
Shape-Constrained Array Programming with
Size-Dependent Types

Lubin Bailly

Département d’Informatique de l’ENS

École normale supérieure - PSL

Paris, France

catvayor@katvayor.net

Troels Henriksen

DIKU

University of Copenhagen

Copenhagen, Denmark

athas@sigkill.dk

Martin Elsman

DIKU

University of Copenhagen

Copenhagen, Denmark

mael@di.ku.dk

Abstract
We present a dependent type system for enforcing array-size

consistency in an ML-style functional array language. Our

goal is to enforce shape-consistency at compile time and

allow nontrivial transformations on array shapes, without

the complexity such features tend to introduce in depen-

dently typed languages. Sizes can be arbitrary expressions

and size equality is purely syntactical, which fits naturally

within a scheme that interprets size-polymorphic functions

as having implicit arguments. When non-syntactical equali-

ties are needed, we provide dynamic checking. In contrast to

other dependently typed languages, we automate the book-

keeping involved in tracking existential sizes, such as when

filtering arrays. We formalise a large subset of the presented

type system and prove it sound.We also discuss how to adapt

the type system for a real implementation, including type

inference, within the Futhark programming language.

CCS Concepts: • Theory of computation→ Type struc-
tures.

Keywords: type systems, parallel programming, functional

programming

ACM Reference Format:
Lubin Bailly, Troels Henriksen, and Martin Elsman. 2023. Shape-

Constrained Array Programming with Size-Dependent Types. In

Proceedings of the 11th ACM SIGPLAN International Workshop on
Functional High-Performance and Numerical Computing (FHPNC
’23), September 4, 2023, Seattle, WA, USA. ACM, New York, NY, USA,

13 pages. https://doi.org/10.1145/3609024.3609412

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

FHPNC ’23, September 4, 2023, Seattle, WA, USA
© 2023 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 979-8-4007-0296-9/23/09. . . $15.00

https://doi.org/10.1145/3609024.3609412

1 Introduction
For programming in general, it is custom for functions to as-

sume a set of preconditions on the function arguments. Type

systems are a common mechanism both for specifying such

preconditions and for checking that they are not violated at

runtime. The complexity of type systems ranges from the

very simple that only ensure consistent use of primitive data

types, to the highly elaborate and complicated that can be

used to fully prove that a program implements a given speci-

fication. Programming language designers often try to strike

a balance betweenmaximising the amount of safety provided

by the type system and making the type system easy to work

with. A powerful type system loses its advantage if it is so

difficult to use that programmers simply give up and switch

to less expressive types or a less safe language.

Shape constraints often arise in array programming, both

as pre- and post-conditions of functions. For example, a dot

product requires two arrays of the same size, and concat
has the postcondition of returning an array having a size

equal to the sum of the sizes of its two arguments. Most,

although not all, of these constraints are equalities on sizes.

In most languages, checking of these equalities is done at

runtime, but ideally we would like a way to check statically

that violations will never occur.

We present in this paper a size-dependent type system,

which is inspired by, but much simpler than, full dependent

type systems such as those found in Idris [2] or Agda [1].

Our goal is to enable what we consider a “natural” style of

functional array programming, which should not be much

more complicated than the style of programming solicited by

conventionalML-family languages. In particular, we consider

multidimensional arrays as “arrays of arrays”, and we allow

the construction of arrays of arbitrary sizes. One of the main

challenges is how to handle arrays whose sizes cannot be

expressed cleanly—for example, when a function such as

filter returns an array of unpredictable size, or when a

variable used in an expression defining an array size goes

out of scope. In standard dependently typed languages such

as Idris [2], this is modelled as a dependent pair :

filter : (elem -> Bool)
-> Vect len elem
-> (p : Nat ** Vect p elem)

29

https://orcid.org/0009-0003-8770-2012
https://orcid.org/0000-0002-1195-9722
https://orcid.org/0000-0002-6061-5993
https://doi.org/10.1145/3609024.3609412
https://doi.org/10.1145/3609024.3609412

FHPNC ’23, September 4, 2023, Seattle, WA, USA Lubin Bailly, Troels Henriksen, and Martin Elsman

The filter function returns a pair of some size p and a

vector of just that size p. The downside is that a value of

type (p : Nat ** Vect p elem) cannot be passed to a

function that expects a Vect p elem, as the types differ.

The Idris term length (filter p xs) is ill-typed. Instead,

the pair must first be unpacked, bringing the size and the

vector separately into scope. One of the main goals of our

type system is to eliminate such bookkeeping.

One typical challenge regarding the efficient implementa-

tion of dependently typed languages is erasure: how do we

avoid computing and storing types at runtime? In Idris 2,

type erasure is achieved using Quantitative Type Theory [3],

by which programmers can directly reason about which

types must be present at runtime. In our work, the only in-

formation that can be extracted from types is their dynamic

shape, constituting one integer per dimension. Essentially,

we support a limited form of dependent pairs where the the

first element (the size) can always be determined from the

second element (the array), and use this restriction to provide

a more ergonomic array programming experience.

Our work is based on the foundations presented in [11],

which introduces a size-dependent type system where all

sizes must be constants or variables, not compound expres-

sions. Beyond lifting this restriction, we also add the notion

of implicit size polymorphism, such that sizes of array argu-

ments do not have to be passed explicitly by the programmer.

We begin, in Section 2, by defining a small array-language

𝐹 , featuring size-polymorphism and size-dependent types.

The language is sufficiently rich that it can be used to demon-

strate the important features of the type system. In Section 3,

we present the theoretical aspects of the language, ending up

in a soundness proof. In Section 4, we discuss how to loosen

some syntactical restrictions imposed to simplify the theory,

in order to enable a more natural programming style. Finally,

in Section 5, we discuss how the techniques are implemented

in a real functional array language, Futhark [12], and our

experience with its use. In Section 6, we describe related

work and in Section 7, we conclude and outline future work.

2 The Language 𝐹
In this section, we define a small higher-order functional ar-

ray language 𝐹 with size polymorphism and size-dependent

types. Its full grammar is defined in Figure 1. We assume

a countable set of variables, ranged over by 𝑥 , 𝑦, 𝑧, with

subscripts as necessary. The term level of the language is

mostly conventional, featuring integer constants, arithmetic

operations, lambda-expressions, function applications, con-

ditionals, pairs, projections, and array indexing. The only

primitive type is int, which can appear in pair types, array

types, and function types, using standard syntax. For condi-

tionals, 0 is considered false and other values true. The only

way to construct an array is with iota 𝑛, which has type

[𝑛]int and creates the array [0, 1, . . . , 𝑛 − 1], and the only

𝜏 ::= Basic types
| int integer

| (𝜏, 𝜏) pair

| [𝑒]𝜏 array

| (𝑥 : 𝜏) → 𝜇 function

𝜇 ::= Return types
| ∃𝑥 .𝜇 existential size

| 𝜏 basic type

𝜎 ::= Type Schemes
| ∀𝑥 .𝜎 size polymorphic

| 𝜏 basic type

𝑒 ::= Expressions
| 𝑛 constant integer

| 𝑥 variable

| 𝑥𝑒 polymorphic instance

| 𝜆(𝑥 : 𝜏).𝑒 function

| 𝑒 𝑒 application

| 𝑒 [𝑒] array index

| (𝑒, 𝑒) pair

| if 𝑒 then 𝑒 else 𝑒 conditional

| let [𝑥] 𝑥 : 𝜏 = 𝑒 in 𝑒 let-bind

| let 𝑥 [𝑥] : 𝜏 = 𝑒 in 𝑒 let-gen

| 𝑒 ⊲ 𝜏 type coercion

| fst 𝑒 | snd 𝑒 projection

| iota 𝑒 index array

| map 𝑒 𝑒 map

| 𝑒 ⋄ 𝑒 basic arithmetic

⋄ ::= + | − | · | / | ≤ Infix Operator

𝑣 ::= Values
| 𝑛 integer

| ⟨𝑥, 𝑒, 𝜌⟩ closure

| [𝑣, 𝑣, · · · , 𝑣] array

| (𝑣, 𝑣) pair

Figure 1. Grammar of the language.

way to transform an array is with map, whichmaps a function

over all elements of an array. That is, map 𝑓 [𝑣0, . . . , 𝑣𝑛−1]
produces an array [𝑓 𝑣0, . . . , 𝑓 𝑣𝑛−1].

The language allows conventional let-bindings, but with
a twist: we can bind otherwise unknown array sizes:

let [𝑛] (𝑦 : [𝑛]int) = 𝑒1 in 𝑒2

The above expression binds 𝑦 to the result of 𝑒1 and 𝑛 to the

size of 𝑦. Both 𝑦 and 𝑦 are in scope in 𝑒2, the latter with type

int. This can obscure the original size of the array produced

by 𝑒1. As we will see in the next section, these size bindings

30

Shape-Constrained Array Programming with Size-Dependent Types FHPNC ’23, September 4, 2023, Seattle, WA, USA

are not just a convenience: the type rules require that some

expressions and their sizes are immediately bound to names.

Finally, the language supports the notion of size coercions
of the form 𝑒 ⊲ 𝜏 , which may be used to check dynamically

that the sizes specified in 𝜏 match the sizes of the correspond-

ing arrays in 𝑒 . Whereas 𝜏 is guaranteed by the type system

to be structural equivalent (to be defined in the next sec-

tion) to the type of 𝑒 , in case of a size mismatch, evaluation

terminates with an error.

2.1 Types
We use several syntactically distinguished notions of types. A

basic type 𝜏 is an int, pair, array (including size), or function
type (with a named parameter). A type scheme 𝜎 is a basic

type parameterized by sizes names, and represents a size-

polymorphic definition, similarly to type-polymorphic type

schemes in conventional polymorphic type systems.

The type to the right of a function arrow is a return type 𝜇,
which can contain an existential quantification of a size. Such
quantifications are used to model array sizes that cannot

be known statically, and resemble conventional dependent

pairs, although we will see that their actual behaviour is

somewhat different. The type of expressions is also given by

a return type 𝜇.
For constructs of the forms (𝑥 : 𝜏) → 𝜇, ∃𝑥 .𝜇, ∀𝑥 .𝜎 , and

𝜆(𝑥 : 𝜏).𝑒 , 𝑥 is bound in 𝜇,𝜎 , and 𝑒 . Moreover, in constructs of

the form let [𝑥] 𝑥 : 𝜏 = 𝑒 in 𝑒′, which is used for unpacking

return types, 𝑥 is bound in 𝑒′ and 𝑥 are bound in 𝜏 and 𝑒′.
Finally, for expressions of the form let 𝑥 [𝑧] : 𝜏 = 𝑒 in 𝑒′,
which is used for size-polymorphic bindings, 𝑥 is bound in

𝑒′ and 𝑧 are bound in 𝜏 and 𝑒 . We consider all constructs

identical up to renaming of bound names (alpha-renaming)

and write fv(𝑜) for the free variables of some object 𝑜 (e.g.,

a term or a type).

The notion of substituting a term for a variable is central

in the formal development that follows. Whenever 𝑜 is some

object, 𝑒 is some expression, and 𝑥 is some variable, we write

𝑜{𝑒/𝑥} to denote the capture-avoiding substitution of 𝑒 for

𝑥 in 𝑜 , assuming that the result is a well-formed entity. The

requirement that the result is well-formed rules out exotic

substitutions such as (𝑥𝑒){4/𝑥}, which would result in an ill-

formed expression. Such substitutions never arise in practice,

however, but the restriction is necessary for proving formal

properties about the language.

The type [𝑒]𝜏 represents an array of 𝑒 elements of type 𝜏 ,

where 𝑒 must be a well-typed expression of type int. Notice
that for function types of the form (𝑥 : 𝜏) → 𝜇, the variable

𝑥 may appear in 𝜇, as is custom for dependent type systems.

We will sometimes write 𝜏 → 𝜇 for (𝑥 : 𝜏) → 𝜇 where

𝑥 ∉ fv(𝜇). If this property is important, it will be explicitly

written.

