
Dynamic Programming in Futhark

Martin Elsman, DIKU, University of Copenhagen

October 23, 2021

This note describes how the Futhark [1, 2] dynamic programming library dpsolver1 can be used
to find fixpoints for functions from Rn to Rn and how solutions to multiple instances of a dynamic
programming problem can be computed in parallel on GPUs. We give both single-dimensional
and multi-dimensional examples and we show how the Futhark automatic differentiation feature
may relieve programmers from specifying explicitly the Jacobian matrices, which are necessary
for using dpsolver’s fast converging Newtonian functionality.

Introduction
A standard approach for finding fixpoints for numerical functions from Rn to Rn is to use the
technique of successive approximations. Following Section 4 of Numerical Dynamic Programming
in Economics, by John Rust [3], the dynamic programming solver that we shall apply here first
uses a number of successive approximation steps before it applies a more efficient Newtonian
method for narrowing in on a fixpoint. The latter method requires that the user specifies how to
compute the Jacobian matrix (of type Rn×n) given an approximate fixpoint. The Jacobian is
then computed for each Newtonian step.

Example: Intersection of a circle and a quadratic equation
Following the example in Jim Lander’s MAT 461/561 lecture notes, we first set out to find the
intersection between the unit circle (x2

1 + x2
2 = 1) and the quadratic equation x2 = x2

1.2

We first define an operator for which we want to find a fixpoint. To ensure that the natural
matrix norm of the Jacobian matrix for the function is less than 1 (0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1),
we give the following definition of the fixpoint operator G:

G(x1, x2) = (
√

x2,
√

1− x2
1) (1)

Without having to define the Jacobian matrix for the function, we can find an approximation to
the fixpoint using the successive approximation functionality of the dpsolver library.

1The Futhark library dpsolver is based on a Matlab library implemented by Bertel Schjerning, ECON,
University of Copenhagen.

2Analytically, the solution can easily be found by solving the quadratic equation x2
2 + x2 − 1 = 0, which leads

to the solution x1 = 0.786151377757 and x2 = 0.61803398874989.

1

https://editorialexpress.com/jrust/sdp/ndp.pdf
https://editorialexpress.com/jrust/sdp/ndp.pdf
https://www.math.usm.edu/lambers/mat461/lecture22.pdf

We first import the library dpsolver and instantiate the contained module dpsolver to the
f64 representation of floats:

import "dpsolver"
module dps = mk_dpsolver f64

The function dps.sa that we shall apply has the following type:

val sa [m] : (f:[m]t->[m]t) -> (v:[m]t) -> (p:param) -> (b:t)
-> ([m]t, bool, i64, t, t)

Here t is identical to f64 due to the f64 module instantiation of the mk_dpsolver parameterised
module.

We now define the bellman equation for which we want to find a fixpoint:

let bellman (x1:f64) (x2:f64) : (f64,f64) =
(f64.sqrt x2, f64.sqrt(1 - x1**2))

Before we can make use of the library module, we define a small utility function wrap2, which
takes a function of type f64 -> f64 -> (f64, f64) and turns it into a function of type [2]f64
-> [2]f64, which is compatible with the successive approximation functionality in the dps
module:

let wrap2 (f: f64 -> f64 -> (f64,f64)) (a:[2]f64) : [2]f64 =
let (x,y) = f a[0] a[1]
in [x,y]

The following Futhark entry point makes a call to the dps.sa function with the above bellman
function wrapped as a parameter:

entry test_sa (sa_max:i64) (sa_tol:f64)
: ([2]f64, bool, i64, f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max

with sa_tol = sa_tol
let (res, b, i, tol, _) = dps.sa (wrap2 bellman) v0 ap 0
in (res, b, i, tol)

The function dps.sa also takes an initial approximation as argument (v0) together with an
ap value that defines some slightly modified default parameter settings (max iterations, max
tolerance, etc.)

We can now call the function:

> test_sa 60i64 1.0e-3f64

([0.7855137639650378f64, 0.6177294754734614f64], true, 56i64,
8.769119278559945e-4f64)

We see that after 56 iterations, a fixpoint is found with a tolerance below 1e-3, meaning that
the last iteration step contributed to a change in value of less than 1e-3 for both x1 and x2. For
improved precision, many more iterations are required:

2

> test_sa 200i64 1.0e-9f64

([0.7861513784203592f64, 0.6180339890667096f64], true, 186i64,
9.120002530949023e-10f64)

Faster convergence with Newton’s method
The function G, as defined in (1), has the following Jacobian matrix:

JG(x1, x2) =
[

0 1
2√x2

−x1√
1−x2

1
0

]

