APPENDIX A: PROOF DETAILS

This appendix contains proof details for the paper "Garbage-Collection Safety for Region-Based Type-Polymorphic Programs" (PLDI '23) by Martin Elsman.

Proposition 5 (Type Substitution Closedness). Assume o is one of μ or π. If $\Omega+\Delta \vdash o: \varphi$ and $\Omega \vdash S: \Delta$ then $\Omega \vdash S(o): \varphi$.

Proof. By induction over the structure of o. The interesting case is the case for $\mu=\alpha$ for some type variable α. There are now two cases. We first consider the case where $\alpha \in \operatorname{dom}(S)$. From the definition of coverage, we have $\langle 1\rangle \Omega \vdash S(\alpha): \operatorname{frev}(\Delta(\alpha))$ and $\operatorname{dom}(S)=\operatorname{dom}(\Delta)$. Moreover, from assumptions we have $\Omega+\Delta \vdash \alpha: \varphi$, thus, from the definition of containment, we have $\operatorname{frev}((\Omega+\Delta)(\alpha)) \subseteq \varphi$ and thus $\langle 2\rangle \operatorname{frev}(\Delta(\alpha)) \subseteq \varphi$. From the extensibility property of type containment and from $\langle 1\rangle$ and $\langle 2\rangle$, we have $\Omega \vdash S(\alpha): \varphi$, as required. For the second case where $\alpha \notin \operatorname{dom}(S)$, we have $S(\alpha)=\alpha$. It follows from the definition of coverage that $\alpha \notin \operatorname{dom}(\Delta)$, which leads us to conclude, based on the assumptions and the definition of type containment, that $\Omega \vdash S(\alpha): \varphi$, as required.

Proposition 6 (Instantiation Closed Under Region-Effect Substitution). If S is a regioneffect substitution and $\Omega \vdash \sigma \geq \tau$ via S^{\prime} then $S(\Omega) \vdash S(\sigma) \geq S(\tau)$ via $S^{\prime \prime}$, where $S^{\prime \prime}=\left(S \circ S^{\prime}\right) \downarrow$ dom (S^{\prime}).

Proof. We first consider the case where $\sigma=\forall \Delta . \tau^{\prime}$. From the definition of instantiation, we have $\langle 1\rangle S^{\prime}\left(\tau^{\prime}\right)=\tau$ and $\langle 2\rangle \Omega \vdash S^{\prime}: \Delta$, and, thus, $\langle 3\rangle \operatorname{dom}\left(S^{\prime}\right)=\operatorname{dom}(\Delta)$. Because S is a regioneffect substitution, we have $\langle 4\rangle S(\sigma)=\forall S(\Delta) \cdot S\left(\tau^{\prime}\right)$ and $\langle 5\rangle \operatorname{dom}(\Delta)=\operatorname{dom}(S(\Delta))$ and $\langle 6\rangle \operatorname{dom}(\Delta) \cap$ $\mathrm{fv}(\operatorname{rng}(S))=\emptyset$. Now, let $S^{\prime \prime}=\left(\left(S \circ S^{\prime}\right) \downarrow \operatorname{dom}\left(S^{\prime}\right)\right)$. It follows that we have $\langle 7\rangle \operatorname{dom}\left(S^{\prime \prime}\right)=\operatorname{dom}(S(\Delta))$. We also have $S\left(S^{\prime}\left(\tau^{\prime}\right)\right)=S(\tau)$ from $\langle 1\rangle$ and $\langle 8\rangle S \circ S^{\prime}=S^{\prime \prime} \circ S$ because of $\langle 6\rangle$ and $\langle 3\rangle$. It follows that we have $\langle 9\rangle S^{\prime \prime}\left(S\left(\tau^{\prime}\right)\right)=S(\tau)$. We now need to show $S(\Omega)+S^{\prime \prime}: S(\Delta)$. From $\langle 2\rangle$ and the definition of substitution coverage, we have $\langle 10\rangle \Omega \vdash S^{\prime}(\alpha): \operatorname{frev}(\Delta(\alpha))$, for all $\alpha \in \operatorname{dom}\left(S^{\prime}\right)$. From Proposition 4 and $\langle 10\rangle$, we have $S(\Omega) \vdash S\left(S^{\prime}(\alpha)\right): S(f r e v(\Delta(\alpha)))$ and thus, from $\langle 8\rangle$ and because $\operatorname{dom}\left(S^{\prime}\right)=\operatorname{dom}\left(S^{\prime \prime}\right)$ follows from the definition of $S^{\prime \prime}$, we have $\langle 11\rangle S(\Omega)+S^{\prime \prime}(\alpha)$: frev $(S(\Delta)(\alpha)$), for all $\alpha \in \operatorname{dom}\left(S^{\prime \prime}\right)$. It follows from $\langle 11\rangle$ that we have $\langle 12\rangle S(\Omega)+S^{\prime \prime}: S(\Delta)$. Now, from the definition of instantiation and from $\langle 9\rangle$ and $\langle 12\rangle$, we have $S(\Omega) \vdash S(\sigma) \geq S\left(\tau^{\prime}\right)$ via $S^{\prime \prime}$, as required.

