
Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:i

APPENDIX A: PROOF DETAILS
This appendix contains proof details for the paper “Garbage-Collection Safety for Region-Based
Type-Polymorphic Programs” (PLDI ’23) by Martin Elsman.

Proposition 5 (Type Substitution Closedness). Assume o is one of µ or π . If Ω + ∆ ⊢ o : φ and
Ω ⊢ S : ∆ then Ω ⊢ S(o) : φ.

Proof. By induction over the structure of o. The interesting case is the case for µ = α for
some type variable α . There are now two cases. We first consider the case where α ∈ dom(S).
From the definition of coverage, we have ⟨1⟩ Ω ⊢ S(α) : frev(∆(α)) and dom(S) = dom(∆).
Moreover, from assumptions we have Ω + ∆ ⊢ α : φ, thus, from the definition of containment,
we have frev((Ω + ∆)(α)) ⊆ φ and thus ⟨2⟩ frev(∆(α)) ⊆ φ. From the extensibility property of
type containment and from ⟨1⟩ and ⟨2⟩, we have Ω ⊢ S(α) : φ, as required. For the second case
where α < dom(S), we have S(α) = α . It follows from the definition of coverage that α < dom(∆),
which leads us to conclude, based on the assumptions and the definition of type containment, that
Ω ⊢ S(α) : φ, as required. □

Proposition 6 (Instantiation Closed Under Region-Effect Substitution). If S is a region-
effect substitution and Ω ⊢ σ ≥ τ via S ′ then S(Ω) ⊢ S(σ ) ≥ S(τ ) via S ′′, where S ′′ = (S ◦ S ′) ↓
dom(S ′).

Proof. We first consider the case where σ = ∀∆.τ ′. From the definition of instantiation, we
have ⟨1⟩ S ′(τ ′) = τ and ⟨2⟩ Ω ⊢ S ′ : ∆, and, thus, ⟨3⟩ dom(S ′) = dom(∆). Because S is a region-
effect substitution, we have ⟨4⟩ S(σ ) = ∀S(∆).S(τ ′) and ⟨5⟩ dom(∆) = dom(S(∆)) and ⟨6⟩ dom(∆) ∩
fv(rng(S)) = ∅. Now, let S ′′ = ((S ◦S ′) ↓ dom(S ′)). It follows that we have ⟨7⟩ dom(S ′′) = dom(S(∆)).
We also have S(S ′(τ ′)) = S(τ ) from ⟨1⟩ and ⟨8⟩ S ◦ S ′ = S ′′ ◦ S because of ⟨6⟩ and ⟨3⟩. It follows
that we have ⟨9⟩ S ′′(S(τ ′)) = S(τ ). We now need to show S(Ω) ⊢ S ′′ : S(∆). From ⟨2⟩ and the
definition of substitution coverage, we have ⟨10⟩ Ω ⊢ S ′(α) : frev(∆(α)), for all α ∈ dom(S ′). From
Proposition 4 and ⟨10⟩, we have S(Ω) ⊢ S(S ′(α)) : S(frev(∆(α))) and thus, from ⟨8⟩ and because
dom(S ′) = dom(S ′′) follows from the definition of S ′′, we have ⟨11⟩ S(Ω) ⊢ S ′′(α) : frev(S(∆)(α)), for
all α ∈ dom(S ′′). It follows from ⟨11⟩ that we have ⟨12⟩ S(Ω) ⊢ S ′′ : S(∆). Now, from the definition
of instantiation and from ⟨9⟩ and ⟨12⟩, we have S(Ω) ⊢ S(σ ) ≥ S(τ ′) via S ′′, as required. □

Proposition 7 (Instantiation Closed Under Type Substitution). If Ω + ∆ ⊢ σ ≥ τ via S ′

and Ω ⊢ S : ∆ then Ω ⊢ S(σ ) ≥ S(τ ) via S ′′, where S ′′ = (S ◦ S ′) ↓ dom(S ′).
Proof. Follows from the definition of instantiation. □

Proposition 9 (GC-Safety Relation Closed Under Type Substitution). Assume Ω ⊢ S : ∆. If
G(Ω + ∆, Γ, e,X , π ) then G(Ω, S(Γ), e,X , S(π )).

