
Carillon�|a System to FindY2K Problems in C ProgramsMartin Elsman, Je�rey S. Foster, and Alexander AikenComputer Siene Division, University of California, Berkeleybane-software�s.berkeley.eduJuly 30, 1999\Any man's death diminishes me, beause I am involved in mankind;and therefore never send to know for whom the bell tolls;it tolls for thee."|John DonneAbstratCarillon is a simple, fast, and e�etive type-based system for �nding Y2K errorsin C programs. Carillon extends the standard C type system with a user-de�ned setof date-related type quali�ers. The user annotates date-related funtions with theappropriate quali�ers, and Carillon heks the program for Y2K errors.Carillon displays the results of the Y2K analysis in an interative Emas bu�er.Program variables are olored aording to the kind of Y2K information they mayontain, and the user an lik on program variables to see the exat Y2K type inferredby the analysis.The system has been used suessfully to verify Y2K readiness of programs and toloate Y2K errors.Carillon is distributed without any warranty.The opyright notie in Appendix B applies.1 IntrodutionThe Y2K problem, or the millennium bug, happens when a program represents years usingonly two digits. If the year 2000 is represented by the string "00", then a program may notbe able to tell the di�erene between the year 2000 and the year 1900. As we enter the newmillennium, suh bugs an lead to system rashes, or worse, a seemingly-working programthat omputes the wrong results.Beause most of the world's legay ode is written in COBOL, the ommerial market-plae has foused on Y2K bugs in the business and �nanial appliations written in COBOL.But these appliations are not the only ones with potential damaging Y2K bugs. Control�Carillon is also the name of the bells of the Sather Tower at University of California, Berkeley.1

software for embedded systems and operating system software are examples of systems wheredates play a ritial rôle. Many suh systems are written in the C programming language,and the ommerial Y2K tools available for C are not as sophistiated as the COBOL tools.While the C Standard Library provides Y2K-safe date operations, it is ommon that pro-grams manipulate dates diretly as strings of haraters|for instane, to interat with otherprograms. It is essential to establish that suh systems run as expeted when we enter thenew millennium.Carillon is an easy-to-use type-based system for �nding Y2K problems in C programs andfor showing that suh problems do not exist. Carillon has the following important features:� Carillon points the user to Y2K related problems and makes her onentrate on theparts of the program that manipulate dates. The system an analyze soure �lesindependently for quik and easy use. It also supports whole-program analysis forimproved preision.� Y2K safety is guaranteed up to asting; Carillon provides an overview of the Y2Kunsafe asts in the analyzed program.� Analysis of industrial-sized programs is supported, even with whole-program analysis.Whole-program analysis of a 57,000 line program (132,000 lines preproessed) takes137 seonds on a 300MHz Pentium II.� Annotations are neessary only where dates are manipulated. Beause Carillon pro-vides type inferene and quali�er polymorphism, relatively few annotations are needed.� Carillon is easily integrated with other tools, suh as ompilers. Analysis results arepresented to the user in an interative Emas bu�er and an be browsed through usingthe mouse or the keyboard.Carillon has been used to verify that RCS (Revision Control System) version 5.6.0.1 doesnot ontain any Y2K errors. RCS is about 17,000 lines of C (41,000 lines of preproessed C.)The experiment took only two hours: This time was spent partly on instrumenting the RCSMake�le to output preproessed ode, partly on annotating the main header �le of RCS, andpartly on solving type onits that were not Y2K errors.Carillon has also been used to loate a millennium bug in CVS (Conurrent VersionSystem) version 1.9. CVS is about 57,000 lines of C (132,000 lines of preproessed C.) Themillennium bug is �xed in CVS version 1.10.There are three tehnial, researh-related ontributions from the development of Caril-lon:� The system is a demonstration of how a program analysis an be omposed fromomponents of the Berkeley ANalysis Engine (BANE). BANE provides a ompleteinfrastruture for developing program analysis appliations, inluding language front-ends, eÆient algorithms for solving di�erent kinds of onstraints, and a ustomizableuser-interfae alled PAM (for Program Analysis Mode) for visualizing the results of aprogram analysis in Emas. Using BANE, Carillon was developed in one month.2

� The Carillon type system is a result of an ongoing e�ort at providing an open type-system, in whih the user (or analysis implementor) an modify the typing rules forspei� needs. This open type-system is based on the notion of quali�ers [FFA99℄.� Carillon supports quali�er polymorphism, whih dereases the number of required Y2Kannotations. Quali�er polymorphism is an enhanement over other type-based toolsfor �nding Y2K errors in COBOL programs [EHM+99℄.In the next setion, we give information about obtaining and installing Carillon. InSetion 3, we show a �rst example of �nding a Y2K bug in a C program. The type systemthat Carillon uses and various aspets of how to use Carillon is desribed in Setions 4 and 5.In Setion 6, we give an example from the use of Carillon to verify Y2K readiness of RCS.Quali�er polymorphism and how Carillon an analyze multiple �les at one is desribed inSetions 7 and 8. The PAM Emas interfae is doumented in Setion 9. Information aboutthe authors and a onlusion is given in Setions 10 and 11.2 InstallationFor the installation, we assume some familiarity with Emas and UNIX. Carillon requiresGNU Emas 20.2.1 or later.Carillon is shipped as a gzipped tar-�le, whih an be downloaded from the web pagehttp://bane.s.berkeley.edu/arillonThere are versions of Carillon for X86-Linux, Spar-Solaris, and HPPA-HPUX. When youhave downloaded the gzipped tar �le, named Carillon_X.tar.gz, where X denotes theplatform you are using, exeute the ommandsgunzip Carillon_X.tar.gztar xf Carillon_X.tarThese ommands reate a diretory alled Carillon with the following �le and diretories:opyright The opyright notiebin/ Carillon exeutableemas/ Elisp ode for displaying the analysis results in Emasexample/ Example diretorydo/ DoumentationNow exeute the ommandsd Carillon./setupThe setup sript generates a few lines of Emas ode to put in your .emas �le (see Se-tion 2.1). The sript also makes Carillon exeutable from the diretory in whih it is installed.3