Basic Types Γ ⊢ 𝜏 ok
Γ ⊢ 𝑒 : int Γ ⊢ 𝜏 ok

Γ ⊢ [𝑒]𝜏 ok
Γ ⊢ 𝜏 ok Γ ⊢ 𝜏 ′ ok

Γ ⊢ (𝜏, 𝜏 ′) ok

Γ ⊢ int ok
Γ ⊢ 𝜏 ok Γ, 𝑥 : 𝜏 ⊢ 𝜇 ok

Γ ⊢ (𝑥 : 𝜏) → 𝜇 ok

Return Types Γ ⊢ 𝜇 ok

Γ ⊢ 𝜏 ok 𝜇 ≡ 𝜏

Γ ⊢ 𝜇 ok
Γ, 𝑥 : int ⊢ 𝜇 ok

Γ ⊢ ∃𝑥 .𝜇 ok

Type Schemes Γ ⊢ 𝜎 ok

Γ ⊢ 𝜏 ok 𝜎 ≡ 𝜏

Γ ⊢ 𝜎 ok
Γ, 𝑥 : int ⊢ 𝜎 ok 𝑥 ∈ fv(𝜎)

Γ ⊢ ∀𝑥 .𝜎 ok

Figure 2.Well-formedness of types.

Type equality modulo sizes, termed structural equivalence,
is noted as ∼s and defined as the equivalence relation satis-

fying the following equations:

[𝑒]𝜏 ∼s [𝑒′]𝜏 ′ ⇐⇒ 𝜏 ∼s 𝜏
′

𝜏1 ∼s 𝜏
′
1
∧ 𝜏2 ∼s 𝜏

′
2

⇐⇒ (𝜏1, 𝜏2) ∼s (𝜏 ′1, 𝜏 ′2)
𝜏 ∼s 𝜏

′ ∧ 𝜇 ∼s 𝜇
′ ⇐⇒ (𝑥 : 𝜏) → 𝜇 ∼s (𝑥 : 𝜏 ′) → 𝜇′

∃𝑥 .𝜇 ∼s 𝜇
′ ⇐⇒ 𝜇 ∼s 𝜇

′

𝜇 ∼s ∃𝑥 .𝜇′ ⇐⇒ 𝜇 ∼s 𝜇
′

Structural equivalence is used for size coercions, where sizes

may change but the overall type may not.

We define the set of witnesses of a return type, written

wit(𝜇), as the set of free variables in the type that are used

directly as an array size. Having a value of the corresponding

type, we can directly extract the value of a witnessed variable

by observing the value. This notion is used to rule out terms

whose evaluation would, for example, need to extract a size 𝑥

from an array of type [𝑓 𝑥]𝜏 for some 𝑓 , as such an extraction

would require the possibility of computing the inverse of 𝑓 ,

which is not feasible (or even possible) in general.

wit(∃𝑥 .𝜏) = wit(𝜏) \ {𝑥}
wit(int) = ∅

wit((𝜏1, 𝜏2)) = wit(𝜏1) ∪ wit(𝜏2)
wit((𝑧 : 𝜏) → 𝜇) = ∅

wit([𝑥]𝜏) = {𝑥} ∪ wit(𝜏)
wit([𝑒]𝜏) = wit(𝜏)

Contexts, ranged over by Γ, map variables to type schemes,

each of which is either a basic type or a size-polymorphic

type. Type assumptions are written 𝑥 : 𝜏 and extending

Γ with such an assumption, written Γ, 𝑥 : 𝜏 , assumes that

𝑥 ∉ fv(Γ). Also, we often write 𝑥 for 𝑥1, · · · , 𝑥𝑛 . Thus, we
sometimes write ∃𝑥 .𝜏 instead of ∃𝑥1. · · · ∃𝑥𝑛 .𝜏 (similarly for

type schemes) or 𝑥 : 𝜏 instead of 𝑥1 : 𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 , and so

on.

31

FHPNC ’23, September 4, 2023, Seattle, WA, USA Lubin Bailly, Troels Henriksen, and Martin Elsman

Return Types Γ ⊢ 𝜇 ⊑ 𝜇′

Γ ⊢ 𝑒 : int Γ ⊢ 𝜇′ ⊑ 𝜇{𝑒/𝑥} Γ ⊢ ∃𝑥 .𝜇 ok
Γ ⊢ 𝜇′ ⊑ ∃𝑥 .𝜇

Γ, 𝑥 : int ⊢ 𝜇 ⊑ 𝜇′

Γ ⊢ ∃𝑥 .𝜇 ⊑ ∃𝑥 .𝜇′
Γ ⊢ 𝜏 ⊑ 𝜏 ′ 𝜏 ≡ 𝜇 𝜏 ′ ≡ 𝜇′

Γ ⊢ 𝜇 ⊑ 𝜇′

Basic Types Γ ⊢ 𝜏 ⊑ 𝜏 ′

Γ ⊢ int ⊑ int

Γ ⊢ 𝜏 ′ ⊑ 𝜏 Γ, 𝑥 : 𝜏 ⊢ 𝜇 ⊑ 𝜇′

Γ ⊢ (𝑥 : 𝜏) → 𝜇 ⊑ (𝑥 : 𝜏 ′) → 𝜇′

Γ ⊢ 𝑒 : int Γ ⊢ 𝜏 ⊑ 𝜏 ′

Γ ⊢ [𝑒]𝜏 ⊑ [𝑒]𝜏 ′
Γ ⊢ 𝜏1 ⊑ 𝜏 ′

1
Γ ⊢ 𝜏2 ⊑ 𝜏 ′

2

Γ ⊢ (𝜏1, 𝜏2) ⊑ (𝜏 ′
1
, 𝜏 ′

2
)

Figure 3. Subtyping rules.

Types 𝜏 (or type schemes 𝜎 , or return types 𝜇) are well-
formed under assumption Γ, written Γ ⊢ 𝜏 ok if such a judg-

ment can be derived from the rules in Figure 2. Existential

sizes in return types must be witnessed by the underlying

type, which ensures that the values of these sizes can be

determined dynamically. Similarly, size parameters in a type

scheme must be used in the underlying type. A context Γ
′

is well-formed under assumption Γ, written Γ ⊢ Γ
′ ok, when

∀𝑥 ∈ Dom(Γ′), Γ ⊢ Γ
′ (𝑥) ok. Finally, ⊢ Γ ok means Γ ⊢ Γ ok.

We now define a subtyping relation on return types 𝜇 and

𝜇′ conditioned by a context Γ, written Γ ⊢ 𝜇 ⊑ 𝜇′. Judgments

of this form are read “𝜇 is a subtype of 𝜇′ in the context Γ” and

are derived based on the rules in Figure 3.

The purpose of the subtyping relation is to allow for ar-

bitrary expressions of type int that appear inside a type to

be replaced with a fresh existentially bound size variable

or a fresh size variable bound in a return type. Notice the

contravariance in the subtyping rule for function types.

2.2 Type Rules
Type rules for expressions are shown in Figure 4 and produce

sentences Γ ⊢ 𝑒 : 𝜇, which are read “𝑒 has a result of type 𝜇
under the context Γ”. In the rule t-app, the argument name is

substituted by the argument expression in the result, much

like dependent types, but this is forbidden in t-map to guar-

antee regular arrays. The t-let rule requires that the name is

not free in the type of the body. When needed, t-relax can

always be used to replace any expression in a size with an

unknown size. The freedom to apply t-relax whenever we

wish means that a program can have many different typing

derivations, although these will all be operationally equiva-

lent. t-relax is a subtyping rule which is pretty restrictive

as we always have structural equivalence between the types

before and after applying this rule. This ensures the only

information thrown away is size information.

2.3 Dynamic Semantics
We provide semantics only for successful executions-

dynamic errors due to size coercions or array indexing are

excluded for simplicity of the metatheory, meaning that the

type safety property we prove in Section 3 only relates to

programs for which a successful evaluation derivation ex-

ists. Similarly, we allow only non-empty arrays, which is

enforced by the value grammar. Any attempt to construct

an array with less than one element fails dynamically. We

briefly return to this issue in Section 5.

A dynamic environment 𝜌 maps variables to values. We

provide a big-step semantics with the judgment 𝜌 ⊢ 𝑒 { 𝑣 ,

which reads “𝑒 is evaluated to 𝑣 in the environment 𝜌”. The
rules defining this judgment are shown in Figure 7.

The dynamic semantics makes use of two auxiliary judg-

ments: dynamic size matching and dynamic size checking.

Dynamic size matching, written 𝜏 ⊢𝑥 𝑣 { 𝑛/• is defined
in Figure 5 and allows the dynamic semantics to extract

sizes from values. The result is either •, meaning that the

extraction failed because 𝑥 is not witnessed in 𝜏 , or an integer

denoting the searched size.

Dynamic size checking, written 𝜌 ⊢ 𝑣 ⊲ 𝜏 , is defined in

Figure 6 and checks that arrays in a value are of the right

sizes.

We define a value equivalence relation, noted ∼v , which

specifies if two values can be considered “interchangeable”

in a specific sense. We formally define this notion as the

equivalence relation satifying the following rules:

• 𝑛 ∼v 𝑛

• ⟨𝑥, 𝑒, 𝜌⟩ ∼v ⟨𝑥, 𝑒′, 𝜌 ′⟩ ⇐⇒
(𝜌, 𝑥 : 𝑣 ⊢ 𝑒 { 𝑣 ′ =⇒ 𝜌 ′, 𝑥 : 𝑣 ⊢ 𝑒′ { 𝑣 ′′∧𝑣 ′ ∼v 𝑣

′′) ∧
(𝜌 ′, 𝑥 : 𝑣 ⊢ 𝑒′ { 𝑣 ′ =⇒ 𝜌, 𝑥 : 𝑣 ⊢ 𝑒 { 𝑣 ′′ ∧ 𝑣 ′ ∼v 𝑣

′′)
• [𝑣1, · · · , 𝑣𝑛] ∼v [𝑣 ′1, · · · , 𝑣 ′𝑛] ⇐⇒ ∀𝑖, 𝑣𝑖 ∼v 𝑣

′
𝑖

• (𝑣1, 𝑣2) ∼v (𝑣 ′1, 𝑣 ′2) ⇐⇒ 𝑣1 ∼v 𝑣
′
1
∧ 𝑣2 ∼v 𝑣

′
2

The only interesting case is the case for closures. We consider

two closures equivalent if they produce equivalent values

for the same arguments, but also if they fail on the same

arguments.

