
Type-Specialized Serialization with Sharing

Martin Elsman
mael@itu.dk

IT University of Copenhagen

February 24, 2004

ABSTRACT
In this paper we present an implementation of a Standard
ML combinator library for serializing and deserializing data
structures. The combinator library supports serialization
of cyclic data structures and sharing. It generates com-
pact serialized values, both due to sharing, but also due to
type specialization. The library is type safe in the sense
that a type specialized serializer can be applied only to val-
ues of the specialized type. In the paper, we demonstrate
how programmer control provided by the combinator library
can lead to efficient serializers compared to how values are
serialized with generic serializers supported by traditional
language implementations.

Keywords
Serialization, Pickling, Type specialization, Dynamic types,
Standard ML

1. INTRODUCTION
Most practical programming language systems provide

means for serializing values to byte streams. In some cases,
for instance for Java and C#, serialization is part of the lan-
guage specification. The importance of efficient serialization
techniques is partly due to its relation to remote method in-
vocation (RMI) and distributed computing. Another use of
efficient serialization techniques is for storing program state
on disk for future reinvocations of the program.

For most systems, serialization and deserialization proce-
dures are provided by the systems runtime component. In
this paper, we describe a type indexed approach to serial-
ization and deserialization, which provides the programmer
with a combinator library for constructing pairs of a serial-
izer and a deserializer for a given datatype. The approach
has the following key advantages:

• Compactness due to specialization. No type informa-
tion (tagging) is exported by the serializer, which leads

This paper is published as a technical report ITU-TR-43 at the IT Univer-
sity of Copenhagen, Glentevej 67, DK-2400 Copenhagen NV, Denmark.
ISBN-87-7949-065-4. Copyrightc© 2004, Martin Elsman, IT University
of Copenhagen, All rights reserved. Reproduction of all or part of this work
is permitted for educational or research use on condition that this copyright
notice is included in any copy.

to compact serialized data. All necessary type infor-
mation for deserializing the serialized value is present
in the type specialized deserializer.

• Compactness due to sharing. Serialization of two equiv-
alent values leads to sharing in the serialized data.
When the values are deserialized, the values share their
representation.

• Type safety. A type specialized serializer may be ap-
plied only to values of the specialized type. Moreover,
when a value is deserialized, a type checksum in the
serialized data can be checked against the type check-
sum of the specialized deserializer. A subset of the
library is truly type safe in the sense that with this
subset it is not possible to construct serializers that
do not behave as expected.

• Programmer control. The programmer may exploit
knowledge about data invariants to obtain efficient se-
rializers in cases where hash-consing does not perform
well (e.g., for serializing many values of type bool ref

in cases where each value is used linearly; that is, with
only one pointer to it).

• No need for runtime tags. The combinator library im-
poses no restrictions on the representation of values.
In particular, the technique supports a tag-free repre-
sentation of values, as the library is written entirely in
the language itself.

As traditional serialization techniques, the approach also
provides support for serializing mutable and cyclic data struc-
tures.

We have already mentioned that, in general, there is a
problem with serializing Standard ML references. In gen-
eral, in order for deserialized values to be indistinguishable
from non-serialized values, the serializer must preserve dis-
tinctness and sharing of references. Also notice that it is
not possible in Standard ML to access the pointer value of
a reference (indeed, a garbage collection could change the
pointer). Thus, the best possible solution for computing a
hash function for a reference is to compute the hash value
of the content of the reference (and in the process avoid cy-
cles). But this solution does not give distinct hash values
to two distinct references to identical values, which leads
to serialization algorithms with a worst case quadratic time
complexity.

A partial solution to this problem requires the program-
mer to identify if a reference appears linearly (i.e., only once)

in the serialized data. In this case, the programmer may use
a particular combinator which avoids adding the value to
the hash table.

1.1 Outline
In Section 2, we present the serialization library interface

and show some example uses of the library combinators. In
Section 3, we describe the implementation of the combinator
library. In particular, we describe the use of hashing and an
implementation of type dynamic in Standard ML to support
sharing and cycles in deserialized values, efficiently.

In Section 4, we describe how the serialization library is
used in the ML Kit compiler to serialize symbol tables con-
taining type information and information about calling con-
ventions, and so on. In particular, we describe the perfor-
mance benefits of using the linear reference combinator in
cases where it is known that there is only one pointer to the
reference value.

