Garbage-Collection Safety for Region-Based Type-Polymorphic Programs

APPENDIX A: PROOF DETAILS

This appendix contains proof details for the paper "Garbage-Collection Safety for Region-Based Type-Polymorphic Programs" (PLDI '23) by Martin Elsman.

PROPOSITION 5 (Type Substitution Closedness). Assume *o* is one of μ or π . If $\Omega + \Delta \vdash o : \varphi$ and $\Omega \vdash S : \Delta$ then $\Omega \vdash S(o) : \varphi$.

PROOF. By induction over the structure of o. The interesting case is the case for $\mu = \alpha$ for some type variable α . There are now two cases. We first consider the case where $\alpha \in \text{dom}(S)$. From the definition of coverage, we have $\langle 1 \rangle \Omega \vdash S(\alpha) : \text{frev}(\Delta(\alpha))$ and $\text{dom}(S) = \text{dom}(\Delta)$. Moreover, from assumptions we have $\Omega + \Delta \vdash \alpha : \varphi$, thus, from the definition of containment, we have $\text{frev}((\Omega + \Delta)(\alpha)) \subseteq \varphi$ and thus $\langle 2 \rangle$ $\text{frev}(\Delta(\alpha)) \subseteq \varphi$. From the extensibility property of type containment and from $\langle 1 \rangle$ and $\langle 2 \rangle$, we have $\Omega \vdash S(\alpha) : \varphi$, as required. For the second case where $\alpha \notin \text{dom}(S)$, we have $S(\alpha) = \alpha$. It follows from the definition of coverage that $\alpha \notin \text{dom}(\Delta)$, which leads us to conclude, based on the assumptions and the definition of type containment, that $\Omega \vdash S(\alpha) : \varphi$, as required. \Box

PROPOSITION 6 (INSTANTIATION CLOSED UNDER REGION-EFFECT SUBSTITUTION). If S is a regioneffect substitution and $\Omega \vdash \sigma \geq \tau$ via S' then $S(\Omega) \vdash S(\sigma) \geq S(\tau)$ via S'', where $S'' = (S \circ S') \downarrow$ dom(S').

PROOF. We first consider the case where $\sigma = \forall \Delta. \tau'$. From the definition of instantiation, we have $\langle 1 \rangle S'(\tau') = \tau$ and $\langle 2 \rangle \Omega \vdash S' : \Delta$, and, thus, $\langle 3 \rangle \operatorname{dom}(S') = \operatorname{dom}(\Delta)$. Because *S* is a region-effect substitution, we have $\langle 4 \rangle S(\sigma) = \forall S(\Delta).S(\tau')$ and $\langle 5 \rangle \operatorname{dom}(\Delta) = \operatorname{dom}(S(\Delta))$ and $\langle 6 \rangle \operatorname{dom}(\Delta) \cap$ fv(rng(*S*)) = \emptyset . Now, let $S'' = ((S \circ S') \downarrow \operatorname{dom}(S'))$. It follows that we have $\langle 7 \rangle \operatorname{dom}(S'') = \operatorname{dom}(S(\Delta))$. We also have $S(S'(\tau')) = S(\tau)$ from $\langle 1 \rangle$ and $\langle 8 \rangle S \circ S' = S'' \circ S$ because of $\langle 6 \rangle$ and $\langle 3 \rangle$. It follows that we have $\langle 9 \rangle S''(S(\tau')) = S(\tau)$. We now need to show $S(\Omega) \vdash S'' : S(\Delta)$. From $\langle 2 \rangle$ and the definition of substitution coverage, we have $\langle 10 \rangle \Omega \vdash S'(\alpha) : \operatorname{frev}(\Delta(\alpha))$, for all $\alpha \in \operatorname{dom}(S')$. From Proposition 4 and $\langle 10 \rangle$, we have $S(\Omega) \vdash S(S'(\alpha)) : S(\operatorname{frev}(\Delta(\alpha)))$ and thus, from $\langle 8 \rangle$ and because dom(*S'*) = dom(*S''*) follows from the definition of *S''*, we have $\langle 11 \rangle S(\Omega) \vdash S''(\alpha) : \operatorname{frev}(S(\Delta)(\alpha))$, for all $\alpha \in \operatorname{dom}(S'')$. It follows from $\langle 11 \rangle$ that we have $\langle 12 \rangle S(\Omega) \vdash S'' : S(\Delta)$. Now, from the definition of instantiation and from $\langle 9 \rangle$ and $\langle 12 \rangle$, we have $S(\Omega) \vdash S(\sigma) \ge S(\tau')$ via *S''*, as required. \Box

PROPOSITION 7 (INSTANTIATION CLOSED UNDER TYPE SUBSTITUTION). If $\Omega + \Delta \vdash \sigma \geq \tau$ via S' and $\Omega \vdash S : \Delta$ then $\Omega \vdash S(\sigma) \geq S(\tau)$ via S'', where $S'' = (S \circ S') \downarrow \text{dom}(S')$.