3 Metatheory for 𝐹
To establish a soundness property, we first introduce a logical

relation stating that a value is of a certain type. Because

types can contain expressions, this relation depends on the

dynamic environment. The relation is written 𝜌 |= 𝑣 : 𝜇,

reads “the value 𝑣 is of return type 𝜇 in 𝜌”, and is defined by

the following rules:

l-int 𝜌 |= 𝑛 : int
l-pair 𝜌 |= (𝑣1, 𝑣2) : (𝜏1, 𝜏2) iff 𝜌 |= 𝑣1 : 𝜏1 and 𝜌 |=

𝑣2 : 𝜏2

l-arr 𝜌 |= [𝑣1, · · · , 𝑣𝑛] : [𝑒]𝜏 iff 𝜌 ⊢ 𝑒 { 𝑛 and

𝜌 |= 𝑣𝑖 : 𝜏 , ∀𝑖 ∈ {1..𝑛}

32

Shape-Constrained Array Programming with Size-Dependent Types FHPNC ’23, September 4, 2023, Seattle, WA, USA

Expressions Γ ⊢ 𝑒 : 𝜇

Γ ⊢ 𝑛 : int
[t-int]

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏
[t-var]

Γ(𝑥) = ∀𝑧.𝜏 Γ ⊢ 𝑒 : int

Γ ⊢ 𝑥𝑒 : 𝜏{𝑒/𝑧}
[t-inst]

Γ ⊢ 𝑒𝑙 : int Γ ⊢ 𝑒𝑟 : int

Γ ⊢ 𝑒𝑙 ⋄ 𝑒𝑟 : int
[t-arith]

Γ ⊢ 𝑒 : 𝜇 Γ ⊢ 𝜇 ⊑ 𝜇′

Γ ⊢ 𝑒 : 𝜇′
[t-relax]

Γ ⊢ 𝑒1 : 𝜏1 Γ ⊢ 𝑒2 : 𝜏2

Γ ⊢ (𝑒1, 𝑒2) : (𝜏1, 𝜏2)
[t-pair]

Γ ⊢ 𝑒 : (𝜏, 𝜏 ′)
Γ ⊢ fst 𝑒 : 𝜏

[t-fst]

Γ ⊢ 𝑒 : (𝜏, 𝜏 ′)
Γ ⊢ snd 𝑒 : 𝜏 ′

[t-snd]

Γ ⊢ 𝑒 : [𝑒𝑠]𝜏 Γ ⊢ 𝑒′ : int

Γ ⊢ 𝑒 [𝑒′] : 𝜏
[t-index]

Γ ⊢ 𝑒 : int

Γ ⊢ iota 𝑒 : [𝑒]int [t-iota]

Γ ⊢ 𝑒𝑓 : (𝑥 : 𝜏) → 𝜏 ′ 𝑥 ∉ fv(𝜏 ′) Γ ⊢ 𝑒𝑎 : [𝑒𝑠]𝜏
Γ ⊢ map 𝑒𝑓 𝑒𝑎 : [𝑒𝑠]𝜏 ′

[t-map]

Γ ⊢ 𝑒𝑐 : int Γ ⊢ 𝑒𝑡 : 𝜇 Γ ⊢ 𝑒𝑓 : 𝜇

Γ ⊢ if 𝑒𝑐 then 𝑒𝑡 else 𝑒𝑓 : 𝜇
[t-if]

Γ, 𝑦 : 𝜏 ⊢ 𝑒 : 𝜇 Γ ⊢ 𝜏 ok
Γ ⊢ 𝜆(𝑦 : 𝜏).𝑒 : (𝑦 : 𝜏) → 𝜇

[t-lam]

Γ ⊢ 𝑒 : 𝜏 ′ Γ ⊢ 𝜏 ok 𝜏 ∼s 𝜏
′

Γ ⊢ 𝑒 ⊲ 𝜏 : 𝜏
[t-coerce]

Γ ⊢ 𝑒 : (𝑥 : 𝜏) → 𝜇 Γ ⊢ 𝑒′ : 𝜏

Γ ⊢ 𝑒 𝑒′ : 𝜇{𝑒′/𝑥} [t-app]

Γ ⊢ 𝑒 : ∃𝑥 .𝜏 Γ, 𝑥 : int, 𝑦 : 𝜏 ⊢ 𝑒′ : 𝜇 𝑥 ⊆ wit(𝜏) 𝑥,𝑦 ∉ fv(𝜇)
Γ ⊢ let [𝑥] 𝑦 : 𝜏 = 𝑒 in 𝑒′ : 𝜇

[t-let]

Γ, 𝑧 : int ⊢ 𝑒 : 𝜏 Γ, 𝑦 : ∀𝑧.𝜏 ⊢ 𝑒′ : 𝜇 𝑧 ⊆ fv(𝜏) 𝑦 ∉ fv(𝜇)
Γ ⊢ let 𝑦 [𝑧] : 𝜏 = 𝑒 in 𝑒′ : 𝜇

[t-let-gen]

Figure 4. Expression type rules.

Single variable 𝜏 ⊢𝑥 𝑣 { 𝑛/•

int ⊢𝑥 𝑣 { • [m-int] (𝑦 : 𝜏) → 𝜇 ⊢𝑥 𝑣 { • [m-fun]

𝜏1 ⊢𝑥 𝑣1 { • 𝜏2 ⊢𝑥 𝑣2 { 𝑟

(𝜏1, 𝜏2) ⊢𝑥 (𝑣1, 𝑣2) { 𝑟
[m-pair2]

𝜏1 ⊢𝑥 𝑣1 { 𝑛

(𝜏1, 𝜏2) ⊢𝑥 (𝑣1, 𝑣2) { 𝑛
[m-pair1] [𝑥]𝜏 ⊢𝑥 [𝑣1, · · · , 𝑣𝑛] { 𝑛

[m-arr1]

𝑥 ≠ 𝑒 𝜏 ⊢𝑥 𝑣1 { 𝑟

[𝑒]𝜏 ⊢𝑥 [𝑣1, · · · , 𝑣𝑛] { 𝑟
[m-arr2]

Multiple variables 𝜏 ⊢𝑥 𝑣 { 𝑛

𝜏 ⊢𝑥1
𝑣 { 𝑛1 · · · 𝜏 ⊢𝑥𝑚 𝑣 { 𝑛𝑚

𝜏 ⊢(𝑥1 · · ·𝑥𝑚) 𝑣 { (𝑛1 · · ·𝑛𝑚)
[m-multi]

Figure 5. Dynamic size matching

Values 𝜌 ⊢ 𝑣 ⊲ 𝜏

𝜌 ⊢ 𝑛 ⊲ int
[c-int]

𝜌 ⊢ 𝑣1 ⊲ 𝜏1 𝜌 ⊢ 𝑣2 ⊲ 𝜏2

𝜌 ⊢ (𝑣1, 𝑣2) ⊲ (𝜏1, 𝜏2)
[c-pair]

𝜌 ⊢ 𝑒 { 𝑛 𝜌 ⊢ 𝑣1 ⊲ 𝜏 · · · 𝜌 ⊢ 𝑣𝑛 ⊲ 𝜏

𝜌 ⊢ [𝑣1, · · · , 𝑣𝑛] ⊲ [𝑒]𝜏 [c-arr]

Figure 6. Dynamic size-checking for the language.

l-clos 𝜌 |= ⟨𝑥, 𝑒′, 𝜌 ′⟩ : (𝑥 : 𝜏) → 𝜇 iff

∀𝑣1, 𝑣2, (𝜌 |= 𝑣1 : 𝜏 ∧ 𝜌 ′, 𝑥 : 𝑣1 ⊢ 𝑒 { 𝑣2) =⇒
𝜌, 𝑥 : 𝑣1 |= 𝑣2 : 𝜇

l-ukwn 𝜌 |= 𝑣 : ∃𝑥 .𝜇 iff ∃𝑛 s.t. 𝜌, 𝑥 : 𝑛 |= 𝑣 : 𝜇

l-schm 𝜌 |= 𝑣 : ∀𝑧.𝜏 iff 𝜌 |= 𝑣 : (𝑧 : int) → 𝜏

We extend the logical relation point-wise to relate dynamic

environments and well-formed contexts:

33

FHPNC ’23, September 4, 2023, Seattle, WA, USA Lubin Bailly, Troels Henriksen, and Martin Elsman

Expressions 𝜌 ⊢ 𝑒 { 𝑣

𝜌 ⊢ 𝑛 { 𝑛
[d-int]

𝜌 (𝑥) = 𝑣

𝜌 ⊢ 𝑥 { 𝑣
[d-var]

𝜌 (𝑥) = ⟨𝑧, 𝑒𝑖 , 𝜌 ′⟩ 𝜌 ⊢ 𝑒 { 𝑛 𝜌 ′, 𝑧 : 𝑛 ⊢ 𝑒𝑖 { 𝑣

𝜌 ⊢ 𝑥𝑒 { 𝑣
[d-inst]

𝜌 ⊢ 𝑒1 { 𝑣1 𝜌 ⊢ 𝑒2 { 𝑣2

𝜌 ⊢ (𝑒1, 𝑒2) { (𝑣1, 𝑣2)
[d-pair]

𝜌 ⊢ 𝑒 { (𝑣1, 𝑣2)
𝜌 ⊢ fst 𝑒 { 𝑣1

[d-fst]

𝜌 ⊢ 𝑒 { (𝑣1, 𝑣2)
𝜌 ⊢ snd 𝑒 { 𝑣2

[d-snd]

𝜌 ⊢ 𝑒1 { [𝑣0, . . . , 𝑣𝑚−1] 𝜌 ⊢ 𝑒2 { 𝑛 0 ≤ 𝑛 < 𝑚

𝜌 ⊢ 𝑒1 [𝑒2] { 𝑣𝑛
[d-index]

𝜌 ⊢ 𝜆(𝑥 : 𝜏).𝑒 { ⟨𝑥, 𝑒, 𝜌⟩ [d-lam]

𝜌 ⊢ 𝑒 { 𝑣 𝜌 ⊢ 𝑣 ⊲ 𝜏

𝜌 ⊢ 𝑒 ⊲ 𝜏 { 𝑣
[d-coerce]

𝜌 ⊢ 𝑒1 { ⟨𝑥, 𝑒0, 𝜌
′⟩ 𝜌 ⊢ 𝑒2 { 𝑣 ′ 𝜌 ′, 𝑥 : 𝑣 ′ ⊢ 𝑒0 { 𝑣

𝜌 ⊢ 𝑒1 𝑒2 { 𝑣
[d-app]

𝜌 ⊢ 𝑒 { 𝑛 𝑛 > 0

𝜌 ⊢ iota 𝑒 { [0, · · · , 𝑛 − 1] [d-iota]

𝜌 ⊢ 𝑒𝑙 { 𝑛 𝜌 ⊢ 𝑒𝑟 { 𝑚 𝑘 = 𝑛 ⋄𝑚
𝜌 ⊢ 𝑒𝑙 ⋄ 𝑒𝑟 { 𝑘

[d-arith]

𝜌 ⊢ 𝑒𝑓 { ⟨𝑥, 𝑒0, 𝜌
′⟩ 𝜌 ⊢ 𝑒𝑎 { [𝑣1, · · · , 𝑣𝑛] 𝜌 ′, 𝑥 : 𝑣𝑖 ⊢ 𝑒0 { 𝑣 ′𝑖
𝜌 ⊢ map 𝑒𝑓 𝑒𝑎 { [𝑣 ′

1
, · · · , 𝑣 ′𝑛]

[d-map]

𝜌 ⊢ 𝑒 { 𝑛 𝑛 ≠ 0 𝜌 ⊢ 𝑒1 { 𝑣

𝜌 ⊢ if 𝑒 then 𝑒1 else 𝑒2 { 𝑣
[d-if-0]

𝜌 ⊢ 𝑒 { 0 𝜌 ⊢ 𝑒2 { 𝑣

𝜌 ⊢ if 𝑒 then 𝑒1 else 𝑒2 { 𝑣
[d-if-f]

𝜌 ⊢ 𝑒 { 𝑣 𝜏 ⊢𝑥 𝑣 { 𝑛 𝜌, 𝑥 : 𝑛,𝑦 : 𝑣 ⊢ 𝑒′ { 𝑣 ′

𝜌 ⊢ let [𝑥] 𝑦 : 𝜏 = 𝑒 in 𝑒′ { 𝑣 ′
[d-let]

𝜌,𝑦 : ⟨𝑧, 𝑒, 𝜌⟩ ⊢ 𝑒′ { 𝑣

𝜌 ⊢ let 𝑦 [𝑧] : 𝜏 = 𝑒 in 𝑒′ { 𝑣
[d-let-gen]

Figure 7. Dynamic semantics for the language.

l-env: 𝜌 |= Γ iff

1. Dom(𝜌) = Dom(Γ)
2. ⊢ Γ ok
3. ∀𝑥 ∈ Dom(Γ), 𝜌 |= 𝜌 (𝑥) : Γ(𝑥)
The requirement of ⊢ Γ ok allows us to ensure well–

formedness of the typing context in all the inductives proofs

that follow.

3.1 Properties of Substitutions
Typing and type well-formedness are preserved under sub-

stitution of a variable by an expression of a compatible type.

This property allows us to ensure that the typing always

produces well-formed types.