Proposition 7 (Instantiation Closed Under Type Substitution). If $\Omega+\Delta \vdash \sigma \geq \tau$ via S^{\prime} and $\Omega \vdash S: \Delta$ then $\Omega \vdash S(\sigma) \geq S(\tau)$ via $S^{\prime \prime}$, where $S^{\prime \prime}=\left(S \circ S^{\prime}\right) \downarrow \operatorname{dom}\left(S^{\prime}\right)$.

Proof. Follows from the definition of instantiation.
Proposition 9 (GC-Safety Relation Closed Under Type Substitution). Assume $\Omega+S: \Delta$. If $G(\Omega+\Delta, \Gamma, e, X, \pi)$ then $G(\Omega, S(\Gamma), e, X, S(\pi))$.

Proof. From assumptions and because $\operatorname{frv}(S(\pi)) \supseteq S(\operatorname{frv}(\pi))$, for any substitution S, we have, because value containment is closed under substitution and due to value containment extensibility, that $\left.\operatorname{frv}(S(\pi))\right|_{\mathrm{v}} S(e)$. Because $\mathrm{fpv}(S(e))=\mathrm{fpv}(e)$, it remains to be shown that

$$
\forall y \in \operatorname{fpv}(e) \backslash X . \Omega \vdash S(\Gamma(y)): \operatorname{frev}(S(\pi))
$$

From assumptions, we have that for all $y \in \operatorname{fpv}(e) \backslash X$,

$$
\Omega+\Delta \vdash \Gamma(y): \operatorname{frev}(\pi)
$$

From Proposition 5 and assumptions, we have

$$
\Omega \vdash S(\Gamma(y)): S(\operatorname{frev}(\pi))
$$

Now, because $\operatorname{frev}(S(\pi)) \supseteq S(f r e v(\pi))$ and because of type-containment effect-extensibility, we have $\Omega \vdash S(\Gamma(y))$: $\operatorname{frev}(S(\pi))$, as required.

Proposition 10 (GC-Safety Relation Closed Under Value Substitution). If $x \notin X$ and $G\left(\Omega, \Gamma+\{x: \pi\}, e, X, \pi^{\prime}\right)$ and $\operatorname{frv}(\pi)=v$ and $\operatorname{fpv}(v)=\emptyset$ then $G\left(\Omega, \Gamma, e[v / x], X, \pi^{\prime}\right)$.

Proof. From assumptions and (4), we have

$$
\begin{gather*}
\left.\operatorname{frv}\left(\pi^{\prime}\right)\right|_{\mathrm{v} e} \tag{5}\\
\forall y \in \operatorname{fpv}(e) \backslash X . \Omega \vdash(\Gamma+\{x: \pi\})(y): \operatorname{frev}\left(\pi^{\prime}\right) \tag{6}
\end{gather*}
$$

First, assume $x \in \operatorname{fpv}(e)$. Because $x \notin X$, by choosing x for y, we have from (6) that $\Omega \vdash \pi: \operatorname{frev}\left(\pi^{\prime}\right)$. It follows from $\operatorname{Proposition} 2$ that $\operatorname{frev}(\pi) \subseteq \operatorname{frev}\left(\pi^{\prime}\right)$ and, thus

$$
\begin{equation*}
\operatorname{frv}(\pi) \subseteq \operatorname{frv}\left(\pi^{\prime}\right) \tag{7}
\end{equation*}
$$

It follows from assumption, (7), and the value containment extensibility property that we have

$$
\begin{equation*}
\operatorname{frv}\left(\pi^{\prime}\right) \mid=v \tag{8}
\end{equation*}
$$

Now, from (5), (8), and the value containment substitution property, we have

$$
\begin{equation*}
\operatorname{frv}\left(\pi^{\prime}\right) \mid==_{\mathrm{v}} e[v / x] \tag{9}
\end{equation*}
$$

We also have from (6) and because $\mathrm{fpv}(\mathrm{v})=\emptyset$ that

$$
\begin{equation*}
\forall y \in \operatorname{fpv}(e[v / x]) \backslash X . \Omega \vdash \Gamma(y): \operatorname{frev}\left(\pi^{\prime}\right) \tag{10}
\end{equation*}
$$

From (4), (9), and (10), we have $G\left(\Omega, \Gamma, e[v / x], X, \pi^{\prime}\right)$, as required.
The below detailed proofs follow closely the structure of the proofs provided in [Elsman 2003], but adjusted to treat type variable contexts properly.

Proposition 12 (Typing Closed Under Type Substitution). If $\Omega+\Delta, \Gamma \vdash e: \pi, \varphi$ and $\Omega \vdash S: \Delta$ then $\Omega, S(\Gamma)+S(e): S(\pi), S(\varphi)$.
Proof. By induction on the derivation of $\Omega+\Delta, \Gamma \vdash e: \pi, \varphi$. The cases for integers (values), pairs (values and expressions), projections (expressions), and identifiers are trivial.