PROOF. Follows from the definition of instantiation.

PROPOSITION 9 (GC-SAFETY RELATION CLOSED UNDER TYPE SUBSTITUTION). Assume $\Omega \vdash S : \Delta$. If $G(\Omega + \Delta, \Gamma, e, X, \pi)$ then $G(\Omega, S(\Gamma), e, X, S(\pi))$.

PROOF. From assumptions and because $\operatorname{frv}(S(\pi)) \supseteq S(\operatorname{frv}(\pi))$, for any substitution *S*, we have, because value containment is closed under substitution and due to value containment extensibility, that $\operatorname{frv}(S(\pi)) \models_{v} S(e)$. Because $\operatorname{fpv}(S(e)) = \operatorname{fpv}(e)$, it remains to be shown that

 $\forall y \in \text{fpv}(e) \setminus X. \ \Omega \vdash S(\Gamma(y)) : \text{frev}(S(\pi))$

From assumptions, we have that for all $y \in \text{fpv}(e) \setminus X$,

 $\Omega + \Delta \vdash \Gamma(y) : \operatorname{frev}(\pi)$

From Proposition 5 and assumptions, we have

 $\Omega \vdash S(\Gamma(y)) : S(\operatorname{frev}(\pi))$

П

Now, because $\operatorname{frev}(S(\pi)) \supseteq S(\operatorname{frev}(\pi))$ and because of type-containment effect-extensibility, we have $\Omega \vdash S(\Gamma(y))$: $\operatorname{frev}(S(\pi))$, as required.

PROPOSITION 10 (GC-SAFETY RELATION CLOSED UNDER VALUE SUBSTITUTION). If $x \notin X$ and $G(\Omega, \Gamma + \{x : \pi\}, e, X, \pi')$ and $\operatorname{frv}(\pi) \models v$ and $\operatorname{fpv}(v) = \emptyset$ then $G(\Omega, \Gamma, e[v/x], X, \pi')$.

PROOF. From assumptions and (4), we have

$$\operatorname{frv}(\pi') \models_{\mathrm{v}} e$$
 (5)

$$\forall y \in \operatorname{fpv}(e) \setminus X.\Omega \vdash (\Gamma + \{x : \pi\})(y) : \operatorname{frev}(\pi')$$
(6)

First, assume $x \in \text{fpv}(e)$. Because $x \notin X$, by choosing x for y, we have from (6) that $\Omega \vdash \pi : \text{frev}(\pi')$. It follows from Proposition 2 that $\text{frev}(\pi) \subseteq \text{frev}(\pi')$ and, thus

$$\operatorname{frv}(\pi) \subseteq \operatorname{frv}(\pi') \tag{7}$$

It follows from assumption, (7), and the value containment extensibility property that we have

$$\operatorname{frv}(\pi') \models \upsilon$$
 (8)

Now, from (5), (8), and the value containment substitution property, we have

f

$$\operatorname{frv}(\pi') \models_{\mathrm{v}} e[\upsilon/x] \tag{9}$$

We also have from (6) and because $fpv(v) = \emptyset$ that

$$\forall y \in \operatorname{fpv}(e[v/x]) \setminus X.\Omega \vdash \Gamma(y) : \operatorname{frev}(\pi') \tag{10}$$

From (4), (9), and (10), we have $G(\Omega, \Gamma, e[v/x], X, \pi')$, as required.

The below detailed proofs follow closely the structure of the proofs provided in [Elsman 2003], but adjusted to treat type variable contexts properly.

PROPOSITION 12 (TYPING CLOSED UNDER TYPE SUBSTITUTION). If $\Omega + \Delta$, $\Gamma \vdash e : \pi, \varphi$ and $\Omega \vdash S : \Delta$ then $\Omega, S(\Gamma) \vdash S(e) : S(\pi), S(\varphi)$.

PROOF. By induction on the derivation of $\Omega + \Delta$, $\Gamma \vdash e : \pi, \varphi$. The cases for integers (values), pairs (values and expressions), projections (expressions), and identifiers are trivial.