The following version of the bellman function takes its input as an array of size 2 and returns,
along with the function result, the Jacobian matrix, relative to the argument:

let bellman_j (a:[2]f64) : ([2]f64, [2][2]f64) =
let x1 = a[0]
let x2 = a[1]
let res = [f64.sqrt x2, f64.sqrt(1-x1**2)]
let j = [[0 , 1/(2*f64.sqrt x2)],

[-x1/(f64.sqrt(1-x1**2)) , 0]]
in (res, j)

The function dps.poly that we shall apply has the following type:

val poly [m]: (f: [m]t -> ([m]t,[m][m]t)) -> (v:[m]t) -> (p:param)
-> (b:t) -> ([m]t,[m][m]t,bool,i64,i64,i64,t)

Again, here t is identical to f64 due to the f64 module instantiation of the mk_dpsolver
parameterised module. The function finds a fixpoint for the function f using a combination of
successive approximation iterations and Newton-Kantorovich iterations. The initial guess is v
and the parameter p controls the iteration passes. The function f should return a pair of a new
next approximation and the Jacobian matrix for the function f relative to the argument given.
The function returns a 7-tuple containing an approximate fixpoint, a Jacobian matrix for the
fixpoint, a boolean specifying whether the algorithm converged (according to the values in p),
the number of iterations used for the total sa iterations, the total Newton-Kantoovich iterations,
and the number of roundtrips. The 7’th element of the result tuple is the tolerance of the last
two fixpoint approximations (maximum of each dimension).

entry test_poly (sa_max:i64) : ([2]f64, bool, i64, i64, i64, f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max
let (res, _, b, i, j, k, tol) = dps.poly bellman_j v0 ap 0
in (res, b, i, j, k, tol)

> test_poly 5i64

([0.7861513777574233f64, 0.6180339887498949f64], true, 5i64, 4i64, 1i64,
1.1102230246251565e-16f64)

3

Notice that the progammer has manually provided code for computing the Jacobian matrix for
the function. The result is a fixpoint with a tolerance below 1e-15, computed with an initial
number of 5 successive approximation iterations followed by 4 Newtonial iterations (1 roundtrip
was used).

Futhark AD
We can relieve the programmer from manually providing the code for the Jacobian matrix
by using the automatic differentiation feature of Futhark, which provides a function jvp that
performs forward automatic differentiation on arbitrary Futhark functions (featured in the
Futhark clean-ad branch, but not yet featured in the master branch). An alternative is to
encode float computations using so-called dual-numbers, following the approach of AD with dual
numbers, but we shall not dive into this possibility here.

We first define a function wrapj that takes a function of type [n][m].[n]f64->[m]f64 and
turns it into a function of type [n][m].[n]f64->([m]f64,[m][n]f64) that, besides from the
function result, returns the Jacobian matrix of the function:

let idd n i = tabulate n (\j -> if i==j then 1f64 else 0f64)

let wrapj [n][m] (f: [n]f64->[m]f64) (x:[n]f64) : ([m]f64,[m][n]f64) =
(f x, tabulate n (jvp f x <-< idd n) |> transpose)

Functions wrapped with the wrapj function can now be used directly with the dps.poly function.
Let’s try it out in practice:

entry test_poly_jvp (sa_max:i64) : ([2]f64,bool,i64,i64,i64,f64) =
let v0 = [0.5, 0.5]
let ap = dps.default with sa_max = sa_max
let (res, _, b, i, j, k, tol) =

dps.poly ((wrapj <-< wrap2) bellman) v0 ap 0
in (res, b, i, j, k, tol)

> test_poly_jvp 5i64

([0.7861513777574233f64, 0.6180339887498949f64], true, 5i64, 4i64, 1i64,
1.1102230246251565e-16f64)

We see that we get the same results with test_poly_jvp as we get with test_poly.

Going parallel
The iterative approaches that the dpsolver functionality implements for finding fixpoints are
inherently sequential, except from the matrix operations applied in the Newton-Kantorovich
iterations (assuming a high-number of dimensions). Instead of parallelising the actual fixpoint
resolution, we shall see how we can find many fixpoints in parallel, which is sometimes a useful
approach for speeding up an application.

Following up on the task of finding intersection points between a circle and a simple quadratic
equation, let us investigate how the x-dimension of the intersection points changes when the

4

https://github.com/diku-dk/futhark/issues/1249
https://github.com/diku-dk/futhark/tree/clean-ad
https://futhark-lang.org/examples/dual-numbers.html
https://futhark-lang.org/examples/dual-numbers.html

circle radius increases.