Proof. From assumptions and because frv(S(π )) ⊇ S(frv(π )), for any substitution S , we have,
because value containment is closed under substitution and due to value containment extensibility,
that frv(S(π )) |=v S(e). Because fpv(S(e)) = fpv(e), it remains to be shown that

∀y ∈ fpv(e) \ X . Ω ⊢ S(Γ(y)) : frev(S(π ))
From assumptions, we have that for all y ∈ fpv(e) \ X ,

Ω + ∆ ⊢ Γ(y) : frev(π )
From Proposition 5 and assumptions, we have

Ω ⊢ S(Γ(y)) : S(frev(π ))

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.



115:ii Martin Elsman

Now, because frev(S(π )) ⊇ S(frev(π )) and because of type-containment effect-extensibility, we
have Ω ⊢ S(Γ(y)) : frev(S(π )), as required. □

Proposition 10 (GC-Safety Relation Closed Under Value Substitution). If x < X and
G(Ω, Γ + {x : π }, e,X , π ′) and frv(π ) |= v and fpv(v) = ∅ then G(Ω, Γ, e[v/x],X , π ′).

Proof. From assumptions and (4), we have
frv(π ′) |=v e (5)

∀y ∈ fpv(e) \ X .Ω ⊢ (Γ + {x : π })(y) : frev(π ′) (6)
First, assume x ∈ fpv(e). Because x < X , by choosing x for y, we have from (6) that Ω ⊢ π : frev(π ′).
It follows from Proposition 2 that frev(π ) ⊆ frev(π ′) and, thus

frv(π ) ⊆ frv(π ′) (7)
It follows from assumption, (7), and the value containment extensibility property that we have

frv(π ′) |= v (8)
Now, from (5), (8), and the value containment substitution property, we have

frv(π ′) |=v e[v/x] (9)
We also have from (6) and because fpv(v) = ∅ that

∀y ∈ fpv(e[v/x]) \ X .Ω ⊢ Γ(y) : frev(π ′) (10)
From (4), (9), and (10), we have G(Ω, Γ, e[v/x],X , π ′), as required. □

The below detailed proofs follow closely the structure of the proofs provided in [Elsman 2003],
but adjusted to treat type variable contexts properly.

Proposition 12 (Typing Closed Under Type Substitution). If Ω+∆, Γ ⊢ e : π ,φ and Ω ⊢ S : ∆
then Ω, S(Γ) ⊢ S(e) : S(π ), S(φ).

Proof. By induction on the derivation of Ω + ∆, Γ ⊢ e : π ,φ. The cases for integers (values),
pairs (values and expressions), projections (expressions), and identifiers are trivial.
Case e = ⟨λx .e ′⟩ρ . From [TvLam], we have Ω + ∆, Γ ⊢ e : (µ1

ϵ .φ−−−−→ µ2, ρ), ∅ and {}, {x : µ1} ⊢
e ′ : µ2,φ and ⊢ π . Because ftv(π , e ′,φ) ∩ dom(S) = ∅, we have {}, {x : S(µ1)} ⊢ S(e ′) : S(µ2), S(φ)
and ⊢ S(π ). Moreover, because frv(π ) = frv(S(π )), we have frv(S(π )) |=v S(e ′). We can now apply
[TvLam] to get Ω, S(Γ) ⊢ S(e) : S(π ), ∅, as required.
Case e = e1 e2. From [TeApp], we have Ω + ∆, Γ ⊢ e : µ,φ0 ∪ φ1 ∪ φ2 ∪ {ϵ, ρ} and Ω +

∆, Γ ⊢ e1 : (µ ′ ϵ .φ0−−−−−→ µ, ρ),φ1 and Ω + ∆, Γ ⊢ e2 : µ ′,φ2. By induction we have Ω, S(Γ) ⊢ S(e1) :
(S(µ ′) S (ϵ .φ0)−−−−−−−→ S(µ), S(ρ)), S(φ1) and Ω, S(Γ) ⊢ S(e2) : S(µ ′), S(φ2). It follows from the definition of
type substitution that S(ϵ .φ0) = ϵ .φ0. We can now apply [TeApp] to get Ω, S(Γ) ⊢ S(e) : S(µ), S(φ),
as required.