Proposition 3.1 (Substitution preserves well-formedness).
If Γ ⊢ 𝑒′ : 𝜏 ′ then:
1. Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 : 𝜏 =⇒ Γ ⊢ 𝑒{𝑒′/𝑥} : 𝜏{𝑒′/𝑥}
2. Γ, 𝑥 : 𝜏 ′ ⊢ 𝜏 ⊑ 𝜏 ′′ =⇒ Γ ⊢ 𝜏{𝑒′/𝑥} ⊑ 𝜏 ′′{𝑒′/𝑥}
3. Γ, 𝑥 : 𝜏 ′ ⊢ 𝜇 ⊑ 𝜇′ =⇒ Γ ⊢ 𝜇{𝑒′/𝑥} ⊑ 𝜇′{𝑒′/𝑥}
4. Γ, 𝑥 : 𝜏 ′ ⊢ 𝜏 ok =⇒ Γ ⊢ 𝜏{𝑒′/𝑥} ok
5. Γ, 𝑥 : 𝜏 ′ ⊢ 𝜇 ok =⇒ Γ ⊢ 𝜇{𝑒′/𝑥} ok
6. Γ, 𝑥 : 𝜏 ′ ⊢ 𝜎 ok =⇒ Γ ⊢ 𝜎{𝑒′/𝑥} ok

Proof. The first property is proven by induction on the typing
derivation, utilising the proofs of the remaining properties,

which are proven using mutual induction and the property

that int{𝑒/𝑥} = int, for any 𝑒 and 𝑥 . □

Proposition 3.2 (Typing produces well-formed types).

1. If ⊢ Γ ok and Γ ⊢ 𝜇 ⊑ 𝜇′ then Γ ⊢ 𝜇 ok and Γ ⊢ 𝜇′ ok.
2. If ⊢ Γ ok and Γ ⊢ 𝑒 : 𝜇 then Γ ⊢ 𝜇 ok.

Proof. These two properties are proven by induction on the

subtyping derivation and the typing derivation, respectively,

using Proposition 3.1. Most cases are straightforward, but

some of them are a bit more interesting:

Case Arrow subtyping: In this case, the typing derivation

of Γ, 𝑥 : 𝜏 ⊢ 𝜇′ ok (from the inductive hypothesis) has to be

slightly modified to insert t-relax rules just after every use

of the 𝑥 variable so that we can have Γ, 𝑥 : 𝜏 ′ ⊢ 𝜇′ ok and

then conclude.

Case [t-map]: we have ⌈1⌉ Γ ⊢ (𝑥 : 𝜏) → 𝜏 ′ ok, ⌈2⌉ 𝑥 ∉

fv(𝜏 ′), and ⌈3⌉ Γ ⊢ [𝑒𝑠]𝜏 ok from [t-map] and the induction

hypothesis. From ⌈1⌉, we have Γ, 𝑥 : 𝜏 ⊢ 𝜏 ′ ok and from ⌈2⌉
we have ⌈4⌉ Γ ⊢ 𝜏 ′ ok. From ⌈3⌉ we have Γ ⊢ 𝑒𝑠 : int, which,
combined with ⌈4⌉, gives us Γ ⊢ [𝑒𝑠]𝜏 ′ ok, as required.
Case [t-let]: Here we have 𝑥,𝑦 ∉ fv(𝜇), which allows us

to remove 𝑥 and 𝑦 from Γ, 𝑥 : int, 𝑦 : int ⊢ 𝜇 ok. □

Similar properties are also required for the dynamic se-

mantics. We begin with properties about value equivalence,

showing that we can effectively swap two equivalent values

and still obtain equivalent results.

34

Shape-Constrained Array Programming with Size-Dependent Types FHPNC ’23, September 4, 2023, Seattle, WA, USA

Proposition 3.3 (Properties about value equivalence).
1. If 𝑣 ∼v 𝑣

′ and 𝜌, 𝑥 : 𝑣0 ⊢ 𝑣 ⊲ 𝜏 then 𝜌, 𝑥 : 𝑣0 ⊢ 𝑣 ′ ⊲ 𝜏

2. If 𝑣 ∼v 𝑣
′ and 𝜏 ⊢𝑥 𝑣 { 𝑛 then 𝜏 ⊢𝑥 𝑣 ′ { 𝑛

3. If 𝑣 ∼v 𝑣
′ and 𝜌, 𝑥 : 𝑣 ⊢ 𝑒 { 𝑣𝑟 then 𝜌, 𝑥 : 𝑣 ′ ⊢ 𝑒 { 𝑣 ′𝑟

and 𝑣𝑟 ∼v 𝑣
′
𝑟

4. If 𝑣0 ∼v 𝑣
′
0
and 𝜌, 𝑥 : 𝑣0 ⊢ 𝑣 ⊲ 𝜏 then 𝜌, 𝑥 : 𝑣 ′

0
⊢ 𝑣 ⊲ 𝜏

5. If 𝑣 ∼v 𝑣
′ and 𝜌 |= 𝑣 : 𝜇 then 𝜌 |= 𝑣 ′ : 𝜇

Proof. Properties 1, 2, and 5 are shown by straightforward

induction, while Properties 3 and 4 are shown by mutual

induction. □

The notion of value equivalence is used for specifying the

following substitution properties:

Proposition 3.4 (Substitution preserves semantics).
1. If 𝜌, 𝑥 : 𝑣0 ⊢ 𝑒 { 𝑣 and 𝜌 ⊢ 𝑒′ { 𝑣0 then

𝜌 ⊢ 𝑒{𝑒′/𝑥} { 𝑣 ′ and 𝑣 ∼v 𝑣
′

2. If 𝜌, 𝑥 : 𝑣0 ⊢ 𝑣 ⊲ 𝜏 and 𝜌 ⊢ 𝑒′ { 𝑣0 then 𝜌 ⊢ 𝑣 ⊲ 𝜏{𝑒′/𝑥}
3. If 𝜌 ⊢ 𝑒{𝑒′/𝑥} { 𝑣 and 𝜌 ⊢ 𝑒′ { 𝑣0 then

𝜌, 𝑥 : 𝑣0 ⊢ 𝑒 { 𝑣 ′ and 𝑣 ∼v 𝑣
′

4. If 𝜌 ⊢ 𝑣 ⊲ 𝜏{𝑒′/𝑥} and 𝜌 ⊢ 𝑒′ { 𝑣0 then 𝜌, 𝑥 : 𝑣0 ⊢ 𝑣 ⊲ 𝜏

5. If 𝜌, 𝑥 : 𝑣0 |= 𝑣 : 𝜇 and 𝜌 ⊢ 𝑒 { 𝑣0 then 𝜌 |= 𝑣 : 𝜇{𝑒/𝑥}
6. If 𝜌 |= 𝑣 : 𝜇{𝑒/𝑥} and 𝜌 ⊢ 𝑒 { 𝑣0 then 𝜌, 𝑥 : 𝑣0 |= 𝑣 : 𝜇

Proof. Properties 1 and 2 are shown by mutual induction

on the derivations of evaluation and dynamic size checking.

Properties 3 and 4 are shown by mutual induction on the

structure of 𝑒 , and Properties 5 and 6 are shown by induction

using Properties 1 and 3. □

We say that two environments 𝜌 and 𝜌 ′ “agree on a set𝑋 of
variables”, noted 𝜌 ≈𝑋 𝜌 ′, if and only if∀𝑥 ∈ 𝑋, 𝜌 (𝑥) ∼v 𝜌

′ (𝑥),
that is, they are point-wise equivalent on the set 𝑋 . We can

show by a straightforward induction (or just applying prece-

dent properties) that agreement on free variables allows us

to replace an environment by the other.

Proposition 3.5 (Logical relation extensibility).
1. If 𝜌 ⊢ 𝑒 { 𝑣 and 𝜌 ′ ≈fv(𝑒) 𝜌 then 𝜌 ′ ⊢ 𝑒 { 𝑣 ′ and

𝑣 ′ ∼v 𝑣

2. If 𝜌 ⊢ 𝑣 ⊲ 𝜏 and 𝜌 ′ ≈fv(𝜏) 𝜌 then 𝜌 ′ ⊢ 𝑣 ⊲ 𝜏

3. If 𝜌 |= 𝑣 : 𝜏 and 𝜌 ′ ≈fv(𝜏) 𝜌 then 𝜌 ′ |= 𝑣 : 𝜏

4. If 𝜌 |= 𝑣 : 𝜇 and 𝜌 ′ ≈fv(𝜇) 𝜌 then 𝜌 ′ |= 𝑣 : 𝜇

5. If 𝜌 |= 𝑣 : 𝜎 and 𝜌 ′ ≈fv(𝜎) 𝜌 then 𝜌 ′ |= 𝑣 : 𝜎

6. If 𝜌 |= Γ and 𝜌 ′ ≈Dom(Γ) 𝜌 then 𝜌 ′ |= Γ

3.2 Dynamic Properties
We finally show some properties linking the type rules and

dynamic semantics. The following two properties relate dy-

namic size matching and value typing to ensure dynamic size

matching has the semantics we want, even if not required in

the soundness proof.

Proposition 3.6 (All witnesses can be extracted).
1. If 𝜌 |= 𝑣 : ∃𝑥 .𝜏 and 𝑥 ∈ wit(𝜏) then ∃𝑛, 𝜏 ⊢𝑥 𝑣 { 𝑛.
2. If ∃𝑛, 𝜏 ⊢𝑥 𝑣 { 𝑛 then 𝑥 ∈ wit(𝜏)

Proof. Both properties are proven by induction on the deriva-
tion of the hypothesis. □

Notice that the first property uses that an array is non-empty,

because, in the current formalisation, an empty array has

the property that for any 𝜏 , we have 𝜌 |= 𝑣 : [0]𝜏 , but
[0] [𝑥]𝜏 ⊢𝑥 𝑣 would fail as it would require the first value of

this empty array.

Proposition 3.7 (Dynamic size matching).
1. If 𝜌 |= 𝑣 : ∃𝑥 .𝜏 and 𝜏 ⊢𝑥 𝑣 { 𝑛 then 𝜌, 𝑥 : 𝑛 |= 𝑣 : 𝜏

2. If 𝜌 |= 𝑣 : ∃𝑥 .𝜏 and 𝜏 ⊢𝑥 𝑣 { 𝑛 then 𝜌, 𝑥 : 𝑛 |= 𝑣 : 𝜏

Proof. Proved by induction on the structure of 𝜏 . □

We also ensure that dynamic size checking correctly en-

sures the types of values by this property, shown by induc-

tion on the check.

Proposition 3.8 (Dynamic size checking).
If 𝜌 ⊢ 𝑣 ⊲ 𝜏 then 𝜌 |= 𝑣 : 𝜏

Combining these properties, we obtain soundness, which

guarantees a well-typed result from a well-typed program.

This property assumes the program terminates, and does not

apply to failing programs. The proof relies on the subtyping

also applying to value typing. The complete proof of these

two properties is based onmutual induction and can be found

in the appendix.

Proposition 3.9 (Value subtyping).
If 𝜌 |= Γ and Γ ⊢ 𝜇 ⊑ 𝜇′ and 𝜌 |= 𝑣 : 𝜇 then 𝜌 |= 𝑣 : 𝜇′.

Proposition 3.10 (Soundness).
If Γ ⊢ 𝑒 : 𝜇 and 𝜌 |= Γ and 𝜌 ⊢ 𝑒 { 𝑣 then 𝜌 |= 𝑣 : 𝜇.

As emphasised earlier, the soundness result considers only

value-terminating expressions, which allows us to avoid spec-

ifying dynamic evaluation rules for propagating dynamic

errors when dynamic size checking fails (i.e., rule c-arr and

rule d-coerse), when array indexing fails (i.e., rule d-index),

or when attempting to create an array with fewer than one

element (i.e., rule d-iota). We emphasise here that we are

guaranteed by the type system that the dynamic extraction of

sizes (i.e., rule d-let) succeed. Proper handling of inner sizes

of empty arrays requires that shape information is available

dynamically in cases where an array can be empty. Whereas

Futhark happily works with empty arrays, we consider it

future work to amend the formalism to support empty arrays.