Related work is described in Section 5. Finally, in Sec-
tion 6, we conclude and describe possible future work.

2. THE SERIALIZATION LIBRARY
The programming interface to the serialization library is

given in Standard ML as a structure Pickle with the signa-
ture PICKLE presented in Figure 1.

The serialization interface is based on an abstract type ’a

pu. Given a value of type τ pu, for some type τ , it is possible
to serialize values of type τ into a stream of characters, using
the function pickle. Similarly, it is possible to deserialize
serialized values of type τ using the function unpickle.

The interface provides a series of base combinators, for se-
rializing values of base types, such as integers, word values,
characters, strings, reals, and so on. The interface also pro-
vides a series of constructive combinators, for constructing
serializers for constructed types, such as pairs, triples, lists,
and general datatypes. For example, by combining the int,
pair, and list combinators, it is possible to construct a
serializer for integer-pair lists:

val pu_pairs : (int * int) list pu =

let open Pickle in list (pair (int,int))

end

val s : string =

Pickle.pickle pu_pairs [(2,3),(1,2),(2,3)]

As we shall see later, although the pair (2,3) appears twice
in the serialized list, sharing is introduced by the serializer,
which means that when the list is deserialized, the pairs
(2,3) in the list share the same representation.

2.1 Datatypes
The combinator enum can be used for constructing a se-

rializer for a datatype consisting of only nullary value con-
structors. Given such a datatype t with n nullary value
constructors C0 · · ·Cn−1, a serializer (of type t pu) may be
constructed by passing to the enum combinator, (1) a func-
tion mapping each constructor Ci to the integer i, where
0 ≤ i < n, and (2) the list [C0, · · · , Cn−1]. Thus, for con-
structing a serializer for the datatype

datatype color = R | G | B

we can write the following:

signature PICKLE = sig

(* abstract pickler/unpickler type *)

type ’a pu

val pickler : ’a pu -> ’a -> string

val unpickler : ’a pu -> string -> ’a

(* base picklers *)

val word : word pu

val int : int pu

val bool : bool pu

val string : string pu

val char : char pu

val real : real pu

(* pickle constructors *)

val pair : ’a pu * ’b pu -> (’a * ’b) pu

val triple : ’a pu * ’b pu * ’c pu

-> (’a * ’b * ’c) pu

val vector : ’a pu -> ’a Vector.vector pu

(* reference picklers *)

val refCyc : ’a -> ’a pu -> ’a ref pu

val ref0 : ’a pu -> ’a ref pu

val refLin : ’a pu -> ’a ref pu

(* datatype picklers *)

val enum : (’a->int) * ’a list -> ’a pu

val data : (’a->int) * (’a pu->’a pu) list

-> ’a pu

val data2 : (’a->int) * (’a pu*’b pu->’a pu) list

* (’b->int) * (’a pu*’b pu->’b pu) list

-> ’a pu * ’b pu

val con0 : ’a -> ’b -> ’a pu

val con1 : (’a->’b) -> (’b->’a) -> ’a pu -> ’b pu

(* useful predefined picklers *)

val list : ’a pu -> ’a list pu

val option : ’a pu -> ’a option pu

(* other useful combinators *)

val conv : (’a->’b) * (’b->’a) -> ’a pu -> ’b pu

val share : ’a pu -> ’a pu

val reg : ’a list -> ’a pu -> ’a pu

end

Figure 1: The PICKLE signature.

val pu_color : color Pickle.pu =

let open Pickle

in enum(fn R => 0 | G => 1 | B => 2, [R,G,B])

end

In general, for constructing serializers for datatypes, the
combinator data may be used, but only for datatypes that
are not mutually recursive with other datatypes. The com-
binators data2 and data3 make it possible to construct se-
rializers for mutually recursive datatypes for two and three
datatypes, respectively.