2.1 Customizing EmasBefore you an use Carillon, you need to add to your .emas �le the Emas ode that thesetup sript writes to the �le emas/personal.el during setup. This �le ontains (afterrunning the setup sript) the following lines, with the di�erene that the diretory path/home/mael is modi�ed for your environment:(setq load-path (append (list "/home/mael/Carillon/emas/pam""/home/mael/Carillon/emas/pam/elib")load-path))(autoload 'pam-analyze-file "pam-3" "Carillon Version 1.0" t)(setq pam-default-analysis '("/home/mael/Carillon/bin/arillon""-onfig""/home/mael/Carillon/examples/onfig.d""-prelude""/home/mael/Carillon/examples/prelude.i"))(fset 'arillon 'pam-analyze-file)2.2 Changing the PAM ColorsCarillon omes with a set of prede�ned olors used to display analysis information. Theseolors are designed to work well with a grey bakground, and you may need to hange themto suit other olor shemes. You an ustomize the PAM olors by adding the following linesto your .emas �le and hanging the olors to whatever your prefer.(ustom-set-faes'(pam-olor-1 ((t (:foreground "Red" :underline t))) t)'(pam-olor-2 ((t (:foreground "Blue" :underline t))) t)'(pam-olor-3 ((t (:foreground "Turquoise" :underline t))) t)'(pam-olor-4 ((t (:foreground "Green" :underline t))) t)'(pam-olor-5 ((t (:foreground "Violet" :underline t))) t)'(pam-olor-6 ((t (:foreground "GreenYellow" :underline t))) t)'(pam-olor-7 ((t (:foreground "Magenta" :underline t))) t)'(pam-olor-8 ((t (:foreground "Thistle" :underline t))) t)'(pam-olor-mouse ((t (:foreground "White":bakground "Grey" :underline t))) t))The use of olors 1-8 is determined by a on�guration �le passed to Carillon (see Se-tion 5.5). The last olor, pam-olor-mouse, is the olor with whih hyperlinks are high-lighted when the mouse pointer is moved on top of them. A opy of this ode an be foundin emas/pam_olors.el.Another possibility is to hange the Emas bakground olor by typing M-x set-bakground-olor. We reommend seleting \White" to make the default PAM olors most readable.
4

3 First ExampleIn this setion, we demonstrate how Carillon an be used to �nd a Y2K error in a C program.Consider the following program, found in examples/simple1.:int printf(onst har * format, ...);void pr_year(har * year) {printf("The year is 19%s", year);}int main() {pr_year("99");pr_year("2000"); /*1*/return 0;}Here the programmer's intention is that the funtion pr_year is applied to strings thatonsist of two digits, representing a year after the year 1900. As we an see in line /*1*/,the funtion pr_year is not applied to only two-digit years, but also to the four-digit year"2000". The problem here is that years are represented di�erently in di�erent parts of theprogram.Our tool does not assume anything about the funtions or strings that appear in aprogram|after all, "99" ould represent the year 1999, the programmer's age, or the ex-peted temperature in degrees Fahrenheit.Instead of guessing whih strings represent dates, Carillon requires that the programmerprovides information about her intentions with quali�er annotations. In this ase, we addannotations to mark two-digit years and four-digit years (see examples/simple2.):int printf(onst har * format, ...);void pr_year(har * $YY year) {printf("The year is 19%s", year);}int main() {pr_year((har * $YY)"99");pr_year((har * $YYYY)"2000"); /*2*/return 0;}The annotation on the parameter of the pr_year funtion indiates that it may take onlya two-digit year as an argument. Carillon assumes that the type of all string literals ishar *$NONYEAR, that is, strings by default do not ontain dates. Beause the strings "99"and "2000" in this ase do ontain dates, we ast their types to har *$YY and har *$YYYY,respetively.Notie that only those parts of a program that manipulate dates need be annotated. Forour small example that was most of the program, but in pratie, almost all of a programan remain unannotated. 5

