containment and from (1) and (2), we have Q S(«) : ¢, as required. For the second case
where @ ¢ dom(S), we have S(«) = a. It follows from the definition of coverage that & ¢ dom(A),
which leads us to conclude, based on the assumptions and the definition of type containment, that
Q F S(a) : ¢, as required. O

PROPOSITION 6 (INSTANTIATION CLOSED UNDER REGION-EFFECT SUBSTITUTION). If S is a region-
effect substitution and Q + o > 7 via S’ then S(Q) + S(o) > S(r) via S”, where S” = (So§’) |
dom(S’).

Proor. We first consider the case where ¢ = VA.7’. From the definition of instantiation, we
have (1) S’(r’) = r and (2) Q + §’ : A, and, thus, (3) dom(S") = dom(A). Because S is a region-
effect substitution, we have (4) S(o) = VS(A).S(r”) and (5) dom(A) = dom(S(A)) and (6) dom(A) N
fv(rng(S)) = 0. Now, let S” = ((SoS’) | dom(S")). It follows that we have (7) dom(S”") = dom(S(A)).
We also have S(S’(z")) = S(r) from (1) and (8) S o S” = §” o S because of (6) and (3). It follows
that we have (9) S”(S(r”)) = S(r). We now need to show S(Q) + S” : S(A). From (2) and the
definition of substitution coverage, we have (10) Q + S’'(«) : frev(A(a)), for all « € dom(S”). From
Proposition 4 and (10), we have S(Q) + S(S’(«)) : S(frev(A(«))) and thus, from (8) and because
dom(S’) = dom(S”’) follows from the definition of S”’, we have (11) S(Q) + S”(«) : frev(S(A)(«)), for
all @ € dom(S”). It follows from (11) that we have (12) S(Q) + S” : S(A). Now, from the definition
of instantiation and from (9) and (12), we have S(Q) + S(c) > S(z’) via S”, as required. O

PROPOSITION 7 (INSTANTIATION CLOSED UNDER TYPE SUBSTITUTION). If Q + A+ ¢ > 7 via §’
and Q + S : A then Q + S(o) > S(r) via S”, whereS”" = (S0 5’) | dom(S’).

ProoF. Follows from the definition of instantiation. O

PropOSITION 9 (GC-SAFETY RELATION CLOSED UNDER TYPE SUBSTITUTION). Assume Q + S : A. If
G(Q+ AT, e X,) then G(Q,S(), e, X, S(r)).

Proor. From assumptions and because frv(S(r)) 2 S(frv(r)), for any substitution S, we have,
because value containment is closed under substitution and due to value containment extensibility,
that frv(S(r)) [=y S(e). Because fpv(S(e)) = fpv(e), it remains to be shown that

Vy € fpv(e) \ X. Q + S(I'(y)) : frev(S(r))
From assumptions, we have that for all y € fpv(e) \ X,
Q+ A+T(y): frev(n)
From Proposition 5 and assumptions, we have

QF ST(y)) : S(frev(x))

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:ii Martin Elsman

Now, because frev(S(r)) 2 S(frev(rr)) and because of type-containment effect-extensibility, we
have Q + S(I'(y)) : frev(S()), as required. O

ProposITION 10 (GC-SAFETY RELATION CLOSED UNDER VALUE SUBSTITUTION). If x ¢ X and
G(Q,T+{x:xn},e X, ') and frv(r) |= v and fpv(v) = O then G(Q,T, e[v/x], X, ©’).
Proor. From assumptions and (4), we have
frv(n’) v e (5)
Vy € fpv(e) \ X.Q + (T + {x : 7})(y) : frev(x’) (6)

First, assume x € fpv(e). Because x ¢ X, by choosing x for y, we have from (6) that Q + 7 : frev(xz’).
It follows from Proposition 2 that frev(rr) C frev(x’) and, thus

frv(r) C frv(x’) (7)
It follows from assumption, (7), and the value containment extensibility property that we have
frv(z’) F o (8)
Now, from (5), (8), and the value containment substitution property, we have
frv(n’) [Fv e[v/x])
We also have from (6) and because fpv(v) = 0 that
Vy € fpv(e[v/x]) \ X.Q + I'(y) : frev(x’) (10)
From (4), (9), and (10), we have G(Q, T, e[v/x], X, "), as required. O

The below detailed proofs follow closely the structure of the proofs provided in [Elsman 2003],
but adjusted to treat type variable contexts properly.