Case e = letregion ρ in e ′. From [TeReg], we have Ω+∆, Γ ⊢ e : µ,φ \ {ρ, ®ϵ} and Ω+∆, Γ ⊢ e ′ :
µ,φ and {ρ, ®ϵ} ∩ frev(Γ, µ) = ∅. By renaming of bound names and because ρ and ®ϵ do not appear
free in the concluding type judgment, we can assume {ρ, ®ϵ} ∩ frev(S(Γ), S(µ)) = ∅. By induction, we
have Ω, S(Γ) ⊢ S(e ′) : S(µ), S(φ). We can now apply [TeReg], to get Ω, S(Γ) ⊢ letregion ρ in S(e ′) :
S(µ), S(φ) \ {ρ, ®ϵ}. It follows trivially that we have Ω, S(Γ) ⊢ S(e) : S(µ), S(φ \ {ρ, ®ϵ}), as required.

Case e = e ′ [ ®ρ] at ρ. From [TeRapp], we have Ω + ∆, Γ ⊢ e ′ : (σ , ρ ′),φ and Ω + ∆ ⊢ σ ≥ τ via ®ρ
and Ω ⊢ τ . By induction, we have Ω, S(Γ) ⊢ S(e ′) : (S(σ ), S(ρ ′)), S(φ). From Proposition 7, we have
Ω ⊢ S(σ ) ≥ S(τ ) via ®ρ, thus, from [TeRapp], we can conclude Ω, S(Γ) ⊢ S(e) : S(τ , ρ), S(φ ∪ {ρ, ρ ′}),
as required.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.



Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:iii

Case Rule [TeSub]. We have Ω + ∆, Γ ⊢ e : π ,φ and Ω + ∆, Γ ⊢ e : π ,φ ′ and φ ′ ⊇ φ. By induction.
we have Ω, S(Γ) ⊢ S(e) : S(µ), S(φ). From the definition of type substitution, it follows that φ ′ ⊇ φ
implies S(φ ′) ⊇ S(φ), thus, we can apply [TeSub] to get Ω, S(Γ) ⊢ S(e) : S(µ), S(φ ′), as required.

□

Proposition 16 (Value Substitution). If Ω, Γ + {x : π } ⊢ e : π ′,φ and ⊢ v : π then Ω, Γ ⊢
e[v/x] : π ′,φ.

Proof. By induction on the derivation Ω, Γ + {x : π } ⊢ e : π ′,φ.
Case e = y. From assumptions and [TeVar], we have Ω, Γ + {x : π } ⊢ y : π ′,φ and (Γ + {x :

π })(y) = π ′ and φ = ∅. If y , x , we have e[v/x] = y, thus, because Γ(y) = π ′, we can conclude
from [TeVar] that Ω, Γ ⊢ e[v/x] : π ′,φ, as required. Otherwise, y = x , thus e[v/x] = v and π = π ′.
From assumptions, [TeVal], and [TeSub], we have Ω, Γ ⊢ e[v/x] : π ′,φ, as required.
Case e = λy.e ′ at ρ. From assumptions and [TeLam], we have Ω, Γ + {x : π ,y : µ} ⊢ e ′ : µ ′,φ ′

and φ = {ρ} and π ′ = (µ ϵ .φ ′−−−−−→ µ ′, ρ). By renaming of bound variables, we can assume x , y, thus,
we can apply the induction hypothesis to get Ω, Γ + {y : µ} ⊢ e ′[v/x] : µ ′,φ ′. By applying [TeLam],
we have Ω, Γ ⊢ λy.e ′[v/x] : π ′,φ, as required.