3.1 Finding the Y2K ErrorAssuming that Carillon is already installed, as desribed in Setion 2, you an now runCarillon on the example program. From within Emas, type M-x arillon and enter thestring "examples/simple2." (assuming you are in the diretory where Carillon is installed)when asked for the �le to analyze. The system analyzes a prelude �le examples/prelude.iand then the �le examples/simple2., whih uses the printf funtion delared both in the�le examples/simple2. and in the prelude �le. Carillon displays the result in an Emasbu�er.As we expet, Carillon omplains with an error message:/home/mael/Carillon/examples/simple2.:9.4-9.11Error during analysis of ``pr_year((har *$YYYY) "2000")''.The qualifier $YY does not math the qualifier $YYYY.If you lik the middle mouse-button on the highlighted portion of the error message (alledan overlay), Carillon will move the ursor to the loation in the program where the errorours. If you would rather use the keyboard to selet an overlay instead of using the mouse,you an plae the ursor over the overlay and type C- C-l. Identi�ers in the program arehighlighted with olors that lassify what quali�ers appear in the type of a given identi�er.If you lik on a highlighted identi�er, Carillon shows the type of the identi�er in the mini-bu�er. If the type does not �t in the mini-bu�er, the system shows the type in a dediatedbu�er. For instane, to understand the type error in the program, observe that the type ofpr_year is a funtion from ($YY ptr(num)) to void and that the type of the argument topr_year in line /*2*/ is $YYYY ptr(num).Carillon also omplains with a warning, whih you an see if you lik on the overlayUnsafe Var-Arg Apps in the Carillon Results bu�er:There was 1 instane of a variable-length argument funtionbeing unsafely applied to a year-involved argument:/home/mael/Carillon/examples/simple2.:2.4-2.10Argument ``year'' to funtion ``printf''has type $YY ptr(num)The delaration of printf in the prelude �le spei�es a type only for its �rst parameter.Hene, to be safe, Carillon gives warnings if quali�ers other than $NONYEAR our in thetypes of arguments passed for ... in an appliation of a variable-length argument funtion.In this ase, the argument to the printf funtion an safely be ast to har *$NONYEAR,whih makes the warning disappear (�le examples/simple3.).The prelude �le is used to give library funtions more re�ned types than those given in theprograms themselves. The di�erent types for the printf funtion given by the delarationsin the prelude �le and in the �le examples/simple1. is one example.Carillon does not try to orret the possible Y2K errors that it �nds. Instead, it is theresponsibility of the programmer to modify the program so that years are used onsistently.6

4 The Type SystemCarillon is a type-based analysis tool. As desribed in the previous example, the programmerannotates her program by adding type quali�ers to the program. Carillon �nds Y2K bugsby performing type heking.Carillon extends the C type system in four ways:1. The programmer an use an extensible set of user-de�ned type quali�ers (e.g., $YY and$YYYY) in addition to the C quali�ers onst and volatile.2. Certain operations on data that ontain years are disallowed. These restritions areenfored by requiring ertain types to be quali�ed as $NONYEAR.3. Quali�er polymorphism allows funtions to have di�erent types for eah use. SeeSetion 7.4. Multiple �les an be type heked together, thereby enforing type onsisteny aross�les. See Setion 8.Carillon assumes that the input program is a type-orret C program. While Carillonwill detet many C type errors, it does not display as muh useful information about C typeerrors as a C ompiler.The remainder of this setion desribes the extensions noted above and disusses someof the limitations of Carillon.4.1 Quali�ers and Quali�ed TypesWe begin by introduing the types that Carillon uses to perform its analysis.An identi�er is a C identi�er not starting with _. A type quali�er is a token $id, whereid is an identi�er. Thus, $NONYEAR, $YY, and $YYYY are examples of quali�ers. The quali�er$NONYEAR is built into Carillon, while other quali�ers must be desribed in a on�guration�le that is read by Carillon. See Setion 5.5 for more information about the on�guration�le and how olors are assoiated with the quali�ers.A quali�er variable is a token $_id, where id is an identi�er. Thus, $_1, $_q, and $_q1are examples of quali�er variables. Quali�er variables are used for introduing funtionswith polymorphi funtion types. See Setion 7.Carillon allows type quali�ers and quali�er variables to appear in any position where Callows the quali�ers onst and volatile. For example, (har * $YYYY) is a type repre-senting strings ontaining a four-digit year. Similarly, the delarationhar * $YYYY f(har * $YY a);delares f to be a funtion that takes as argument a string ontaining a two-digit year andreturns a string ontaining a four-digit year. Sometimes we di�erentiate between Carillontypes, whih may ontain user-de�ned quali�ers and quali�er variables, and C types, whihmay not. 7

As the reader may have notied in Setion 3, the types displayed by Carillon are slightlydi�erent from the usual C types. Carillon uses and displays types given by the followinggrammar: type ::= h qual i num any numeri typej void voidj h qual i ptr(type) pointers and arraysj (type�) -> type funtionsj h qual i f (label : type)� g strutures and unionsHere qual ranges over quali�ers and quali�er variables and label ranges over struture �eld-names. There are several important things to notie. First, all numeri C types (e.g., int,har, and float) are represented with the same Carillon type, num. Seond, both pointersand arrays are represented by ptr.1 Third, both strutures and unions are represented thesame way. This treatment of unions is onsistent with C, in whih unions an be used tomake unsafe asts. Finally, num types, ptr types, and struture types an appear with aquali�er or a quali�er variable. For the purpose of �nding date errors in programs thatrepresent dates as strings, one an ignore quali�ers that appear in other than string types.However, the riher syntax an be useful for �nding other abstration violations.4.2 Carillon Type RulesCarillon's type system fores date strings to be used onsistently. In an assignment a = b,Carillon requires the types of a and b to math. In a all f(x), x must math the type off's formal parameter.Unlike C, Carillon assumes that unspei�ed type quali�ers may be anything. For example,onsider the following ode:har * $YY s1;har * s2;har * s3;s2 = s1;s1 = s3;Beause s2 and s3's types ontain no year-related quali�er, Carillon assumes that any qual-i�er ould appear (more formally, Carillon automatially inserts a quali�er variable). Henethe system infers that both s2 and s3 must have type har * $YY.It is this type inferene proess, in whih Carillon omputes the neessary type annota-tions inferred by the program struture, that makes the system easy to use by minimizingthe number of programmer-supplied annotations. As one might imagine, suh a system anbe useful for more than just date strings; see Setion 11 for a disussion.In addition to enforing onsisteny for assignments and funtion alls, Carillon's typesystems fores ertain types to be quali�ed by $NONYEAR. Intuitively, the kind of errorswe are interested in for the Y2K problem are abstration violations. Years are representedonretely by strings (type har *), but they should be manipulated only by ertain routines.1Internally Carillon uses the C types to orretly handle multidimensional arrays and suh.8