Given a datatype t with n value constructors C0 · · ·Cn−1,
a serializer (of type t pu) may be constructed by passing to
the data combinator, (1) a function mapping a value con-

structed using Ci to the integer i, where 0 ≤ i < n, and (2)
a list of functions [f0, · · · , fn−1], where each function fi,
0 ≤ i < n, is a serializer for the datatype for the construc-
tor Ci, parameterized over a serializer to use for recursive
instances of t. So for instance, consider the datatype tree,
defined as follows:

datatype tree = L | N of tree * int * tree

To construct a serializer for the datatype tree, the data

combinator can be applied, together with the utility func-
tions con0 and con1:

val pu_tree : tree Pickle.pu =

let open Pickle

fun pu_L pu = con0 L pu

fun pu_N pu = con1 N (fn N a => a)

(triple(pu,int,pu))

in data (fn L => 0 | N _ => 1, [pu_L, pu_N])

end

Consider the value

val t = N(N(L,2,L),1,N(N(L,2,L),3,L))

This value is commonly represented in memory by your fa-
vorite Standard ML compiler as shown in Figure 2(a). Seri-
alizing the value and deserializing it again results in a value
that shares the common value N(L,2,L), as pictured in Fig-
ure 2(b):

val t’ =

let open Pickle

in (unpickle pu_tree o pickle pu_tree) t

end

1

2 3

2

L L L

LL

1

2 3L L L

(a) (b)

Figure 2: Representation of a tree value in memory
(a) without sharing and (b) with sharing.

2.2 References
Included in the set of constructive combinators are several

combinators for constructing serializers for references. Re-
call that, in Standard ML, cyclic data can be constructed,
only by use of references. The combinator ref0 assumes
that the reference—when serialized—does not contribute to
a cycle in the value. On the other hand, the combinator
RefCyc takes as its first argument a dummy value for the
type of the reference content, which allows the deserializer
to reintroduce cycles appearing in the original value. The
final combinator for constructing serializers for references is
the refLin combinator, which assumes that for each of the
reference values, there is only ever one pointer to the refer-
ence. This combinator is important for efficiently serializing
large values containing distinct references to identical data
(i.e., boolean references). In Section 4, we shall see the im-
portance of this final combinator for serializing references.

2.3 Other Combinators
The combinator conv makes it possible to construct se-

rializers for Standard ML records, quadruples, and other
datatypes that are easily converted into a datatype that is
already serializable. Here is how a serializer for the type
person = {name:string,age:int} is constructed:

val pu_person : {name:string,age:int} Pickle.pu =

let open Pickle

in conv (fn {name,age} => (name,age),

fn (name,age) => {name=name,age=age})

(pair(string,int))

end

The combinator reg (read: register) takes as its first ar-
gument a list l of values of some type τ as argument and as
its second argument a serializer for values of type τ . The
combinator returns a new serializer for values of type τ ,
which avoids serialization of a value v in the list l by using
the value v upon deserialization. In effect, the combinator
can be used to register values that are readily available at
deserialization time.

2.4 The Truly Type Safe Combinator Subset
A subset of the serialization combinators are truly type

safe in the sense that it is not possible to construct serializers
using these combinators for which deserialization does not
result in a value equivalent to the serialized value. The truly
type safe subset is listed in Figure 3.

signature PICKLE_TYPE_SAFE = sig

(* abstract pickler/unpickler type *)

type ’a pu

val pickler : ’a pu -> ’a -> string

val unpickler : ’a pu -> string -> ’a

(* base picklers *)

val word : word pu

val int : int pu

val bool : bool pu

val string : string pu

val char : char pu

val real : real pu

(* pickle constructors *)

val pair : ’a pu * ’b pu -> (’a * ’b) pu

val triple : ’a pu * ’b pu * ’c pu

-> (’a * ’b * ’c) pu

val vector : ’a pu -> ’a Vector.vector pu

(* reference picklers *)

val refCyc : ’a -> ’a pu -> ’a ref pu

(* useful predefined picklers *)

val list : ’a pu -> ’a list pu

val option : ’a pu -> ’a option pu

(* other useful combinators *)

val share : ’a pu -> ’a pu

val reg : ’a list -> ’a pu -> ’a pu

end

Figure 3: The truly type safe combinator subset.

3. IMPLEMENTATION
The serialization library builds on two auxiliary modules,

the first of which is a module for embedding values of any
type into a type dyn (type dynamic). This auxiliary module
is presented in Section 3.1. The second auxiliary module,
which we present in Section 3.2, implements input and out-
put streams. The auxiliary modules are described in the
next two sections.