By specifying also dynamic evaluation rules for propagat-

ing dynamic errors, it would not be difficult to establish a

termination result based on a logical relation proof similar

to the one we have presented. Such a proof would closely

follow Tait’s strong-normalisation proof from 1967 for the

simply-typed lambda calculus [22], which has later been es-

tablished as a fundamental proof technique [8] and adapted

for many other use cases [4].

35

FHPNC ’23, September 4, 2023, Seattle, WA, USA Lubin Bailly, Troels Henriksen, and Martin Elsman

4 Inference and Normalisation
In the following we will discuss how to adapt 𝐹 to be a useful

programming language, rather than merely a calculus. In

our examples we will assume the existence of functions with

the following type schemes:

filter : ∀[𝑛] .(int → int) → [𝑛]int → ∃𝑚.[𝑚]int
zip : ∀[𝑛] .[𝑛]int → [𝑛]int → [𝑛] (int, int)

length : ∀[𝑛] .[𝑛]int → int

The language 𝐹 requires subexpressions producing un-

known sizes to be immediately let-bound, which largely

requires the program to be in Administrative Normal Form

(ANF) [19]. This requirement simplifies the theoretical treat-

ment. Consider the expression length? (filter 𝑝 𝑥). Here
we need to instantiate length with the size of the result of

filter, but this size has no name. Requiring filter 𝑝 𝑥 to

be let-bound lets us introduce a name for this size.

This constraint is impractical for a real programming lan-

guage. Fortunately, it is straightforward to rewrite a program

with arbitrary nested expressions to be in ANF. Together

with a type inference algorithm quite similar to conventional

Hindley-Milner type inference [17], where we treat sizes as

type parameters of a distinct kind, and where we perform

unification on expressions, we construct a language with

implicit size polymorphism.

However, for the ANF transformation to be possible, we

need to require programs to be causally coherent with respect
to how sizes of arrays appear in types.

4.1 Causality
For the purpose of type inference, we define an evaluation

order where arguments are evaluated before function ex-

pressions: that is, right to left. We consider iota and map
intrinsics as functions for this rule. The type checker rejects

programs that are not well-typed in this form.

To illustrate, consider the following program, where we

have elided types and polymorphic instantiation:

let iiota [n] = iota n in
let t = iiota in
let xs = filter (𝜆x.x ≤ 5) (iota 10) in
zip t xs

Here iiota is an implicit version of iota, where its instanti-
ation determines the size. The problem with this program is

that we cannot infer the size of t. By the type of zip, it must

be the same as the size of xs, the size of xs being defined at

its definition because of the existential type of filter. So,
when writing the inferred types, we have:

let iiota [n] : [n]int = iota n in
let t : [d]int = iiotad in
let [d] xs : [d]int = filter (𝜆x.x ≤ 5) (iota 10)in
zip 𝑡 𝑥𝑠

The introduced size d is used to instantiate iiota in the

definition of t before d is in scope, hence this program is

not causally coherent. In this case we could flip the definition

order of t and xs, but there are (contrived) cases where a
circular dependency exists—consider if the filtering function

made use of the size of t. While it might be possible to check

whether any program ordering produces a well-typed pro-

gram, in order to keep the rules for the programmer simple,

we have defined a single evaluation order that determines

when sizes are available. In practice we have found that few

programs encounter this restriction, and the universal solu-

tion is to explicitly let-bind the expression producing the

unknown size.

4.2 Inference
Type inference deduces the instantiation of polymorphic

bindings, allowing us to write

length (iota 𝑒)

for

length𝑒 (iota 𝑒) .
This is done using an adapted version of Hindley-Milner

type inference, where sizes exist as a kind of type variable.

Since expressions can now appear in types, this involves the

definition of unification (and equality) of expressions. One

quirk is that we use entirely syntactical unification, meaning

that the types [𝑎 + 𝑏]𝜏 and [𝑏 + 𝑎]𝜏 do not unify—despite

arrays of these types obviously having the same dynamic

size, due to the commutativity of integer addition. It would

certainly be possible to perform some kind of arithmetic

normalisation to recognise that these two expressions are

equivalent, but doing so might have unintended effects. The

reason is that 𝐹 allows size-polymorphic functions of the

form

let tricky [n] [m] = 𝜆(x : [n + m]int).(n, m)

where the static structure of the size of the argument affects

the result of evaluation. This means that the terms

tricky (iota (1 + 2))

and

tricky (iota (2 + 1))
are not equivalent. In types, arithmetic operations can be

seen as un-interpreted constants. It would be quite undesir-

able for arbitrary choices made by a type inference algorithm

(e.g., reordering terms in an addition) to influence the pro-

gram result.

It is unclear whether such a strictly syntactical view of

types is ultimately beneficial, but it does avoid surprises. We

are considering a form of static size coercions that allows
changes in the structure of size expressions, but verifies that

they will be dynamically equivalent.

36

Shape-Constrained Array Programming with Size-Dependent Types FHPNC ’23, September 4, 2023, Seattle, WA, USA

4.2.1 Duplication of computation. The instantiation of

polymorphic bindings can duplicate expressions, as shown in

the length example above, where 𝑒 is duplicated. According

to the model of size parameters as implicit parameters, this

is not just a syntactical duplication—that 𝑒 must actually be

evaluated, resulting in duplication of computation. Worse, if

the instantiation is in a function that is passed to map, this can
result in an asymptotic cost increase if 𝑒 is a costly expression.

This issue can be avoided by fully ANF-transforming the

program such that all subexpressions are bound to names,

as these can be duplicated without computational cost.

4.2.2 Negative sizes. While sizes must be non-negative,

they can be compound expressions where subterms are neg-

ative. This property creates interesting possibilities for pro-

gram errors. Suppose we have a size-polymorphic function

for unflattening arrays:

unflatten : ∀[𝑛] [𝑚] .[𝑛 ·𝑚]int → [𝑛] [𝑚]int

Now consider an array iota(−2 · − 3). Because −2 · − 3 > 0,

this is a valid array of type [−2 · − 3]int. This means the

expression unflatten(iota(−2·−3)) has type [−2] [−3]int.
But such an array can of course never be constructed at run-

time—unflatten will fail dynamically. The specific failure

is likely invoking iota(−2). In order to prevent the program

from going wrong, a non-syntactic precondition must be

applied to the type of unflatten: 𝑛 and 𝑚 must be non-

negative.

Similarly, for extracting the second element of an array we

may be tempted to define a function of the following type:

snd : ∀[𝑛] .[2 + 𝑛]int → int

Again, this specification does not provide any safety regard-

ing the number of elements in the argument array, as 𝑛 can

simply be instantiated with a negative number as in the

expression snd(iota(2 + (−1))).
Most dependently typed languages solve this issue by

making sizes natural numbers. We could also do that, but it

complicates the language (by introducing yet another num-

ber type) and opens the question about how to handle sub-

traction. In Idris, a Nat subtraction that produces a nega-

tive number is simply truncated to zero, but it is reasonable

for the size of an array to be described by a computation

where intermediate results are negative, as long as the final

result is not. We conjecture that a proper solution to this

issue involves a notion of refinements, inspired by Dependent
ML [26] and Liquid Haskell [25], such that inequalities such

as n > 0 can be imposed on size parameters.

5 Implementation
The ideas behind the 𝐹 type system has been implemented

in a prototype version of the compiler for the functional ar-

ray language Futhark, using a slightly different syntax. The

implementation automatically performs inference and nor-

malisation (Section 4) as necessary. The t-relax rule, which

can in principle be applied anywhere, is applied only when a

variable used in the return type of a let-binding or function
body goes out of scope. The implementation supports empty

arrays through a value representation that explicitly stores

the full shape, which allows the size to be extracted even

when an outer dimension is zero. Empty array literals are

allowed whenever type inference can determine the shape

of the elements. Futhark also supports conventional para-

metric polymorphism, which permits map to be a standard
function, although it requires constraints on type variables

to guarantee regularity of arrays [11].

5.1 Type-level programming
Parametric polymorphism, together with the ability to define

abstract types, allows a provably-safe coercion facility to

be defined by the programmer, as shown on Figure 8. The

abstract type eq[n][m] is parametric in the two sizes n and

m, and encodes a witness that n==m. The coerce function

accepts a proof that n==m and can convert an array of size

n into an array of size m. The definition of coerce uses a

dynamically checked size coercion, but if we ensure that

only valid values of eq can be constructed, we know this

coercion cannot fail.

This form of type level programming is well known in

the functional programming community, although allowing

normal expressions in types makes it more convenient than

having to define type-level analogues for term-level con-

structs. The downside of this approach is that it requires the

programmer to manually assemble proof terms, as shown in

the proof binding at the bottom of Figure 8, which is very

tedious without automation. We do not expect this style of

programming to be acceptable to the majority of Futhark pro-

grammers, and instead investigate automation by exploiting

the fact that the majority of size expressions in real Futhark

programs are simple arithmetic expressions where equiv-

alence can be decided using standard techniques, such as

Fourier-Motzkin elimination.

5.2 Performance
Futhark is intended for high performance computing, and

any overhead induced by the type system must be carefully

considered. In this respect, all modules, all type polymor-

phism, and all higher-order functions are eliminated at com-

pile time [6, 13]. The only dynamic checks arising from the

size type system are in explicit coercions, although iota and
array indexing is also dynamically checked [9]. Further, no

matter how complicated size expressions may be at compile

time, at run-time each array dimension is associated with a

single 64-bit integer, meaning there is no storage overhead.

37

FHPNC ’23, September 4, 2023, Seattle, WA, USA Lubin Bailly, Troels Henriksen, and Martin Elsman

module meta : {

type eq[n][m] -- Proof of n==m

val coerce [n][m] 't : eq[n][m] -> [n]t -> [m]t -- Use a proof

val refl [n] : eq[n][n] -- Equality properties

val comm [n][m] : eq[n][m] -> eq[m][n]

val trans [n][m][k] : eq[n][m] -> eq[m][k] -> eq[n][k]

val plus_comm [a][b] : eq[a+b][b+a] -- Axioms

val plus_assoc [a][b][c] : eq[(a+b)+c][a+(b+c)]

val plus_lhs [a][b][c] : eq[a][b] -> eq[a+c][b+c]

val plus_rhs [a][b][c] : eq[c][b] -> eq[a+c][a+b]

} = {

type eq[n][m] = [0][n][m]()

def coerce [n][m] 't (_: eq[n][m]) (a: [n]t) = a :> [m]t

def refl = []

...

}

def main [n][m][l] (xs: [n]i32) (ys: [m]i32) (zs: [l]i32) =

let proof : meta.eq[m+(n+l)][(n+m)+l] =

meta.trans (meta.comm meta.plus_assoc) (meta.plus_lhs meta.plus_comm)

in zip ((xs ++ ys) ++ zs) (meta.coerce proof (ys ++ (xs ++ zs)))

Figure 8. Type level metaprogramming example in Futhark. The ++ operator denotes concatenation. The definitions within
the first set of braces constitute the module type, which can be considered an abstract interface. The definitions within the

second set of braces are the actual definitions of the names specified by the module type.

6 Related Work
The literature on both dependent types and type systems for

array programming is long and rich. Here we will focus on

their combination, as that is where our contribution lies.

Qube [24] uses dependent types to model APL-style shape

polymorphism, utilising an SMT solver to solve complex con-

straints. Qube requires the array element type to be known,

which in particular means that it does not support conven-

tional parametric polymorphism. A later work in this area

is Remora [21], which interestingly supports arrays of func-

tions, allowing a programming style that encodes control

flow as data. This is also possible using the fragment of depen-

dent types in Haskell [7], and of course in full dependently

typed languages, such as Agda, as shown in [23].