Carillon has three new kinds of type rules to enfore this abstration:� String literals are given the type (har * $NONYEAR). This rule ensures that no stringliteral is mistakenly onsidered a year. Thus, the programmer must ast strings on-taining years to the appropriate type, as in Setion 3.� Pointer dereferening and strut �eld-aess require the type of the argument tobe quali�ed as $NONYEAR. For example, Carillon assumes that if the programmerdereferenes a har *, she is manipulating the string diretly rather than through anabstration. It is the responsibility of the programmer to inspet the ode to verify itis safe and to insert expliit quali�er asts to bypass the type system, if neessary.� The type of & expressions are quali�ed as $NONYEAR. Moreover, pointer types in-volved in arithmeti operations, suh as addition and subtration, are also quali�ed as$NONYEAR. Again, these quali�ers prevent expliit manipulation of dates.Moreover, as we have seen in Setion 3, Carillon gives warnings if the types of argumentspassed for ... in an appliation of a variable-length argument funtion ontain quali�ersother than $NONYEAR. Suh appliations ould potentially be unsafe.Finally, many programs use standard library funtions suh as strmp, strpy, andprintf to manipulate strings. Carillon needs to know the types of these funtions in orderto orretly analyze the program|spei�ally, Carillon needs to know what e�ets thesefuntions have on strings. Thus, Carillon omes with a �le of standard delarations forlibrary funtions (�le examples/prelude.i). See Setion 8.1 for more disussion.5 Using the SystemIn this setion, we desribe in more detail how to use Carillon for analyzing industrial-sizedprograms (i.e., programs larger than the example program of Setion 3.)5.1 Modifying a Make�leAs mentioned earlier, Carillon parses only preproessed C ode. Large C programs are usu-ally maintained and ompiled using the program make, whih reads a Makefile to determinewhat reompilations are neessary to ompile and link the program. Here we desribe howto modify the Makefile to also generate preproessed C ode.We make use of two programs remblanks and remquals, whih are inluded with Carillon.The remblanks program removes superuous blank lines from a program. The remqualsprogram removes all quali�ers and quali�er variables (i.e., tokens starting with $) from aprogram. Both programs read haraters from stdin and output haraters to stdout. Theprograms are loated in the bin diretory.We use �le names of the form �le.i to denote preproessed �les. Here is a make rule forompiling a C �le �le. into an objet �le �le.o and in the proess reating a preproessed�le �le.i. 9

..o: $(CC) -E $< | remblanks > $*.iiremquals < $*.ii > $*.i$(CC) $(CFLAGS) - -o $*.o $*.imv -f $*.ii $*.iThe �rst line in this rule preproesses the C �le, removes superuous blank lines using theremblanks program,2 and stores the result in a temporary �le �le.ii. The seond line usesremquals to remove all quali�ers and quali�er variables from the preproessed ode. Thethird line performs the atual ompilation. The last line moves the preproessed �le (withquali�er annotations) to �le.i.One a Makefile has been instrumented to reate preproessed �les and preproessed�les have been generated for eah C �le in the program, Carillon an be used to analyze theprogram. Instrutions on how to analyze a program with multiple �les are given in Setion 8.5.2 Dealing with Error MessagesCarillon issues three kinds of error messages: parse errors, C type errors, and Y2K errors.Carillon issues parse errors in a bu�er in Emas. In the ase that one or more parse errorsare found, Carillon does not try to type hek the program. The user must orret possibleparse errors before the program an be analyzed properly by Carillon.In traditional C ompilers, C type heking is performed after parsing, thereby verifyingthat the program soure is indeed a valid C program. Carillon is not as good at �nding Ctype errors as a C ompiler, mostly beause the struture of the types that Carillon uses issimple (see Setion 4.1). In general, before analyzing a program with Carillon, the programshould be heked for possible parse and type errors with a C ompiler.The C type errors that Carillon does detet, inlude those that ause a mismath betweenCarillon types (e.g., between num and void). Carillon also detets if a funtion is applied tofewer arguments than it spei�es.The most interesting kind of error messages are those aused by type quali�er mismathes.These kinds of errors indiate a potential Y2K error as illustrated in Setion 3. To orretthese kinds of errors it is essential that the programmer has a basi understanding of theCarillon type system (see Setion 4). In Setion 6, we shall see an example where a series oferror messages are safely eliminated by bypassing the Carillon type system, through the useof expliit asts.Carillon issues an error message if one of the following rules is violated:Rule 1. The set of funtion de�nitions for an identi�er in a program must haveidential types.Rule 2. A type inferred for a funtion de�nition must be idential to the �rstdelaration of that funtion in eah �le that delares the funtion.2We assume here that the bin diretory is inluded in the users PATH environment-variable for aessingremblanks and remquals without speifying the paths.10