3.1 Type Dynamic in Standard ML
The signature DYN for the auxiliary structure Dyn used by

the implementation of the serialization library, is presented
in Figure 4. An obvious implementation that matches the
signature DYN uses exceptions to implement the type dyn.
Less obvious is it that there exists an implementation that
does not use exceptions. This implementation is presented
in Figure 5. The implementation extends Filinski’s basic
implementation of type dynamic [10, page 106] with the
addition that is provides a hash function and an equality
function on values of type dyn.

signature DYN = sig

type dyn

val new : (’a*’a->bool) -> (’a->word)

-> (’a->dyn) * (dyn->’a)

val eq : dyn * dyn -> bool

val hash : dyn -> word

end

Figure 4: Type dynamic signature in Standard ML.

structure Dyn :> DYN = struct

datatype method = RESET | EQ | SET | HASH

type dyn = method -> word

fun new eq h =

let val r = ref NONE

in (fn x =>

fn HASH => h x

| RESET => (r := NONE; 0w0)

| SET => (r := SOME x; 0w0)

| EQ =>

case !r of NONE => 0w0

| SOME y =>

if eq(x,y) then 0w1

else 0w0

, fn f => (r := NONE

; f SET

; valOf(!r)

)

)

end

fun eq (f1,f2) =

(f2 RESET ; f1 SET ; f2 EQ = 0w1)

fun hash f = f HASH

end

Figure 5: Exception-free implementation of type dy-
namic in Standard ML with equality and hash func-
tion support.

3.2 Input and Output Streams
The signature for a simple stream module used by the

serializer library is presented in Figure 6.

signature STREAM = sig

type IN and OUT (* kinds *)

type ’k stream

val getLoc : ’k stream -> word

val out : char * OUT stream -> OUT stream

val get : IN stream -> char * IN stream

val outw : word * OUT stream -> OUT stream

val getw : IN stream -> word * IN stream

val outcw : word * OUT stream -> OUT stream

val getcw : IN stream -> word * IN stream

val toString : OUT stream -> string

val openOut : unit -> OUT stream

val openIn : string -> IN stream

end

Figure 6: A library for input and output streams.

A stream is either an input stream of kind IN or an output
stream of kind OUT. The function getLoc makes it possible
to extract the location of a stream as a word. For output
streams there are functions for writing characters and words
and there is a function outcw, which compresses word val-
ues by assuming that smaller word values are written more
often than larger word values. Similarly, there are functions
for reading characters and words, and, dual to the outcw

function, there is a function getcw for reading compressed
word values. In the following, we shall assume that a stream
module matching the signature in Figure 6 is bound to a
structure identifier S.

3.3 Hash Tables
The final library used by the serialization implementation

is a hash table library. A simplified version of the POLYHASH

signature from the SML/NJ Library is presented in Figure 7.
In the following code, we assume that the structure iden-

signature POLYHASH = sig

type (’key, ’data) hash_table

val mkTable : (’key->int) * (’key*’key->bool)

-> int*exn -> (’key,’data) hash_table

val insert : (’key,’data) hash_table

-> ’key*’data -> unit

val peek : (’key,’data) hash_table

-> ’key -> ’data option

end

Figure 7: Simplified POLYHASH signature.

tifier H is bound to a hash table implementation matching
the signature POLYHASH in Figure 7.

3.4 Representing Serializers
The abstract type ’a pu is defined by the following type

declarations:

type pe = (Dyn.dyn, S.loc) H.hash_table

type upe = (S.loc, Dyn.dyn) H.hash_table

type instream = S.IN S.stream * upe

type outstream = S.OUT S.stream * pe

type ’a pu =

{pickler : ’a -> outstream -> outstream,

unpickler : instream -> ’a*instream,

hasher : ’a -> int*word -> int*word,

eq : ’a*’a -> bool}

A pickler environment (of type pe) is a hash table mapping
values of type Dyn.dyn to stream locations. Moreover, an
unpickler environment (of type upe) is a hash table map-
ping stream locations to values of type Dyn.dyn. A value of
type outstream is a pair of an output stream and a pickler
environment. Similarly, a value of type instream is a pair
of an input stream and an unpickler environment.

Given a type τ , a value of type τ pu is a record containing
a pickler (a serializer) for values of type τ , an unpickler (a
deserializer) for values of type τ , a hash function for values
of type τ , and an equality function for values of type τ .

From a value pu of type τ pu, for some type τ , it is straight-
forward to implement the functions pickle and unpickle

as specified in the PICKLE signature, by composing func-
tionality in the stream structure S with the pickler and
unpickler fields in the value pu.