The remaining cases follow similarly. □

Proposition 17 (Uniqe Decomposition). If ⊢ e : π ,φ, then either (1) e is a value, or (2) there
exist a unique Eφ ′ , e ′, and π ′ such that e = Eφ ′[e ′] and ⊢ e ′ : π ′,φ ∪ φ ′ and e ′ is an instruction.

Proof. By induction on the structure of e . Suppose e is not a value. There are 8 cases to consider.
We proceed by case analysis.

Case e = letregion ρ in e1. A derivation ⊢ e : π ,φ must end in a use of [TeReg] followed
by a number of uses of [TeSub]. It follows that there exist φ1 and φ2 such that φ = φ1 \ {ρ} ∪ φ2
and ρ < frv(π ) and ⊢ e1 : π ,φ1. By renaming of bound variables, we can assume ρ < frv(φ2). By
induction, either e1 is a value or there exist a unique E ′

φ ′′ , ι1, and π ′
1 such that e1 = E ′

φ ′′[ι1] and
⊢ ι1 : π ′

1,φ1 ∪ φ ′′. If e1 is not a value then we take Eφ ′ = letregion ρ in E ′
φ ′′ , φ ′ = φ ′′ ∪ {ρ}, ι = ι1,

π ′ = π ′
1, and from [TeSub], we have ⊢ ι1 : π ′

1,φ ∪ φ ′, because φ1 ∪ φ ′′ ⊆ φ ∪ φ ′. Otherwise, e1 = v1
for some value v1. Thus, Eφ ′ = [·], ι = letregion ρ in v1, π ′ = π , and φ ′ = ∅.

Case e = e1 e2. A derivation ⊢ e : π ,φ must end in a use of [TeApp], followed by a number of uses
of [TeSub]. It follows that there exist µ, φ1, φ2, µ ′, ϵ , φ0, and φ3 such that φ = φ0∪φ1∪φ2∪{ϵ, ρ}∪φ3
and ⊢ e1 : (µ ϵ .φ0−−−−−→ µ ′, ρ),φ1 and ⊢ e2 : µ,φ2 and π = µ ′. By induction, either e1 is a value or else
there exist E ′

φ ′
1
, ι1, and π ′

1 such that e1 = E ′
φ ′

1
[ι1] and ⊢ ι1 : π ′

1,φ1 ∪ φ ′
1. If e1 is not a value, then

we take Eφ ′ = E ′
φ ′

1
e2, ι = ι1, π ′ = π ′

1, and because φ ′ = φ ′
1 and φ1 ⊆ φ, we can apply [TeSub]

to get ⊢ ι1 : π ′
1,φ ∪ φ ′. Otherwise, e1 = v1 for some value v1. We can now apply the induction

hypothesis to get that either e2 is a value or else there exist E ′
φ ′

2
, ι2, and π ′

2 such that e2 = E ′
φ ′

2
[ι2]

and ⊢ ι2 : π ′
2,φ2 ∪ φ ′

2. If e2 is not a value, then we take Eφ ′ = v1 E
′
φ ′

2
, ι = ι2, π ′ = π ′

2, and because
φ ′ = φ ′

2 and φ2 ⊆ φ, we can apply [TeSub] to get ⊢ ι2 : π ′
2,φ ∪ φ ′. Otherwise e2 = v2 for some value

v2. Because ⊢ v1 : (µ ϵ .φ0−−−−−→ µ ′, ρ),φ1, we can conclude from inspecting the typing rules for values
(canonical forms) that v1 = ⟨λx .e ′⟩ρ . Thus, Eφ ′ = [·], φ ′ = ∅, ι = ⟨λx .e ′⟩ρ v2, and π ′ = π .

The remaining 6 cases follow similarly. □

Proposition 18 (Type Preservation). If ⊢ e : π ,φ and e φ
↪−−→ e ′ then ⊢ e ′ : π ,φ.