The �rst rule allows for multiple de�nitions of funtions, whih provides support for theGNU __inline__ extension. Carillon prints a warning message when a funtion is de�nedmore than one.Eah of the rules an be violated either beause of a type quali�er mismath or beauseof a mismath in the struture of the types involved (e.g., a num type is mathed against afuntion type.)In Setion 8, we re�ne the two rules to allow for delarations and de�nitions of polymor-phi funtions.Carillon does not issue a warning if an identi�er is delared more than one in a �le,even if the identi�er is delared with di�erent types. For eah �le, Carillon uses the �rstdelaration of an identi�er for all its sueeding uses.5.3 Cast Control and WarningsCarillon propagates type information orretly only up to asting. Thus, it is important thatall the asts in a program are safe. When a program has been analyzed, Carillon shows alist of asts involving quali�ers other than $NONYEAR; lik on the Cast Control overlay inthe Carillon Results bu�er to see a list of overlays, eah of whih is linked to an unsafeast in the program.Carillon issues warnings if there are any impliit asts to or from a type ontainingquali�ers other than $NONYEAR (e.g., $YY, $YYYY). There are two plaes suh impliit astsan our. The �rst is when an argument is passed for ... in the appliation of a variable-length argument funtion. The seond is when using union's with types ontaining quali�ersother than $NONYEAR. In both ases, Carillon produes a list of warning messages. After aprogram has been analyzed, one an lik on the overlays Unsafe Var-Arg Apps and UnsafeUnions|in the Carillon Results bu�er|to see the warnings.5.4 Year-Involved FuntionsAnother way to view where years are propagated in an analyzed program is to lik onthe Year-Involved Funtions overlay in the Carillon Results bu�er. Carillon then listsoverlays pointing to the de�nitions of funtions for whih quali�ers other than $NONYEARour in their types.5.5 The Con�guration FileThe Carillon type system uses a on�guration �le to de�ne user spei�ed type quali�ers.For the examples shown in this doument, the following on�guration �le suÆes (�leexamples/onfig.d):$YYYY olor "pam-olor-4";$YY olor "pam-olor-5";$RCSYEAR olor "pam-olor-6"; 11

This on�guration �le introdues the quali�ers $YYYY, $YY, and $RCSYEAR, and binds them tothe olors "pam-olor-4", "pam-olor-5", and "pam-olor-6", respetively. The quali�er$NONYEAR is built-in and assoiated with the olor "pam-olor-3". The olors are usedfor visualizing the identi�ers in an analyzed program. An identi�er whose type ontainsonly one kind of quali�er is olored with its assoiated olor. When two or more di�erentquali�ers our in the type of an identi�er, then the olor "pam-olor-2" is used for theoverlay. Finally, when no quali�er ours in the type of an identi�er then "pam-olor-1"is used for the overlay. See Setion 2.2 for information about modifying the mapping of thenames "pam-olor-1" thorough "pam-olor-8" into atual olors in Emas.The possibility of extending the set of quali�ers is useful for analyzing programs that usemany di�erent representations of years, suh as four digit years and windowing years (i.e.,years represented by two digits, but o�set by a number so that a �xed set of years beforeand after year 2000 are representable.)6 A Seond Example|RCS YearsWe now present a more elaborate example extrated from the C soures of the RevisionControl System (RCS) software pakage. RCS was originally written to work with onlytwo-digit years but was then modi�ed so that �les reated with RCS before year 2000 workorretly when used with RCS after year 2000. This new version of RCS (version 5.5 orlater) has been suessfully heked for Y2K errors with Carillon.RCS uses several di�erent internal representations of dates. Y2K errors may our wher-ever string representations of dates are manipulated or transformed into other date repre-sentations. Beause RCS initially worked with strings ontaining only two-digit years andbeause it is ruial that new versions of RCS are bakward ompatible, RCS gives meaningto strings with two- and four-digit years as follows:� Years before 2000 an be represented using two digits or four digits.� Years after 2000 must be represented using four digits.So for example, the year 1999 an be represented both as the string "99" and as the string"1999", whereas the year 2000 must be represented as the string "2000". We assoiate thismeaning of strings ontaining years with a new quali�er $RCSYEAR (this quali�er is alreadypresent in the on�guration �le examples/onfig.d.) For onveniene, we extend the notionof $RCSYEAR strings and $YYYY strings to denote also strings ontaining dates, where the yearpart of the date is an $RCSYEAR string or a $YYYY string, respetively.Consider the following example ode (�le examples/rs1.), whih is extrated fromthe RCS soures and annotated with quali�ers (the ode is also modi�ed slightly for thepresentation):int printf(onst har * $NONYEAR format, ...);int sprintf(har * str, onst har * format, ...);har * $YYYY date2str(har * $RCSYEAR date, har * $NONYEAR datebuf) {12

har *p = date;while (*p++ != '.');sprintf(datebuf,"19%.*s/%.2s/%.2s" + (date[2℄=='.' ? 0 : 2),(int)(p-date-1), date, p, p+3);return datebuf;}int main(void) {har *today = (har * $RCSYEAR)"99.05.12";har *nextyear = (har * $RCSYEAR)"2000.05.12";har *datebuf = "\0 ";printf("today is %s\n", date2str(today,datebuf));printf("nextyear is %s\n", date2str(nextyear,datebuf));return 1;}Here main formats and prints the dates 1999.05.12 and 2000.05.12, but internally, the date1999.05.12 is represented as the string "99.05.12". The date2str uses a bu�er to reformatan $RCSYEAR date as a $YYYY date.Although the ode behaves as intended, it imposes several hallenges to the Carillon typesystem. Carillon issues the following error messages when the program is analyzed:/home/mael/Carillon/examples/rs1.:3.13-3.24Error during analysis of ``*p++!='.'''.The qualifier $NONYEAR does not math the qualifier $RCSYEAR./home/mael/Carillon/examples/rs1.:5.6-5.13Error during analysis of ``sprintf(datebuf, "19%.*s/%.2s/%.2s"+date[2℄=='.' ? 0 : 2, (int) p-date-1, date, p, p+3)''.The qualifier $NONYEAR does not math the qualifier $RCSYEAR./home/mael/Carillon/examples/rs1.:9.6-9.21Error during analysis of ``return datebuf;''.The qualifier $YYYY does not math the qualifier $NONYEAR.The �rst two error messages are aused by the Carillon pointer-dereferening type rule,whih requires the type of the argument to a pointer-dereferening onstrut to be quali�edas $NONYEAR. Carillon issues the �rst error message beause p has type (har * $RCSYEAR)beause it is assigned to date, but p is dereferened in line 3. Similarly, Carillon issuesthe seond error message beause date is dereferened in line 5. The third error messageis issued beause datebuf, whih has type har * $NONYEAR, is assoiated with the returntype har * $YYYY of date2str in line 9.Now, before we an safely bypass the type system and ast datebuf to type har * $YYYYin line 9, we must be sure that the body of date2str behaves as intended. It is up to the13

