
Towards Size-Dependent Types for Array
Programming

Troels Henriksen

DIKU

University of Copenhagen

Copenhagen, Denmark

athas@sigkill.dk

Martin Elsman

DIKU

University of Copenhagen

Copenhagen, Denmark

mael@di.ku.dk

Abstract
We present a type system for expressing size constraints on

array types in an ML-style type system. The goal is to detect

shape mismatches at compile-time, while being simpler than

full dependent types. The main restrictions is that the only

terms that can occur in types are array sizes, and syntactically

they must be variables or constants. For those programs

where this is not sufficient, we support a form of existential

types, with the type system automatically managing the

requisite book-keeping. We formalise a large subset of the

type system in a small core language, which we prove sound.

We also present an integration of the type system in the

high-performance parallel functional language Futhark, and

show on a collection of 44 representative programs that the

restrictions in the type system are not too problematic in

practice.

CCS Concepts: • Computing methodologies → Parallel
programming languages.

Keywords: type systems, parallel programming, functional

programming

ACM Reference Format:
Troels Henriksen andMartin Elsman. 2021. Towards Size-Dependent

Types for Array Programming. In Proceedings of the 7th ACM SIG-
PLAN International Workshop on Libraries, Languages and Compilers
for Array Programming (ARRAY ’21), June 21, 2021, Virtual, Canada.
ACM,NewYork, NY, USA, 14 pages. https://doi.org/10.1145/3460944.
3464310

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

ARRAY ’21, June 21, 2021, Virtual, Canada
© 2021 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-8466-7/21/06. . . $15.00

https://doi.org/10.1145/3460944.3464310

1 Introduction
Array programming often involves functions whose argu-

ments must satisfy certain shape constraints. For example,

when multiplying two matrices, the column count of the

former must match the row count of the latter. Most of to-

day’s programming languages do not support compile-time

checking of such constraints, instead deferring them to run-

time. As with all dynamic type checking, this can result in

frustrating crashes.

Dependently typed languages allow us to encode the sizes

of arrays and have the type checker enforce the shape con-

straints. From the perspective of array programming, current

dependently typed languages have two problems:

1. They are typically not very fast, where array programs

are often performance-critical.

2. Full dependent types are complicated, and array pro-

grammers may not need or want all of their capabili-

ties. In particular, working with existential sizes, as pro-
duced by operations such as filtering, requires deeper

understanding of type theory.

In this paper, we investigate the foundations of a type

system that supports size-dependent types. Our goal is to
construct a programming language in the ML family that

allows a “conventional” style of programming, while still

verifying shape constraints statically. We have the following

concrete design goals for size-dependent types:

1. It must be possible to write functions that operate

on multi-dimensional arrays, where we can express

equality constraints on the dimensions of these arrays.

When a function is applied, the type checker must

verify that the arguments satisfy the constraints.

2. Any book-keeping involved in handling existential

sizes should be done automatically.

3. Multidimensional arrays should be handled as “ar-

rays of arrays”, while still guaranteeing that all arrays

are regular.
1
. This permits parametric polymorphism,

which allows functions such as map to have their con-

ventional behaviour.

1
A regular multidimensional array is one where all rows have the same

shape. These are sometimes also called rectangular arrays, and are in oppo-

sition to jagged arrays, which we do not support.

1

https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3460944.3464310
https://doi.org/10.1145/3460944.3464310

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

4. The type system should not impede a high-performance

implementation of the language. In particular it must

not require complicated value representations or main-

tenance of complex runtime structures.

We value simplicity over completeness. As we shall see,

we place limitations on the form of sizes which means some

programs will require dynamic shape checking, although

such checks will always be syntactically explicit size coer-
cions that are inserted by the programmer when needed. An

intentional non-goal is that we are not trying to statically

eliminate out-of-bounds indexing.

We begin in Section 2 by defining 𝐹 , a small core language

that we use to illustrate the mechanics of the type system.

In Section 3 we prove soundness for 𝐹 , which implies the

absence of shape errors at runtime. 𝐹 is a simplified lan-

guage, and does not yet fulfill all our goals—in particular,

it is monomorphic. However, Section 5 demonstrates how

we have added size types to the data parallel programming

language Futhark [13], which has full support for paramet-

ric polymorphism. This not only shows that the type sys-

tem, despite its simplicity, is expressive enough to handle

real programs, but also that it does not provide obstacles to

high-performance implementation. Section 6 discusses our

experience with using size types in practice, in particular

whether they are flexible enough to handle a wide variety

of parallel benchmark problems. Finally, Section 7 discusses

how our approach relates to prior work, with a particular

focus on how it fits into the array language tradition.

2 A Language with Size-Dependent Types
In this section, we present a language 𝐹 with support for size

types. The language is simplistic in a variety of ways. First of

all, it does not support type polymorphism, which we shall

treat later in Section 4. Second, the language assumes that

expressions are flattened so that expressions that allocate ex-

istentially sized arrays are bound by explicit let-constructs.
Thus, if we assume the availability of a type-monomorphic

(but size-polymorphic) map-function and a function iota
that takes an integer 𝑛 and returns an index-array of size 𝑛,

we also assume that an expression

map (_𝑥.𝑥 + 1) (iota 5)

has been converted to the form

let 𝑎 = iota 5 in map (_𝑥.𝑥 + 1) 𝑎.

This conversion simplifies the framework and can easily

be implemented in the frontend of a compiler. Although,

the type system supports an implicit let-binding construct,

as used in the map example, an explicit version is available,

which eases type inference and which brings existential sizes

into scope at expression level as int variables. In the explicit

version of the let construct, the expression becomes

let [𝑛] 𝑎 : [𝑛]int = iota 5 in map (_𝑥.𝑥 + 𝑛) 𝑎.

𝑑 ::= Size sorts
| 𝑛 constant

| 𝑥 variable

𝜏 ::= Basic types
| int integer

| bool boolean

| (𝜏, 𝜏 ′) pair

| [𝑑]𝜏 array

| (𝑥 : 𝜏) → ` function

` ::= Return types
| ∃𝑥 .` existential size

| 𝜏 basic type

𝜎 ::= Type schemes
| 𝜏 basic type

| ★ abstract size type

𝑒 ::= Expressions
| 𝑛 constant integer

| true | false constant boolean

| 𝑥 variable

| _(𝑥 : 𝜏).𝑒 function

| 𝑒 𝑒 application

| [𝑒, · · · , 𝑒] array

| iota 𝑒 index array

| 𝑒 [𝑒] array index

| (𝑒, 𝑒) pair

| fst 𝑒 | snd 𝑒 projection

| if 𝑒 then 𝑒 else 𝑒 conditional

| 𝑒 ⊲ 𝜏 dynamic type coercion

| let 𝑝 = 𝑒 in 𝑒 let

𝑝 ::= 𝑥

| [𝑥] 𝑥 : 𝜏

Figure 1. Grammar for 𝐹 .

Whereas the type of this entire expression will be ∃𝑥 .[𝑥]int,
where 𝑥 is an existentially bound size variable, inside the

scope of the let-construct, it will be known that 𝑎 and the

result of the map application have the same size.

2.1 Types and Expressions
We assume a denumerably infinite set of program variables,

ranged over by 𝑥 , 𝑦, and 𝑓 . The grammars for size sorts (𝑑),

basic types (𝜏), and return types (`) are defined in Figure 1.

Size sorts appear in array types of the form [𝑑]𝜏 , which
denote arrays of size 𝑑 containing elements of type 𝜏 . A

function type (𝑥 : 𝜏) → ` allows for 𝑥 to appear in `, which

is useful for expressing a dependency between a parameter

of type int and the size of an array in the result.

2

Towards Size-Dependent Types for Array Programming ARRAY ’21, June 21, 2021, Virtual, Canada

For basic types on the form (𝑥 : 𝜏) → `, we consider 𝑥

bound in `. For return types on the form ∃𝑥 .`, we consider
𝑥 bound in `. Respectively, basic types and return types

are considered identical up to renaming of bound variables.

Return types are also considered identical up to removal of

bound existential variables that do not occur free in the body.

Contexts, ranged over by Γ, map program variables to type

schemes, which, in the simple setting that lacks parametric

size- and type-polymorphism, amounts to being a type 𝜏 or

a type scheme of the form ★, which denote an abstract size.

When 𝑥 = 𝑥1, · · · , 𝑥𝑛 and 𝜎 = 𝜎1, · · · , 𝜎𝑛 , we write 𝑥 : 𝜎

for specifying the type assumption 𝑥1 : 𝜎1, · · · , 𝑥𝑛 : 𝜎𝑛 . We

shall also sometimes write 𝑥 : 𝑐 , where 𝑐 is some basic type

scheme such as ★ or int, to denote the type assumption

𝑥1 : 𝑐, · · · , 𝑥𝑛 : 𝑐 . We shall use similar notation for size

assumptions and dynamic environments (defined later).

Notice that we assume that whenever we have a context

on the form Γ, 𝑥 : 𝜏 , we have 𝑥 ∉ fv(Γ). In the rules that

follow, this property can most often be ensured by renaming

of bound variables (i.e., alpha renaming).

Whenever 𝑥 = 𝑥1, · · · , 𝑥𝑛 , we often write ∃𝑥 .` to denote
the return type ∃𝑥1. · · · ∃𝑥𝑛 .` (similarly for universal size

quantification.)

Type schemes of the form ★ play a special role. Vari-

ables bound to such type schemes have no dynamic rep-

resentation. In fact, in the simple setting of 𝐹 , programmers

have no way of referring to such abstract sizes even though

they form the basis for establishing static shape properties

and static shape equalities of runtime values. For instance,

type schemes of the form ★ are used for establishing, for

instance, that a certain expression returns a value of return

type ∃𝑥 .([𝑥]int, [𝑥] (bool, int)) for which inhabitants are

pairs of equally sized arrays, where the first array contains

integers and the second array contains pairs of a boolean

and an integer.

Basic types (𝜏), return types (`), and size sorts (𝑑) are well-
formed under assumptions Γ, written Γ ⊢ 𝜏 ok, Γ ⊢ ` ok,
and Γ ⊢ 𝑑 ok, respectively, if the particular judgement can

be derived using the rules in Figure 2. A context Γ
′
is well-

formed under assumptions Γ, written Γ ⊢ Γ
′ ok, if Γ ⊢ 𝜎 ok

for all 𝜎 in the range of Γ
′
. We shall write ⊢ Γ ok to mean

Γ ⊢ Γ ok. When ` is some return type (or type), we write

Γ ⊢ ` ok to mean Γ ⊢ ` ok and ∀𝑥 ∈ fv(`), Γ(𝑥) ≠ ★.

Expressions (𝑒) and patterns (𝑝) are defined according to the

grammar in Figure 1.

The expression language has support for basic constants,

including integers and booleans, lambda abstraction and

function application, pairs and projections, and conditional

expressions. The language also has support for immediate

arrays and it features an explicit index-space operation iota,
which, given an integer argument 𝑛, creates an array with

𝑛 integers ranging from 0 to 𝑛 − 1. 𝐹 also features array

indexing, which fails dynamically if an index is out of bounds.