CASE $e=\left\langle\lambda x . e^{\prime}\right\rangle^{\rho}$. From [TvLAM], we have $\Omega+\Delta, \Gamma \vdash e:\left(\mu_{1} \xrightarrow{\epsilon . \varphi} \mu_{2}, \rho\right), \emptyset$ and $\left\},\left\{x: \mu_{1}\right\} \vdash\right.$ $e^{\prime}: \mu_{2}, \varphi$ and $\vdash \pi$. Because $\operatorname{ftv}\left(\pi, e^{\prime}, \varphi\right) \cap \operatorname{dom}(S)=\emptyset$, we have $\left\},\left\{x: S\left(\mu_{1}\right)\right\} \vdash S\left(e^{\prime}\right): S\left(\mu_{2}\right), S(\varphi)\right.$ and $\vdash S(\pi)$. Moreover, because $\operatorname{frv}(\pi)=\operatorname{frv}(S(\pi))$, we have $\operatorname{frv}(S(\pi)) \vDash{ }_{\mathrm{v}} S\left(e^{\prime}\right)$. We can now apply [TvLAM] to get $\Omega, S(\Gamma) \vdash S(e): S(\pi), \emptyset$, as required.

CASE $e=e_{1} e_{2}$. From [TEAPp], we have $\Omega+\Delta, \Gamma \vdash e: \mu, \varphi_{0} \cup \varphi_{1} \cup \varphi_{2} \cup\{\epsilon, \rho\}$ and $\Omega+$ $\Delta, \Gamma \vdash e_{1}:\left(\mu^{\prime} \xrightarrow{\epsilon \cdot \varphi_{0}} \mu, \rho\right), \varphi_{1}$ and $\Omega+\Delta, \Gamma \vdash e_{2}: \mu^{\prime}, \varphi_{2}$. By induction we have $\Omega, S(\Gamma) \vdash S\left(e_{1}\right):$ $\left(S\left(\mu^{\prime}\right) \xrightarrow{S\left(\epsilon, \varphi_{0}\right)} S(\mu), S(\rho)\right), S\left(\varphi_{1}\right)$ and $\Omega, S(\Gamma) \vdash S\left(e_{2}\right): S\left(\mu^{\prime}\right), S\left(\varphi_{2}\right)$. It follows from the definition of type substitution that $S\left(\epsilon . \varphi_{0}\right)=\epsilon . \varphi_{0}$. We can now apply [TEAPr] to get $\Omega, S(\Gamma) \vdash S(e): S(\mu), S(\varphi)$, as required.

Case $e=$ letregion ρ in e^{\prime}. From [TeReg], we have $\Omega+\Delta, \Gamma \vdash e: \mu, \varphi \backslash\{\rho, \vec{\epsilon}\}$ and $\Omega+\Delta, \Gamma \vdash e^{\prime}$: μ, φ and $\{\rho, \vec{\epsilon}\} \cap \operatorname{frev}(\Gamma, \mu)=\emptyset$. By renaming of bound names and because ρ and $\vec{\epsilon}$ do not appear free in the concluding type judgment, we can assume $\{\rho, \vec{\epsilon}\} \cap \operatorname{frev}(S(\Gamma), S(\mu))=\emptyset$. By induction, we have $\Omega, S(\Gamma) \vdash S\left(e^{\prime}\right): S(\mu), S(\varphi)$. We can now apply [TEREG], to get $\Omega, S(\Gamma) \vdash$ letregion ρ in $S\left(e^{\prime}\right)$: $S(\mu), S(\varphi) \backslash\{\rho, \vec{\epsilon}\}$. It follows trivially that we have $\Omega, S(\Gamma) \vdash S(e): S(\mu), S(\varphi \backslash\{\rho, \vec{\epsilon}\})$, as required.

CASE $e=e^{\prime}[\vec{\rho}]$ at ρ. From [TERAPp], we have $\Omega+\Delta, \Gamma \vdash e^{\prime}:\left(\sigma, \rho^{\prime}\right), \varphi$ and $\Omega+\Delta \vdash \sigma \geq \tau$ via $\vec{\rho}$ and $\Omega \vdash \tau$. By induction, we have $\Omega, S(\Gamma) \vdash S\left(e^{\prime}\right):\left(S(\sigma), S\left(\rho^{\prime}\right)\right), S(\varphi)$. From Proposition 7, we have $\Omega \vdash S(\sigma) \geq S(\tau)$ via $\vec{\rho}$, thus, from [TERAPP], we can conclude $\Omega, S(\Gamma) \vdash S(e): S(\tau, \rho), S\left(\varphi \cup\left\{\rho, \rho^{\prime}\right\}\right)$, as required.

CAsE Rule [TeSub]. We have $\Omega+\Delta, \Gamma \vdash e: \pi, \varphi$ and $\Omega+\Delta, \Gamma \vdash e: \pi, \varphi^{\prime}$ and $\varphi^{\prime} \supseteq \varphi$. By induction. we have $\Omega, S(\Gamma) \vdash S(e): S(\mu), S(\varphi)$. From the definition of type substitution, it follows that $\varphi^{\prime} \supseteq \varphi$ implies $S\left(\varphi^{\prime}\right) \supseteq S(\varphi)$, thus, we can apply [TESuB] to get $\Omega, S(\Gamma) \vdash S(e): S(\mu), S\left(\varphi^{\prime}\right)$, as required.

Proposition 16 (Value Substitution). If $\Omega, \Gamma+\{x: \pi\} \vdash e: \pi^{\prime}, \varphi$ and $\vdash v: \pi$ then $\Omega, \Gamma \vdash$ $e[v / x]: \pi^{\prime}, \varphi$.