3.5 Serializers for Base Types
For constructing serializers, we shall use a small set of

primitive hash combinators for constructing hash functions
for serializable values. To avoid that values are traversed
fully by the constructed hash functions and to ensure termi-
nation of hash functions in case of cycles, the combinators
count the number of hash operations performed by the hash
function. The hash combinators that we shall make use of
are shown in Figure 8.

local val Alpha = 0w65599

val Beta = 0w19

val maxDepth = 50

val maxLength = 500

val hashTag = ref 1

in fun hashAdd w (a,d) = (w + a*Alpha, d-1)

fun hashAddSmall w (a,d) = (w + a*Beta, d-1)

fun maybestop f ((a,d) as s) =

if d <= 0 then s else f s

fun newHashTag() =

!hashTag before hashTag := !hashTag + 1

end

Figure 8: Hash function combinators.

We can now show how serializers are constructed for base
types, exemplified by a serializer for word values:

val word : word pu =

{pickler= fn w => fn (s,pe) => (S.outw(w,s),pe),

unpickler = fn (s,upe) =>

let val (w,s) = S.getw s

in (w,(s,upe))

end,

hasher = hashAdd,

eq = op =}

3.6 Product Types
We shall now see how a serializer is constructed for pairs.

The pair combinator takes as argument a serializer for each
of the components of the pair:

fun pair (pu1,pu2) : (’a * ’b) pu =

let val hashTag = newHashTag()

in {pickler = fn (v1,v2) => fn s =>

let val s = #pickler pu1 v1 s

in #pickler pu2 v2 s

end,

unpickler = fn s =>

let val (v1,s) = #unpickler pu1 s

val (v2,s) = #unpickler pu2 s

in ((v1,v2),s)

end,

hasher = fn (v1,v2) =>

maybestop (fn s => #hasher pu2 v2

(#hasher pu1 v1

(hashAddSmall hashTag s))),

eq = fn ((a1,a2),(b1,b2)) =>

#eq pu1 (a1,b1) andalso

#eq pu2 (a2,b2)}

end

Notice that the hash function is guided by the maybestop

combinator, which returns the hash result when the hash
counter has reached zero.

Combinators for serializing triples and quadruples are eas-
ily constructed using the conv and pair combinators, as in
the following declaration of the triple combinator:

fun triple (pu1,pu2,pu3) =

conv (fn ((pu1,pu2),pu3) => (pu1,pu2,pu3),

fn (pu1,pu2,pu3) => ((pu1,pu2),pu3))

(pair(pair(pu1,pu2),pu3))

3.7 A Sharing Combinator
Until now we have not made explicit use of stream lo-

cations and environment information when serializing and
deserializing data. We shall now see how it is possible to
construct a combinator share that leads to sharing of seri-
alized and deserialized data. The share combinator is listed
in Figure 9.

Notice that the share combinator takes any serializer as
argument and generates a serializer of the same type as the
argument.

When a value is serialized, it is first checked if some identi-
cal value is associated with a location l in the pickle environ-
ment. In this case, a REF-tag is written to the outstream
together with a reference to the location l. If there is no
value in the pickle environment identical to the value to be
serialized, a DEF-tag is written to the output stream, the
current location l of the output stream is recorded, the value
is serialized, and an entry is added to the pickle environment
mapping the value into the location l. In this way, future
serialized values identical to the serialized value can share
representation with the serialized value in the outstream.

Dually, when a value is deserialized by the share com-
binator, first the tag (i.e., REF or DEF) is read from the
input stream. If the tag is a REF-tag, a location l is read
from the input stream, and the location l is used for look-
ing up a resulting value for the deserializer in the unpickler
environment. On the other hand, if the tag is a DEF-tag,
the location l of the input stream is recorded, a value v is
deserialized with the argument deserializer, and finally, an
entry is added to the unpickler environment mapping the

fun share (pu:’a pu) : ’a pu =

let val REF = 0w0 and DEF = 0w1

val (toDyn,fromDyn) = Dyn.new (#eq pu)