programmer to onvine herself that the ode is orret. Here is a version of date2str withasts inserted to bypass the Carillon type system (�le examples/rs2.):har * $YYYY date2str(har * $RCSYEAR date, har * $NONYEAR datebuf) {har *p = (har * $NONYEAR)date;while (*p++ != '.');sprintf(datebuf,"19%.*s/%.2s/%.2s" + (((har * $NONYEAR)date)[2℄=='.' ? 0 : 2),(int)(p-date-1), date, p, p+3);return (har * $YYYY)datebuf;}With these annotations, Carillon now issues three warnings, beause arguments with qual-i�ers other than $NONYEAR in their types are passed for ... in the appliation of sprintf.It is left as an exerise to the reader to eliminate these warnings (a solution is given inexamples/rs3.), but do not forget to onvine yourself that the asts you insert aresafe. After eliminating the warnings, the inserted asts turn up in the Cast Overview (seeSetion 5.3).7 Quali�er PolymorphismCarillon makes it possible to avoid a range of annotations by allowing funtion identi�ers tobe assoiated with so-alled polymorphi types. Polymorphism in Carillon makes it possibleto give di�erent quali�ed types to di�erent uses of a funtion, in suh a way that typeinformation is still propagated safely.The bene�t provided by polymorphism is best illustrated with an example. Consider thefollowing annotated delaration of the strpy funtion from the C Standard Library:har * $NONYEAR strpy(har * $NONYEAR s1, har * $NONYEAR s2);Reall that strpy opies the string s2 to the string s1 and returns s2 as a result. Thequali�er annotations ensure that no year-quali�ed string is opied to a $NONYEAR-quali�edstring (or vie versa) without notifying the user of the problemati opying. Now, onsidera program ontaining the two statementsstrpy(text, "The year is ");strpy(year, (har * $YYYY)"1999");where text and year are delared with type har *. Although the �rst appliation ofstrpy leads to no type error|provided the type of text is har * $NONYEAR|the seondappliation of strpy does lead to a type error. The type error requires the user to �rstre�ne the delaration of year to be of type har * $YYYY, and seond, to ast the �rst andseond arguments to strpy to be of type har * $NONYEAR.14

We an avoid this problem by introduing quali�er polymorphism into the Carillon typesystem. Intuitively, we want to allow s1, s2, and the result of strpy to have any quali�ersin their types as long as all three have the same quali�ers. We ahieve this with the followingdelaration (in prelude.i):har * $_a strpy(har * $_a s1, har * $_a s2);Here strpy is delared to be polymorphi in the quali�er variable $_a, meaning that if wereplae $_a onsistently with any quali�er, then we will have a valid type for strpy. Forexample, we an replae $_a by the quali�er $YYYY to see that strpy an have the typehar * $YYYY, har * $YYYY -> har * $YYYYWe an replae $_aby $YY to see that strpy also has the typehar * $YY, har * $YY -> har * $YYThus, with this delaration it is possible to apply strpy in di�erent ontexts with argumentsof di�erent quali�ed types. Consider again a program with the two statementsstrpy(text, "The year is ");strpy(year, (har * $YYYY)"1999");where text and year are delared with type har *, but now in the ontext of the polymor-phi delaration of strpy. Although strpy is applied to arguments of di�erent quali�edtypes, this time, the statements do not lead to a type error. The �rst appliation onstrainstext to be quali�ed as $NONYEAR, beause Carillon gives the type har * $NONYEAR to thestring literal in the �rst appliation of strpy. Moreover, the seond appliation of strpyonstrains year to be quali�ed as $YYYY. Notie that the type of strpy is not polymorphiin the underlying C type; Carillon allows types to be polymorphi only in quali�ers.In the following, we use qv to range over quali�er variables. Polymorphi types in Carillon,whih are also alled type shemes, are given by the following grammar:sheme ::= All(qv�).type Polymorphi type shemej type Non-polymorphi type shemeIn a type sheme sheme of the form All(qv1; � � � ; qvn).type, the quali�er variables qv1; � � � ; qvnare alled the generalized quali�er variables of the type sheme, and type is alled the body ofthe type sheme. We require that all the quali�er variables that appear in the body of a typesheme are generalized. Thus, in the delaration of strpy above the quali�er variable $_ais impliitly generalized. We say that a type type0 is an instane of the type sheme shemeif there exists a mapping S (alled a substitution) from the quali�er variables qv1; � � � ; qvn totypes type1; � � � ; typen, suh that type0 = S(type). Here the notation S(type) means the typetype, with eah quali�er variable qv in the domain of S being substituted with S(qv). Theinstane relation extends to type shemes as follows. A type sheme All(qv1; � � � ; qvn).typeis an instane of another type sheme sheme i� type is an instane of sheme. Two typeshemes are equal if they an be made idential by systemati renaming of generalized qual-i�er variables.Carillon allows funtions to be both de�ned and delared with polymorphi types. Toontinue our example, here is an implementation of strpy (�le examples/strpy.):15