Proof. By induction on the structure of e . We proceed by case analysis.
Case e = λx .e0 at ρ. From assumptions and [TeLam], we have π = (µ1

ϵ .φ0−−−−−→ µ2, ρ) and {x :
µ1} ⊢ e0 : µ2,φ0 and ⊢ π and G({}, {}, e0, {x}, π ) and φ = {ρ}. From [Lam], we have ρ ∈ φ and

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.



115:iv Martin Elsman

e ′ = ⟨λx .e0⟩ρ . From definition (4), we have frv(π ) |=v e0. Now, by use of [TvLam] and [TeSub], we
have ⊢ e ′ : π ,φ, as required.

Case e = letregion ρ in v . From assumptions and from [TeReg], there exist φ ′ and µ such that
φ = φ ′ \ {ρ} and ⊢ v : µ,φ ′ and π = µ. It follows from [TeVal] that ⊢ v : µ, ∅, thus, from [Reg] and
[TeSub], we have ⊢ e ′ : π ,φ, as required.
Case e = ⟨λx .e1⟩ρ v . From assumptions, [TeApp], and [TvLam], there exist µ, µ1, ϵ , and φ0 such

that π = µ and {x : µ1} ⊢ e1 : µ,φ0 and ⊢ v : µ1,φ1, and φ = φ0 ∪ {ϵ, ρ}. From [TeVal], we have
⊢ v : µ1, ∅. Thus, from Proposition 16, we have ⊢ e1[v/x] : µ,φ0. Now, because φ ⊇ φ0, we can
apply [TeSub] to get ⊢ e ′ : π ,φ, as required.

Case e = ⟨fun f [ ®ρ] x = e1⟩ρ [ ®ρ ′] at ρ ′. There are two possibilities. Either [TvFun] applies or
[TvRec] applies.

case Rule [TvFun]. From assumptions, [TeRapp], and [TvFun], we have π = (τ , ρ ′), φ = {ρ, ρ ′},
v = ⟨fun f [ ®ρ] x = e1⟩ρ and σ = ∀®ρ®ϵ∆.µ1

ϵ .φ0−−−−−→ µ2, and

⊢ v : (σ , ρ) (11)
⊢ σ ≥ τ via ®ρ ′ (12)

{}, {x : µ1} ⊢ e1 : µ2,φ0 (13)

From (13), we have f < fpv(e1), thus, we have
{}, {x : µ1} ⊢ e1[v/f ] : µ2,φ0 (14)

From the definition of instantiation and from (12), there exists a substitution S = (S t, [ ®ρ ′/®ρ], Se)
such that

S(µ1
ϵ .φ0−−−−−→ µ2) = τ (15)

{} ⊢ S t : ∆ (16)

From (14) and [TeLam], we have

⊢ λx .e1[v/f ] at ρ ′ : (µ1
ϵ .φ0−−−−−→ µ2, ρ

′), {ρ ′} (17)

By renaming of bound names, we can assume S(v) = v and S(ρ ′) = ρ ′, thus, from (15), (16), (17),
Proposition 11, and Proposition 12, we have ⊢ λx .e1[ ®ρ ′/®ρ][v/f ] at ρ ′ : (τ , ρ ′), {ρ ′}. We can now
apply [TeSub] to get ⊢ e ′ : π ,φ, as required.

case Rule [TvRec]. From assumptions, [TeRapp], and [TvRec], we have π = (τ , ρ ′), φ = {ρ, ρ ′},
v = ⟨fun f [ ®ρ] x = e1⟩ρ and σ = ∀®ρ®ϵ∆.µ1

ϵ .φ0−−−−−→ µ2, and

⊢ v : (σ , ρ) (18)
σ ′ = ∀®ρ®ϵ .µ1

ϵ .φ0−−−−−→ µ2 (19)
⊢ σ ≥ τ via ®ρ ′ (20)

{ f : (σ ′, ρ)}, x : µ1} ⊢ e1 : µ2,φ0 (21)

From (18), (19), and [TvRec], we have

⊢ v : (σ ′, ρ) (22)

From Proposition 16 and (22) and (21), we have

{x : µ1} ⊢ e1[v/f ] : µ2,φ0 (23)

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.