Further, the language features two kinds of let constructs:

Size sorts Γ ⊢ 𝑑 ok

Γ ⊢ 𝑛 ok
Γ(𝑥) = int

Γ ⊢ 𝑥 ok
Γ(𝑥) = ★

Γ ⊢ 𝑥 ok

Types Γ ⊢ 𝜏 ok

Γ ⊢ int ok Γ ⊢ bool ok

Γ ⊢ 𝑑 ok Γ ⊢ 𝜏 ok
Γ ⊢ [𝑑]𝜏 ok

Γ ⊢ 𝜏 ok Γ ⊢ 𝜏 ′ ok
Γ ⊢ (𝜏, 𝜏 ′) ok

Γ ⊢ 𝜏 ok Γ ⊢ ` ok
Γ ⊢ (𝑥 : 𝜏) → ` ok

Γ, 𝑥 : ★ ⊢ ` ok
Γ ⊢ (𝑥 : int) → ` ok

Return types Γ ⊢ ` ok

Γ, 𝑥 : ★ ⊢ ` ok
Γ ⊢ ∃𝑥 .` ok

Γ ⊢ 𝜏 ok ` = 𝜏

Γ ⊢ ` ok

Type schemes Γ ⊢ 𝜎 ok

Γ ⊢ ★ ok
Γ ⊢ 𝜏 ok 𝜎 = 𝜏

Γ ⊢ 𝜎 ok

Figure 2.Well-formedness of size sorts, basic types, return

types, and type schemes.

one that implicitly “opens” existentially bound size variables

(making them available only to meta-level reasoning), and

one that explicitly extracts sizes for existentially bound size

variables (bringing them into scope as variables of type int).
Finally, the language features a type coercion construct of

the form 𝑒 ⊲ 𝜏 , which allows the programmer to coerce an

array value to be of a specific shape, checked dynamically.

For simplicity, the rules for the dynamic semantics shall

deal only with succeeding evaluations, which means that

the type safety property that we shall prove only relates to

programs for which a dynamic derivation exists. We consider

it future work to further distinguish between the possible

dynamic effects and to establish a guarantee for termination.

2.2 Type System
Typing rules for expressions allow inferences among sen-

tences on the form Γ ⊢ 𝑒 : `, which are read “under assump-

tions Γ, the expression 𝑒 has return type `.”

The typing rules are shown in Figure 3. In general, exis-

tential quantification in return types is used for modeling

existential sizes. In rule t-let, existentially bound sizes are

implicitly opened in the scope of the let construct and closed
again when forming the return type of the entire expression.

In rule t-iotad and rule t-appd, the type system supports

3

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

Expressions Γ ⊢ 𝑒 : `

Γ ⊢ true : bool
[t-true]

Γ ⊢ false : bool
[t-false]

Γ ⊢ 𝑛 : int
[t-int]

Γ(𝑥) = 𝜏

Γ ⊢ 𝑥 : 𝜏
[t-var]

Γ ⊢ 𝑒1 : ∃𝑥1.𝜏1 Γ ⊢ 𝑒2 : ∃𝑥2 .𝜏2

Γ ⊢ (𝑒1, 𝑒2) : ∃𝑥1𝑥2 .(𝜏1, 𝜏2)
[t-pair]

Γ ⊢ 𝑒1 : 𝜏 · · · Γ ⊢ 𝑒𝑛 : 𝜏

Γ ⊢ [𝑒1, · · · , 𝑒𝑛] : [𝑛]𝜏 [t-array]

Γ ⊢ 𝑒 : ∃𝑥 .(𝜏1, 𝜏2)
Γ ⊢ fst 𝑒 : ∃𝑥 .𝜏1

[t-fst]

Γ ⊢ 𝑒 : ∃𝑥 .(𝜏1, 𝜏2)
Γ ⊢ snd 𝑒 : ∃𝑥 .𝜏2

[t-snd]

Γ ⊢ 𝑒1 : ∃𝑥 .[𝑑]𝜏 Γ ⊢ 𝑒2 : int

Γ ⊢ 𝑒1 [𝑒2] : ∃𝑥 .𝜏 [t-index]

Γ ⊢ 𝑒 : bool Γ ⊢ 𝑒1 : ` Γ ⊢ 𝑒2 : `

Γ ⊢ if 𝑒 then 𝑒1 else 𝑒2 : `
[t-if]

Γ ⊢ 𝑒 : int

Γ ⊢ iota 𝑒 : ∃𝑥 .[𝑥]int [t-iota]

Γ ⊢ 𝑑 : int

Γ ⊢ iota 𝑑 : [𝑑]int [t-iotad]

Γ ⊢ 𝑒 : 𝜏 ′ Γ ⊢ 𝜏 ok 𝜏 = 𝜏 ′{ ¯𝑑/𝑥}
Γ ⊢ 𝑒 ⊲ 𝜏 : 𝜏

[t-coerce]

Γ, 𝑥 : 𝜏 ⊢ 𝑒 : ` Γ ⊢ 𝜏 ok
Γ ⊢ _(𝑥 : 𝜏).𝑒 : (𝑥 : 𝜏) → `

[t-lam]

Γ ⊢ 𝑒 : (𝑥 : 𝜏) → ` Γ ⊢ 𝑒 ′ : 𝜏

Γ ⊢ 𝑒 𝑒 ′ : ∃𝑥 .` [t-app]

Γ ⊢ 𝑒 : (𝑥 : int) → ` Γ ⊢ 𝑑 : int

Γ ⊢ 𝑒 𝑑 : `{𝑑/𝑥} [t-appd]

Γ ⊢ 𝑒 : ∃𝑥 .𝜏 Γ, 𝑥 : ★̄, 𝑥 : 𝜏 ⊢ 𝑒 ′ : `

Γ ⊢ let 𝑥 = 𝑒 in 𝑒 ′ : ∃𝑥𝑥 .` [t-let]

Γ ⊢ 𝑒 : ∃𝑥 .𝜏 Γ ⊢ ∃𝑥 .𝜏 ok Γ, 𝑥 : int, 𝑥 : 𝜏 ⊢ 𝑒 ′ : `

Γ ⊢ let [𝑥] 𝑥 : 𝜏 = 𝑒 in 𝑒 ′ : ∃𝑥𝑥 .` [t-let-sz]

Figure 3. Typing rules for expressions.

explicit size applications, which allows the programmer to

establish a connection between a computed value and the

size of an array. A dual feature of the type system is provided

by rule t-let-sz, which allows the programmer to extract

the size of an existentially sized array and use the size in an

expression. Finally, rule t-coerce allows the programmer

to specify a type for an expression, which will be checked

dynamically against the actual value. Notice that we allow

only type coercions that change the static dimensions of an

otherwise unchanged array type. Statically, this restriction

is modelled by the existence of a substitution that maps size

variables 𝑥 in the type 𝜏 ′ into type descriptors
¯𝑑 in the type

𝜏 . A set of dynamic rules (as we shall see in the next section)

ensures that the involved sizes are identical at runtime.

2.3 Dynamic Semantics
Values (𝑣) are defined according to Figure 4, where dynamic

environments (𝜌) are maps from program variables to values:

Notice here that the goal of our type system is not to rule

out index and type coercion errors which means that even

well-typed expressions, may fail to evaluate to a value.

The dynamic semantics for the language evaluates an

expression 𝑒 to a result value 𝑣 in a dynamic environment

𝜌 . The dynamic semantics is specified by a set of inference

rules, which allow inferences among sentences of the form

𝑣 ::= Values

| 𝑛 | true | false basic constant

| ⟨𝑥, 𝑒, 𝜌⟩ closure

| [𝑣, · · · , 𝑣] array

| (𝑣, 𝑣) pair

Figure 4. Grammar for values in 𝐹 .

𝜌 ⊢ 𝑒 { 𝑣 , which are read “The expression 𝑒 evaluates to 𝑣

in the dynamic environment 𝜌”.

The rules make use of a set of dynamic size-matching rules
that allow for extracting sizes from array values at runtime.

These rules take the form 𝜏 ⊢𝑥 𝑣 { 𝑟 , where 𝜏 is a type, 𝑥

is a variable, 𝑣 is a value, and 𝑟 is either • (denoting that 𝑥

does not appear appropriately in 𝜏) or a size 𝑛 extracted from

an array value in 𝑣 , guided by the first preorder location of

𝑥 in 𝜏 .2 A rule for extracting multiple sizes takes the form

𝜏 ⊢𝑥 𝑣 { 𝑛. The size-matching rules are given in Figure 5.

The rules for the dynamic semantics also make use of a

set of dynamic size-checking rules that allow for dynamic

checking of array sizes according to a type. These rules take

2
All found occurrences of a size variable should result in the same value, so

we just use the first one we find.

4

Towards Size-Dependent Types for Array Programming ARRAY ’21, June 21, 2021, Virtual, Canada

Single variable 𝜏 ⊢𝑥 𝑣 { 𝑛/•

int ⊢𝑥 𝑣 { • [m-int]

bool ⊢𝑥 𝑣 { • [m-bool] (𝑥 : 𝜏) → ` ⊢𝑥 𝑣 { • [m-fun]

𝜏1 ⊢𝑥 𝑣1 { 𝑛

(𝜏1, 𝜏2) ⊢𝑥 (𝑣1, 𝑣2) { 𝑛
[m-pair1]

𝜏1 ⊢𝑥 𝑣1 { • 𝜏2 ⊢𝑥 𝑣2 { 𝑟

(𝜏1, 𝜏2) ⊢𝑥 (𝑣1, 𝑣2) { 𝑟
[m-pair2]

[𝑥]𝜏 ⊢𝑥 [𝑣1, · · · , 𝑣𝑛] { 𝑛
[m-arr1]

𝑥 ≠ 𝑦 𝜏 ⊢𝑥 𝑣1 { 𝑟

[𝑦]𝜏 ⊢𝑥 [𝑣1, · · · , 𝑣𝑛] { 𝑟
[m-arr2]

Multiple variables 𝜏 ⊢𝑥 𝑣 { 𝑛

𝜏 ⊢𝑥1
𝑣 { 𝑛1 · · · 𝜏 ⊢𝑥𝑚 𝑣 { 𝑛𝑚

𝜏 ⊢(𝑥1 · · ·𝑥𝑚) 𝑣 { (𝑛1 · · ·𝑛𝑚)
[m-multi]

Figure 5. Dynamic size-matching for the language.