har * $_a strpy(har * $_a s1, onst har * $_a s2) {har * p = (har * $NONYEAR)s1;for (; *p++ = *((har * $NONYEAR)s2)++ ;) ;return s1;}Notie that we have ast the uses of s2 and the �rst use of s1 to be quali�ed as $NONYEAR,whih allows the type of s1 and s2 to be har * $_a.Carillon �nds that the de�nition we have given for strpy is onsistent with the poly-morphi delaration of strpy. In fat, Carillon will omplain if the type sheme given bya previous delaration of a funtion is not an instane of the type sheme inferred for thede�nition of the funtion.Moreover, when a type sheme is formed for a funtion de�nition, Carillon requires thatthe type sheme is losed, meaning that all quali�er variables appearing in the types of thearguments and result of a funtion de�nition are generalized. For the system to be sound,Carillon requires that none of the quali�er variables ours in the type of any identi�er in asope outside of the funtion de�nition. This restrition makes the following ode erroneous(�le examples/wrong.):har * s;void wrong(har * $_q a) {s = a;return;}s = (har * $YYYY) "1999";Carillon omplains with the error message/home/mael/Carillon/examples/wrong.:2.7-2.12Failed to lose funtion type for `wrong'. Type variable `$_q' ouldnot be generalized.In the example, the identi�er s is onstrained by the assignment in wrong to be of typehar * $_q, beause s is given this type, and learly we annot generalize s's type afteranalyzing wrong beause we have not yet disovered that s must be of type har * $YYYY.8 Multiple FilesCarillon an analyze one �le at a time or multiple �les at one. To make Carillon analyzemultiple �les at one, enter a diretory path when asked for a �le to analyze. Carillon thenanalyzes all .i �les in the diretory (or . �les, if no .i �les are present.) By analyzingmultiple �les at one, Carillon has a better hane of �nding type inonsistenies in theprogram. In partiular, the types (or type shemes) that Carillon infers for the de�nitionsin one �le are used for the uses of these identi�ers in other �les (instead of the perhaps lessdesriptive delarations of these identi�ers.) 16

The two basi type-onsisteny rules that are enfored aross �les were given in Se-tion 5.2. Here we re�ne the rules so as to allow delarations and de�nitions of funtions withpolymorphi types. The �rst rule is re�ned to hold for type shemes:Rule 10 The set of funtion de�nitions for an identi�er in a program must haveidential type shemes.Notie that this rule holds aross �les: It is an error if a funtion is de�ned in di�erent �lesin a program with di�erent type shemes. Reall, that for eah �le, all delarations for anidenti�er exept the �rst are disarded. The seond rule is re�ned to the following:Rule 20 If an identi�er id is de�ned in some �le with type sheme sheme, thenfor eah �le that delares id, the type sheme provided by the �rst delaration ofid in the �le must be an instane of sheme.We illustrate the seond rule with an example. Assume a program with the two �lesde. and def. (diretory examples/defde/):de. har * $_q1 first(har * $_q1 a, har * $_q2 b);def. har * $_q1 first(har * $_q1 a, har * $NONYEAR b) {return a;}Here the seond rule is violated beause the type sheme provided by the delaration inde. is not an instane of the type sheme provided by the de�nition in def.. Carillonissues the following error message:Error ourred in delaration of `first'. Identifier `first' isdefined with typeAll($_q1).($_q1 ptr(num), $NONYEAR ptr(num)) -> $_q1 ptr(num)whih is inonsistent with the typeAll($_q2,$_q1).($_q1 ptr(num), $_q2 ptr(num)) -> $_q1 ptr(num)with whih it was delared.The two rules have the important property that whether the analysis sueeds is inde-pendent of the order in whih the �les in a program are analyzed.With Carillon, types ontaining struts must math aross �les. This property is essen-tial for the safety of the type system. Consider the following example onsisting of the two�les strut1. and strut2. (diretory examples/strut/):strut1. strut date {har * y;};strut date d = {(har * $YY)"99"};strut2. int printf(onst har * $NONYEAR format, ...);strut d {har * y;};extern strut d d; 17

int main(void) {printf(d.y);return 0;}Beause printf requires a $NONYEAR quali�ed string to be passed for its �rst argument andbeause the identi�er d is de�ned with a $YY quali�ed string element, Carillon issues thefollowing error message:/home/mael/BANE/CQual/examples/strut/strut2.:4.3-4.9Error during analysis of ``printf(d.y)''.The qualifier $NONYEAR does not math the qualifier $YY.Thus, Carillon detets that the program is in danger of printing a two digit year.8.1 Libraries and the Prelude FileBeause Carillon works only on preproessed C ode, delarations for all library funtionsthat are used in a �le are already present in the �le that uses the identi�ers. However,beause the ode for suh library funtions is often not available, it is sometimes neessary toprovide delarations that annotate the types of library funtions with appropriate quali�ers.In partiular, string manipulation funtions, suh as those found in string.h, must berestrited so their arguments have $NONYEAR quali�ed types. One example of suh a funtionis the atoi funtion from the C Standard Library, whih in Carillon is delared byint atoi(onst har $NONYEAR s);This delaration is given in the default prelude �le examples/prelude.i, whih is analyzedbefore any other program �le. The delaration of atoi in the prelude �le does not onitwith the delaration of atoi in the library, whih is delared identially but without the$NONYEAR quali�er. (Reall that any missing quali�ers are assumed to be quali�er variables.)Another lass of identi�ers that are delared in the prelude �le are those library funtionsthat are polymorphi in their type quali�ers. One example of suh a funtion is strpy fromSetion 7.For eah identi�er delared in the prelude �le with type sheme sheme, Carillon requiresthat the �rst delaration of this identi�er in a �le provides a type sheme that is an instaneof sheme. The identi�ers delared in the prelude �le annot immediately be used by another�le without �rst being delared in this �le, but when delared, the type sheme provided bythe delaration in the prelude �le is used. See Setion 3 for an example involving the printffuntion.For a partiular appliation, it may be neessary to extend the prelude �le to desribemore library funtions. It is also possible to hoose between di�erent prelude �les by modi-fying the settings in your personal .emas �le (see Setion 2.1.)
18