CASE $e = \langle \lambda x. e' \rangle^{\rho}$. From [TvLAM], we have $\Omega + \Delta$, $\Gamma \vdash e : (\mu_1 \xrightarrow{\epsilon \cdot \varphi} \mu_2, \rho)$, \emptyset and $\{\}, \{x : \mu_1\} \vdash e' : \mu_2, \varphi \text{ and } \vdash \pi$. Because ftv $(\pi, e', \varphi) \cap \text{dom}(S) = \emptyset$, we have $\{\}, \{x : S(\mu_1)\} \vdash S(e') : S(\mu_2), S(\varphi)$ and $\vdash S(\pi)$. Moreover, because frv $(\pi) = \text{frv}(S(\pi))$, we have $\text{frv}(S(\pi)) \models_{v} S(e')$. We can now apply [TvLAM] to get $\Omega, S(\Gamma) \vdash S(e) : S(\pi), \emptyset$, as required.

CASE $e = e_1 e_2$. From [TEAPP], we have $\Omega + \Delta, \Gamma \vdash e : \mu, \varphi_0 \cup \varphi_1 \cup \varphi_2 \cup \{\epsilon, \rho\}$ and $\Omega + \Delta, \Gamma \vdash e_1 : (\mu' \xrightarrow{\epsilon.\varphi_0} \mu, \rho), \varphi_1$ and $\Omega + \Delta, \Gamma \vdash e_2 : \mu', \varphi_2$. By induction we have $\Omega, S(\Gamma) \vdash S(e_1) : (S(\mu') \xrightarrow{S(\epsilon.\varphi_0)} S(\mu), S(\rho)), S(\varphi_1)$ and $\Omega, S(\Gamma) \vdash S(e_2) : S(\mu'), S(\varphi_2)$. It follows from the definition of type substitution that $S(\epsilon.\varphi_0) = \epsilon.\varphi_0$. We can now apply [TEAPP] to get $\Omega, S(\Gamma) \vdash S(e) : S(\mu), S(\varphi)$, as required.

CASE $e = \text{letregion } \rho \text{ in } e'$. From [TEREG], we have $\Omega + \Delta, \Gamma \vdash e : \mu, \varphi \setminus \{\rho, \vec{\epsilon}\}$ and $\Omega + \Delta, \Gamma \vdash e' : \mu, \varphi$ and $\{\rho, \vec{\epsilon}\} \cap \text{frev}(\Gamma, \mu) = \emptyset$. By renaming of bound names and because ρ and $\vec{\epsilon}$ do not appear free in the concluding type judgment, we can assume $\{\rho, \vec{\epsilon}\} \cap \text{frev}(S(\Gamma), S(\mu)) = \emptyset$. By induction, we have $\Omega, S(\Gamma) \vdash S(e') : S(\mu), S(\varphi)$. We can now apply [TEREG], to get $\Omega, S(\Gamma) \vdash \text{letregion } \rho \text{ in } S(e') : S(\mu), S(\varphi) \setminus \{\rho, \vec{\epsilon}\}$. It follows trivially that we have $\Omega, S(\Gamma) \vdash S(e) : S(\mu), S(\varphi \setminus \{\rho, \vec{\epsilon}\})$, as required.

CASE $e = e' [\vec{\rho}]$ at ρ . From [TERAPP], we have $\Omega + \Delta, \Gamma \vdash e' : (\sigma, \rho'), \varphi$ and $\Omega + \Delta \vdash \sigma \geq \tau$ via $\vec{\rho}$ and $\Omega \vdash \tau$. By induction, we have $\Omega, S(\Gamma) \vdash S(e') : (S(\sigma), S(\rho')), S(\varphi)$. From Proposition 7, we have $\Omega \vdash S(\sigma) \geq S(\tau)$ via $\vec{\rho}$, thus, from [TERAPP], we can conclude $\Omega, S(\Gamma) \vdash S(e) : S(\tau, \rho), S(\varphi \cup \{\rho, \rho'\})$, as required.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:ii

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs

CASE Rule [TeSub]. We have $\Omega + \Delta$, $\Gamma \vdash e : \pi$, φ and $\Omega + \Delta$, $\Gamma \vdash e : \pi$, φ' and $\varphi' \supseteq \varphi$. By induction. we have Ω , $S(\Gamma) \vdash S(e) : S(\mu)$, $S(\varphi)$. From the definition of type substitution, it follows that $\varphi' \supseteq \varphi$ implies $S(\varphi') \supseteq S(\varphi)$, thus, we can apply [TeSub] to get Ω , $S(\Gamma) \vdash S(e) : S(\mu)$, $S(\varphi')$, as required.