Although Dependent ML [26] is not an array language,

its type system can be used to express predicates on lengths

of lists, in a way that is similar to our equality constraints

on shapes. Dependent ML guarantees efficient compilation

through erasure, but type checking is undecidable, as sub-

typing can involve checking arbitrary predicates. In practice,

this is done by invoking external SMT solvers. An alternative

approach is restricting the refinements (i.e., the dependent

parts of types) to a decidable sublanguage.

Array type systems not based on dependent types have

also been investigated. Jay [14, 15] developed a theory of

“shapely programs”, which are programs where the shape of

a function result depends only on the shape of its arguments.

This is used to extract a condensed size program, that can be

statically evaluated to determine whether the original array

program contains any violations of shape constraints. There

are two main differences from our work. First, we allow exis-

tential sizes, which is necessary for functions such as filter.
Second, our approach is based on conventional type check-

ing, rather than on static evaluation. Array type systems

for tracking ranks of arrays and the sizes of shape vectors

have also been been used for compiling a subset of APL to

Futhark through an array intermediate language [5, 10]. This

work relies on a representation of arrays that separates the

shape vector from the implementation array, which is also

the foundation for other array language formalisms [18] and

implementations, such as [20].

Another recent work aimed at embedded programming

uses a type system that tracks sizes known at compile time,

and where ML-style parametric polymorphism is used to

propagate sizes through polymorphic functions [16]. Like

our work, the goal is to strike a balance between expressive-

ness and the ability to verify and infer program properties.

However, as befits the domain of embedded programming,

they tend to prioritise the latter. Their key restriction is that

size expressions can only be multivariate polynomials, where

equality is decidable in their context, while we allow arbi-

trary expressions and permit size coercions as a dynamically

checked escape hatch.

38

Shape-Constrained Array Programming with Size-Dependent Types FHPNC ’23, September 4, 2023, Seattle, WA, USA

7 Conclusions
We have presented an ML-like type system for array pro-

gramming that supports complex array shape equality con-

straints. We have formally described the type system and

informally explained how the type system is used in the

Futhark programming language. Size constraints are checked

syntactically and the type system allows for concise size poly-

morphism with implicit arguments. The syntactic approach

is quite conservative, and as an escape hatch we permit dy-

namically checked size coercions.

There are several possibilities for future work. First, it may

be frustrating for a programmer to have type errors arising

from 𝑛 +𝑚 ≠𝑚 + 𝑛. Besides using dynamic type coercions,

size equalities could be discharged by compile-time equation

solving as done in Qube. However, this approach raises ques-

tions regarding size polymorphism, as unification-based type

inference is then insufficient to infer polymorphic arguments.

Second, we have not here formalised type polymorphism,

even though size polymophism is supported and formalised.

Finally, the problems arising from empty arrays are not dealt

with in the formalisation, which make us require the strong

assumption that arrays are never empty.

A Proofs of Proposition 3.10
Proposition 3.9 (Value subtyping).

If 𝜌 |= Γ and Γ ⊢ 𝜇 ⊑ 𝜇′ and 𝜌 |= 𝑣 : 𝜇 then 𝜌 |= 𝑣 : 𝜇′.

Proof. Shown by induction on the derivation of Γ ⊢ 𝜇 ⊑ 𝜇′.
In every cases, we have the hypothesis ⌈0⌉ 𝜌 |= Γ.

Case Γ ⊢ 𝜇′ ⊑ ∃𝑥 .𝜇: We have by hypothesis ⌈1⌉ 𝜌 |= 𝑣 : 𝜇′,

and the hypothesis of the derivation are ⌈2⌉ Γ ⊢ 𝑒 : int and

⌈3⌉ Γ ⊢ 𝜇′ ⊑ 𝜇{𝑒/𝑥}.
By induction, we have ⌈4⌉ 𝜌 |= 𝑣 : 𝜇{𝑒/𝑥}. We then distin-

guish two cases:

1. 𝜌 ⊢ 𝑒 { 𝑛 then by 3.4.6, we have 𝜌, 𝑥 : 𝑛 |= 𝑣 : 𝜇 and

so 𝜌 |= 𝑣 : ∃𝑥 .𝜇 as required.

2. Else 𝑒 can’t be evaluated in 𝜌 (if it is to 𝑣 ′, then by

soundness 𝑣 ′ |= int: it’s the first sub-case) so for every
expression containing 𝑥 in 𝜇, 𝑥 is not evaluated (as the

full expression can be evaluated) so, even if fv(𝜇) ⊈
Dom(𝜌), 𝜌 |= 𝑣 : 𝜇, we can then have 𝜌 |= 𝑣 : ∃𝑥 .𝜇 as
required.

Case Γ ⊢ ∃𝑥 .𝜇 ⊑ ∃𝑥 .𝜇′: We have by hypothesis ⌈1⌉ 𝜌 |=
𝑣 : ∃𝑥 .𝜇, and the hypothesis of the derivation is ⌈2⌉ Γ, 𝑥 :

int ⊢ 𝜇 ⊑ 𝜇′.
⌈1⌉ can be derived to 𝜌, 𝑥 : 𝑛 |= 𝑣 : 𝜇 for some 𝑛, and

then by induction we have 𝜌, 𝑥 : 𝑛 |= 𝑣 : 𝜇′. We then have

𝜌 |= 𝑣 : ∃𝑥 .𝜇′ as required.
Case Γ ⊢ int ⊑ int: Nothing to say.

Case Γ ⊢ (𝑥 : 𝜏) → 𝜇 ⊑ (𝑥 : 𝜏 ′) → 𝜇′:We have by hypoth-

esis ⌈1⌉ 𝜌 |= 𝑣 : (𝑥 : 𝜏) → 𝜇, and the hypothesis of the

derivation are ⌈2⌉ Γ ⊢ 𝜏 ′ ⊑ 𝜏 and ⌈3⌉ Γ, 𝑥 : 𝜏 ⊢ 𝜇 ⊑ 𝜇′. We

know by l-clos, 𝑣 = ⟨𝑥, 𝑒, 𝜌 ′⟩.

We want to prove ⌈𝑔𝑜𝑎𝑙⌉ ∀𝑣1, 𝑣2, (𝜌 |= 𝑣1 : 𝜏 ′ ∧ 𝜌 ′, 𝑥 : 𝑣1 ⊢
𝑒 { 𝑣2) =⇒ 𝜌, 𝑥 : 𝑣1 |= 𝑣2 : 𝜇′.

For given 𝑣1 and 𝑣2, we asume ⌈4⌉ 𝜌 |= 𝑣1 : 𝜏 ′ and ⌈5⌉
𝜌 ′, 𝑥 : 𝑣1 ⊢ 𝑒 { 𝑣2.

By induction with ⌈2⌉ and ⌈4⌉, we have ⌈6⌉ 𝜌 |= 𝑣1 : 𝜏 , so

with ⌈5⌉ in ⌈1⌉, we obtain ⌈7⌉ 𝜌, 𝑥 : 𝑣1 |= 𝑣2 : 𝜇.

We can extend ⌈0⌉ with ⌈6⌉ to have 𝜌, 𝑥 : 𝑣1 |= Γ, 𝑥 : 𝜏 . So,

with ⌈7⌉ and ⌈3⌉, we have 𝜌, 𝑥 : 𝑣1 |= 𝑣2 : 𝜇′.
We can then conclude by abstracting 𝑣1 and 𝑣2.

Case Γ ⊢ [𝑒]𝜏 ⊑ [𝑒]𝜏 ′: We have by hypothesis ⌈1⌉ 𝜌 |= 𝑣 :

[𝑒]𝜏 , and the hypothesis of the derivation is ⌈2⌉ Γ ⊢ 𝜏 ⊑ 𝜏 ′.
We know by l-arr, ⌈3⌉ 𝜌 ⊢ 𝑒 { 𝑛 and ⌈4⌉ ∀𝑖, 𝜌 |= 𝑣𝑖 : 𝜏

(with 𝑣 = [𝑣1, · · · , 𝑣𝑛]).
by induction, we have ∀𝑖, 𝜌 |= 𝑣𝑖 : 𝜏 ′, and then by l-arr,

we have 𝜌 |= 𝑣 : [𝑒]𝜏 ′ as required.
Case Γ ⊢ (𝜏1, 𝜏2) ⊑ (𝜏 ′

1
, 𝜏 ′

2
): Much like the precedent case,

we unfold l-pair, then refold it after using the induction. □

Proposition 3.10 (Soundness).

If Γ ⊢ 𝑒 : 𝜇 and 𝜌 |= Γ and 𝜌 ⊢ 𝑒 { 𝑣 then 𝜌 |= 𝑣 : 𝜇.

Proof. Shown by induction on the derivation of Γ ⊢ 𝑒 : 𝜇.

In every cases, we have the hypothesis ⌈0⌉ 𝜌 |= Γ.

Case t-int: Direct with 𝑒 = 𝑣 = 𝑛 for some 𝑛.

Case t-var: By 𝜌 |= Γ, 𝜌 |= 𝑣 = 𝜌 (𝑥) : Γ(𝑥) = 𝜇.

Case t-inst: Similar to the case t-app. By breaking the

t-inst hypothesis we have ⌈2⌉ Γ(𝑥) = ∀𝑧.𝜏 . By breaking the

rule d-inst, we have ⌈3⌉ 𝜌 ⊢ 𝑒 { 𝑛, ⌈4⌉ 𝜌 (𝑥) = ⟨𝑧, 𝑒𝑖 , 𝜌 ′⟩
and ⌈5⌉ 𝜌 ′, 𝑧 : 𝑛 ⊢ 𝑒𝑖 { 𝑣 . By ⌈0⌉, 𝜌 |= 𝜌 (𝑥) : Γ(𝑥), and so

we have ⌈6⌉ 𝜌 |= ⟨𝑧, 𝑒𝑖 , 𝜌 ′⟩ : (𝑧 : int) → 𝜏 . And with the

rule l-int, ⌈7⌉ 𝜌 |= 𝑛 : int.
We apply the property of l-clos of ⌈6⌉ with the hypothesis

⌈7⌉ and ⌈5⌉ to have ⌈8⌉ 𝜌, 𝑧 : 𝑛 |= 𝑣 : 𝜏 . Then, by applying

3.4.1 over ⌈3⌉, and knowing that two integers are similar if

and only equals, we obtain 𝜌 |= 𝑣 : 𝜏{𝑒/𝑧} as required.
Case t-arith: The hypothesis are 𝜌 ⊢ 𝑒𝑙 ⋄ 𝑒𝑟 { 𝑘 and

Γ ⊢ 𝑒𝑙 ⋄ 𝑒𝑟 : int. By the rule l-int, we have 𝜌 |= 𝑘 : int as

required.

Case t-relax: Breaking t-relax, we have ⌈1⌉ Γ ⊢ 𝑒 : 𝜇

and ⌈2⌉ Γ ⊢ 𝜇 ⊑ 𝜇′. Also we have, 𝜌 ⊢ 𝑒 { 𝑣 . By induction

we have 𝜌 |= 𝑣 : 𝜇, then by proposition 3.9, 𝜌 |= 𝑣 : 𝜇′ as
required.

Case t-pair: Breaking the rule t-pairwe have ⌈1⌉ Γ ⊢ 𝑒1 :

𝜏1 and ⌈2⌉ Γ ⊢ 𝑒2 : 𝜏2, and then by breaking d-pair we obtain

⌈3⌉ 𝜌 ⊢ 𝑒1 { 𝑣1 and ⌈4⌉ 𝜌 ⊢ 𝑒2 { 𝑣2.

By induction on ⌈0⌉, ⌈1⌉ and ⌈3⌉, and a second time on ⌈0⌉,
⌈2⌉ and ⌈4⌉, we obtain ⌈5⌉ 𝜌 |= 𝑣1 : 𝜏1 and ⌈6⌉ 𝜌 |= 𝑣2 : 𝜏2.