Proof. By induction on the derivation $\Omega, \Gamma+\{x: \pi\} \vdash e: \pi^{\prime}, \varphi$.
CASE $e=y$. From assumptions and [TEVAR], we have $\Omega, \Gamma+\{x: \pi\} \vdash y: \pi^{\prime}, \varphi$ and $(\Gamma+\{x:$ $\pi\})(y)=\pi^{\prime}$ and $\varphi=\emptyset$. If $y \neq x$, we have $e[v / x]=y$, thus, because $\Gamma(y)=\pi^{\prime}$, we can conclude from [TEVAR] that $\Omega, \Gamma \vdash e[v / x]: \pi^{\prime}, \varphi$, as required. Otherwise, $y=x$, thus $e[v / x]=v$ and $\pi=\pi^{\prime}$. From assumptions, [TeVAL], and [TeSub], we have $\Omega, \Gamma \vdash e[v / x]: \pi^{\prime}, \varphi$, as required.

Case $e=\lambda y . e^{\prime}$ at ρ. From assumptions and [TeLam], we have $\Omega, \Gamma+\{x: \pi, y: \mu\} \vdash e^{\prime}: \mu^{\prime}, \varphi^{\prime}$ and $\varphi=\{\rho\}$ and $\pi^{\prime}=\left(\mu \xrightarrow{\epsilon . \varphi^{\prime}} \mu^{\prime}, \rho\right)$. By renaming of bound variables, we can assume $x \neq y$, thus, we can apply the induction hypothesis to get $\Omega, \Gamma+\{y: \mu\} \vdash e^{\prime}[v / x]: \mu^{\prime}, \varphi^{\prime}$. By applying [TeLam], we have $\Omega, \Gamma \vdash \lambda y . e^{\prime}[v / x]: \pi^{\prime}, \varphi$, as required.

The remaining cases follow similarly.
Proposition 17 (Unique Decomposition). If $\vdash e: \pi, \varphi$, then either (1) e is a value, or (2) there exist a unique $E_{\varphi^{\prime}}, e^{\prime}$, and π^{\prime} such that $e=E_{\varphi^{\prime}}\left[e^{\prime}\right]$ and $\vdash e^{\prime}: \pi^{\prime}, \varphi \cup \varphi^{\prime}$ and e^{\prime} is an instruction.

Proof. By induction on the structure of e. Suppose e is not a value. There are 8 cases to consider. We proceed by case analysis.

Case $e=$ letregion ρ in e_{1}. A derivation $\vdash e: \pi, \varphi$ must end in a use of [TeReg] followed by a number of uses of [TESUB]. It follows that there exist φ_{1} and φ_{2} such that $\varphi=\varphi_{1} \backslash\{\rho\} \cup \varphi_{2}$ and $\rho \notin \operatorname{frv}(\pi)$ and $\vdash e_{1}: \pi, \varphi_{1}$. By renaming of bound variables, we can assume $\rho \notin \operatorname{frv}\left(\varphi_{2}\right)$. By induction, either e_{1} is a value or there exist a unique $E_{\varphi^{\prime \prime}}^{\prime}, \iota_{1}$, and π_{1}^{\prime} such that $e_{1}=E_{\varphi^{\prime \prime}}^{\prime}\left[\iota_{1}\right]$ and $\vdash \iota_{1}: \pi_{1}^{\prime}, \varphi_{1} \cup \varphi^{\prime \prime}$. If e_{1} is not a value then we take $E_{\varphi^{\prime}}=$ letregion ρ in $E_{\varphi^{\prime \prime}}^{\prime}, \varphi^{\prime}=\varphi^{\prime \prime} \cup\{\rho\}, \iota=\iota_{1}$, $\pi^{\prime}=\pi_{1}^{\prime}$, and from [TESUB], we have $\vdash \iota_{1}: \pi_{1}^{\prime}, \varphi \cup \varphi^{\prime}$, because $\varphi_{1} \cup \varphi^{\prime \prime} \subseteq \varphi \cup \varphi^{\prime}$. Otherwise, $e_{1}=v_{1}$ for some value v_{1}. Thus, $E_{\varphi^{\prime}}=[\cdot], \iota=$ letregion ρ in $v_{1}, \pi^{\prime}=\pi$, and $\varphi^{\prime}=\emptyset$.