(fn v => #1 (#hasher pu v (0w0,maxDepth)))

in

{pickler = fn v => fn (s,pe) =>

let val d = toDyn v

in case H.peek pe d of

SOME loc => let val s = S.outcw(REF,s)

val s = S.outw(loc,s)

in (s,pe)

end

| NONE =>

let val s = S.outcw(DEF,s)

val loc = S.getLoc s

val res = #pickler pu v (s,pe)

in case H.peek pe d of

SOME _ => res

| NONE => (H.insert pe (d,loc); res)

end

end,

unpickler = fn (s,upe) =>

let val (tag,s) = S.getcw s

in if tag = REF then

let val (loc,s) = S.getw s

in case H.peek upe loc of

SOME d => (fromDyn d, (s,upe))

| NONE => fail "share.error"

end

else (* tag = DEF *)

let val loc = S.getLoc s

val (v,(s,upe)) = #unpickler pu (s,upe)

in H.insert upe (loc,toDyn v); (v,(s,upe))

end

end,

hasher = fn v => maybestop (#hasher pu v),

eq = #eq pu}

end

Figure 9: The share combinator.

location l into the value v, which is also the result of the
deserialization.

One important point to notice here is that efficient inho-
mogeneous environments, mapping values of different types
into locations, are possible only through the use of the par-
ticular Dyn library, which supports a hash function on values
of type dyn and an equality function on values of type dyn.1

3.8 References and Cycles
To construct a serialization combinator in Standard ML

for references, a number of challenges must be overcome.
First, for any two reference values contained in some value, it
can be observed (either by equality or by trivial assignment)

1The straightforward implementation in Standard ML of
type dynamic using exceptions can also be extended with
a hash function and an equality function, by defining
the type dyn to have type {v:exn, eq:exn*exn->bool,
h:exn->word}, where v is the actual value packed in a locally
generated exception, eq is an equality function returning
true only for identical values applied to the same exception
constructor, and h is a hash function for the packed value.

whether or not the two reference values denote the same ref-
erence value. It is crucial that such reference invariants are
not violated by serialization and deserialization. Second,
for data structures that do not contain recursive closures,
all cycles go through a ref constructor. Thus in general, to
ensure termination of constructed serializers, it is necessary
(and sufficient) to recognize cycles that go through ref con-
structors. The pickle environment introduced earlier is used
for this purpose. Third, once a cyclic value has been serial-
ized, it is crucial that when the value is deserialized again,
the cycle in the new constructed value is reestablished (the
knot must be tied).

The general serialization combinator for references is shown
in Figure 10. The dummy value given as argument to the
refCyc combinator is used for the purpose of “tying the
knot” when a serialized value is deserialized. The first time a
reference value is serialized, a DEF-tag is written to the cur-
rent location l of the outstream. Thereafter, the pickle envi-
ronment is extended to associate the reference value with the
location l. Then the argument to the reference constructor
is serialized. On the other hand, if it is recognized that the
reference value has been serialized earlier (i.e., by finding
an entry in the pickle environment mapping the reference
value to a stream location l), a REF-tag is written to the
outstream, followed by the location l.

For deserializing a reference value, first the location l of
the input stream is obtained. Second, a reference value r
is created with the argument being the dummy value that
was given as argument to the refCyc combinator. Then the
unpickle environment is extended to map the location l to
the reference value r. Thereafter, a value is deserialized,
which is then assigned to the reference value r. This assign-
ment establishes the cycle and the dummy value no longer
appears in the deserialized value.

As mentioned in the introduction, it is difficult to find a
better hash function for references than that of using the
hash function for the reference argument. Equality on ref-
erences reduces to pointer equality.

The two other serialization combinators for references,
ref0 and refLin, are special cases of the general reference
combinator refCyc. The ref0 combinator assumes that no
cycles appear through reference values serialized using this
combinator.

The refLin combinator assumes that the entire value be-
ing serialized contains only one pointer to each value being
serialized using this combinator (which also does not allow
cycles) and that the share combinator is used at a higher
level in the type structure, but lower than a point where
there can be multiple pointers to the value. With these as-
sumptions, the refLin combinator avoids the problem men-
tioned earlier of filling up hash table buckets in the pickle en-
vironment with distinct values having the same hash value.
In general, however, it is an unpleasant task for a program-
mer to establish the requirements of the refLin combinator.