We then use l-pair to have 𝜌 |= (𝑣1, 𝑣2) : (𝜏1, 𝜏2) as required.
Case t-fst: Breaking the rules t-fst and d-fst, we have

⌈1⌉ Γ ⊢ 𝑒 : (𝜏1, 𝜏2) and ⌈2⌉ 𝜌 ⊢ 𝑒 { (𝑣1, 𝑣2). By induction

we obtain ⌈3⌉ 𝜌 |= (𝑣1, 𝑣2) : (𝜏1, 𝜏2). We then break l-pair to

have 𝜌 |= 𝑣1 : 𝜏1 as required.

It’s the same proof for t-snd and t-index, by replacing

l-pair by l-arr.

39

FHPNC ’23, September 4, 2023, Seattle, WA, USA Lubin Bailly, Troels Henriksen, and Martin Elsman

Case t-iota: By breaking the rule d-iota, we have 𝜌 ⊢
𝑒 { 𝑛. Knowing that ∀𝑖, 𝜌 |= 𝑖 − 1 : int, we can use l-arr

to have 𝜌 |= [0, · · · , 𝑛 − 1] : [𝑒]int as required.

Case t-map: By breaking the rule t-map, we have ⌈1⌉
Γ ⊢ 𝑒𝑓 : (𝑥 : 𝜏) → 𝜏 ′, ⌈2⌉ 𝑥 ∉ fv(𝜏 ′) and ⌈3⌉ Γ ⊢ 𝑒𝑎 : [𝑒𝑠]𝜏 ,
then by breaking d-map, we have ⌈4⌉ 𝜌 ⊢ 𝑒𝑓 { ⟨𝑥, 𝑒, 𝜌 ′⟩,
⌈5⌉ 𝜌 ⊢ 𝑒𝑎 { [𝑣1, · · · , 𝑣𝑛] and ⌈6⌉ ∀𝑖, 𝜌 ′, 𝑥 : 𝑣𝑖 ⊢ 𝑒 { 𝑣 ′𝑖 .
We apply the induction on ⌈0⌉, ⌈1⌉ and ⌈4⌉, and a second

times on ⌈0⌉, ⌈3⌉ and ⌈5⌉ to have ⌈7⌉ 𝜌 |= ⟨𝑥, 𝑒, 𝜌 ′⟩ : (𝑥 :

𝜏) → 𝜏 ′ and ⌈8⌉ 𝜌 |= [𝑣1, · · · , 𝑣𝑛] : [𝑒𝑠]𝜏 . Breaking the rule

l-arr of ⌈8⌉, we have ⌈10⌉ ∀𝑖, 𝜌 |= 𝑣𝑖 : 𝜏 .

We then apply the rule l-clos of ⌈7⌉ with ⌈6⌉ and ⌈10⌉ to
have ⌈11⌉ ∀𝑖, 𝜌, 𝑥 : 𝑣𝑖 |= 𝑣 ′𝑖 : 𝜏 ′.
By 3.2, we know that Γ, 𝑥 : 𝜏 ⊢ 𝜏 ′ ok, so, with ⌈2⌉, we

can have ⌈12⌉ fv(𝜏 ′) ⊆ Dom(𝜌) = Dom(Γ). We can then

transform ⌈11⌉ into ⌈11
′⌉ ∀𝑖, 𝜌 |= 𝑣 ′𝑖 : 𝜏 ′. We also have ⌈14⌉

𝜌 ⊢ 𝑒𝑠 { 𝑛 by ⌈8⌉.
We can then conclude with l-arr, ⌈14⌉ and ⌈11

′⌉ to have

𝜌 |= [𝑣 ′
1
, · · · , 𝑣 ′𝑛] : 𝜏 ′ as required.

Case t-if: By breaking the rule t-if, we have ⌈1⌉ Γ ⊢ 𝑒𝑡 : 𝜇

and ⌈2⌉ Γ ⊢ 𝑒𝑓 : 𝜇.

We distinguish two sub-cases:

1. The evaluation is done with d-if-0: we then have ⌈3⌉
𝜌 ⊢ 𝑒𝑡 { 𝑣 so by induction we obtain 𝜌 |= 𝑣 : 𝜇 as

required

2. The evaluation is done with d-if-f: we then have ⌈4⌉
𝜌 ⊢ 𝑒𝑓 { 𝑣 so by induction we obtain 𝜌 |= 𝑣 : 𝜇 as

required

Case t-lam: By breaking the hypothesis ⌈0⌉, we have ⌈01⌉
Dom(Γ) = Dom(𝜌), ⌈02⌉ ⊢ Γ ok and ⌈03⌉ ∀𝑥 ∈ Dom(Γ), 𝜌 |=
𝜌 (𝑥) : Γ(𝑥). By breaking the rule t-lam, we have ⌈1⌉ Γ, 𝑦 :

𝜏 ⊢ 𝑒 : 𝜇 and ⌈2⌉ Γ ⊢ 𝜏 ok.
We need to prove ⌈𝑔𝑜𝑎𝑙⌉ ∀𝑣1, 𝑣2, (𝜌 |= 𝑣1 : 𝜏 ∧ 𝜌,𝑦 : 𝑣1 ⊢

𝑒 { 𝑣2) =⇒ 𝜌,𝑦 : 𝑣1 |= 𝑣2 : 𝜇.

For given 𝑣1, 𝑣2, we suppose ⌈3⌉ 𝜌 |= 𝑣1 : 𝜏 and ⌈4⌉ 𝜌,𝑦 :

𝑣1 ⊢ 𝑒 { 𝑣2. We transform ⌈3⌉ into ⌈3′⌉ 𝜌,𝑦 : 𝑣1 |= 𝑣1 : 𝜏

with 𝑦 ∉ fv(𝜏).
We define Γ

′ = Γ, 𝑦 : 𝜏 and 𝜌 ′ = 𝜌,𝑦 : 𝑣1. We then have

⌈61⌉ Dom(Γ′) = Dom(𝜌 ′) from ⌈01⌉ and definitions, ⌈62⌉
⊢ Γ

′ ok from ⌈02⌉, ⌈2⌉ and 3.2, and ⌈63⌉ ∀𝑥 ∈ Dom(Γ′), 𝜌 ′ |=
𝜌 ′ (𝑥) : Γ

′ (𝑥) from ⌈03⌉ and ⌈3′⌉. We can merge them into

⌈6⌉ 𝜌 ′ |= Γ
′
. Then by induction with ⌈6⌉ on ⌈1⌉ and ⌈4⌉ we

have 𝜌,𝑦 : 𝑣1 |= 𝑣2 : 𝜇.

We then have ⌈𝑔𝑜𝑎𝑙⌉ by abstracting 𝑣1 and 𝑣2.

Case t-coerce: Directly obtainned with 3.8 of 𝜌 ⊢ 𝑣 ⊲ 𝜏

Case t-app: By breaking the rule t-app, we have ⌈1⌉ Γ ⊢
𝑒 : (𝑦 : 𝜏) → 𝜇 and ⌈2⌉ Γ ⊢ 𝑒′ : 𝜏 . By breaking the rule d-app,

we have ⌈3⌉ 𝜌 ⊢ 𝑒 { ⟨𝑦, 𝑒𝑐 , 𝜌 ′⟩, ⌈4⌉ 𝜌 ⊢ 𝑒′ { 𝑣 ′ and ⌈5⌉
𝜌 ′, 𝑦 : 𝑣 ′ ⊢ 𝑒𝑐 { 𝑣 .

By induction on ⌈0⌉ with ⌈1⌉ and ⌈3⌉, then with ⌈2⌉ and
⌈4⌉, we have ⌈6⌉ 𝜌 |= ⟨𝑦, 𝑒𝑐 , 𝜌 ′⟩ : (𝑦 : 𝜏) → 𝜇 and ⌈7⌉
𝜌 |= 𝑣 ′ : 𝜏 .

We then use l-clos of ⌈6⌉ with ⌈7⌉ and ⌈5⌉, we have

𝜌,𝑦 : 𝑣 ′ |= 𝑣 : 𝜇 which, with 3.4.5, is transformed to 𝜌 |= 𝑣 :

𝜇{𝑒′/𝑦} as required.
Case t-let: By breaking the hypothesis ⌈0⌉, we have ⌈01⌉

Dom(Γ) = Dom(𝜌), ⌈02⌉ ⊢ Γ ok and ⌈03⌉ ∀𝑥 ∈ Dom(Γ), 𝜌 |=
𝜌 (𝑥) : Γ(𝑥).
By breaking the rule t-let, we have ⌈1⌉ Γ ⊢ 𝑒 : ∃𝑥 .𝜏 , ⌈2⌉

Γ, 𝑦 : 𝜏, 𝑥 : int ⊢ 𝑒′ : 𝜇 and ⌈3⌉ 𝑥,𝑦 ∉ fv(𝜇). By breaking the

rule d-let, we have ⌈4⌉ 𝜌 ⊢ 𝑒 { 𝑣 ′, ⌈5⌉ 𝜏 ⊢𝑥 𝑣 ′ { 𝑛 and ⌈6⌉
𝜌,𝑦 : 𝑣 ′, 𝑥 : 𝑛 ⊢ 𝑒′ { 𝑣 .

By induction on ⌈0⌉, ⌈1⌉ and ⌈4⌉, we have 𝜌 |= 𝑣 ′ : ∃𝑥 .𝜏
which is transformed into ⌈7⌉ 𝜌, 𝑥 : 𝑛 |= 𝑣 ′ : 𝜏 with 3.7 and

⌈5⌉. We also have ⌈8⌉ Γ, 𝑥 : int ⊢ 𝜏 okwith Γ ⊢ ∃𝑥 .𝜏 ok from
⌈1⌉.
We define Γ

′ = Γ, 𝑦 : 𝜏, 𝑥 : int and 𝜌 ′ = 𝜌,𝑦 : 𝑣 ′, 𝑥 :

𝑛. We then have ⌈91⌉ Dom(Γ′) = Dom(𝜌 ′) from ⌈01⌉ and
definitions, ⌈92⌉ ⊢ Γ

′ ok from ⌈02⌉ and ⌈8⌉, and ⌈93⌉ ∀𝑥 ∈
Dom(Γ′), 𝜌 ′ |= 𝜌 ′ (𝑥) : Γ

′ (𝑥) from ⌈03⌉ and ⌈7⌉. We can

merge them into ⌈9⌉ 𝜌 ′ |= Γ
′
.

We then have 𝜌 ′ |= 𝑣 : 𝜇 by induction on ⌈9⌉, ⌈2⌉ and ⌈6⌉,
which, by ⌈3⌉, is transformed into 𝜌 |= 𝑣 : 𝜇 as required.

Case t-let-gen: This is like doing t-lam and t-let at the

same time.

By breaking the hypothesis ⌈0⌉, we have ⌈01⌉ Dom(Γ) =
Dom(𝜌), ⌈02⌉ ⊢ Γ ok and ⌈03⌉ ∀𝑥 ∈ Dom(Γ), 𝜌 |= 𝜌 (𝑥) :

Γ(𝑥).
By breaking the rule t-let-gen, we have ⌈1⌉ Γ, 𝑧 : int ⊢

𝑒 : 𝜏 , ⌈2⌉ Γ, 𝑦 : ∀𝑧.𝜏 ⊢ 𝑒′ : 𝜇 and ⌈4⌉ 𝑦 ∉ fv(𝜇). And d-let-gen
gives us ⌈6⌉ 𝜌,𝑦 : ⟨𝑧, 𝑒, 𝜌⟩ ⊢ 𝑒′ { 𝑣 .

(t-lam part)

We want to prove the sub-goal ⌈7⌉ 𝜌 |= ⟨𝑧, 𝑒, 𝜌⟩ : ∀𝑧.𝜏 ,
which requires to prove ∀𝑛, 𝑣2, (𝜌, 𝑧 : 𝑛 ⊢ 𝑣2) =⇒ 𝜌, 𝑧 : 𝑛 |=
𝑣2 : 𝜏 .

For given 𝑛, 𝑣2, we suppose ⌈8⌉ 𝜌, 𝑧 : 𝑛 ⊢ 𝑣2.