PROPOSITION 16 (VALUE SUBSTITUTION). If Ω , $\Gamma + \{x : \pi\} \vdash e : \pi', \varphi \text{ and } \vdash v : \pi \text{ then } \Omega, \Gamma \vdash e[v/x] : \pi', \varphi$.

PROOF. By induction on the derivation Ω , $\Gamma + \{x : \pi\} \vdash e : \pi', \varphi$.

CASE e = y. From assumptions and [TEVAR], we have $\Omega, \Gamma + \{x : \pi\} \vdash y : \pi', \varphi$ and $(\Gamma + \{x : \pi\})(y) = \pi'$ and $\varphi = \emptyset$. If $y \neq x$, we have e[v/x] = y, thus, because $\Gamma(y) = \pi'$, we can conclude from [TEVAR] that $\Omega, \Gamma \vdash e[v/x] : \pi', \varphi$, as required. Otherwise, y = x, thus e[v/x] = v and $\pi = \pi'$. From assumptions, [TEVAL], and [TESUB], we have $\Omega, \Gamma \vdash e[v/x] : \pi', \varphi$, as required.

CASE $e = \lambda y.e'$ at ρ . From assumptions and [TELAM], we have $\Omega, \Gamma + \{x : \pi, y : \mu\} \vdash e' : \mu', \varphi'$ and $\varphi = \{\rho\}$ and $\pi' = (\mu \xrightarrow{\epsilon.\varphi'} \mu', \rho)$. By renaming of bound variables, we can assume $x \neq y$, thus, we can apply the induction hypothesis to get $\Omega, \Gamma + \{y : \mu\} \vdash e'[\upsilon/x] : \mu', \varphi'$. By applying [TELAM], we have $\Omega, \Gamma \vdash \lambda y.e'[\upsilon/x] : \pi', \varphi$, as required.

The remaining cases follow similarly.

PROPOSITION 17 (UNIQUE DECOMPOSITION). If $\vdash e : \pi, \varphi$, then either (1) e is a value, or (2) there exist a unique $E_{\varphi'}$, e', and π' such that $e = E_{\varphi'}[e']$ and $\vdash e' : \pi', \varphi \cup \varphi'$ and e' is an instruction.

PROOF. By induction on the structure of e. Suppose e is not a value. There are 8 cases to consider. We proceed by case analysis.

CASE $e = \text{letregion } \rho \text{ in } e_1$. A derivation $\vdash e : \pi, \varphi$ must end in a use of [TEREG] followed by a number of uses of [TESUB]. It follows that there exist φ_1 and φ_2 such that $\varphi = \varphi_1 \setminus \{\rho\} \cup \varphi_2$ and $\rho \notin \text{frv}(\pi)$ and $\vdash e_1 : \pi, \varphi_1$. By renaming of bound variables, we can assume $\rho \notin \text{frv}(\varphi_2)$. By induction, either e_1 is a value or there exist a unique $E'_{\varphi''}$, ι_1 , and π'_1 such that $e_1 = E'_{\varphi''}[\iota_1]$ and $\vdash \iota_1 : \pi'_1, \varphi_1 \cup \varphi''$. If e_1 is not a value then we take $E_{\varphi'} = \text{letregion } \rho \text{ in } E'_{\varphi''}, \varphi' = \varphi'' \cup \{\rho\}, \iota = \iota_1, \pi' = \pi'_1$, and from [TESUB], we have $\vdash \iota_1 : \pi'_1, \varphi \cup \varphi'$, because $\varphi_1 \cup \varphi'' \subseteq \varphi \cup \varphi'$. Otherwise, $e_1 = v_1$ for some value v_1 . Thus, $E_{\varphi'} = [\cdot], \iota = \text{letregion } \rho \text{ in } v_1, \pi' = \pi$, and $\varphi' = \emptyset$.