3.9 Datatypes
It turns out to be difficult in Standard ML to construct

a general serialization combinator that works for any num-
ber of mutually recursive datatypes. In this section, we de-
scribe the implementation of the serialization combinator
data from Section 2.1, which can be used for constructing a
serializer and a deserializer for a single recursive datatype. It
is straightforward to extend this implementation to any par-

fun refCyc (dummy:’a) (pu:’a pu) : ’a ref pu =

let val hashTag = newHashTag()

val REF = 0w0 and DEF = 0w1

fun hasher (ref v) =

maybestop (fn p => hashAddSmall hashTag

(#hasher pu v p))

val (toDyn,fromDyn) = Dyn.new (op =)

(fn v => #1 (hasher v (0w0,maxDepth)))

in

{pickler = fn r as ref v => fn (s,pe) =>

let val d = toDyn r

in case H.peek pe d of

SOME loc => let val s = S.outcw(REF,s)

val s = S.outw(loc,s)

in (s,pe)

end

| NONE => let val s = S.outcw(DEF,s)

val loc = S.getLoc s

in H.insert pe (d,loc)

; #pickler pu v (s, pe)

end

end,

unpickler = fn (s,upe) =>

let val (tag,s) = S.getcw s

in if tag = REF then

let val (loc,s) = S.getw s

in case H.peek upe loc of

SOME d => (fromDyn d, (s, upe))

| NONE => fail "ref.error"

end

else (* tag = DEF *)

let val loc = S.getLoc s

val r = ref dummy

val _ = H.insert upe (loc,toDyn r)

val (v,(s,upe)) = #unpickler pu (s,upe)

in r := v ; (r, (s,upe))

end

end,

hasher = hasher,

eq = op =}

end

Figure 10: Cycle supporting serializer for references.

ticular number of mutually recursive datatypes.2 The im-
plementation of the data serialization combinator is shown
in Figure 11.

To allow for arbitrary sharing between parts of a data
structure (of some datatype) and perhaps parts of another
data structure (of the same datatype), the combinator makes
use of the share combinator from Section 3.7. It is essential
that the share combinator is not only applied to the result-
ing serialization combinator for the datatype, but that this
sharing version of the combinator is the one that is used for
recursive occurrences of the type being defined. Otherwise,
it would not, for instance, be possible to obtain sharing be-
tween the tail of a list and some other list appearing in the

2By exposing more of the internal workings of the combina-
tor library in the library interface, the library could be made
to support the construction of serialization combinators for
arbitrary mutually recursive datatypes.

fun data (toInt: ’a -> int,

fs : (’a pu -> ’a pu) list) : ’a pu =

let

val hashTag = newHashTag()

val res : ’a pu option ref = ref NONE

val ps : ’a pu vector option ref = ref NONE

fun p v (s,pe) =

let val i = toInt v

val s = S.outcw (Word.fromInt i, s)

in #pickler(getPUPI i) v (s,pe)

end

and up (s,upe) =

let val (w,s) = S.getcw s

in #unpickler(getPUPI (Word.toInt w)) (s,upe)

end

and eq(a1:’a,a2:’a) : bool =

let val n = toInt a1

in n = toInt a2 andalso #eq (getPUPI n) (a1,a2)

end

and getPUP() =

case !res of

NONE =>

let val pup = share {pickler=p,hasher=h,

unpickler=up,eq=eq}

in res := SOME pup; pup

end

| SOME pup => pup

and getPUPI (i:int) =

case !ps of

NONE =>

let val ps0 = map (fn f => f (getPUP())) fs

val psv = Vector.fromList ps0

in ps := SOME psv; Vector.sub(psv,i)

end

| SOME psv => Vector.sub(psv,i)

and h v = maybestop (fn p =>

let val i = toInt v

in hashAddSmall (Word.fromInt i)

(hashAddSmall hashTag

(#hasher (getPUPI i) v p))

end)

in getPUP()

end

Figure 11: Single datatype serialization combinator.

value being serialized. Also, it would not be possible to sup-
port the sharing obtained with the tree value in Figure 2(b).

Thus, in the implementation, the four functions (the pick-
ler, unpickler, equality function, and hash function) that
make up the serializer are mutually recursive and a caching
mechanism (the function getPUP) makes sure that the share
combinator is applied only once.

4. EXPERIMENTS WITH THE ML KIT
The ML Kit [16] is a Standard ML compiler, which al-

lows for type and compilation information to migrate across
module boundaries at compile time [8, 9]. In this section,
we present some experiments with serialization of type and
compilation information in the ML Kit.