Values 𝜌 ⊢ 𝑣 ⊲ 𝜏

𝜌 ⊢ 𝑛 ⊲ int
[c-int]

𝑣 = true ∨ 𝑣 = false

𝜌 ⊢ 𝑣 ⊲ bool
[c-bool]

𝜌 ⊢ 𝑣1 ⊲ 𝜏1 𝜌 ⊢ 𝑣2 ⊲ 𝜏2

𝜌 ⊢ (𝑣1, 𝑣2) ⊲ (𝜏1, 𝜏2)
[c-pair]

𝜌 (𝑥) = 𝑛 𝜌 ⊢ 𝑣1 ⊲ 𝜏 · · · 𝜌 ⊢ 𝑣𝑛 ⊲ 𝜏

𝜌 ⊢ [𝑣1, · · · , 𝑣𝑛] ⊲ [𝑥]𝜏 [m-arr-x]

𝜌 ⊢ 𝑣1 ⊲ 𝜏 · · · 𝜌 ⊢ 𝑣𝑛 ⊲ 𝜏

𝜌 ⊢ [𝑣1, · · · , 𝑣𝑛] ⊲ [𝑛]𝜏 [m-arr-n]

Figure 6. Dynamic size-checking for the language.

the form 𝜌 ⊢ 𝑣 ⊲ 𝜏 , where 𝜌 is a dynamic environment, 𝑣 is

a value, and 𝜏 is a type. The size-checking rules are given in

Figure 6. The dynamic semantics rules are given in Figure 7.

3 Metatheory for 𝐹
This section builds up a metatheory for 𝐹 , culminating in a

soundness proof.

As mentioned earlier, for simplicity, the soundness result

concerns well-typed and well-terminating programs. By re-

stricting the result to well-terminating programs, we have

pushed aside the technicalities involved in propagating er-

rors in the rules for the dynamic semantics. Notice that 𝐹

does not contain any form of unbounded recursion (all the

second-order array combinators can be defined inductively),

thus, in priciple, by propagating out-of-bound array-index

errors and failed type-matching errors, explicitly, in the rules

for the dynamic semantics, termination can be established

formally; we will leave it up to future work to consider this

possibility.

The soundness result that we establish here gives a guaran-

tee that when an expression evaluates to a value containing

arrays, the arrays are described by the type of the expression.

As a consequence, because size quantifiers cannot appear

underneath array type constructors, all multi-dimensional

arrays that are constructed during evaluation are regular

(all rows have the same shape). Moreover, the soundness

result allows the compiler to omit a large number of size

compatibility checks (which are established statically by the

type system).

The remainder of this section is quite dense, and readers

are free to skip the detailed proofs, as later sections do not

directly build on the actual proofs (only on the properties

they concern).

3.1 Properties of the Type System
The type system possesses a number of properties that are im-

portant for ensuring well-formedness of types. The following

two propositions are established by straightforward induc-

tion on the structure of the type-well-formedness derivation

and the typing derivation, respectively.

Proposition 3.1 (Type well-formedness preserved under

size substitution). Let 𝜏 = ★ or 𝜏 = int. If Γ, 𝑥 : 𝜏 ⊢ ` ok and
Γ ⊢ 𝑑 ok then Γ ⊢ `{𝑑/𝑥} ok.

Proposition 3.2 (Typing yields well-formed types). If Γ ⊢
Γ ok and Γ ⊢ 𝑒 : ` then Γ ⊢ ` ok.

5

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

Expressions 𝜌 ⊢ 𝑒 { 𝑣

𝜌 ⊢ 𝑛 { 𝑛
[d-int]

𝜌 ⊢ true { true
[d-true]

𝜌 ⊢ false { false
[d-false]

𝜌 (𝑥) = 𝑣

𝜌 ⊢ 𝑥 { 𝑣
[d-var]

𝜌 ⊢ 𝑒1 { 𝑣1 · · · 𝜌 ⊢ 𝑒𝑛 { 𝑣𝑛

𝜌 ⊢ [𝑒1, · · · , 𝑒𝑛] { [𝑣1, · · · , 𝑣𝑛]
[d-array]

𝜌 ⊢ 𝑒1 { 𝑣1 𝜌 ⊢ 𝑒2 { 𝑣2

𝜌 ⊢ (𝑒1, 𝑒2) { (𝑣1, 𝑣2)
[d-pair]

𝜌 ⊢ 𝑒 { (𝑣1, 𝑣2)
𝜌 ⊢ fst 𝑒 { 𝑣1

[d-fst]

𝜌 ⊢ 𝑒 { (𝑣1, 𝑣2)
𝜌 ⊢ snd 𝑒 { 𝑣2

[d-snd]

𝜌 ⊢ 𝑒1 { [𝑣0, . . . , 𝑣𝑚−1]
𝜌 ⊢ 𝑒2 { 𝑛 0 ≤ 𝑛 < 𝑚

𝜌 ⊢ 𝑒1 [𝑒2] { 𝑣𝑛
[d-index]

𝜌 ⊢ _𝑥 .𝑒 { ⟨𝑥, 𝑒, 𝜌⟩ [d-lam]

𝜌 ⊢ 𝑒1 { ⟨𝑥, 𝑒0, 𝜌
′⟩

𝜌 ⊢ 𝑒2 { 𝑣 ′ 𝜌 ′, 𝑥 : 𝑣 ′ ⊢ 𝑒0 { 𝑣

𝜌 ⊢ 𝑒1 𝑒2 { 𝑣
[d-app]

𝜌 ⊢ 𝑒 { 𝑛

𝑣 = [0, · · · , 𝑛 − 1]
𝜌 ⊢ iota 𝑒 { 𝑣

[d-iota]

𝜌 ⊢ 𝑒 { true 𝜌 ⊢ 𝑒1 { 𝑣

𝜌 ⊢ if 𝑒 then 𝑒1 else 𝑒2 { 𝑣
[d-if-t]

𝜌 ⊢ 𝑒 { false 𝜌 ⊢ 𝑒2 { 𝑣

𝜌 ⊢ if 𝑒 then 𝑒1 else 𝑒2 { 𝑣
[d-if-f]

𝜌 ⊢ 𝑒 { 𝑣

𝜌, 𝑥 : 𝑣 ⊢ 𝑒 ′ { 𝑣 ′

𝜌 ⊢ let 𝑥 = 𝑒 in 𝑒 ′ { 𝑣 ′
[d-let]

𝜌 ⊢ 𝑒 { 𝑣 𝜏 ⊢𝑥 𝑣 { 𝑛

𝜌, 𝑥 : 𝑛, 𝑥 : 𝑣 ⊢ 𝑒 ′ { 𝑣 ′

𝜌 ⊢ let [𝑥] 𝑥 : 𝜏 = 𝑒 in 𝑒 ′ { 𝑣 ′
[d-let-m]

𝜌 ⊢ 𝑒 { 𝑣

𝜌 ⊢ 𝑣 ⊲ 𝜏

𝜌 ⊢ 𝑒 ⊲ 𝜏 { 𝑣
[d-coerce]

Figure 7. Dynamic semantics for the language.

3.2 Relating Values and Types
In this section, we define a logical relation between values

and types. To do so, we use 𝛿 to range over size assignments,
which are mappings from program variables to sizes (i.e.,

integers). The logical relation is specified using a series of

inductive definitions on the forms 𝛿 |= 𝑣 : 𝜎 and 𝛿 |= 𝑣 : `,

which are read “the value 𝑣 has type scheme 𝜎 (or return

type `) under the size assignment 𝛿 .”

We define a notion of agreement between size assignments

on a set of size variables. When𝑋 is a set of size variables and

𝛿 and 𝛿 ′ are size assignments, we say that 𝛿 agrees with 𝛿 ′ on
the set𝑋 , written 𝛿 ′ ≈𝑋 𝛿 , if𝑋 ⊆ Dom(𝛿) and𝑋 ⊆ Dom(𝛿 ′)
and 𝛿 (𝑥) = 𝛿 ′(𝑥), for all 𝑥 ∈ 𝑋 .

The notion of agreement, on a given set, is reflexive, tran-

sitive, and symmetric. Further, if 𝛿 ′ ≈𝑋 𝛿 and 𝑌 ⊆ 𝑋 then

𝛿 ′ ≈𝑌 𝛿 .

The logical relation is first defined inductively on types

and return types:

Types and Return Types 𝛿 |= 𝑣 : ` .

l-int 𝛿 |= 𝑛 : int
l-true 𝛿 |= true : bool
l-false 𝛿 |= false : bool
l-pair 𝛿 |= (𝑣1, 𝑣2) : (𝜏1, 𝜏2) iff 𝛿 |= 𝑣1 : 𝜏1 and 𝛿 |= 𝑣2 :

𝜏2

l-arr-n 𝛿 |= [𝑣1, · · · , 𝑣𝑛] : [𝑛]𝜏 iff 𝛿 |= 𝑣𝑖 : 𝜏 , ∀𝑖 ∈
{1..𝑛}

l-arr-x 𝛿 |= [𝑣1, · · · , 𝑣𝑛] : [𝑥]𝜏 iff 𝛿 (𝑥) = 𝑛 and 𝛿 |=
𝑣𝑖 : 𝜏 , ∀𝑖 ∈ {1..𝑛}

l-clos 𝛿 |= ⟨𝑥, 𝑒 ′, 𝜌⟩ : (𝑥 : 𝜏 ′) → ` iff

∀𝑣1, 𝑣2, (𝛿 |= 𝑣1 : 𝜏 ′ and 𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ′ { 𝑣2)

=⇒ if 𝜏 ′ = int
then 𝛿, 𝑥 : 𝑣1 |= 𝑣2 : `

else 𝛿 |= 𝑣2 : `

l-rt 𝛿 |= 𝑣 : ∃𝑥 .` ′ iff ∃𝑛 s.t. 𝛿, 𝑥 : 𝑛 |= 𝑣 : ` ′

The logical relation extends to type schemes as follows:

Type Schemes 𝛿 |= 𝑣 : 𝜎 .

l-ts-type 𝛿 |= 𝑣 : 𝜎 iff 𝛿 |= 𝑣 : 𝜏 (𝜎 = 𝜏)

l-ts-★ 𝛿 |= 𝑛 : ★

The logical relation extends to environments point-wise,

but we take care to ensure that abstract size variables (type

scheme ★) or variables of type int, appear as size assump-

tions in 𝛿 and appear, identically, as values in 𝜌 .

6

Towards Size-Dependent Types for Array Programming ARRAY ’21, June 21, 2021, Virtual, Canada

We shall also make use of the following definitions of

TyDom(Γ) and StarDom(Γ), which capture the set of vari-

ables in Γ that are associated with proper type, and the set

of variables that are associated with abstract sizes (★):

TyDom(Γ) = {𝑥 ∈ Dom(Γ) | Γ(𝑥) ≠ ★}
StarDom(Γ) = {𝑥 ∈ Dom(Γ) | Γ(𝑥) = ★}

Thus, for any Γ, we haveDom(Γ) = TyDom(Γ)∪StarDom(Γ)
and TyDom(Γ) ∩ StarDom(Γ) = ∅.