9 The Emas InterfaeThe bulk of Carillon is a program, written in Standard ML, whih analyzes C �les andommuniates the results to Emas. Emas then displays the result of the analysis to the uservia Program Analysis Mode (PAM). PAM is also the name of the software that implementsthe ommuniation layer between the Standard ML program and Emas.One Carillon has analyzed the �les of a program, the user an browse the analysis resultsusing the mouse or the keyboard. Here is a list of ommands that are supported by PAM:C- C-l selets the overlay pointed at by the ursor (same as seleting the overlay with themiddle mouse-button.)C- C-f analyzes a �le or a diretory.C- C-r exits PAM and kills all PAM bu�ers.10 The AuthorsIf you have any questions or omments related to Carillon, please do not hesitate to ontatthe authors. You an use the email address bane-software�s.berkeley.edu.We would like to thank Henning Niss and Chris Harrelson for providing the urrentversion of the Program Analysis Mode (PAM).11 ConlusionSeveral other tools are available for �nding Y2K problems in COBOL programs. One exampleis Hafnium's ommerial produt AnnoDomini, whih is a tool for �nding Y2K errors inIBM OS/VS COBOL programs. Like Carillon, AnnoDomini is based on a type system fordeteting inonsistent uses of years [EHM+99℄. We know of no systems other than Carillonfor �nding Y2K problems in C programs.Two related tools are Lakwit [OJ97℄ and LCLint [EGHT94, Eva96℄. Based on ML typeinferene, Lakwit an be used to detet abstration violations in C programs. LCLint isa tool that uses, among other tehniques, an extended set of C type quali�ers to �nd bugsin C programs. Carillon integrates the use of quali�ers and polymorphism to a degree thatmakes it useful to analyze even very large programs for Y2K readiness. Carillon has beenused e�etively to loate a Y2K bug in CVS (Conurrent Version System) version 1.9, whihis about 57,000 lines of C (132,000 lines preproessed).In this doument, we have presented Carillon, a system to �nd Y2K problems in C pro-grams. The diÆulties of establishing the Y2K readiness of software are largely aused byprograms that break type abstration barriers. An automati tool, ombined with appropri-ate information from a programmer (in form of quali�er annotations), is highly desirable for�nding Y2K errors in programs and for establishing that suh errors do not our. Carillonprovides just suh a tool. 19

There are other examples of onversion problems where Carillon an help to detet ab-stration violations, inluding onversion of programs to the use of uniode haraters andonversion of programs to use the new Euro urreny instead of native European urrenies.Referenes[EGHT94℄ David Evans, John Guttag, Jim Horning, and Yang Meng Tan. Llint: A toolfor using spei�ations to hek ode. In ACM SIGSOFT Symposium on theFoundations of Software Engineering (SFSE'94), Deember 1994.[EHM+99℄ Peter Harry Eidor�, Fritz Henglein, Christian Mossin, Henning Niss, MortenHeine S�rensen, and Mads Tofte. Annodomini: From type theory to year 2000onversion tool. In 26th Symposium on the Priniples of Programming Languages(POPL'99), January 1999.[Eva96℄ David Evans. Stati detetion of dynami memory errors. In ACM SIGPLANConferene on Programming Language Design and Implementation (PLDI'96),Philadelphia, PA, May 1996.[FFA99℄ Je�rey S. Foster, Manuel F�ahndrih, and Alexander Aiken. A theory of typequali�ers. In ACM SIGPLAN Conferene on Programming Language Designand Implementation (PLDI'99), pages 192{203, May 1999.[OJ97℄ Robert O'Callahan and Daniel Jakson. Lakwit: A program understanding toolbased on type inferene. In International Conferene on Software Engineering(ICSE'97), May 1997.A LimitationsIn this appendix, we list some of the limitations of Carillon:� Initializers are required to math the struture of the type of the variable being ini-tialized. In most ases it is straightforward to modify the program text to meet thisrequirement. For example, the following odestrut { har *s; int x } foo f = {"ab", 3, "def", 4};should be rewritten asstrut { har *s; int x } foo f = {{"ab", 3}, {"def", 4}};� Some GNU C extensions are supported, but not all; for instane, the __typeof operatoris not supported.� Carillon annot parse funtions returning funtion pointers. To get around this prob-lem, one an use a typedef to de�ne an identi�er for the return type. This identi�eran then be used for the return type of the funtion.20

B Copyright NotieCopyright () 1999 The Regents of the University of California. All rights reserved.Permission to use, opy, modify, and distribute this software for any purpose, withoutfee, and without written agreement is hereby granted, provided that the above opyrightnotie and the following two paragraphs appear in all opies of this software.In no event shall the University of California be liable to any party fordiret, indiret, speial, inidental, or onsequential damages arising outof the use of this software and its doumentation, even if the Universityof California has been advised of the possibility of suh damage.The University of California speifially dislaims any warranties, in-luding, but not limited to, the implied warranties of merhantability andfitness for a partiular purpose. The software provided hereunder is on an"as is" basis, and the University of California has no obligation to providemaintenane, support, updates, enhanements, or modifiations.

21