CASE $e=e_{1} e_{2}$. A derivation $\vdash e: \pi, \varphi$ must end in a use of [TEAPP], followed by a number of uses of [TESUB]. It follows that there exist $\mu, \varphi_{1}, \varphi_{2}, \mu^{\prime}, \epsilon, \varphi_{0}$, and φ_{3} such that $\varphi=\varphi_{0} \cup \varphi_{1} \cup \varphi_{2} \cup\{\epsilon, \rho\} \cup \varphi_{3}$ and $\vdash e_{1}:\left(\mu \xrightarrow{\epsilon . \varphi_{0}} \mu^{\prime}, \rho\right), \varphi_{1}$ and $\vdash e_{2}: \mu, \varphi_{2}$ and $\pi=\mu^{\prime}$. By induction, either e_{1} is a value or else there exist $E_{\varphi_{1}^{\prime}}^{\prime}, \iota_{1}$, and π_{1}^{\prime} such that $e_{1}=E_{\varphi_{1}^{\prime}}^{\prime}\left[\iota_{1}\right]$ and $\vdash \iota_{1}: \pi_{1}^{\prime}, \varphi_{1} \cup \varphi_{1}^{\prime}$. If e_{1} is not a value, then we take $E_{\varphi^{\prime}}=E_{\varphi_{1}^{\prime}}^{\prime} e_{2}, \iota=\iota_{1}, \pi^{\prime}=\pi_{1}^{\prime}$, and because $\varphi^{\prime}=\varphi_{1}^{\prime}$ and $\varphi_{1} \subseteq \varphi$, we can apply [TESUB] to get $\vdash \iota_{1}: \pi_{1}^{\prime}, \varphi \cup \varphi^{\prime}$. Otherwise, $e_{1}=v_{1}$ for some value v_{1}. We can now apply the induction hypothesis to get that either e_{2} is a value or else there exist $E_{\varphi_{2}^{\prime}}^{\prime}, \iota_{2}$, and π_{2}^{\prime} such that $e_{2}=E_{\varphi_{2}^{\prime}}^{\prime}\left[\iota_{2}\right]$ and $\vdash \iota_{2}: \pi_{2}^{\prime}, \varphi_{2} \cup \varphi_{2}^{\prime}$. If e_{2} is not a value, then we take $E_{\varphi^{\prime}}=v_{1} E_{\varphi_{2}^{\prime}}^{\prime}, \iota=\iota_{2}, \pi^{\prime}=\pi_{2}^{\prime}$, and because $\varphi^{\prime}=\varphi_{2}^{\prime}$ and $\varphi_{2} \subseteq \varphi$, we can apply [TESUB] to get $\vdash \iota_{2}: \pi_{2}^{\prime}, \varphi \cup \varphi^{\prime}$. Otherwise $e_{2}=v_{2}$ for some value v_{2}. Because $\vdash v_{1}:\left(\mu \xrightarrow{\epsilon . \varphi_{0}} \mu^{\prime}, \rho\right), \varphi_{1}$, we can conclude from inspecting the typing rules for values (canonical forms) that $v_{1}=\left\langle\lambda x . e^{\prime}\right\rangle^{\rho}$. Thus, $E_{\varphi^{\prime}}=[\cdot], \varphi^{\prime}=\emptyset, \iota=\left\langle\lambda x . e^{\prime}\right\rangle^{\rho} v_{2}$, and $\pi^{\prime}=\pi$.

The remaining 6 cases follow similarly.
Proposition 18 (Type Preservation). If $\vdash e: \pi, \varphi$ and $e \stackrel{\varphi}{\hookrightarrow} e^{\prime}$ then $\vdash e^{\prime}: \pi, \varphi$.
Proof. By induction on the structure of e. We proceed by case analysis.
CASE $e=\lambda x . e_{0}$ at ρ. From assumptions and [TeLam], we have $\pi=\left(\mu_{1} \xrightarrow{\epsilon . \varphi_{0}} \mu_{2}, \rho\right)$ and $\{x$: $\left.\mu_{1}\right\} \vdash e_{0}: \mu_{2}, \varphi_{0}$ and $\vdash \pi$ and $G\left(\left\},\{ \}, e_{0},\{x\}, \pi\right)\right.$ and $\varphi=\{\rho\}$. From [Lam], we have $\rho \in \varphi$ and
$e^{\prime}=\left\langle\lambda x \cdot e_{0}\right\rangle^{\rho}$. From definition (4), we have $\operatorname{frv}(\pi) \mid={ }_{\mathrm{v}} e_{0}$. Now, by use of [TvLAM] and [TESuB], we have $\vdash e^{\prime}: \pi, \varphi$, as required.

CASE $e=$ letregion ρ in v. From assumptions and from [TeReg], there exist φ^{\prime} and μ such that $\varphi=\varphi^{\prime} \backslash\{\rho\}$ and $\vdash v: \mu, \varphi^{\prime}$ and $\pi=\mu$. It follows from [TEVAL] that $\vdash v: \mu, \emptyset$, thus, from [Reg] and [TeSub], we have $\vdash e^{\prime}: \pi, \varphi$, as required.

CASE $e=\left\langle\lambda x . e_{1}\right\rangle^{\rho} v$. From assumptions, [TeApp], and [TvLAm], there exist μ, μ_{1}, ϵ, and φ_{0} such that $\pi=\mu$ and $\left\{x: \mu_{1}\right\} \vdash e_{1}: \mu, \varphi_{0}$ and $\vdash v: \mu_{1}, \varphi_{1}$, and $\varphi=\varphi_{0} \cup\{\epsilon, \rho\}$. From [TeVal], we have $\vdash v: \mu_{1}, \emptyset$. Thus, from Proposition 16, we have $\vdash e_{1}[v / x]: \mu, \varphi_{0}$. Now, because $\varphi \supseteq \varphi_{0}$, we can apply [TESUB] to get $\vdash e^{\prime}: \pi, \varphi$, as required.