Garbage-Collection Safety for Region-Based Type-Polymorphic Programs 115:v

From the definition of instantiation and from (20), there exists a substitution S = (S t, [ ®ρ ′/®ρ], Se)
such that

S(µ1
ϵ .φ0−−−−−→ µ2) = τ (24)

{} ⊢ S t : ∆ (25)

From (23) and [TeLam], we have

⊢ λx .e1[v/f ] at ρ ′ : (µ1
ϵ .φ0−−−−−→ µ2, ρ

′), {ρ ′} (26)

By renaming of bound names, we can assume S(v) = v and S(ρ ′) = ρ ′, thus, from (24), (25), (26),
Proposition 11, and Proposition 12, we have ⊢ λx .e1[ ®ρ ′/®ρ][v/f ] at ρ ′ : (τ , ρ ′), {ρ ′}. We can now
apply [TeSub] to get ⊢ e ′ : π ,φ, as required.

Case e = #1 (v1,v2). From assumptions, [TeSel], and [TvPair], we have ⊢ v1 : µ, ∅. We can now
apply [TeSub] to get ⊢ v1 : µ,φ, as required.

Case e = Eφ ′[e ′′]. We have e ′′ φ∪φ ′
↪−−−−−→ e ′′′ and φ ∩ φ ′ = ∅ and e ′ = Eφ ′[e ′′′]. We now proceed by

case analysis on the structure of Eφ ′ .
case Eφ ′[e ′′] = (e ′′, e2) at ρ. We have φ ′ = ∅. From assumptions and [TePair] we have ⊢ e ′′ :

µ1,φ1, ⊢ e2 : µ2,φ2, µ = (µ1×µ2, ρ), andφ = φ1∪φ2∪{ρ}. By applying [TeSub], we have ⊢ e ′′ : µ1,φ.
We can now apply the induction hypothesis to get ⊢ e ′′′ : µ1,φ. By applying [TePair], we have
⊢ Eφ ′[e ′′′] : µ,φ, as required.

case Eφ ′[e ′′] = (v1, e
′′) at ρ. We have φ ′ = ∅. From assumptions and [TePair] we have ⊢

v1 : µ1,φ1, ⊢ e ′′ : µ2,φ2, µ = (µ1 × µ2, ρ), and φ = φ1 ∪ φ2 ∪ {ρ}. By applying [TeSub], we have
⊢ e ′′ : µ2,φ. We can now apply the induction hypothesis to get ⊢ e ′′′ : µ2,φ. By applying [TePair],
we have ⊢ Eφ ′[e ′′′] : µ,φ, as required.

case Eφ ′[e ′′] = #i e ′′, i ∈ {1, 2}. We have φ ′ = ∅. From assumptions and [TeSel], we have
⊢ e ′′ : (µ1 × µ2, ρ),φ ′, µ = µi and φ = φ ′ ∪ {ρ}. By applying [TeSub], we have ⊢ e ′′ : (µ1 × µ2, ρ),φ,
thus, we can apply the induction hypothesis to get ⊢ e ′′′ : (µ1 × µ2, ρ),φ. We can now apply [TeSel]
to get ⊢ Eφ ′[e ′′′] : µ,φ, as required.

case Eφ ′[e ′′] = let x = e ′′ in e2. We have φ ′ = ∅. From assumptions and [TeLet], there exists π
such that ⊢ e ′′ : π ,φ1, {x : π } ⊢ e2 : µ,φ2, and φ = φ1 ∪ φ2. Applying [TeSub], we have ⊢ e ′′ : π ,φ.
By induction, we have ⊢ e ′′′ : π ,φ. We can now apply [TeLet] to get ⊢ Eφ ′[e ′′′] : µ,φ, as required.

case Eφ ′[e ′′] = e ′′ e2. From assumptions and [TeApp], it follows that there exist ϵ , φ0, φ1, φ2, and
ρ such that ⊢ e ′′ : (µ2