Environments 𝛿 |= 𝜌 : Γ .

l-env 𝛿 |= 𝜌 : Γ iff

1. Dom(𝜌) = TyDom(Γ) and ⊢ Γ ok
2. ∀𝑥 ∈ TyDom(Γ), 𝛿 |= 𝜌 (𝑥) : Γ(𝑥)
3. ∀𝑥 ∈ TyDom(Γ), (Γ(𝑥) = int =⇒ 𝛿 (𝑥) =

𝜌 (𝑥))
4. StarDom(Γ) ⊆ Dom(𝛿)

The free size variables of an environment Γ, written fsv(Γ)
is defined as follows:

fsv(Γ) = {𝑥 ∈ Dom(Γ) | Γ(𝑥) = int ∨ Γ(𝑥) = ★}
∪ {𝑥 ∈ fv(Γ(𝑦)) | 𝑦 ∈ Dom(Γ)}

Notice also that 𝛿 |= 𝜌 : Γ entails ⊢ Γ ok, which is useful for
ensuring well-formedness of type environments throughout

the inductive proofs. Well-formed type environments are

important for establishing, for instance, well-formedness of

types, as we have seen earlier, which, allows us to reason

about the identity of types. For instance, we can establish

that if 𝑥 ∉ Dom(Γ) and Γ ⊢ ` ok then ` = ∃𝑥 .` (because

return types are considered identical up to removal of bound

variables that do not occur in the body).

3.3 Logical Relation Extensibility
Before we state a soundness property for the type system,

we first demonstrate an important property of the logical

relation, namely that it supports an extension property say-

ing that if 𝛿 |= 𝜌 : Γ and 𝛿 ′ ≈fsv(Γ) 𝛿 then 𝛿 ′ |= 𝜌 : Γ. This

property is important for giving a soundness proof for the

type system, based on simple induction principles.
3

Proposition 3.3 (Logical Relation Extensibility).
1. If 𝛿 |= 𝑣 : 𝜏 and 𝛿 ′ ≈fv(𝜏) 𝛿 then 𝛿 ′ |= 𝑣 : 𝜏 .
2. If 𝛿 |= 𝑣 : ` and 𝛿 ′ ≈fv(`) 𝛿 then 𝛿 ′ |= 𝑣 : `.
3. If 𝛿 |= 𝑣 : 𝜎 and 𝛿 ′ ≈fv(𝜎) 𝛿 then 𝛿 ′ |= 𝑣 : 𝜎 .
4. If 𝛿 |= 𝜌 : Γ and 𝛿 ′ ≈fsv(Γ) 𝛿 then 𝛿 ′ |= 𝜌 : Γ.

Proof. The main interesting case is the case for function

types. The remaining cases either follow immediately or

can be shown by straightforward induction. For details, see

Appendix A. □

3
In particular, the property is used in the proof cases for lambda abstraction

and let-binding.

3.4 Size Matching and Size Checking Properties
In the proof of soundness of the size-typing rules, we will

make use of a property of the dynamic size-matching rules.

The following proposition holds:

Proposition 3.4 (Dynamic Size Matching).
1. If 𝛿 |= 𝑣 : ∃𝑥 .𝜏 and 𝜏 ⊢𝑥 𝑣 { 𝑛 then 𝛿, 𝑥 : 𝑛 |= 𝑣 : 𝜏 .
2. If 𝛿 |= 𝑣 : ∃𝑥 .𝜏 and 𝜏 ⊢𝑥 𝑣 { 𝑛 then 𝛿, 𝑥 : 𝑛 |= 𝑣 : 𝜏 .

Proof. Property 1 follows from simple induction over the

structure of 𝜏 . Property 2 follows by repeated application of

property 1. □

We will make use also of the following property of the

size checking rules:

Proposition 3.5 (Dynamic Size Checking). If 𝛿 |= 𝑣 : 𝜏1 and
𝜏 = 𝜏1{ ¯𝑑/𝑥} and 𝜌 ⊢ 𝑣 ⊲ 𝜏 and 𝜌 (𝑥) = 𝛿 (𝑥),∀𝑥 ∈ fv(𝜏), then
𝛿 |= 𝑣 : 𝜏 .

Proof. By induction on the structure of 𝜏1. □

3.5 Soundness of Size Typing
We can now state and prove a soundness property for the

type system. The property gives us no guarantee that evalu-

ation is strongly normalising. We shall return to this issue

later in Section 3.6.

Proposition 3.6 (Soundness). If Γ ⊢ 𝑒 : ` and 𝛿 |= 𝜌 : Γ and
𝜌 ⊢ 𝑒 { 𝑣 then 𝛿 |= 𝑣 : `.

Proof. By induction on the structure of the typing derivation.

See Appendix A for details. □

3.6 Distinguishing Effects
By considering only value-terminating expressions, we have

avoided specifying dynamic evaluation rules for propagating

dynamic errors. There are a number of ways in which well-

typed expressions may fail to evaluate. First, rule d-index

requires the index to be in-bound. Second, rule d-coercemay

hit an array size mismatch. Third, rule d-coerce assumes

that the result type does not contain any function types.

Fourth, rule d-let-sz may fail either due to the presence of

an empty array, due to the lack of a size name in the type, or

due to a size name being present only below a function type.

Dealing properly with inner sizes of empty arrays requires

that shape information is available dynamically in cases

where an array can be empty. Whereas our Futhark imple-

mentation treats empty arrays properly (by annotating array

values with shape information at runtime), we leave it to

future work to provide a formal treatment of empty arrays.

Technically, it would not be difficult to establish a termi-

nation result based on a logical relation argument similar to

the one we have presented here but changed to demand that

there exists an evaluation derivation resulting in a value (or

a dynamic error) that relates to the result type of the typing

derivation. Such an argument would follow closely Tait’s

7

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

𝜏 ::= · · · Basic types
| 𝛼 type variable

𝜎 ::= · · · Type schemes
| ∀𝑥 .𝜎 universal size quantification

| ∀𝛼.𝜎 universal type quantification

𝑒 ::= Expressions
| let 𝑓 [𝑥] 𝛼 = 𝑒 in 𝑒 polymorphic let

Figure 8. Grammar components for parametric polymor-

phism, extending those of Figure 1.

strong-normalisation argument for the simply-typed lambda

calculus, which dates back to 1967 [25] and is later estab-

lished as a fundamental proof technique [10] and adapted

for a variety of uses [5].

For proving strong-normalisation in cases of inductively

defined data-structures, logical relation techniques have been

augmented with step-indexing techniques [2, 6], which serve

to establish a well-defined logical relation. Such techniques

could be useful also in the setting of array programming,

where array sizes could serve as ameans for controlling array

slicing and looping in an inductively defined way, which

could be used for providing strong-normalisation guarantees

for a large class of array programs.

4 Universal Size- and Type-Quantification
For supporting universal size- and type-quantification (para-

metric polymorphism), the grammar for types, type schemes,

and expressions is extended as shown in Figure 8. Note that

the polymorphic let binding binds only a single name, and

requires explicit quantification of both type- and size param-

eters. The type rules are given in Figure 9, where ftv(Γ, 𝜏)
denotes the free type variables in Γ and 𝜏 .

With this extension, we can express the types of common

parallel building blocks:

val length : ∀𝑥 .[𝑥]𝛼 → int
val map : ∀𝑥 .(𝛼 → 𝛽) → [𝑥]𝛼 → [𝑥]𝛽
val zip : ∀𝑥 .[𝑥]𝛼 → [𝑥]𝛽 → [𝑥] (𝛼, 𝛽)
val reduce : ∀𝑥 .(𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝑥]𝛼 → 𝛼

val scan : ∀𝑥 .(𝛼 → 𝛼 → 𝛼) → 𝛼 → [𝑥]𝛼 → [𝑥]𝛼
val filter : ∀𝑥 .(𝛼 → bool) → [𝑥]𝛼 → ∃𝑦.[𝑦]𝛼
Notice, however, that 𝐹 is not sufficiently expressive to

actually define all of these functions, as reduce, scan, and
filter require recursion or some other flexible construct

for expressing recurrences.

It is critical that parametric polymorphism does not allow

us to construct irregular arrays. To see how the type rules

prevent irregular arrays, consider the expression

map (_𝑥 .iota 𝑥) 𝑦

which is ill-typed because

Γ ⊢ (_𝑥.iota 𝑥) : (𝑥 : 𝑖𝑛𝑡) → [𝑥]int
and we cannot instantiate 𝛽 in the type scheme for map with

[𝑥]int because Γ ⊢ [𝑥]int ok does not hold (𝑥 ∉ Dom(Γ)).
Similarly, the expression

map (_𝑥.filter 𝑓 𝑥) 𝑦
is ill-typed because t-inst only allows instantiation of type

variables with basic types (𝜏).

We postpone the development of a soundness result for the

language featuring size- and type-polymorphism. However,

for the Hindley-Damas-Milner style let-polymorphism we

support, extending the proof to cover these features, we

believe can be built on standard techniques [18].

5 Size Types in Futhark
Apart from the formal treatment of 𝐹 , we have also added

size types to the Futhark programming language. The core

design is the same—in particular, sizes must still be constants

or variable names—but the system has been extended and

augmented to handle the requirements of a full-featured pro-

gramming language. In this section we will discuss the sig-

nificant extensions that we found necessary, as well as reflect

on their usability for writing real functional array programs.

Our exposition of size types in Futhark is still informal—a

full formalisation remains future work. In Futhark, sizes are

of type i64, for 64-bit integers. Generally, the addition of

size types did not complicate the compiler’s many front-end

transformations, such as defunctorisation [8], monomorphi-

sation, lambda lifting, and defunctionalisation [14].

Nontrivial size expressions. The soundness proof in Sec-

tion 3 assumes that all subexpressions are variables or integer

constants. This assumption is awkward when writing real

programs, and so the Futhark compiler morally rewrites

expressions of the form

iota (f x)

to

let 𝑣 = f x in iota v

for some compiler-generated name 𝑣 . Further, it also uses the

explicit version of the let construct to assign internal names

to existential sizes. To keep type errors comprehensible, the

compiler remembers the original expression for 𝑣 , so that

whenever 𝑣 occurs as a size in a type error, the compiler

will be able to point to the originating expression. Similarly,

when existential sizes arise due to names going out of scope,

or application of a function that returns an existential size,

the compiler tracks the origin of the existential size, so it

can explain where it came from. This requires some extra

book-keeping in the type checker, but has not complicated

later stages or optimisations in the compiler, as merely main-

taining the program in Administrative Normal Form [21],

provides these properties.

8

Towards Size-Dependent Types for Array Programming ARRAY ’21, June 21, 2021, Virtual, Canada

Types Γ ⊢ 𝜏 ok

Γ ⊢ 𝛼 ok

Expressions Γ ⊢ 𝑒 : `

Γ(𝑓) = ∀𝛼.∀𝑥 .𝜏 Γ ⊢ 𝜏1 ok · · · Γ ⊢ 𝜏𝑛 ok Γ ⊢ 𝑦1 : int · · · Γ ⊢ 𝑦𝑛 : int

Γ ⊢ 𝑓 : 𝜏{𝜏/𝛼,𝑦/𝑥} [t-inst]

{𝛼} ∩ ftv(Γ, 𝜏2) = ∅ {𝑥} ∩ fv(𝜏2) = ∅ Γ, 𝑥 : int ⊢ 𝑒1 : 𝜏1 Γ, 𝑓 : ∀𝛼.∀𝑥 .𝜏1 ⊢ 𝑒2 : 𝜏2

Γ ⊢ let 𝑓 [𝑥] 𝛼 = 𝑒1 in 𝑒2 : 𝜏2

[t-gen]

Figure 9. Type rules for polymorphism, extending those of Figures 2 and 3.