We first parameterise the bellman equation over the radius of the circle:

let bellmanr (r:f64) (a:[2]f64) : ([2]f64, [2][2]f64) =
let f (a:[2]f64) = [f64.sqrt a[1], f64.sqrt(r**2-a[0]**2)]
let res = f a
let j = [[0 , 1/(2*f64.sqrt a[1])],

[-a[0]/f64.sqrt(r**2-a[0]**2) , 0]]
in (res, j)

We then create an entry point that implements an outer map over a call to dps.poly with
varying radius:

let linspace (n: i64) (start: f64) (end: f64) : [n]f64 =
tabulate n (\i -> start + f64.i64 i * ((end-start)/f64.i64 n))

entry test_polyr (n:i64) (sa_max:i64)
: (bool, i64, [n]f64, [n]f64) =
let ap = dps.default with sa_max = sa_max
let rs = linspace n 1 20
let ress = map (\r -> let v0 = [0.5,0.5]

let (res, _, b, i, j, _k, _tol) =
dps.poly (bellmanr r) v0 ap 0

in (r,res[0],b,i+j)) rs
let converged = reduce (&&) true (map (.2) ress)
let xs = map (.1) ress
let iterations = reduce (+) 0 (map (.3) ress)
in (converged, iterations, rs, xs)

Here is a call to test_polyr with 4 different radius values (between 1 and 20) and an sa_max
value of 3:

> test_polyr 4i64 3i64

(true, 25i64, [1.0f64, 5.75f64, 10.5f64, 15.25f64],
[0.7861513777574233f64, 2.2960178985163853f64, 3.164158343195599f64, 3.841639561393954f64])

We can use the plot functionality of literate Futhark to plot 1000 points relating radius values
with associated found x-values (and compare it with a plot of the sqrt-function):

entry test_polyr_rxs (n:i64) (sa_max:i64)
: ([n]f64, [n]f64) =
test_polyr n sa_max |> (\(_,_,rs,xs) -> (rs,xs))

let xys f n start end =
unzip (map (\x -> (x, f x)) (linspace n start end))

entry sqrt_coords = xys f64.sqrt

> :plot2d {rxs=test_polyr_rxs 1000i64 3i64,

5

https://futhark-lang.org/examples/literate-basics.html

sqrt=sqrt_coords 1000i64 1.0f64 21.0f64};
size: (400,1000)

A few single-dimensional examples
We now consider a single-dimensional case, for which we want to find the x for which f(x) = cos x.

entry test_poly1d (sa_max : i64)
: ([1]f64, [1][1]f64, bool, i64, i64, i64, f64) =
let ap = dps.default with sa_max = sa_max
in dps.poly (\x -> ([f64.cos x[0]],

[[- f64.sin x[0]]]))
[0.7] ap 0

> test_poly1d 0i64

([0.7390851332151607f64], [[-0.6736120230211678f64]], true, 0i64, 3i64, 1i64,
0.0f64)

For another example, we want to compute
√

2 by finding the fixpoint to the equation f(x) =
1
2 (x + 2

x).

entry test_sqrt (sa_max : i64)
: ([1]f64, [1][1]f64, bool, i64, i64, i64, f64) =
let ap = dps.default with sa_max = sa_max
in dps.poly (\x -> ([0.5 * (x[0]+2/x[0])],

[[2*x[0]]])
) [1.4] ap 0

> test_sqrt 0i64

([1.414213562373095f64], [[2.828427124746191f64]], true, 0i64, 4i64, 1i64,
1.1102230246251565e-15f64)

Remarkably, in 4 steps we reach a fixpoint of 1.41421356237. . . with a tolerance of 1.11e-15.

6

Conclusion
We have seen how we can use the dpsolver library to solve multi-dimensional fixpoint equations.
We have also seen how we can solve multiple problems in parallel using Futhark’s second-order
array combinators.

References
[1] Elsman, M., Henriksen, T. and Oancea, C.E. 2018. Parallel programming in Futhark.

Department of Computer Science, University of Copenhagen.
[2] Henriksen, T., Serup, N.G.W., Elsman, M., Henglein, F. and Oancea, C.E. 2017. Futhark:

Purely functional GPU-programming with nested parallelism and in-place array updates.
Proceedings of the 38th ACM SIGPLAN conference on programming language design and
implementation (New York, NY, USA, 2017), 556–571.

[3] Rust, J. 1996. Numerical dynamic programming in economics. Elsevier. 619–729.

7

https://futhark-book.readthedocs.io
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1016/S1574-0021(96)01016-7

	Introduction
	Example: Intersection of a circle and a quadratic equation
	Faster convergence with Newton's method
	Futhark AD
	Going parallel
	A few single-dimensional examples
	Conclusion
	References