ProPOsITION 12 (TYPING CLOSED UNDER TYPE SUBSTITUTION). I[f Q+ AT Fe:m,oand QF S : A
then Q, S(T') + S(e) : S(7r), S(o).

Proor. By induction on the derivation of Q + A,T F e : 7, ¢. The cases for integers (values),
pairs (values and expressions), projections (expressions), and identifiers are trivial.

CASE e = {(Ax.e’)?. From [TvLam], we have Q + A, T + e : (3 —2% g, p), 0 and {}, {x : 1} +
e’ : s, ¢ and + 7. Because ftv(sz, e’, ¢) N dom(S) = 0, we have {}, {x : S(u1)} + S(e’) : S(p2), S()
and + S(). Moreover, because frv(rr) = frv(S(r)), we have frv(S(r)) |=y S(e’). We can now apply
[TvLam] to get Q, S(I') + S(e) : S(rr), 0, as required.

CASE e = e; e;. From [TeArr], we have Q + AT + e : 1,900 U 1 U @3 U {€,p} and Q +
AT rFe s (=% p,p),0,and Q + AT + e; : 1/, ;. By induction we have Q, S(T') + S(e;) :

(S(u") Ste-en) S(p), S(p)), S(p1) and Q, S(T) + S(ez) : S(i), S(¢2). It follows from the definition of
type substitution that S(e.¢y) = €.¢. We can now apply [TeArr] to get Q, S(T) F S(e) : S(u), S(p),
as required.

Case e = letregion p ine’. From [TeReG], we have Q + A, T e : u, ¢\ {p,€} and Q+ A, T+ ¢ :
i, ¢ and {p, €} N frev(T, u) = 0. By renaming of bound names and because p and € do not appear
free in the concluding type judgment, we can assume {p, €} N frev(S(T), S(1)) = 0. By induction, we
have Q, S(T') + S(e”) : S(), S(¢). We can now apply [TeReG], to get Q, S(T') - letregion p in S(e’) :
S(u), S(p) \ {p, €}. It follows trivially that we have Q, S(T') + S(e) : S(u), S(¢ \ {p, €}), as required.

Case e = e’ [p] at p. From [TeRarp], we have Q + A, T+ e’ : (0,p’),pand Q+ A+ o > T via p
and Q + 7. By induction, we have Q, S(T') + S(e’) : (S(o), S(p”)), S(¢). From Proposition 7, we have
Q+ S(o) = S(r) via p, thus, from [TeRarr], we can conclude Q, S(T) + S(e) : S(z, p), S(p U {p, p’}),
as required.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:iii

Cask Rule [TeSub]. We have Q + A, T +Fe:m,pand Q+ A, T+ e: x, ¢’ and ¢’ 2 ¢. By induction.
we have Q, S(I') + S(e) : S(i), S(¢). From the definition of type substitution, it follows that ¢" 2 ¢
implies S(¢”) 2 S(¢), thus, we can apply [TeSus] to get Q, S(T') S(e) : S(u), S(¢”), as required.

O

PROPOSITION 16 (VALUE SUBSTITUTION). If QT+ {x : n} + e : n’,¢ and+ v : & then Q,T +
elv/x]: 7', .

Proor. By induction on the derivation Q,T' + {x : 7} + e : 7/, ¢.

CaASE e = y. From assumptions and [TeVAr], we have QT + {x : 7} + y : 7/, p and (T + {x :
7})y) = 7’ and ¢ = 0. If y # x, we have e[v/x] = y, thus, because I'(y) = 7', we can conclude
from [TeVar] that Q,T + e[v/x] : 7/, @, as required. Otherwise, y = x, thus e[v/x] = vand = = n’.
From assumptions, [TeVaL], and [TeSus], we have Q,T + e[v/x] : 7/, ¢, as required.