Type inference. While 𝐹 is explicitly typed, the Futhark

type checker is built around a conventional Hindley-Damas-

Milner type inference implementation. We have extended

this implementation to also support size inference. When

instantiating a type scheme, each size parameter is turned

into a nonrigid size variable, which is then unified with other

size variables and term-level variables. This allows inference

of a (contrived) function such as

let f n xs = zip (iota n) xs

which is assigned the type

val f 't : (n:i64) → (xs:[n]t) → [n](i64 ,t)

Similarly to type variables, unconstrained size variables are

turned into size parameters during let-generalization. Our
type inference algorithm is currently merely a best-effort
implementation, and will sometimes need type annotations

in the source program to assign sizes that would otherwise

be ambiguous.

Implicit size parameters. Futhark supports size param-
eters, as in Section 4, which are also the main mechanism

we use to express shape constraints in function types. For

example::

val dotprod [n] :

(xs:[n]i64) → (ys:[n]i64) → i64

During compilation, these implicit parameters are turned

into ordinary explicit parameters. For each application dotprod
xs ys, the compiler will then use the types of xs and ys to
decide what to pass for the implicit arguments.

Extensions to parametric polymorphism. There are

some cases where we wish to allow a functional argument

to a higher-order function to have an existential size in its

result type

let apply 'a 'b (f: a → b) (x: a) : b = f x

But as discussed in Section 4, apply (filter p) xs is not

well typed. To address this, we introduce the notion of size-
lifted type parameters, written '~a, whichmay be instantiated

(in negative position) with return types with existential sizes:

let apply 'a '~b (f: a → b) (x: a) : b = f x

To avoid irregular arrays, size-lifted types may never be array

elements, which is enforced by the type checker.

6 Experience Report
When designing a type system that limits flexibility to obtain

convenience, we must evaluate whether the loss of flexibility

is an obstacle in practice, which is necessarily a subjective

question. Our prototype implementation of size types was

added to Futhark in version 0.15.1, released in March 2020.

The Futhark benchmark suite
4
is the largest single collection

of Futhark programs, and serves as a case study for the usabil-

ity of the type system. The suite comprises about 12,000 lines

of code, spread over ports of benchmarks from Rodinia [4]

(13 programs), FinPar [1] (3 programs), Parboil [24] (5 pro-

grams), the Accelerate [3] examples (13 programs), and an

ad-hoc collection of further benchmarks (10 programs). Most

of these programs were written before size types were added

to Futhark and had to be modified.

The benchmark suite contains 66 instances of dynami-

cally checked size coercions, including calls to library func-

tions that include such size coercions. Most of these are in

initialisation code, where inputs must be packed in some

benchmark-specific format. For example, backprop from Ro-

dinia accepts and returns a variety of arrays of sizes 𝑛 and

𝑛 + 1, where the program then splits the latter into arrays of

size 1 and 𝑛 respectively. Since this relationship cannot be

directly expressed in our size type system, we are forced to

use type coercions. The main computational core of back-
prop does not contain any type coercions. While dynamic

checks are never desirable, they are relatively innocent in

4https://github.com/diku-dk/futhark-benchmarks/

9

https://github.com/diku-dk/futhark-benchmarks/

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

initialisation code, where they function as a form of input

validation.

In some cases we had to change our programming style.

For example, a relatively commonly occurring pattern was

map (_i → map (_j → ...) (iota (f x)))

(iota (g y))

Since f x is not a constant or variable, the innermost iota
(and hence the entire inner map) returns an array of exis-

tential size, which makes the outermost map type-incorrect,
as its function must not return an array of existential size.

While f x is invariant to the map, we did not want the type

checker to make such subtle transformations on behalf of

the programmer. The immediate solution is to hoist out the

size as an outer binding:

let n = f x

in map (_i → map (_j → ...) (iota n))

(iota (g y))

This solution is arguably ugly. But if we define a function

val tabulate_2d 'a : (n: i64) → (m: i64)

→ (f: i64 → i64 → a) → [n][m]a

then we can write the original expression as:

tabulate_2d (g y) (f x) (_i j → ...)

Similarly, a common pattern was to write

zip xs (iota (length xs))

to associate each element of an array with its index. This is

invalid under size typing, since as far as the type checker is

concerned, length just returns an arbitrary integer without

any relation to the size of xs. A solution is to define another

helper function

val indices [n] 'a : [n]a → [n]i64

such that we can write zip xs (indices xs). Both of these

functions are ordinary library code, not compiler builtins,

and do not contain any size coercions. In this way, we were

usually able to both satisfy the type checker and write con-

cise code, although we did have to change old habits.

We also used size-typed Futhark to teach parallel program-

ming to students at the University of Copenhagen. Most had

no experience with advanced type systems, and many had

little experience with functional programming at all, yet they

were able to write nontrivial Futhark programs without trip-

ping over type restrictions too often. We attribute this to the

simplicity of the rules, as well as the ease with which they

can be broken when necessary. For programmers who are

not experts in type theory, it is useful to have a rigid type

system that covers only the simple cases and contains escape

hatches for the rest, rather than a complex system that can

handle all cases.

7 Related Work
Size inference. A theory of shapes was developed by Jay

over a series of papers [15, 16]. Jay’s specific work focused

on “shapely” programs, where the shapes could be deter-

mined in advance (possibly by using partial evaluation to

construct an inspector [17]), while our size types also sup-

port statically undeterminable existential sizes. The Futhark

compiler previously used a size inference technique based

on slicing [12] to e.g. compute in advance the return size

of the function passed to map, but this has been completely

replaced by the size type system, where the type checker

provides all the information needed by the compiler.

Array languages. In the APL tradition, 𝑘-dimensional

arrays are represented as a pair of a 𝑘-vector of sizes and an-

other vector of values. This permits a trivial implementation

of operations such as reshaping by changing the shape vec-

tor, and of shape polymorphic functions that operate solely
on the value vector. This idea is given a deeper theoretical

treatment in the mathematics of arrays [20], and also used

in typed functional languages such as SAC [22] and TAIL

[7, 11]. In contrast, our type system views multidimensional

arrays inductively as as “arrays of arrays”, and while it sup-

ports a form of size polymorphism, it does not support rank
polymorphism. The advantage is that this is a natural fit with

conventional ML-style parametric polymorphism, where an

array type [𝑛]𝛼 can have the element type 𝛼 substituted with

any type, including another array type. This also makes it

straightforward to, for example, map a function across the

rows of a two-dimensional array.

Type systems. Our type system is heavily inspired by de-

pendent types, where tracking the sizes of vectors is one of

the classic examples. For example, Dependent ML uses sin-

gleton types to eliminate bounds checking in programs [27].

While we do not address bounds checking in our type system

and fall back to run-time checks, we assume that most pro-

grams will be written “index-free” using combinators such

as map and reduce. The main limitation of our type system

versus full-spectrum dependent types is that we only allow

one specific term-level type (integers) to appear in types,

only for array shapes, and only in a very restricted syntactic

form (variables and constants). A notable implementation

advantage of this simplification is that it permits straight-

forward type erasure, as arrays nevertheless have to carry

around their shape at run-time, which is usually a negligible

amount of data compared to the array elements.

Qube [26] is an interesting combination of APL-style shapes

and dependent types, including support for shape polymor-

phic programming. Qube verifies all size constraints and

index operations at compile-time, using an SMT solver to

handle complex constraints. However, Qube still requires

the array element type to be monomorphic, which in par-

ticular means that it does not support ML-style parametric

10

Towards Size-Dependent Types for Array Programming ARRAY ’21, June 21, 2021, Virtual, Canada

polymorphism. In contrast to both Futhark and 𝐹 , Qube sup-

ports irregular arrays via dependent products—we believe

the same approach could also be used with our size types.

Remora [23] is an array language that is similarly depen-

dently typed, and focuses on capturing APL-style implicit ag-

gregate operations in the type system. In particular, Remora

supports arrays of functions, allowing a programming style

that encodes control flow as data. It has been shown that

parts of this type discipline can be encoded using the frag-

ment of dependent types available in Haskell [9]

Finally, Dex [19] is an array language developed at Google

Research. In contrast to most such languages, it embraces

explicit indexing, making it safe by making assigning distinct

types (and types of index values) to each distinct dimension

of an array. Dex uses conventional existential types to handle

operations such as filter.

8 Conclusions and Future Work
In this paper we have presented a type system for array pro-

gramming that is fundamentally similar to existing ML-style

type systems, yet allows the checking of array size invariants

in function applications. We formalised the core of the type

system and explained informally how we have added it to

the Futhark language. The type system has the significant

restriction that only variables or constants can be used in

array sizes. Despite this limitation, it is flexible enough to

handle the programs found in the Futhark benchmark suite,

most of which are ported from other languages, while need-

ing few dynamic checks. This suggests that the type system

is a good fit for regular nested data parallel algorithms.

However, there is more work to do. It is awkward that the

type system is not strong enough to express the shapes that

arise from catenating or flattening arrays. It is likely that

such extensions will require the compiler to solve integer

problems at compile-time, as in Dependent ML or Qube.

Finally, our formal treatment of size types is still incom-

plete. It lacks important features such parametric polymor-

phism, does not describe a technique for type inference, and

contains some simplifying assumptions—most critically, that

arrays are never empty.

Acknowledgments
This research has been partially supported by a grant from

the Independent Research Fund Denmark, under the re-

search project FUTHARK: Functional Technology for High-
performance Architectures.

A Proofs of Propositions 3.3 and 3.6
Proposition 3.3 (Logical Relation Extensibility)

1. If 𝛿 |= 𝑣 : 𝜏 and 𝛿 ′ ≈fv(𝜏) 𝛿 then 𝛿 ′ |= 𝑣 : 𝜏 .

2. If 𝛿 |= 𝑣 : ` and 𝛿 ′ ≈fv(`) 𝛿 then 𝛿 ′ |= 𝑣 : `.

3. If 𝛿 |= 𝑣 : 𝜎 and 𝛿 ′ ≈fv(𝜎) 𝛿 then 𝛿 ′ |= 𝑣 : 𝜎 .

4. If 𝛿 |= 𝜌 : Γ and 𝛿 ′ ≈fsv(Γ) 𝛿 then 𝛿 ′ |= 𝜌 : Γ.

Proof. For proving property 1, there is one interesting case.

The remaining cases either follow immediately or can be

shown by straightforward induction.