CASE $e=\left\langle\text { fun } f[\vec{\rho}] x=e_{1}\right\rangle^{\rho}\left[\vec{\rho}^{\prime}\right]$ at ρ^{\prime}. There are two possibilities. Either [TvFun] applies or [TvRec] applies.
case Rule [TvFun]. From assumptions, [TeRapp], and [TvFun], we have $\pi=\left(\tau, \rho^{\prime}\right), \varphi=\left\{\rho, \rho^{\prime}\right\}$, $v=\left\langle\text { fun } f[\vec{\rho}] x=e_{1}\right\rangle^{\rho}$ and $\sigma=\forall \vec{\rho} \vec{\epsilon} \Delta . \mu_{1} \xrightarrow{\epsilon . \varphi_{0}} \mu_{2}$, and

$$
\begin{gather*}
\vdash v:(\sigma, \rho) \tag{11}\\
\vdash \sigma \geq \tau \text { via } \vec{\rho}^{\prime} \tag{12}\\
\left\},\left\{x: \mu_{1}\right\} \vdash e_{1}: \mu_{2}, \varphi_{0}\right. \tag{13}
\end{gather*}
$$

From (13), we have $f \notin \operatorname{fpv}\left(e_{1}\right)$, thus, we have

$$
\begin{equation*}
\left\},\left\{x: \mu_{1}\right\} \vdash e_{1}[v / f]: \mu_{2}, \varphi_{0}\right. \tag{14}
\end{equation*}
$$

From the definition of instantiation and from (12), there exists a substitution $S=\left(S^{\mathrm{t}},\left[\vec{\rho}^{\prime} / \vec{\rho}\right], S^{\mathrm{e}}\right)$ such that

$$
\begin{gather*}
S\left(\mu_{1} \xrightarrow{\epsilon \cdot \varphi_{0}} \mu_{2}\right)=\tau \tag{15}\\
\left\} \vdash S^{\mathrm{t}}: \Delta\right. \tag{16}
\end{gather*}
$$

From (14) and [TeLam], we have

$$
\begin{equation*}
\vdash \lambda x \cdot e_{1}[v / f] \text { at } \rho^{\prime}:\left(\mu_{1} \xrightarrow{\epsilon \cdot \varphi_{0}} \mu_{2}, \rho^{\prime}\right),\left\{\rho^{\prime}\right\} \tag{17}
\end{equation*}
$$

By renaming of bound names, we can assume $S(v)=v$ and $S\left(\rho^{\prime}\right)=\rho^{\prime}$, thus, from (15), (16), (17), Proposition 11, and Proposition 12, we have $\vdash \lambda x \cdot e_{1}\left[\vec{\rho}^{\prime} / \vec{\rho}\right][v / f]$ at $\rho^{\prime}:\left(\tau, \rho^{\prime}\right),\left\{\rho^{\prime}\right\}$. We can now apply [TESUB] to get $\vdash e^{\prime}: \pi, \varphi$, as required.
case Rule [TvRec]. From assumptions, [TeRApp], and [TvRec], we have $\pi=\left(\tau, \rho^{\prime}\right), \varphi=\left\{\rho, \rho^{\prime}\right\}$, $v=\left\langle\text { fun } f[\vec{\rho}] x=e_{1}\right\rangle^{\rho}$ and $\sigma=\forall \vec{\rho} \vec{\epsilon} \Delta . \mu_{1} \xrightarrow{\epsilon . \varphi_{0}} \mu_{2}$, and

$$
\begin{gather*}
\vdash v:(\sigma, \rho) \tag{18}\\
\sigma^{\prime}=\forall \vec{\rho} \vec{\epsilon} \cdot \mu_{1} \xrightarrow{\epsilon \cdot \varphi_{0}} \mu_{2} \tag{19}\\
\vdash \sigma \geq \tau \text { via } \vec{\rho}^{\prime} \tag{20}\\
\left.\left\{f:\left(\sigma^{\prime}, \rho\right)\right\}, x: \mu_{1}\right\} \vdash e_{1}: \mu_{2}, \varphi_{0} \tag{21}
\end{gather*}
$$

From (18), (19), and [TvRec], we have

$$
\begin{equation*}
\vdash v:\left(\sigma^{\prime}, \rho\right) \tag{22}
\end{equation*}
$$

From Proposition 16 and (22) and (21), we have

$$
\begin{equation*}
\left\{x: \mu_{1}\right\} \vdash e_{1}[v / f]: \mu_{2}, \varphi_{0} \tag{23}
\end{equation*}
$$

From the definition of instantiation and from (20), there exists a substitution $S=\left(S^{\mathrm{t}},\left[\vec{\rho}^{\prime} / \vec{\rho}\right], S^{\mathrm{e}}\right)$ such that

$$
\begin{gather*}
S\left(\mu_{1} \xrightarrow{\epsilon \cdot \varphi_{0}} \mu_{2}\right)=\tau \tag{24}\\
\left\} \vdash S^{\mathrm{t}}: \Delta\right. \tag{25}
\end{gather*}
$$

From (23) and [TeLam], we have

$$
\begin{equation*}
\vdash \lambda x \cdot e_{1}[v / f] \text { at } \rho^{\prime}:\left(\mu_{1} \xrightarrow{\epsilon . \varphi_{0}} \mu_{2}, \rho^{\prime}\right),\left\{\rho^{\prime}\right\} \tag{26}
\end{equation*}
$$

By renaming of bound names, we can assume $S(v)=v$ and $S\left(\rho^{\prime}\right)=\rho^{\prime}$, thus, from (24), (25), (26), Proposition 11, and Proposition 12, we have $\vdash \lambda x . e_{1}\left[\vec{\rho}^{\prime} / \vec{\rho}\right][v / f]$ at $\rho^{\prime}:\left(\tau, \rho^{\prime}\right),\left\{\rho^{\prime}\right\}$. We can now apply [TESUB] to get $\vdash e^{\prime}: \pi, \varphi$, as required.