Cask e = Ay.e’ at p. From assumptions and [TeLam], we have Q,T'+ {x : m,y : u} e’ : p', ¢’

and ¢ = {p} and 7’ = (u SSUAN i, p). By renaming of bound variables, we can assume x # y, thus,
we can apply the induction hypothesis to get Q,I" + {y : u} + e’[v/x] : i/, ¢’. By applying [TeLam],
we have Q,T + Ay.e’[v/x] : 7', ¢, as required.

The remaining cases follow similarly. O

ProposiTION 17 (UNIQUE DECOMPOSITION). If+ e : 7, @, then either (1) e is a value, or (2) there
exist a unique E,, e’, and t’ such thate = Ey[e’] and e’ : ', ¢ U ¢’ and e’ is an instruction.

Proor. By induction on the structure of e. Suppose e is not a value. There are 8 cases to consider.
We proceed by case analysis.

Cask e = letregion p in e;. A derivation + e : 7, ¢ must end in a use of [TeRec] followed
by a number of uses of [TeSus]. It follows that there exist ¢; and ¢, such that ¢ = ¢; \ {p} U ¢,
and p ¢ frv(r) and F e; : 7, ;. By renaming of bound variables, we can assume p ¢ frv(¢p;). By
induction, either e; is a value or there exist a unique E(’p,,, 11, and 7] such that e; = E(’P,, [11] and
kg :or), 01 U@” If e is not a value then we take E,» = letregion p in Eq’o,,, o =¢" U{p}t1=1,
7’ = nr{, and from [TeSus], we have I 1; : 77{, ¢ U ¢’, because ¢, U ¢”" C ¢ U ¢’. Otherwise, e; = v,
for some value v;. Thus, E,y = [-], 1 = letregion p in vy, 7’ = 7, and ¢’ = 0.

CASE e = e e;. A derivation + e : 7, ¢ must end in a use of [TeArr], followed by a number of uses
of [TeSus]. It follows that there exist y, @1, @2, i’ €, po, and @3 such that ¢ = po U@ U@, U{e, p}Ups
and r ey : (u —2 1, p), @1 and e, : y1, ¢, and 7 = y’. By induction, either e; is a value or else
there exist E(’p,, 11, and 7] such that e; = Eq’o; [t1] and F 1y = 1), @1 U 7. If e is not a value, then

’

1
we take Ey = Eq’a; e, 1 = 11, ' = n/, and because ¢’ = ¢] and ¢; C ¢, we can apply [TeSus]

to get 1y :], U ¢". Otherwise, e; = v; for some value v;. We can now apply the induction
hypothesis to get that either e; is a value or else there exist E(’Pé, 12, and 7, such that e, = Eq,o; [12]
and + 15 : 7, @2 U @;. If e is not a value, then we take E, = v; E(’p;, L = 1y, 7’ = m;, and because
@' = ¢, and ¢, C ¢, we can apply [TeSus] to get + 1 : 7,, ¢ U ¢’. Otherwise e, = v, for some value
vy. Because + vy : (1 —2 11’ p), 1, we can conclude from inspecting the typing rules for values
(canonical forms) that v = (Ax.e”)?. Thus, E,y = [-], ¢’ = 0,1 = (Ax.e’)? vy, and 7" = 7.

The remaining 6 cases follow similarly. m|

PROPOSITION 18 (TYPE PRESERVATION). If+ e : 7, ¢ and e <% ¢’ thent ¢’ : 1, ¢.

Proor. By induction on the structure of e. We proceed by case analysis.

CASE e = Ax.ey at p. From assumptions and [TeLam], we have 7 = (u; —2% 1, p) and {x :
Ui} + ey : 2, @0 and + 7w and G({}, {}, eo, {x}, 7) and ¢ = {p}. From [Lam], we have p € ¢ and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:iv Martin Elsman

e’ = (Ax.ep)”. From definition (4), we have frv(r) |=, e;. Now, by use of [TvLam] and [TeSus], we
have + e’ : 7, ¢, as required.