CASE $e = e_1 e_2$. A derivation $\vdash e : \pi, \varphi$ must end in a use of [TEAPP], followed by a number of uses of [TESUB]. It follows that there exist $\mu, \varphi_1, \varphi_2, \mu', \epsilon, \varphi_0$, and φ_3 such that $\varphi = \varphi_0 \cup \varphi_1 \cup \varphi_2 \cup \{\epsilon, \rho\} \cup \varphi_3$ and $\vdash e_1 : (\mu \xrightarrow{\epsilon.\varphi_0} \mu', \rho), \varphi_1$ and $\vdash e_2 : \mu, \varphi_2$ and $\pi = \mu'$. By induction, either e_1 is a value or else there exist $E'_{\varphi'_1}, \iota_1$, and π'_1 such that $e_1 = E'_{\varphi'_1}[\iota_1]$ and $\vdash \iota_1 : \pi'_1, \varphi_1 \cup \varphi'_1$. If e_1 is not a value, then we take $E_{\varphi'} = E'_{\varphi'_1} e_2, \iota = \iota_1, \pi' = \pi'_1$, and because $\varphi' = \varphi'_1$ and $\varphi_1 \subseteq \varphi$, we can apply [TESUB] to get $\vdash \iota_1 : \pi'_1, \varphi \cup \varphi'$. Otherwise, $e_1 = \upsilon_1$ for some value υ_1 . We can now apply the induction hypothesis to get that either e_2 is a value or else there exist $E'_{\varphi'_2}, \iota_2$, and π'_2 such that $e_2 = E'_{\varphi'_2}[\iota_2]$ and $\vdash \iota_2 : \pi'_2, \varphi_2 \cup \varphi'_2$. If e_2 is not a value, then we take $E_{\varphi'} = \upsilon_1 E'_{\varphi'_2}, \iota = \iota_2, \pi' = \pi'_2$, and because $\varphi' = \varphi'_2$ and $\varphi_2 \subseteq \varphi$, we can apply [TESUB] to get $\vdash \iota_2 : \pi'_2, \varphi \cup \varphi'$. Otherwise $e_2 = \upsilon_2$ for some value υ_2 . Because $\vdash \upsilon_1 : (\mu \xrightarrow{\epsilon.\varphi_0} \mu', \rho), \varphi_1$, we can conclude from inspecting the typing rules for values (canonical forms) that $\upsilon_1 = \langle \lambda x. e' \rangle^{\rho}$. Thus, $E_{\varphi'} = [\cdot], \varphi' = \emptyset, \iota = \langle \lambda x. e' \rangle^{\rho} \upsilon_2$, and $\pi' = \pi$.

The remaining 6 cases follow similarly.

PROPOSITION 18 (Type PRESERVATION). If $\vdash e : \pi, \varphi$ and $e \stackrel{\varphi}{\longleftrightarrow} e'$ then $\vdash e' : \pi, \varphi$.

PROOF. By induction on the structure of *e*. We proceed by case analysis.

CASE $e = \lambda x.e_0$ at ρ . From assumptions and [TeLAM], we have $\pi = (\mu_1 \xrightarrow{\epsilon.\varphi_0} \mu_2, \rho)$ and $\{x : \mu_1\} \vdash e_0 : \mu_2, \varphi_0$ and $\vdash \pi$ and $G(\{\}, \{\}, e_0, \{x\}, \pi)$ and $\varphi = \{\rho\}$. From [LAM], we have $\rho \in \varphi$ and

 $e' = \langle \lambda x. e_0 \rangle^{\rho}$. From definition (4), we have $\operatorname{frv}(\pi) \models_v e_0$. Now, by use of [TvLAM] and [TeSub], we have $\vdash e' : \pi, \varphi$, as required.

CASE $e = \text{letregion } \rho$ in v. From assumptions and from [TEREG], there exist φ' and μ such that $\varphi = \varphi' \setminus \{\rho\}$ and $\vdash v : \mu, \varphi'$ and $\pi = \mu$. It follows from [TEVAL] that $\vdash v : \mu, \emptyset$, thus, from [REG] and [TESUB], we have $\vdash e' : \pi, \varphi$, as required.

CASE $e = \langle \lambda x. e_1 \rangle^{\rho} v$. From assumptions, [TEAPP], and [TvLAM], there exist μ , μ_1 , ϵ , and φ_0 such that $\pi = \mu$ and $\{x : \mu_1\} \vdash e_1 : \mu, \varphi_0$ and $\vdash v : \mu_1, \varphi_1$, and $\varphi = \varphi_0 \cup \{\epsilon, \rho\}$. From [TEVAL], we have $\vdash v : \mu_1, \emptyset$. Thus, from Proposition 16, we have $\vdash e_1[v/x] : \mu, \varphi_0$. Now, because $\varphi \supseteq \varphi_0$, we can apply [TESUB] to get $\vdash e' : \pi, \varphi$, as required.