CASE $e=\# 1\left(v_{1}, v_{2}\right)$. From assumptions, [TESel], and [TvPair], we have $\vdash v_{1}: \mu$, \emptyset. We can now apply [TESUB] to get $\stackrel{v_{1}}{1}: \mu, \varphi$, as required.

CASE $e=E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]$. We have $e^{\prime \prime} \xrightarrow{\varphi \cup \varphi^{\prime}} e^{\prime \prime \prime}$ and $\varphi \cap \varphi^{\prime}=\emptyset$ and $e^{\prime}=E_{\varphi^{\prime}}\left[e^{\prime \prime \prime}\right]$. We now proceed by case analysis on the structure of $E_{\varphi^{\prime}}$.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=\left(e^{\prime \prime}, e_{2}\right)$ at ρ. We have $\varphi^{\prime}=\emptyset$. From assumptions and [TePair] we have $\vdash e^{\prime \prime}$: $\mu_{1}, \varphi_{1}, \vdash e_{2}: \mu_{2}, \varphi_{2}, \mu=\left(\mu_{1} \times \mu_{2}, \rho\right)$, and $\varphi=\varphi_{1} \cup \varphi_{2} \cup\{\rho\}$. By applying [TESUB], we have $\vdash e^{\prime \prime}: \mu_{1}, \varphi$. We can now apply the induction hypothesis to get $\vdash e^{\prime \prime \prime}: \mu_{1}, \varphi$. By applying [TEPAIR], we have $\vdash E_{\varphi^{\prime}}\left[e^{\prime \prime \prime}\right]: \mu, \varphi$, as required.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=\left(v_{1}, e^{\prime \prime}\right)$ at ρ. We have $\varphi^{\prime}=\emptyset$. From assumptions and [TEPAIR] we have \vdash $v_{1}: \mu_{1}, \varphi_{1}, \vdash e^{\prime \prime}: \mu_{2}, \varphi_{2}, \mu=\left(\mu_{1} \times \mu_{2}, \rho\right)$, and $\varphi=\varphi_{1} \cup \varphi_{2} \cup\{\rho\}$. By applying [TESUB], we have $\vdash e^{\prime \prime}: \mu_{2}, \varphi$. We can now apply the induction hypothesis to get $\vdash e^{\prime \prime \prime}: \mu_{2}, \varphi$. By applying [TePair], we have $\vdash E_{\varphi^{\prime}}\left[e^{\prime \prime \prime}\right]: \mu, \varphi$, as required.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=\# i e^{\prime \prime}, i \in\{1,2\}$. We have $\varphi^{\prime}=\emptyset$. From assumptions and [TeSel], we have $\vdash e^{\prime \prime}:\left(\mu_{1} \times \mu_{2}, \rho\right), \varphi^{\prime}, \mu=\mu_{i}$ and $\varphi=\varphi^{\prime} \cup\{\rho\}$. By applying [TESUB], we have $\vdash e^{\prime \prime}:\left(\mu_{1} \times \mu_{2}, \rho\right), \varphi$, thus, we can apply the induction hypothesis to get $\stackrel{e^{\prime \prime \prime}}{ }:\left(\mu_{1} \times \mu_{2}, \rho\right), \varphi$. We can now apply [TeSel] to get $\vdash E_{\varphi^{\prime}}\left[e^{\prime \prime \prime}\right]: \mu, \varphi$, as required.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=$ let $x=e^{\prime \prime}$ in e_{2}. We have $\varphi^{\prime}=\emptyset$. From assumptions and [TeLet], there exists π such that $\vdash e^{\prime \prime}: \pi, \varphi_{1},\{x: \pi\} \vdash e_{2}: \mu, \varphi_{2}$, and $\varphi=\varphi_{1} \cup \varphi_{2}$. Applying [TESUB], we have $\vdash e^{\prime \prime}: \pi, \varphi$.