Case 𝜏 = (𝑥 : 𝜏 ′) → `: From assumption and l-clos, we

have ⌈1⌉ 𝑣 = ⟨𝑥, 𝑒 ′, 𝜌⟩ and ⌈2⌉ ∀𝑣1, 𝑣2, (𝛿 |= 𝑣1 : 𝜏 ′ and
𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ′ { 𝑣2) =⇒ (if 𝜏 ′ = int then 𝛿, 𝑥 : 𝑣1 |= 𝑣2 : `

else 𝛿 |= 𝑣2 : `).

To establish 𝛿 ′ |= 𝑣 : 𝜏 , we must establish ⌈3⌉ ∀𝑣1, 𝑣2,

(𝛿 ′ |= 𝑣1 : 𝜏 ′ and 𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ′ { 𝑣2) =⇒ (if 𝜏 ′ = int then

𝛿 ′, 𝑥 : 𝑣1 |= 𝑣2 : ` else 𝛿 ′ |= 𝑣2 : `).

We first assume ⌈4⌉ 𝛿 ′ |= 𝑣1 : 𝜏 ′ and ⌈5⌉ 𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ′ {
𝑣2. From assumption, we have ⌈6⌉ 𝛿 ′ ≈fv(𝜏) 𝛿 . From the

definition of agreement and because fv(𝜏 ′) ⊆ fv(𝜏), we have
⌈7⌉ 𝛿 ′ ≈fv(𝜏′) 𝛿 . By induction on ⌈4⌉ and ⌈7⌉, we have ⌈8⌉
𝛿 |= 𝑣1 : 𝜏 ′. We can now apply ⌈2⌉ to ⌈8⌉ and ⌈5⌉ to get ⌈9⌉
(if 𝜏 ′ = int then 𝛿, 𝑥 : 𝑣1 |= 𝑣2 : ` else 𝛿 |= 𝑣2 : `).

There are now two cases.

Subcase 𝜏 ′ = int: From the definition of agreement and

from ⌈6⌉, we have ⌈10⌉ (𝛿 ′, 𝑥 : 𝑣1) ≈fv(`) (𝛿, 𝑥 : 𝑣1). By
induction on ⌈9⌉ (case 𝜏 ′ = int) and ⌈10⌉, we get 𝛿 ′, 𝑥 : 𝑣1 |=
𝑣2 : `, as required.

Subcase 𝜏 ≠ int: In this case 𝑥 ∉ fv(`), thus, from ⌈6⌉
and the definition of agreement, we have ⌈11⌉ 𝛿 ′ ≈fv(`) 𝛿 . It
now follows directly using induction on ⌈9⌉ (case 𝜏 ′ ≠ int)
and ⌈11⌉ that 𝛿 ′ |= 𝑣2 : `, as required.

For proving property 2, there is one case to consider:

Case ` = ∃𝑥 .` ′: By renaming, we can assume𝑥 ∉ Dom(𝛿 ′).
From l-rt, we have there exists 𝑛 such that 𝛿, 𝑥 : 𝑛 |=
𝑣 : ` ′. From the definition of agreement, we have (𝛿 ′, 𝑥 :

𝑛) ≈fv(`′)∪{𝑥 } (𝛿, 𝑥 : 𝑛) and, thus, (𝛿 ′, 𝑥 : 𝑛) ≈fv(`′) (𝛿, 𝑥 : 𝑛).
We can now apply induction to get 𝛿 ′, 𝑥 : 𝑛 |= 𝑣 : ` ′. From
l-rt, we now have 𝛿 ′ |= 𝑣 : `, as required.

Property 3 follows immediately using property 2.

For proving property 4, there is again only one case to

consider. We are given 𝛿 |= 𝜌 : Γ and we need to establish

𝛿 ′ |= 𝜌 : Γ. The second property in the expanded definition of

|= on environments (i.e., l-env) are established directly using

property 3 above and by the definition of fsv(Γ). The first
property is independent of 𝛿 ′ and thus follows immediately.

The third and fourth properties follow immediately from the

definition of agreement and fsv(Γ). □

Proposition 3.6 (Soundness) If Γ ⊢ 𝑒 : ` and 𝛿 |= 𝜌 : Γ and
𝜌 ⊢ 𝑒 { 𝑣 then 𝛿 |= 𝑣 : `.

Proof. By induction on the structure of the typing derivation.

We proceed by case analysis and show most of the cases,

leaving out the case for conditions (which follow by straight-

forward induction), the cases for booleans (which follow

the case for integers), and some cases that can be treated

similarly to other cases.

Case 𝑒 = 𝑛, ` = int: Follows immediately from rule t-int,

rule d-int, and l-int.

11

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

Case 𝑒 = 𝑥 , ` = 𝜏 : From assumptions, rule t-var, and rule d-

var, we have Γ(𝑥) = 𝜏 and 𝜌 (𝑥) = 𝑣 and 𝛿 |= 𝜌 : Γ. From

l-env, we have 𝛿 |= 𝜌 (𝑥) : Γ(𝑥), for all 𝑥 ∈ Dom(Γ). Thus,
we have 𝛿 |= 𝑣 : `, as required.

Case 𝑒 = (𝑒1, 𝑒2), ` = ∃𝑥1𝑥2.(𝜏1, 𝜏2): From rule t-pair, we

have ⌈1⌉ Γ ⊢ 𝑒1 : ∃𝑥1.𝜏1 and ⌈2⌉ Γ ⊢ 𝑒2 : ∃𝑥2 .𝜏2. From rule d-

pair, we have ⌈3⌉ 𝜌 ⊢ 𝑒1 { 𝑣1 and ⌈4⌉ 𝜌 ⊢ 𝑒2 { 𝑣2 and

𝑣 = (𝑣1, 𝑣2). By induction on ⌈1⌉, ⌈2⌉, ⌈3⌉, and ⌈4⌉, we have
𝛿 |= 𝑣1 : ∃𝑥1 .𝜏1 and 𝛿 |= 𝑣2 : ∃𝑥2 .𝜏2. Now, let `1 = ∃𝑥1𝑥2.𝜏1

and `2 = ∃𝑥1𝑥2.𝜏2. By appropriate renaming, we have 𝛿 |=
𝑣1 : `1 and 𝛿 |= 𝑣2 : `2. From l-rt, we know there exists 𝑛1

and 𝑛2 such that 𝛿 ′ = 𝛿, 𝑥1 : 𝑛1, 𝑥2 : 𝑛2 and 𝛿
′ |= 𝑣1 : 𝜏1 and

𝛿 ′ |= 𝑣2 : 𝜏2. From l-pair, we now have 𝛿 ′ |= (𝑣1, 𝑣2) : (𝜏1, 𝜏2).
We can now use l-rt again to get 𝛿 |= 𝑣 : `, as required.

Case 𝑒 = fst 𝑒 ′, ` = ∃𝑥 .𝜏 ′: This case is proven by induc-

tion, l-pair, rule t-fst, rule d-fst, multiple uses of l-rt, and

from return types being considered identical up to removal

of variables that do not appear in the body.

Case 𝑒 = snd 𝑒 ′, ` = ∃𝑥 .𝜏 ′: Similar to the case for 𝑒 =

fst 𝑒 ′.
Case 𝑒 = [𝑒1, · · · , 𝑒𝑛], ` = [𝑛]𝜏 : From rule t-array, we

have Γ ⊢ 𝑒𝑖 : 𝜏 , 𝑖 ∈ {1..𝑛}. From rule d-array, we have

𝜌 ⊢ 𝑒𝑖 { 𝑣𝑖 , 𝑖 ∈ {1..𝑛}. By induction, we have 𝛿 |= 𝑣𝑖 : 𝜏 ,

𝑖 = {1..𝑛}. From l-arr-n, we have 𝛿 |= [𝑣1, · · · , 𝑣𝑛] : [𝑛]𝜏 ,
as required.

Case 𝑒 = iota 𝑑 , ` = [𝑑]int: From rule t-iotad, we have

⌈0⌉ Γ ⊢ 𝑑 : int. From rule d-iota, we have 𝑣 = [0, · · · , 𝑛− 1]
and ⌈1⌉ 𝜌 ⊢ 𝑑 { 𝑛. From rule t-int, we have Γ ⊢ 𝑣𝑖 : int,
where 𝑣𝑖 = 𝑖 − 1, 𝑖 = {1..𝑛}. From l-int, we have ⌈2⌉ 𝛿 |=
𝑣𝑖 : int. There are two subcases corresponding to whether

𝑑 = 𝑛 (for some 𝑛) or 𝑑 = 𝑥 (for some 𝑥).

If 𝑑 = 𝑛, for some integer 𝑛, we immediately have from

l-arr-n that 𝛿 ⊢ [𝑣1, · · · , 𝑣𝑛] : [𝑛]int, as required.
If 𝑑 = 𝑥 , from ⌈1⌉ and rule d-var, we have ⌈3⌉ 𝜌 (𝑥) = 𝑛.

From ⌈0⌉ and rule t-var, we have ⌈4⌉ Γ(𝑥) = int. From
assumption, we have 𝛿 |= 𝜌 : Γ, thus, from l-env and ⌈4⌉,
we have 𝑥 ∈ TyDom(𝛿) and ⌈5⌉ 𝛿 (𝑥) = 𝜌 (𝑥). From ⌈5⌉ and
⌈3⌉ it thus follows that ⌈6⌉ 𝛿 (𝑥) = 𝑛. From, l-arr-x, ⌈2⌉, and
⌈6⌉, we now have 𝜌 |= [0, · · · , 𝑛 − 1] : [𝑑]int, as required.
Case 𝑒 = _(𝑥 : 𝜏 ′).𝑒 ′, ` = (𝑥 : 𝜏 ′) → ` ′: From rule t-lam,

we have ⌈0⌉ Γ, 𝑥 : 𝜏 ′ ⊢ 𝑒 ′ : ` ′ and Γ : 𝜏 ′ : ok. From rule d-

lam, we have 𝑣 = ⟨𝑥, 𝑒 ′, 𝜌⟩. From l-clos, we have that to

establish 𝛿 |= 𝑣 : `, we need to show

⌈1⌉ ∀𝑣1, 𝑣2, (𝛿 |= 𝑣1 : 𝜏 ′ and 𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ′ { 𝑣2) =⇒ (if

𝜏 ′ = int then 𝛿, 𝑥 : 𝑣 ′ |= 𝑣2 : ` ′ else 𝛿 |= 𝑣2 : ` ′)

We first assume ⌈2⌉ 𝛿 |= 𝑣1 : 𝜏 ′ and ⌈3⌉ 𝜌, 𝑥 : 𝑣1 ⊢ 𝑒 ′ { 𝑣2.

There are now two subcases.