CASE $e = \langle \text{fun } f [\vec{\rho}] x = e_1 \rangle^{\rho} [\vec{\rho}']$ at ρ' . There are two possibilities. Either [TvFun] applies or [TvRec] applies.

case Rule [TvFun]. From assumptions, [TERAPP], and [TvFun], we have $\pi = (\tau, \rho'), \varphi = \{\rho, \rho'\}, v = \langle \text{fun } f \ [\vec{\rho}] \ x = e_1 \rangle^{\rho} \text{ and } \sigma = \forall \vec{\rho} \vec{\epsilon} \Delta . \mu_1 \xrightarrow{\epsilon . \varphi_0} \mu_2, \text{ and}$

$$\vdash v : (\sigma, \rho) \tag{11}$$

$$\vdash \sigma \ge \tau \text{ via } \vec{\rho}' \tag{12}$$

$$\{\}, \{x: \mu_1\} \vdash e_1: \mu_2, \varphi_0 \tag{13}$$

From (13), we have $f \notin \text{fpv}(e_1)$, thus, we have

$$\{\}, \{x: \mu_1\} \vdash e_1[\nu/f]: \mu_2, \varphi_0 \tag{14}$$

From the definition of instantiation and from (12), there exists a substitution $S = (S^t, [\vec{\rho}'/\vec{\rho}], S^e)$ such that

$$S(\mu_1 \xrightarrow{\epsilon . \varphi_0} \mu_2) = \tau \tag{15}$$

$$\{\} \vdash S^{\mathsf{t}} : \Delta \tag{16}$$

From (14) and [TELAM], we have

$$\vdash \lambda x. e_1[v/f] \text{ at } \rho' : (\mu_1 \xrightarrow{\epsilon.\varphi_0} \mu_2, \rho'), \{\rho'\}$$
(17)

By renaming of bound names, we can assume S(v) = v and $S(\rho') = \rho'$, thus, from (15), (16), (17), Proposition 11, and Proposition 12, we have $\vdash \lambda x.e_1[\vec{\rho}'/\vec{\rho}][v/f]$ at $\rho' : (\tau, \rho'), \{\rho'\}$. We can now apply [TESUB] to get $\vdash e' : \pi, \varphi$, as required.

case Rule [TvRec]. From assumptions, [TERAPP], and [TvRec], we have $\pi = (\tau, \rho')$, $\varphi = \{\rho, \rho'\}$, $\upsilon = \langle \text{fun } f \ [\vec{\rho}] \ x = e_1 \rangle^{\rho}$ and $\sigma = \forall \vec{\rho} \vec{\epsilon} \Delta . \mu_1 \xrightarrow{\epsilon . \varphi_0} \mu_2$, and

$$\vdash v: (\sigma, \rho) \tag{18}$$

$$\sigma' = \forall \vec{\rho} \vec{\epsilon}. \mu_1 \xrightarrow{\epsilon. \varphi_0} \mu_2 \tag{19}$$

$$\vdash \sigma \ge \tau \operatorname{via} \vec{\rho}' \tag{20}$$

$$\{f:(\sigma',\rho)\}, x:\mu_1\} \vdash e_1:\mu_2, \varphi_0$$
(21)

From (18), (19), and [TvRec], we have

$$\vdash v : (\sigma', \rho) \tag{22}$$

From Proposition 16 and (22) and (21), we have

$$\{x:\mu_1\} \vdash e_1[\nu/f]:\mu_2,\varphi_0 \tag{23}$$

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.

115:iv

Garbage-Collection Safety for Region-Based Type-Polymorphic Programs

From the definition of instantiation and from (20), there exists a substitution $S = (S^t, [\vec{\rho}'/\vec{\rho}], S^e)$ such that

$$S(\mu_1 \xrightarrow{\epsilon \cdot \varphi_0} \mu_2) = \tau \tag{24}$$

$$\{\} \vdash S^{\mathsf{t}} : \Delta \tag{25}$$

From (23) and [TELAM], we have

$$\vdash \lambda x. e_1[\nu/f] \text{ at } \rho' : (\mu_1 \xrightarrow{\epsilon.\varphi_0} \mu_2, \rho'), \{\rho'\}$$
(26)

By renaming of bound names, we can assume S(v) = v and $S(\rho') = \rho'$, thus, from (24), (25), (26), Proposition 11, and Proposition 12, we have $\vdash \lambda x.e_1[\vec{\rho}'/\vec{\rho}][v/f]$ at $\rho' : (\tau, \rho'), \{\rho'\}$. We can now apply [TESUB] to get $\vdash e' : \pi, \varphi$, as required.