We define Γ
′ = Γ, 𝑧 : int and 𝜌 ′ = 𝜌, 𝑧 : 𝑛. We then have

⌈91⌉ Dom(Γ′) = Dom(𝜌 ′) from ⌈01⌉, ⌈92⌉ ⊢ Γ
′ ok from ⌈02⌉

and ⌈93⌉ ∀𝑥 ∈ Dom(Γ′), 𝜌 ′ |= 𝜌 ′ (𝑥) : Γ
′ (𝑥) from ⌈03⌉. We

can merge them into ⌈9⌉ 𝜌 ′ |= Γ
′
.

We then have by induction on ⌈9⌉, ⌈8⌉ and ⌈1⌉ 𝜌 ′ |= 𝑣2 : 𝜏 .

⌈7⌉ is then obtainned by abstracting 𝑛, 𝑣2.

(t-let part)

With 3.2 of ⌈1⌉ and ⌈3⌉, we have ⌈11⌉ Γ ⊢ ∀𝑧 ok.
We define Γ

′′ = Γ, 𝑦 : ∀𝑧.𝜏 and 𝜌 ′′ = 𝜌, ⟨𝑧, 𝑒, 𝜌⟩. We then

have ⌈121⌉ Dom(Γ′′) = Dom(𝜌 ′′) from ⌈01⌉, ⌈122⌉ ⊢ Γ
′′ ok

from ⌈02⌉ and ⌈11⌉, and ⌈123⌉ ∀𝑥 ∈ Dom(Γ′′), 𝜌 ′′ |= 𝜌 ′′ (𝑥) :

Γ
′′ (𝑥) from ⌈03⌉ and ⌈7⌉. We can merge them into ⌈12⌉ 𝜌 ′′ |=

Γ
′′
.

We then have 𝜌 ′′ |= 𝑣 : 𝜇 by induction on ⌈12⌉, ⌈2⌉ and ⌈6⌉,
which, by ⌈4⌉, is transformed into 𝜌 |= 𝑣 : 𝜇 as required. □

40

Shape-Constrained Array Programming with Size-Dependent Types FHPNC ’23, September 4, 2023, Seattle, WA, USA

References
[1] Ana Bove, Peter Dybjer, and Ulf Norell. 2009. A Brief Overview of Agda-

A Functional Language with Dependent Types.. In TPHOLs, Vol. 5674.
Springer, 73–78. https://doi.org/10.1007/978-3-642-03359-9_6

[2] Edwin Brady. 2013. Idris, a general-purpose dependently typed pro-

gramming language: Design and implementation. Journal of func-
tional programming 23, 5 (2013), 552–593. https://doi.org/10.1017/
S095679681300018X

[3] Edwin Brady. 2021. Idris 2: Quantitative type theory in practice. arXiv
preprint arXiv:2104.00480 (2021). https://doi.org/10.48550/arXiv.2104.
00480

[4] Kevin Donnelly and Hongwei Xi. 2007. A Formalization of Strong

Normalization for Simply-Typed Lambda-Calculus and System F. Elec-
tronic Notes in Theoretical Computer Science 174, 5 (2007), 109–125.

https://doi.org/10.1016/j.entcs.2007.01.021 Proceedings of the First

International Workshop on Logical Frameworks and Meta-Languages:

Theory and Practice (LFMTP 2006).

[5] Martin Elsman and Martin Dybdal. 2014. Compiling a Subset of APL

Into a Typed Intermediate Language. In Proceedings of ACM SIGPLAN
InternationalWorkshop on Libraries, Languages, and Compilers for Array
Programming (Edinburgh, United Kingdom) (ARRAY’14). Association
for Computing Machinery, New York, NY, USA, 101–106. https://doi.
org/10.1145/2627373.2627390

[6] Martin Elsman, Troels Henriksen, Danil Annenkov, and Cosmin E.

Oancea. 2018. Static Interpretation of Higher-Order Modules in

Futhark: Functional GPU Programming in the Large. Proc. ACM Pro-
gram. Lang. 2, ICFP, Article 97 (jul 2018), 30 pages. https://doi.org/10.
1145/3236792

[7] Jeremy Gibbons. 2016. APLicative Programming with Naperian

Functors (Extended Abstract). In Proceedings of the 1st International
Workshop on Type-Driven Development (Nara, Japan) (TyDe 2016).
Association for Computing Machinery, New York, NY, USA, 13–14.

https://doi.org/10.1145/2976022.2976023
[8] Jean Yves Girard. 1971. Interpretation Fonctionnelle et Elimination

des Coupures de l’Arithmetique d’Ordre Superieur. In Proceedings of
the Second Scandinavian Logic Symposium. North-Holland, 63–92.

[9] Troels Henriksen. 2021. Bounds Checking on GPU. International
Journal of Parallel Programming 49, 6 (2021), 761–775. https://doi.org/
10.1007/s10766-021-00703-4

[10] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn,

Daniel Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea.

2016. APL on GPUs: A TAIL from the Past, Scribbled in Futhark.

In Proceedings of the 5th International Workshop on Functional High-
Performance Computing (Nara, Japan) (FHPC 2016). Association for

Computing Machinery, New York, NY, USA, 38–43. https://doi.org/
10.1145/2975991.2975997

[11] Troels Henriksen and Martin Elsman. 2021. Towards Size-Dependent

Types for Array Programming. In Proceedings of the 7th ACM SIG-
PLAN International Workshop on Libraries, Languages and Compil-
ers for Array Programming (Virtual, Canada) (ARRAY 2021). Associ-
ation for Computing Machinery, New York, NY, USA, 1–14. https:
//doi.org/10.1145/3460944.3464310

[12] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein,

and Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-

programming with Nested Parallelism and In-place Array Updates. In

Proceedings of the 38th ACM SIGPLAN Conference on Programming Lan-
guage Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM,

New York, NY, USA, 556–571. https://doi.org/10.1145/3062341.3062354
[13] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. 2019.

High-Performance Defunctionalisation in Futhark. In Trends in Func-
tional Programming, Michał Pałka and Magnus Myreen (Eds.). Springer

International Publishing, Cham, 136–156. https://doi.org/10.1007/978-
3-030-18506-0_7

[14] C.Barry Jay. 1995. A semantics for shape. Science of Computer
Programming 25, 2 (1995), 251–283. https://doi.org/10.1016/0167-
6423(95)00015-1 Selected Papers of ESOP’94, the 5th European Sym-

posium on Programming.

[15] C.B. Jay. 1999. Denotational Semantics of Shape:: Past, Present and

Future. Electronic Notes in Theoretical Computer Science 20 (1999),

320–333. https://doi.org/10.1016/S1571-0661(04)80081-1 MFPS XV,

Mathematical Foundations of Progamming Semantics, Fifteenth Con-

ference.

[16] Marc Pouzet Jean-Louis Colaço, Baptiste Pauget. 2023. Polymor-

phic Types with Polynomial Sizes. In Proceedings of the 9th ACM
SIGPLAN International Workshop on Libraries, Languages and Com-
pilers for Array Programming (Orlando, USA) (ARRAY 2023). Asso-
ciation for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3589246.3595372

[17] RobinMilner. 1978. A theory of type polymorphism in programming. J.
Comput. System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-
0000(78)90014-4

[18] Lenore Marie Restifo Mullin. 1988. A Mathematics of Arrays.
Ph. D. Dissertation. USA. https://dl.acm.org/doi/book/10.5555/915213
AAI8914581.

[19] Amr Sabry and Matthias Felleisen. 1992. Reasoning About Programs

in Continuation-passing Style. SIGPLAN Lisp Pointers V, 1 (Jan. 1992),
288–298. https://doi.org/10.1145/141471.141563

[20] Sven-Bodo Scholz. 1994. Single-assignment C — Functional Program-

ming Using Imperative Style. In 6th International Workshop on Im-
plementation of Functional Languages (IFL’94), Norwich, England, UK,
John Glauert (Ed.). University of East Anglia, Norwich, England, UK,

211–2113. https://www.sac-home.org/_media/publications:pdf:sac-
overview-norwich-94.pdf

[21] Justin Slepak, Olin Shivers, and Panagiotis Manolios. 2014. An Array-

Oriented Language with Static Rank Polymorphism. In Programming
Languages and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg,

Berlin, Heidelberg, 27–46. https://doi.org/10.1007/978-3-642-54833-
8_3

[22] W. W. Tait. 1967. Intensional Interpretations of Functionals of Finite

Type I. The Journal of Symbolic Logic 32, 2 (1967), 198–212. https:
//doi.org/10.2307/2271658

[23] Peter Thiemann and Manuel M. T. Chakravarty. 2013. Agda Meets

Accelerate. In Implementation and Application of Functional Languages
(IFL ’13), Ralf Hinze (Ed.). Springer Berlin Heidelberg, Berlin, Heidel-

berg, 174–189. https://doi.org/10.1007/978-3-642-41582-1_11
[24] Kai Trojahner and Clemens Grelck. 2009. Dependently typed array

programs don’t go wrong. The Journal of Logic and Algebraic Program-
ming 78, 7 (2009), 643–664. https://doi.org/10.1016/j.jlap.2009.03.002
The 19th Nordic Workshop on Programming Theory (NWPT 2007).

[25] Niki Vazou, Eric L. Seidel, Ranjit Jhala, Dimitrios Vytiniotis, and Simon

Peyton-Jones. 2014. Refinement Types for Haskell. SIGPLAN Not. 49,
9 (aug 2014), 269–282. https://doi.org/10.1145/2692915.2628161

[26] Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound

Checking through Dependent Types. In Proceedings of the ACM SIG-
PLAN 1998 Conference on Programming Language Design and Im-
plementation (Montreal, Quebec, Canada) (PLDI ’98). Association
for Computing Machinery, New York, NY, USA, 249–257. https:
//doi.org/10.1145/277650.277732

Received 2023-05-31; accepted 2023-06-28

41

https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.48550/arXiv.2104.00480
https://doi.org/10.48550/arXiv.2104.00480
https://doi.org/10.1016/j.entcs.2007.01.021
https://doi.org/10.1145/2627373.2627390
https://doi.org/10.1145/2627373.2627390
https://doi.org/10.1145/3236792
https://doi.org/10.1145/3236792
https://doi.org/10.1145/2976022.2976023
https://doi.org/10.1007/s10766-021-00703-4
https://doi.org/10.1007/s10766-021-00703-4
https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1007/978-3-030-18506-0_7
https://doi.org/10.1007/978-3-030-18506-0_7
https://doi.org/10.1016/0167-6423(95)00015-1
https://doi.org/10.1016/0167-6423(95)00015-1
https://doi.org/10.1016/S1571-0661(04)80081-1
https://doi.org/10.1145/3589246.3595372
https://doi.org/10.1145/3589246.3595372
https://doi.org/10.1016/0022-0000(78)90014-4
https://doi.org/10.1016/0022-0000(78)90014-4
https://dl.acm.org/doi/book/10.5555/915213
https://doi.org/10.1145/141471.141563
https://www.sac-home.org/_media/publications:pdf:sac-overview-norwich-94.pdf
https://www.sac-home.org/_media/publications:pdf:sac-overview-norwich-94.pdf
https://doi.org/10.1007/978-3-642-54833-8_3
https://doi.org/10.1007/978-3-642-54833-8_3
https://doi.org/10.2307/2271658
https://doi.org/10.2307/2271658
https://doi.org/10.1007/978-3-642-41582-1_11
https://doi.org/10.1016/j.jlap.2009.03.002
https://doi.org/10.1145/2692915.2628161
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 The Language F
	2.1 Types
	2.2 Type Rules
	2.3 Dynamic Semantics

	3 Metatheory for F
	3.1 Properties of Substitutions
	3.2 Dynamic Properties

	4 Inference and Normalisation
	4.1 Causality
	4.2 Inference

	5 Implementation
	5.1 Type-level programming
	5.2 Performance

	6 Related Work
	7 Conclusions
	A Proofs of Proposition 3.10
	References