ϵ .φ0−−−−−→ µ, ρ),φ1, ⊢ e2 : µ2,φ2, and φ = φ0 ∪ φ1 ∪ φ2 ∪ {ϵ, ρ}. From [TeSub],
we have ⊢ e ′′ : (µ2

ϵ .φ0−−−−−→ µ, ρ),φ, thus, by induction, we have ⊢ e ′′′ : (µ2
ϵ .φ0−−−−−→ µ, ρ),φ. We can

now apply [TeApp] to get ⊢ Eφ ′[e ′′′] : µ,φ, as required.
case Eφ ′[e ′′] = v e ′′. As above.
case Eφ ′[e ′′] = e ′′ [ ®ρ] at ρ. As above.
case Eφ ′[e ′′] = letregion ρ in e ′′. We haveφ ′ = {ρ}. From assumptions and from [TeReg], there

exist φ ′′ and ®ϵ such that φ = φ ′′\{ρ, ®ϵ}, and ⊢ e ′′ : µ,φ ′′. From [TeSub], we have ⊢ e ′′ : µ,φ∪φ ′. We
can now apply the induction hypothesis to get ⊢ e ′′′ : µ,φ ∪φ ′. Now, because φ = (φ ∪φ ′) \ {ρ, ®ϵ},
we can apply [TeReg] to get ⊢ Eφ ′[e ′′′] : µ,φ, as required.

The remaining cases follow similarly. □

Proposition 19. (Progress). If ⊢ e : π ,φ then either e is a value or e φ
↪−−→ e ′, for some e ′.

Proof. If e is not a value, then by Proposition 17 there exist a unique Eφ ′ , ι, and π ′ such that
e = Eφ ′[ι] and ⊢ ι : π ′,φ ∪ φ ′. We argue that ι φ∪φ ′

↪−−−−−→ e2, for some e2, so that Eφ ′[ι] φ
↪−−→Eφ ′[e2]

follows from [Ctx]. We now consider all cases where ι could possibly be stuck.

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.



115:vi Martin Elsman

Case ι = λx .e ′1 at ρ. We have ⊢ λx .e ′1 at ρ : π ′,φ ∪φ ′. This derivation must be an application of
[TeLam] followed by a number of applications of [TeSub]. Thus, we have ρ ∈ φ ∪ φ ′. It follows that
we can apply [Lam] to get e2 = ⟨λx .e ′1⟩ρ .

Case ι = ⟨λx .ex⟩ρ v . We have ⊢ ⟨λx .ex⟩ρ v : π ′,φ ∪ φ ′. This derivation must end in an
application of [TeApp] followed by a number of applications of [TeSub]. Thus, by applying [TeVal],
there exist µ, µ ′, ϵ , and φ0 such that ⊢ ⟨λx .ex⟩ρ : (µ ϵ .φ0−−−−−→ µ ′, ρ), ∅ and ⊢ v : µ, ∅ and π ′ = µ ′ and
φ0 ∪ {ϵ, ρ} ⊆ φ ∪ φ ′. Now, because ρ ∈ φ ∪ φ ′, we can apply [App] to get e2 = ex[v/x].

Case ι = ⟨fun f [ ®ρ] x = e0⟩ρ′ [ ®ρ ′] at ρ. The derivation ⊢ ι : π ′,φ∪φ ′ must end in an application
of [TeRapp] followed by a number of applications of [TeSub], thus, from [TeVal], there exist σ and
τ ′ such that π ′ = (τ ′, ρ) and

⊢ ⟨fun f [ ®ρ] x = e0⟩ρ′ : (σ , ρ ′), ∅ (27)
{ρ, ρ ′} ⊆ φ ∪ φ ′ (28)

Because ρ ′ ∈ φ ∪ φ ′ follows from (28), we can apply [Rapp] to get e2 = λx .e0[ ®ρ ′/®ρ][v/f ] at ρ,
where v = ⟨fun f [ ®ρ] x = e0⟩ρ′ .

Case ι = letregion ρ in v . It follows immediately from [Reg] that e2 = v .
The remaining cases follow similarly. □

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 115. Publication date: June 2023.