CASE e = #1 (v_1, v_2). From assumptions, [TESEL], and [TvPAIR], we have $\vdash v_1 : \mu, \emptyset$. We can now apply [TESUB] to get $\vdash v_1 : \mu, \varphi$, as required.

CASE $e = E_{\varphi'}[e'']$. We have $e'' \xrightarrow{\varphi \cup \varphi'} e'''$ and $\varphi \cap \varphi' = \emptyset$ and $e' = E_{\varphi'}[e''']$. We now proceed by case analysis on the structure of $E_{\varphi'}$.

case $E_{\varphi'}[e''] = (e'', e_2)$ at ρ . We have $\varphi' = \emptyset$. From assumptions and [TEPAIR] we have $\vdash e'' : \mu_1, \varphi_1, \vdash e_2 : \mu_2, \varphi_2, \mu = (\mu_1 \times \mu_2, \rho)$, and $\varphi = \varphi_1 \cup \varphi_2 \cup \{\rho\}$. By applying [TESUB], we have $\vdash e'' : \mu_1, \varphi$. We can now apply the induction hypothesis to get $\vdash e''' : \mu_1, \varphi$. By applying [TEPAIR], we have $\vdash E_{\varphi'}[e'''] : \mu, \varphi$, as required.

case $E_{\varphi'}[e''] = (v_1, e'')$ at ρ . We have $\varphi' = \emptyset$. From assumptions and [TEPAIR] we have $\vdash v_1 : \mu_1, \varphi_1, \vdash e'' : \mu_2, \varphi_2, \mu = (\mu_1 \times \mu_2, \rho)$, and $\varphi = \varphi_1 \cup \varphi_2 \cup \{\rho\}$. By applying [TESUB], we have $\vdash e'' : \mu_2, \varphi$. We can now apply the induction hypothesis to get $\vdash e''' : \mu_2, \varphi$. By applying [TEPAIR], we have $\vdash E_{\varphi'}[e'''] : \mu, \varphi$, as required.

case $E_{\varphi'}[e''] = \#i e'', i \in \{1, 2\}$. We have $\varphi' = \emptyset$. From assumptions and [TESEL], we have $\vdash e'' : (\mu_1 \times \mu_2, \rho), \varphi', \mu = \mu_i$ and $\varphi = \varphi' \cup \{\rho\}$. By applying [TESUB], we have $\vdash e'' : (\mu_1 \times \mu_2, \rho), \varphi$, thus, we can apply the induction hypothesis to get $\vdash e''' : (\mu_1 \times \mu_2, \rho), \varphi$. We can now apply [TESEL] to get $\vdash E_{\varphi'}[e'''] : \mu, \varphi$, as required.

case $E_{\varphi'}[e''] = \text{let } x = e'' \text{ in } e_2$. We have $\varphi' = \emptyset$. From assumptions and [TeLet], there exists π such that $\vdash e'' : \pi, \varphi_1, \{x : \pi\} \vdash e_2 : \mu, \varphi_2$, and $\varphi = \varphi_1 \cup \varphi_2$. Applying [TeSub], we have $\vdash e'' : \pi, \varphi$. By induction, we have $\vdash e''' : \pi, \varphi$. We can now apply [TeLet] to get $\vdash E_{\varphi'}[e'''] : \mu, \varphi$, as required.

case $E_{\varphi'}[e''] = e'' e_2$. From assumptions and [TEAPP], it follows that there exist ϵ , φ_0 , φ_1 , φ_2 , and ρ such that $\vdash e'' : (\mu_2 \xrightarrow{\epsilon \cdot \varphi_0} \mu, \rho), \varphi_1, \vdash e_2 : \mu_2, \varphi_2, \text{ and } \varphi = \varphi_0 \cup \varphi_1 \cup \varphi_2 \cup \{\epsilon, \rho\}$. From [TESUB], we have $\vdash e'' : (\mu_2 \xrightarrow{\epsilon \cdot \varphi_0} \mu, \rho), \varphi$, thus, by induction, we have $\vdash e''' : (\mu_2 \xrightarrow{\epsilon \cdot \varphi_0} \mu, \rho), \varphi$. We can now apply [TEAPP] to get $\vdash E_{\varphi'}[e'''] : \mu, \varphi$, as required.