Cask e = letregion p in v. From assumptions and from [TeRec], there exist ¢’ and p such that
o=¢"\{p}and +v:p ¢ and & = p. It follows from [TeVaL] that + v : g, 0, thus, from [Rec] and
[TeSus], we have F e’ : 7, ¢, as required.

CASE e = (Ax.e;)” v. From assumptions, [TEArr], and [TvLam], there exist y, y1, €, and ¢y such
that 7 = pand {x : 1} Fe; : popo and + v : py, @1, and ¢ = @y U {€, p}. From [TeVaL], we have
F v : py, 0. Thus, from Proposition 16, we have F e;[v/x] : u, ¢o. Now, because ¢ 2 ¢, we can
apply [TeSus] to get + e’ : 7, ¢, as required.

Casee = (fun f [p]l x=e;)? [p’] at p’. There are two possibilities. Either [TvFun] applies or
[TvRec] applies.

case Rule [TvFun]. From assumptions, [TeRarr], and [TvFun], we have 7 = (7, p"), ¢ = {p, p’},

v =(fun f [p]x=e;)? and 0 = VpeA.uy; — p1,, and

Fo:(o,p) (11)
Fo>tviap’ (12)
{h{x ke pz 00 (13)
From (13), we have f ¢ fpv(e;), thus, we have
{hAx - m}t Felv/fl: p2, 0o (14)

From the definition of instantiation and from (12), there exists a substitution S = (S*,[5’/p], S¢)
such that

S(py —o) =71 (15)
{}rSt:A (16)

From (14) and [TeLam], we have
FAx.ei[v/flat p’ s (u — pp, p'), {p’} (17)

By renaming of bound names, we can assume S(v) = v and S(p’) = p’, thus, from (15), (16), (17),
Proposition 11, and Proposition 12, we have + Ax.ei[p’/pllv/f]lat p’ : (7, p'), {p’}. We can now
apply [TeSus] to get + e’ : 7, ¢, as required.

case Rule [TvRec]. From assumptions, [TeRapr], and [TvRec], we have 7 = (7, p’), ¢ = {p, p’},
v ={(fun f [p] x =e;)? and o = VpeA.j; — p15, and

Fo:(o,p) (18)
o’ = Vpe.y — (19)
Fo>rviap’ (20)
{f (", p)hix: i}k er: p2, 0o (21)
From (18), (19), and [TvRec], we have
F o (0% p) (22)

From Proposition 16 and (22) and (21), we have
{x o} relv/fl: p2, 0o (23)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:v

From the definition of instantiation and from (20), there exists a substitution S = (S*,[5’/p], S¢)
such that

S —>) = 7 (24)
{}rSt:A (25)

From (23) and [TeLam], we have

F Ax.er[v/flat p’ s (u = pp, p'), {p’} (26)

By renaming of bound names, we can assume S(v) = v and S(p’) = p’, thus, from (24), (25), (26),
Proposition 11, and Proposition 12, we have + Ax.e;[p’/pllv/f] at p’ : (z, p’), {p’}. We can now
apply [TeSus] to get + e’ : 7, ¢, as required.

CAsE e = #1 (v1, v2). From assumptions, [TeSEL], and [TvPair], we have + vy : p1, 0. We can now
apply [TeSus] to get + vy : , @, as required.

Cask e = E,[e”’]. We have e” 9 o and pN@ =0ande” = Ey[e”]. We now proceed by

case analysis on the structure of E,.

case Ey[e”'] = (e”,e;) at p. We have ¢’ = (). From assumptions and [TePair] we have + e’ :
U1, 01, F €2t la, @2, f = (1 X g, p), and ¢ = @1 U@, U{p}. By applying [TeSus], we have e”" : yy, ¢.
We can now apply the induction hypothesis to get + e’’’ : pq, ¢. By applying [TePair], we have
FEy[e”’] : p, @, as required.

case Ey[e”] = (v1,e”’) at p. We have ¢’ = (. From assumptions and [TePair] we have +
V1t 1, @1, e a0, i1 = (U1 X fa, p), and ¢ = @1 U @2 U {p}. By applying [TeSus], we have
F e’ : up, . We can now apply the induction hypothesis to get + e””’ : sy, ¢. By applying [TEPAIR],
we have + E,[e”'] : p, ¢, as required.