case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=e^{\prime \prime} e_{2}$. From assumptions and [TEAPr], it follows that there exist $\epsilon, \varphi_{0}, \varphi_{1}, \varphi_{2}$, and ρ such that $\vdash e^{\prime \prime}:\left(\mu_{2} \xrightarrow{\epsilon \cdot \varphi_{0}} \mu, \rho\right), \varphi_{1}, \vdash e_{2}: \mu_{2}, \varphi_{2}$, and $\varphi=\varphi_{0} \cup \varphi_{1} \cup \varphi_{2} \cup\{\epsilon, \rho\}$. From [TESUB], we have $\vdash e^{\prime \prime}:\left(\mu_{2} \xrightarrow{\epsilon . \varphi_{0}} \mu, \rho\right), \varphi$, thus, by induction, we have $\vdash e^{\prime \prime \prime}:\left(\mu_{2} \xrightarrow{\epsilon . \varphi_{0}} \mu, \rho\right), \varphi$. We can now apply $[$ TEAPP $]$ to get $\vdash E_{\varphi^{\prime}}\left[e^{\prime \prime \prime}\right]: \mu, \varphi$, as required.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=v e^{\prime \prime}$. As above.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=e^{\prime \prime}[\vec{\rho}]$ at ρ. As above.
case $E_{\varphi^{\prime}}\left[e^{\prime \prime}\right]=$ letregion ρ in $e^{\prime \prime}$. We have $\varphi^{\prime}=\{\rho\}$. From assumptions and from [TEREG], there exist $\varphi^{\prime \prime}$ and $\vec{\epsilon}$ such that $\varphi=\varphi^{\prime \prime} \backslash\{\rho, \vec{\epsilon}\}$, and $\vdash e^{\prime \prime}: \mu, \varphi^{\prime \prime}$. From [TESUB], we have $\vdash e^{\prime \prime}: \mu, \varphi \cup \varphi^{\prime}$. We can now apply the induction hypothesis to get $\stackrel{e^{\prime \prime \prime}}{ }: \mu, \varphi \cup \varphi^{\prime}$. Now, because $\varphi=\left(\varphi \cup \varphi^{\prime}\right) \backslash\{\rho, \vec{\epsilon}\}$, we can apply [TEREG] to get $+E_{\varphi^{\prime}}\left[e^{\prime \prime \prime}\right]: \mu, \varphi$, as required.

The remaining cases follow similarly.
Proposition 19. (Progress). If $\vdash e: \pi, \varphi$ then either e is a value or $e \xrightarrow{\varphi} e^{\prime}$, for some e^{\prime}.
Proof. If e is not a value, then by Proposition 17 there exist a unique $E_{\varphi^{\prime}}, l$, and π^{\prime} such that $e=E_{\varphi^{\prime}}[\iota]$ and $\vdash \iota: \pi^{\prime}, \varphi \cup \varphi^{\prime}$. We argue that $\iota \xrightarrow{\varphi \cup \varphi^{\prime}} e_{2}$, for some e_{2}, so that $E_{\varphi^{\prime}}[\iota] \xrightarrow{\varphi} E_{\varphi^{\prime}}\left[e_{2}\right]$ follows from [Стх]. We now consider all cases where ι could possibly be stuck.

CASE $\iota=\lambda x . e_{1}^{\prime}$ at ρ. We have $\vdash \lambda x . e_{1}^{\prime}$ at $\rho: \pi^{\prime}, \varphi \cup \varphi^{\prime}$. This derivation must be an application of [TELAM] followed by a number of applications of [TESUB]. Thus, we have $\rho \in \varphi \cup \varphi^{\prime}$. It follows that we can apply [LAM] to get $e_{2}=\left\langle\lambda x . e_{1}^{\prime}\right\rangle^{\rho}$.

CASE $\iota=\left\langle\lambda x . e_{\mathrm{x}}\right\rangle^{\rho} v$. We have $\vdash\left\langle\lambda x . e_{\mathrm{x}}\right\rangle^{\rho} v: \pi^{\prime}, \varphi \cup \varphi^{\prime}$. This derivation must end in an application of [TEAPP] followed by a number of applications of [TESub]. Thus, by applying [TEVAL], there exist $\mu, \mu^{\prime}, \epsilon$, and φ_{0} such that $\vdash\left\langle\lambda x . e_{\mathrm{x}}\right\rangle^{\rho}:\left(\mu \xrightarrow{\epsilon . \varphi_{0}} \mu^{\prime}, \rho\right), \emptyset$ and $\vdash v: \mu, \emptyset$ and $\pi^{\prime}=\mu^{\prime}$ and $\varphi_{0} \cup\{\epsilon, \rho\} \subseteq \varphi \cup \varphi^{\prime}$. Now, because $\rho \in \varphi \cup \varphi^{\prime}$, we can apply [APP] to get $e_{2}=e_{\mathrm{x}}[v / x]$.

CASE $\iota=\left\langle\text { fun } f[\vec{\rho}] x=e_{0}\right\rangle^{\rho^{\prime}}\left[\vec{\rho}^{\prime}\right]$ at ρ. The derivation $\vdash \iota: \pi^{\prime}, \varphi \cup \varphi^{\prime}$ must end in an application of [TeRapp] followed by a number of applications of [TeSub], thus, from [TeVal], there exist σ and τ^{\prime} such that $\pi^{\prime}=\left(\tau^{\prime}, \rho\right)$ and

$$
\begin{gather*}
\vdash\left\langle\text { fun } f[\vec{\rho}] x=e_{0}\right\rangle^{\rho^{\prime}}:\left(\sigma, \rho^{\prime}\right), \emptyset \tag{27}\\
\left\{\rho, \rho^{\prime}\right\} \subseteq \varphi \cup \varphi^{\prime} \tag{28}
\end{gather*}
$$

Because $\rho^{\prime} \in \varphi \cup \varphi^{\prime}$ follows from (28), we can apply [RAPp] to get $e_{2}=\lambda x \cdot e_{0}\left[\vec{\rho}^{\prime} / \vec{\rho}\right][v / f]$ at ρ, where $v=\left\langle\text { fun } f[\vec{\rho}] x=e_{0}\right\rangle^{\rho^{\prime}}$.
$\operatorname{CASE} \iota=$ letregion ρ in v. It follows immediately from [Reg] that $e_{2}=v$.
The remaining cases follow similarly.

Received 2022-11-10; accepted 2023-03-31