case $E_{\omega'}[e^{\prime\prime}] = \upsilon e^{\prime\prime}$. As above.

case $E_{\varphi'}[e''] = e'' [\vec{\rho}]$ at ρ . As above.

case $E_{\varphi'}[e''] = \text{letregion } \rho \text{ in } e''$. We have $\varphi' = \{\rho\}$. From assumptions and from [TEREG], there exist φ'' and $\vec{\epsilon}$ such that $\varphi = \varphi'' \setminus \{\rho, \vec{\epsilon}\}$, and $\vdash e'' : \mu, \varphi''$. From [TESUB], we have $\vdash e'' : \mu, \varphi \cup \varphi'$. We can now apply the induction hypothesis to get $\vdash e''' : \mu, \varphi \cup \varphi'$. Now, because $\varphi = (\varphi \cup \varphi') \setminus \{\rho, \vec{\epsilon}\}$, we can apply [TEREG] to get $\vdash E_{\varphi'}[e'''] : \mu, \varphi$, as required.

The remaining cases follow similarly.

PROPOSITION 19. (PROGRESS). If $\vdash e : \pi, \varphi$ then either e is a value or $e \stackrel{\varphi}{\longleftrightarrow} e'$, for some e'.

PROOF. If *e* is not a value, then by Proposition 17 there exist a unique $E_{\varphi'}$, *i*, and π' such that $e = E_{\varphi'}[\iota]$ and $\vdash \iota : \pi', \varphi \cup \varphi'$. We argue that $\iota \stackrel{\varphi \cup \varphi'}{\longrightarrow} e_2$, for some e_2 , so that $E_{\varphi'}[\iota] \stackrel{\varphi}{\longrightarrow} E_{\varphi'}[e_2]$ follows from [CTX]. We now consider all cases where ι could possibly be stuck.

115:v

CASE $\iota = \lambda x.e'_1$ at ρ . We have $\vdash \lambda x.e'_1$ at $\rho : \pi', \varphi \cup \varphi'$. This derivation must be an application of [TELAM] followed by a number of applications of [TESUB]. Thus, we have $\rho \in \varphi \cup \varphi'$. It follows that we can apply [LAM] to get $e_2 = \langle \lambda x.e'_1 \rangle^{\rho}$.

CASE $\iota = \langle \lambda x. e_x \rangle^{\rho} v$. We have $\vdash \langle \lambda x. e_x \rangle^{\rho} v : \pi', \varphi \cup \varphi'$. This derivation must end in an application of [TEAPP] followed by a number of applications of [TESUB]. Thus, by applying [TEVAL], there exist μ, μ', ϵ , and φ_0 such that $\vdash \langle \lambda x. e_x \rangle^{\rho} : (\mu \xrightarrow{\epsilon.\varphi_0} \mu', \rho), \emptyset$ and $\vdash v : \mu, \emptyset$ and $\pi' = \mu'$ and $\varphi_0 \cup \{\epsilon, \rho\} \subseteq \varphi \cup \varphi'$. Now, because $\rho \in \varphi \cup \varphi'$, we can apply [APP] to get $e_2 = e_x[v/x]$.

CASE $\iota = \langle \text{fun } f [\vec{\rho}] x = e_0 \rangle^{\rho'} [\vec{\rho'}]$ at ρ . The derivation $\vdash \iota : \pi', \varphi \cup \varphi'$ must end in an application of [TERAPP] followed by a number of applications of [TESUB], thus, from [TEVAL], there exist σ and τ' such that $\pi' = (\tau', \rho)$ and

$$\vdash \langle \mathsf{fun} f [\vec{\rho}] x = e_0 \rangle^{\rho'} : (\sigma, \rho'), \emptyset$$
(27)

$$\{\rho, \rho'\} \subseteq \varphi \cup \varphi' \tag{28}$$

Because $\rho' \in \varphi \cup \varphi'$ follows from (28), we can apply [RAPP] to get $e_2 = \lambda x \cdot e_0[\vec{\rho}'/\vec{\rho}][v/f]$ at ρ , where $v = \langle \text{fun } f [\vec{\rho}] x = e_0 \rangle^{\rho'}$.

CASE ι = letregion ρ in v. It follows immediately from [Reg] that $e_2 = v$. The remaining cases follow similarly.

The remaining cases follow similarly.

Received 2022-11-10; accepted 2023-03-31

115:vi