case Ey[e”’] = #ie”,i € {1,2}. We have ¢’ = (). From assumptions and [TeSer], we have
Fe” (i X pa, p), @, u = pi and @ = ¢’ U {p}. By applying [TeSus], we have + e”" : (u; X pi2, p), @,
thus, we can apply the induction hypothesis to get + e”” : (yg X pi2, p), ¢. We can now apply [TeSEL]
to get + Ey[e”’] : 1, @, as required.

case Ey[e”’] = let x =e” in e;. We have ¢’ = (). From assumptions and [TeLet], there exists 7
such that Fe” : m, @1, {x: 7} F ey : p, @2, and ¢ = @1 U @,. Applying [TeSus], we have + e : 7, ¢.
By induction, we have + e’ : 7, 9. We can now apply [TeLet] to get + E,[e”’] : p, ¢, as required.

case Ey[e”’] = e” e,. From assumptions and [TeAre], it follows that there exist €, ¢o, @1, @2, and
p such that + e” : (y — 11, p), @1, + ey : fz, @3, and @ = @y U 91 U @y U {e, p}. From [TeSus],
we have F e” : (i —2 i, p), ¢, thus, by induction, we have + e’ : (s —2% y1, p), ¢. We can
now apply [TeArp] to get + E,[e”’] : p, ¢, as required.

case Ey[e”'] = v e”. As above.

case Ey[e”] = e [p] at p. As above.

case E,[e”] = letregion pine”. We have ¢" = {p}. From assumptions and from [TeReG], there
exist ¢”” and € such that ¢ = ¢""\{p, €}, and + e” : pu, ¢”’. From [TESus], we have + e” : y, pU¢’. We
can now apply the induction hypothesis to get + e’ : u, ¢ U ¢’. Now, because ¢ = (9 U ¢’) \ {p, €},
we can apply [TEREG] to get + E,[e”’] : p, ¢, as required.

The remaining cases follow similarly.]

PROPOSITION 19. (PROGRESS). If F e : 7, ¢ then either e is a value or e <2 ¢, for some e’.

Proor. If e is not a value, then by Proposition 17 there exist a unique E, 1, and 7’ such that

e=Ey[t]and F 1 : 7', U ¢’. We argue that lM ey, for some ey, so that E,[(] &Eq,r[ez]
follows from [Ctx]. We now consider all cases where i could possibly be stuck.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:vi Martin Elsman

Case 1 = Ax.e] at p. We have + Ax.ej at p: 7', ¢ U ¢’. This derivation must be an application of
[TeLam] followed by a number of applications of [TeSus]. Thus, we have p € ¢ U ¢’. It follows that
we can apply [Lam] to get e; = (Ax.e[)”.

CasE 1 = (Ax.ex)” v. We have + (Ax.ex)? v : 7/, U ¢’. This derivation must end in an
application of [TeArr] followed by a number of applications of [TeSus]. Thus, by applying [TeVat],
there exist y1, yi’, €, and ¢y such that + (Ax.e,)? : (u —2> ', p),0 and + v : y,0 and 7’ = p’ and
@o U {e, p} € ¢ U ¢’. Now, because p € ¢ U ¢’, we can apply [Arr] to get e; = ex[v/x].

Caset = (fun f [p1x=e))? [p’]at p. The derivation F ¢ : 7/, pU¢’ must end in an application
of [TeRarr] followed by a number of applications of [TeSus], thus, from [TeVat], there exist o and
7’ such that 7’ = (¢/, p) and

F(fun f [p1x=¢e))” :(0,p’),0 (27)
{p.p'} CoUg (28)
Because p’ € ¢ U ¢’ follows from (28), we can apply [Rarp] to get e, = Ax.eo[p’/pllv/f] at p,
where v = (fun f [5] x = e))” .
Case 1 = letregion p in v. It follows immediately from [Rec] that e, = v.
The remaining cases follow similarly. O

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