Subcase 𝜏 ′ = int: Because 𝑣1 = 𝑛 for some 𝑛, we have

from l-int that ⌈4⌉ 𝛿, 𝑥 : 𝑛 |= 𝑣1 : 𝜏 ′. From assumption and

Property 3.3(4), we have ⌈4𝑎⌉ 𝛿, 𝑥 : 𝑛 |= 𝜌 : Γ. From ⌈4⌉ and
⌈4𝑎⌉ and from l-env (and becausewe can demonstrate ⊢ Γ, 𝑥 :

𝜏 ′ ok), we have ⌈5⌉ (𝛿, 𝑥 : 𝑛) |= (𝜌, 𝑥 : 𝑛) : (Γ, 𝑥 : int). Now,

by induction on ⌈0⌉, ⌈3⌉, and ⌈5⌉, we get 𝛿, 𝑥 : 𝑣1 |= 𝑣2 : ` ′,
as required.

Subcase 𝜏 ′ ≠ int: From ⌈2⌉, assumptions, and from l-env,

we have ⌈7⌉ 𝛿 |= (𝜌, 𝑥 : 𝑣 ′) : (Γ, 𝑥 : 𝜏 ′). By induction on ⌈0⌉,
⌈3⌉, and ⌈7⌉, we have 𝛿 |= 𝑣2 : ` ′, as required.
Case 𝑒 = 𝑒1 𝑒2, ` = ∃𝑥 .` ′: From assumptions and rule t-

app and rule d-app, we have ⌈0⌉ 𝛿 |= 𝜌 : Γ, ⌈1⌉ Γ ⊢ 𝑒1 :

(𝑥 : 𝜏) → ` ′, ⌈2⌉ Γ ⊢ 𝑒2 : 𝜏 , ⌈4⌉ 𝜌 ⊢ 𝑒1 { ⟨𝑥, 𝑒 ′, 𝜌 ′⟩, ⌈5⌉
𝜌 ′, 𝑥 : 𝑣 ′ ⊢ 𝑒 ′ { 𝑣 , and ⌈6⌉ 𝜌 ⊢ 𝑒2 { 𝑣 ′.
By induction applied to ⌈1⌉, ⌈0⌉, and ⌈4⌉, we get ⌈7⌉ 𝛿 |=

⟨𝑥, 𝑒 ′, 𝜌 ′⟩ : (𝑥 : 𝜏) → ` ′. From l-clos and ⌈7⌉, we have ⌈9⌉
∀𝑣1, 𝑣2, (𝛿 |= 𝑣1 : 𝜏 and 𝜌 ′, 𝑥 : 𝑣1 ⊢ 𝑒 ′ { 𝑣2) =⇒ (if 𝜏 = int
then 𝛿, 𝑥 : 𝑣1 |= 𝑣2 : ` ′ else 𝛿 |= 𝑣2 : ` ′).

By induction on ⌈2⌉, ⌈0⌉, and ⌈6⌉, we have ⌈10⌉ 𝛿 |= 𝑣 ′ : 𝜏 .

We can now apply ⌈9⌉ to ⌈10⌉ and ⌈5⌉, choosing 𝑣1 = 𝑣 ′ and
𝑣2 = 𝑣 , to get ⌈11⌉ (if 𝜏 = int then 𝛿, 𝑥 : 𝑣 ′ |= 𝑣 : ` ′ else
𝛿 |= 𝑣 : ` ′).

There are now two subcases.

Subcase 𝜏 = int: From l-rt and ⌈11⌉, and because ` =

∃𝑥 .` ′, we have 𝛿 |= 𝑣 : `, as required.

Subcase 𝜏 ≠ int: In this case, we know that 𝑥 ∉ fv(` ′),
thus, ` = ` ′ and it follows directly from ⌈11⌉ that 𝛿 |= 𝑣 : `,

as required.

Case 𝑒 = 𝑒1 ⊲ 𝜏 , ` = 𝜏 : From rule t-coerce, we have ⌈1⌉
Γ ⊢ 𝑒1 : 𝜏1 and ⌈2⌉ Γ ⊢ 𝜏 ok and ⌈3⌉ 𝜏 = 𝜏1{ ¯𝑑/𝑥}. From
rule d-coerce, we have ⌈4⌉ 𝜌 ⊢ 𝑒1 { 𝑣 and 𝜌 ⊢ 𝑣 ⊲ 𝜏 . From

assumption, we have ⌈6⌉ 𝛿 |= 𝜌 : Γ. By induction on ⌈6⌉, ⌈1⌉,
and ⌈4⌉, we have ⌈7⌉ 𝛿 |= 𝑣 : 𝜏1. From ⌈6⌉ and l-env, we have
⌈8⌉ ∀𝑥 ∈ TyDom(Γ), (Γ(𝑥) = int =⇒ 𝜌 (𝑥) = 𝛿 (𝑥)). From
⌈2⌉ and ⌈8⌉, we have ⌈9⌉ ∀𝑥 ∈ fv(𝜏), 𝑥 ∈ TyDom(Γ) and
Γ(𝑥) = int. Thus, we have ⌈10⌉ 𝜌 (𝑥) = 𝛿 (𝑥), ∀𝑥 ∈ fv(𝜏).
From Proposition 3.5, ⌈7⌉, ⌈3⌉, ⌈5⌉, and ⌈10⌉, we have

𝛿 |= 𝑣 : 𝜏 and, thus, 𝛿 |= 𝑣 : `, as required.

Case 𝑒 = let 𝑥 = 𝑒1 in 𝑒2, ` = ∃𝑥𝑥 .` ′: From assumption

and rule t-let, we have ⌈1⌉ 𝛿 |= 𝜌 : Γ, ⌈2⌉ Γ ⊢ 𝑒1 : ∃𝑥 .𝜏 , and
Γ, 𝑥 : ★̄, 𝑥 : 𝜏 ⊢ 𝑒2 : ` ′. From assumption and rule d-let, we

have ⌈4⌉ 𝜌 ⊢ 𝑒1 { 𝑣1 and 𝜌, 𝑥 : 𝑣1 ⊢ 𝑒2 { 𝑣 . By induction on

⌈1⌉, ⌈2⌉, and ⌈4⌉, we get ⌈6⌉ 𝛿 |= 𝑣1 : ∃𝑥 .𝜏 . From l-rt and ⌈6⌉,
we have there exists 𝑛 such that ⌈7⌉ 𝛿, 𝑥 : 𝑛 |= 𝑣1 : 𝜏 . There

are now two cases. We first assume 𝜏 ≠ int. Let 𝛿 ′ = 𝛿, 𝑥 : 𝑛

and Γ
′ = Γ, 𝑥 : ★̄, 𝑥 : 𝜏 , and 𝜌 ′ = 𝜌, 𝑥 : 𝑣1. From ⌈1⌉ and

because 𝛿 ′ ≈fsv(Γ) 𝛿 , we have 𝛿
′ |= 𝜌 : Γ. Now, from l-env,

we have

⌈8⌉ Dom(𝜌) = TyDom(Γ) and ⊢ Γ ok
⌈9⌉ ∀𝑥 ∈ TyDom(Γ), 𝛿 ′ |= 𝜌 (𝑥) : Γ(𝑥)
⌈10⌉ ∀𝑥 ∈ TyDom(Γ), Γ(𝑥) = int =⇒ 𝛿 ′(𝑥) = 𝜌 (𝑥)
⌈11⌉ StarDom(Γ) ⊆ Dom(𝛿 ′)

From ⌈8⌉, the definitions of Γ
′
and 𝜌 ′

, and properties about

well-formedness of types, we have that ⌈16⌉ Dom(𝜌 ′) =

TyDom(Γ′) and ⊢ Γ
′ ok. From ⌈9⌉, ⌈7⌉, and the definitions

of 𝛿 ′ and Γ
′
, we have ⌈17⌉ ∀𝑥 ∈ TyDom(Γ′), 𝛿 ′ |= 𝜌 ′(𝑥) :

Γ
′(𝑥). Because 𝜏 ≠ int (separate case), we have from ⌈10⌉

that ⌈18⌉ ∀𝑥 ∈ TyDom(Γ′), (Γ′(𝑥) = int =⇒ 𝛿 ′(𝑥) =

12

Towards Size-Dependent Types for Array Programming ARRAY ’21, June 21, 2021, Virtual, Canada

𝜌 ′(𝑥)). From ⌈11⌉ and the definitions of Γ
′
and 𝛿 ′, we have

StarDom(Γ′) ⊆ Dom(𝛿 ′). From ⌈16⌉, ⌈17⌉, ⌈18⌉, and ⌈19⌉,
we have ⌈20⌉ 𝛿 ′ |= 𝜌 ′

: Γ
′
. By induction on ⌈20⌉, ⌈3⌉, and

⌈5⌉, using the definitions of 𝛿 ′, 𝜌 ′
, and Γ

′
, we have ⌈21⌉

𝛿 ′ |= 𝑣 : ` ′. From l-rt and ⌈21⌉, we have ⌈22⌉ 𝛿 |= 𝑣 : ∃𝑥 .` ′.
From ⌈1⌉, we have Γ

′ ⊢ ` ′ ok and because Γ
′(𝑥) ≠ int and

Γ
′(𝑥) ≠ ★, we know that 𝑥 ∉ fv(` ′). Thus, ∃𝑥 .` ′ = ` ′, which,

together with ⌈22⌉ gives us 𝛿 |= 𝑣 : `, as required. If, instead,

we assume 𝜏 = int, we know 𝑥 is empty, but, instead, we

have from ⌈7⌉ and l-int, that 𝑣1 = 𝑛 for some 𝑛. Now, let

𝛿 ′ = 𝛿, 𝑥 : 𝑛, Γ
′ = Γ, 𝑥 : int, and 𝜌 ′ = 𝜌, 𝑥 : 𝑛. From ⌈1⌉ and

from l-env, we have

⌈23⌉ Dom(𝜌) = TyDom(Γ) and ⊢ Γ ok
⌈24⌉ ∀𝑥 ∈ TyDom(Γ), 𝛿 |= 𝜌 (𝑥) : Γ(𝑥)
⌈25⌉ ∀𝑥 ∈ TyDom(Γ), Γ(𝑥) = int =⇒ 𝛿 (𝑥) = 𝜌 (𝑥)
⌈26⌉ StarDom(Γ) ⊆ Dom(𝛿)

From ⌈23⌉, the definition of well-formed environments, and

the definitions of 𝜌 ′
and Γ

′
, we have that ⌈27⌉ Dom(𝜌 ′) =

TyDom(Γ′) and ⊢ Γ
′ ok. From ⌈6⌉ and because 𝛿 ′ ≈fv(Γ′ (𝑥)) 𝛿 ,

forall 𝑥 ∈ TyDom(Γ′), and from the definitions of 𝜌 ′
and

Γ
′
, we have from Proposition 3.3 that ⌈28⌉ ∀𝑥 ∈ TyDom(Γ′),

𝛿 ′ |= 𝜌 ′(𝑥) : Γ
′(𝑥). From ⌈25⌉ and from the definitions of Γ

′
,

𝛿 ′, and 𝜌 ′
, we have ⌈29⌉ ∀𝑥 ∈ TyDom(Γ′), Γ

′(𝑥) = int =⇒
𝛿 ′(𝑥) = 𝜌 ′(𝑥). From ⌈26⌉ and the definitions of Γ

′
and 𝛿 ′, we

have ⌈30⌉ StarDom(Γ′) ⊆ Dom(𝛿 ′). Now, from ⌈27⌉, ⌈28⌉,
⌈29⌉, and ⌈30⌉, we have ⌈31⌉ 𝛿 ′ |= 𝜌 ′

: Γ
′
. By induction

on ⌈31⌉, ⌈3⌉, and ⌈5⌉, using the definitions of 𝛿 ′, 𝜌 ′
, and

Γ
′
, we have ⌈32⌉ 𝛿 ′ |= 𝑣 : ` ′. From l-rt and ⌈32⌉, we have

𝛿 |= 𝑣 : ∃𝑥 .` ′ and because ` = ∃𝑥 .` ′ (𝑥 is empty), we have

𝛿 |= 𝑣 : `, as required.

Case let [𝑥] 𝑥 : 𝜏 = 𝑒1 in 𝑒2, ` = ∃𝑥𝑥 .` ′: The proof for

this case is similar to the proof for rule t-let, although size

variables are bound to int types in type environments. The

proof case also makes essential use of Proposition 3.4. □

References
[1] Christian Andreetta, Vivien Bégot, Jost Berthold, Martin Elsman, Fritz

Henglein, Troels Henriksen, Maj-Britt Nordfang, and Cosmin E. Oancea.
2016. FinPar: A Parallel Financial Benchmark. ACM Trans. Archit. Code

Optim. 13, 2, Article 18 (June 2016), 27 pages. https://doi.org/10.1145/
2898354

[2] Andrew W. Appel and David McAllester. 2001. An Indexed Model of
Recursive Types for Foundational Proof-Carrying Code. ACM Trans.

Program. Lang. Syst. 23, 5 (Sept. 2001), 657–683. https://doi.org/10.
1145/504709.504712

[3] Manuel M.T. Chakravarty, Gabriele Keller, Sean Lee, Trevor L. McDonell,
and Vinod Grover. 2011. Accelerating Haskell Array Codes with Multicore
GPUs. In Proceedings of the Sixth Workshop on Declarative Aspects of

Multicore Programming (Austin, Texas, USA) (DAMP ’11). Association
for Computing Machinery, New York, NY, USA, 3–14. https://doi.org/
10.1145/1926354.1926358

[4] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S. H. Lee, and K.
Skadron. 2009. Rodinia: A benchmark suite for heterogeneous computing.
InWorkload Characterization, 2009. IISWC 2009. IEEE International

Symposium on. 44–54. https://doi.org/10.1109/ IISWC.2009.5306797

[5] Kevin Donnelly and Hongwei Xi. 2007. A Formalization of Strong Nor-
malization for Simply-Typed Lambda-Calculus and System F. Elec-

tronic Notes in Theoretical Computer Science 174, 5 (2007), 109–125.
https://doi.org/10.1016/ j.entcs.2007.01.021 Proceedings of the First Inter-
national Workshop on Logical Frameworks and Meta-Languages: Theory
and Practice (LFMTP 2006).

[6] D. Dreyer, A. Ahmed, and L. Birkedal. 2009. Logical Step-Indexed Logical
Relations. In 2009 24th Annual IEEE Symposium on Logic In Computer

Science. 71–80. https://doi.org/10.1109/LICS.2009.34
[7] Martin Elsman and Martin Dybdal. 2014. Compiling a Subset of APL

Into a Typed Intermediate Language. In Proceedings of ACM SIG-

PLAN International Workshop on Libraries, Languages, and Compilers

for Array Programming (Edinburgh, United Kingdom) (ARRAY’14).
Association for Computing Machinery, New York, NY, USA, 101–106.
https://doi.org/10.1145/2627373.2627390

[8] Martin Elsman, Troels Henriksen, Danil Annenkov, and Cosmin E. Oancea.
2018. Static Interpretation of Higher-Order Modules in Futhark: Func-
tional GPU Programming in the Large. Proc. ACM Program. Lang. 2,
ICFP, Article 97 (July 2018), 30 pages. https://doi.org/10.1145/3236792

[9] Jeremy Gibbons. 2016. APLicative Programming with Naperian Functors
(Extended Abstract). In Proceedings of the 1st International Workshop

on Type-Driven Development (Nara, Japan) (TyDe 2016). Association
for Computing Machinery, New York, NY, USA, 13–14. https://doi.org/
10.1145/2976022.2976023

[10] Jean Yves Girard. 1971. Interpretation Fonctionnelle et Elimination des
Coupures de l’Arithmetique d’Ordre Superieur. In Proceedings of the

Second Scandinavian Logic Symposium. North-Holland, 63–92.
[11] Troels Henriksen, Martin Dybdal, Henrik Urms, Anna Sofie Kiehn, Daniel

Gavin, Hjalte Abelskov, Martin Elsman, and Cosmin Oancea. 2016. APL
on GPUs: A TAIL from the Past, Scribbled in Futhark. In Proceedings

of the 5th International Workshop on Functional High-Performance

Computing (Nara, Japan) (FHPC 2016). Association for Computing
Machinery, New York, NY, USA, 38–43. https://doi.org/10.1145/2975991.
2975997

[12] Troels Henriksen, Martin Elsman, and Cosmin E. Oancea. 2014. Size
Slicing: A Hybrid Approach to Size Inference in Futhark. In Proceedings

of the 3rd ACM SIGPLAN Workshop on Functional High-performance

Computing (Gothenburg, Sweden) (FHPC ’14). ACM, New York, NY, USA,
31–42. https://doi.org/10.1145/2636228.2636238

[13] Troels Henriksen, Niels G. W. Serup, Martin Elsman, Fritz Henglein, and
Cosmin E. Oancea. 2017. Futhark: Purely Functional GPU-programming
with Nested Parallelism and In-place Array Updates. In Proceedings

of the 38th ACM SIGPLAN Conference on Programming Language

Design and Implementation (Barcelona, Spain) (PLDI 2017). ACM, New
York, NY, USA, 556–571. https://doi.org/10.1145/3062341.3062354

[14] Anders Kiel Hovgaard, Troels Henriksen, and Martin Elsman. 2018. High-
performance defunctionalization in Futhark. In Symposium on Trends

in Functional Programming (TFP’18). Springer-Verlag.
[15] C.B. Jay. 1999. Denotational Semantics of Shape:: Past, Present and Future.

Electronic Notes in Theoretical Computer Science 20 (1999), 320–333.
https://doi.org/10.1016/S1571-0661(04)80081-1 MFPS XV, Mathematical
Foundations of Progamming Semantics, Fifteenth Conference.

[16] C. Barry Jay. 1995. A Semantics for Shape. Science of Computer Pro-

gramming 25 (1995), 25–251.
[17] C. Barry Jay and Milan Sekanina. 1997. Shape Checking of Array

Programs. Technical Report. In Computing: the Australasian Theory
Seminar, Proceedings.

[18] Xavier Leroy. 1992. Unboxed Objects and Polymorphic Typing. In Pro-

ceedings of the 19th ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (Albuquerque, New Mexico, USA) (POPL
’92). Association for Computing Machinery, New York, NY, USA, 177–188.
https://doi.org/10.1145/143165.143205

[19] Dougal Maclaurin, Alexey Radul, Matthew J. Johnson, and Dimitrios
Vytiniotis. 2019. Dex: array programming with typed indices. In Poster

13

https://doi.org/10.1145/2898354
https://doi.org/10.1145/2898354
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/504709.504712
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1145/1926354.1926358
https://doi.org/10.1109/IISWC.2009.5306797
https://doi.org/10.1016/j.entcs.2007.01.021
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1145/2627373.2627390
https://doi.org/10.1145/3236792
https://doi.org/10.1145/2976022.2976023
https://doi.org/10.1145/2976022.2976023
https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1145/2975991.2975997
https://doi.org/10.1145/2636228.2636238
https://doi.org/10.1145/3062341.3062354
https://doi.org/10.1016/S1571-0661(04)80081-1
https://doi.org/10.1145/143165.143205

ARRAY ’21, June 21, 2021, Virtual, Canada Troels Henriksen and Martin Elsman

session at Workshop on Program Transformations for Machine Learn-

ing. Associated with NeurIPS ’2019.
[20] Lenore Mullin. 1988. A mathematics of arrays. School of Computer and

Information Science, Syracuse University.
[21] Amr Sabry and Matthias Felleisen. 1993. Reasoning about Programs in

Continuation-Passing Style. In LISP AND SYMBOLIC COMPUTATION.
288–298.

[22] Sven-Bodo Scholz. 1994. Single Assignment C - Functional Program-
ming Using Imperative Style. In In John Glauert (Ed.): Proceedings of

the 6th International Workshop on the Implementation of Functional

Languages. University of East Anglia.
[23] Justin Slepak, Olin Shivers, and Panagiotis Manolios. 2014. An Array-

Oriented Language with Static Rank Polymorphism. In Programming

Languages and Systems, Zhong Shao (Ed.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 27–46.

[24] John A Stratton, Christopher Rodrigues, I-Jui Sung, Nady Obeid, Li-
Wen Chang, Nasser Anssari, Geng Daniel Liu, and Wen-mei W Hwu.
2012. Parboil: A revised benchmark suite for scientific and commercial
throughput computing. Center for Reliable and High-Performance

Computing 127 (2012).
[25] William W. Tait. 1967. Intensional interpretations of functionals of finite

type. Journal of symbolic logic 32 (1967), 198–212.
[26] Kai Trojahner and Clemens Grelck. 2009. Dependently typed array

programs don’t go wrong. J. Log. Algebr. Program. 78 (08 2009), 643–664.
https://doi.org/10.1016/ j.jlap.2009.03.002

[27] Hongwei Xi and Frank Pfenning. 1998. Eliminating Array Bound Check-
ing through Dependent Types. In Proceedings of the ACMSIGPLAN 1998

Conference on Programming Language Design and Implementation

(Montreal, Quebec, Canada) (PLDI ’98). Association for Computing Ma-
chinery, New York, NY, USA, 249–257. https://doi.org/10.1145/277650.
277732

14

https://doi.org/10.1016/j.jlap.2009.03.002
https://doi.org/10.1145/277650.277732
https://doi.org/10.1145/277650.277732

	Abstract
	1 Introduction
	2 A Language with Size-Dependent Types
	2.1 Types and Expressions
	2.2 Type System
	2.3 Dynamic Semantics

	3 Metatheory for F
	3.1 Properties of the Type System
	3.2 Relating Values and Types
	3.3 Logical Relation Extensibility
	3.4 Size Matching and Size Checking Properties
	3.5 Soundness of Size Typing
	3.6 Distinguishing Effects

	4 Universal Size- and Type-Quantification
	5 Size Types in Futhark
	6 Experience Report
	7 Related Work
	8 Conclusions and Future Work
	Acknowledgments
	A Proofs of Propositions 3.3 and 3.6
	References