In the ML Kit, compilation is built around a series of in-

termediate languages L1, · · · , Ln, where L1 is the Standard
ML source language and Ln is Intel X86 assembler language.
In the following we write Pi to denote an intermediate pro-
gram, written in the intermediate language Li, 1 ≤ i ≤ n.

Compilation in the ML Kit is then a composition of n− 1
translation phases, where the i’th translation phase trans-
lates program representations in the intermediate language
Li into the intermediate language Li+1, 1 ≤ i < n. The
translation of some intermediate program Pi into an inter-
mediate program Pi+1 is performed with respect to a trans-
lation environment Ei, which maps free identifiers in Pi into
translation environment objects for the particular transla-
tion phase. Each translation phase can be specified using
judgments of the form Ei ` Pi ⇒ (N)(Pi+1, E

′
i), which are

read “in the translation environment Ei, the intermediate
program Pi is translated into the intermediate program Pi+1

and result translation environment E′
i. The name set N is

a set of new names (i.e., identifiers) generated during trans-
lation.

The composition of translation phases leads to a notion
of compiler bases, ranged over by B, which are n-tuples of
translation environments (E1, · · · , En).

For the incremental cut-off recompilation scheme imple-
mented in the ML Kit, it is important that compiler bases
can be written to disk so as to avoid unnecessary recompi-
lation upon change of source code.

Examples of translation phases in the ML Kit include
type inference, various optimizing translations [2], elimina-
tion of polymorphic equality [7], region inference [15, 17],
various region representation analyses [4], closure conver-
sion, instruction selection, and register allocation. Many
of these translation phases make use of the possibility of
passing value representation information across compilation
boundaries. For instance, the region inference analysis is
a type-based analysis, which associates function identifiers
with so called region type schemes, which provides informa-
tion about in which regions arguments to the function should
be stored and in which regions the result of the function is
stored. Because the region inference analysis tracks the ef-
fects (represented as graphs) of calling the function, region
type schemes can become large compared to the underlying
ML type schemes, which also leads to large compiler bases.

4.1 Constructing the Serializers
The type structure for compiler bases, as they are im-

plemented in the ML Kit, has a spanning tree with a high
depth (higher than 8). For each concrete type τ in the type
structure, a serializer is constructed with type τ pu. At the
bottom of the type structure, serializers for various identi-
fiers and names are constructed, whereas closer to the root
of the type structure, serializers for region type schemes and
region type scheme environments are constructed.

4.2 Measurements
Table 4.2 presents measurements for serializing a compiler

basis in the ML Kit for parts of the Standard ML Basis Li-
brary. The table shows serialization times, deserialization
times, and file sizes for three different serialization configu-
rations. The measurements were run on a 750Mhz Pentium
III Linux box with 512Mb of RAM. The first configuration
implements full sharing of values (i.e., with consistent use of
the share combinator from Section 3.7.) The second config-
uration disables the special treatment of programmer speci-

Table 1: Serialization time (S-time in seconds), de-
serialization time (D-time in seconds), and file sizes
(in kilobytes) for serializing parts of the compiler
basis for the Standard ML Basis Library. Different
rows in the table show measurements for different
configurations of the serializer.

S-time (s) D-time (s) Size (Kb)
Full sharing 17.5 3.1 406
No linear references 138 2.8 433
No sharing 125 2.3 550

fied linear references by using the more general ref0 combi-
nator instead of the refLin combinator. Finally, the third
configuration supports sharing only for references (which
also avoids problems with cycles). The third configuration
entails unsoundness of the special treatment of programmer
specified linear references, which is therefore also disabled
in this configuration.

When sharing is enabled, serializing the entire compiler
basis takes 130 seconds and deserialization takes 19 seconds.
The size of the serialized compiler basis for the Standard ML
Basis Library is 2.24 megabytes.

5. RELATED WORK
There is a series of related work about serialization, in

particular in the context of marshalling, the task of com-
municating values between distributed processes over byte
streams. Many languages provide support for serializing
values, including Modula-3, Java, and C#. For other lan-
guages, such as Standard ML, programmers have relied on
implementation support for serialization (SML/NJ 0.93 has
built-in support for serialization, for instance.)

There is a series of work concerned with dynamic typing
issues for distributed programming where values of dynamic
type are transmitted over a network [1, 5, 6, 14]. Filinski
recognizes a direct implementation of type dynamic in ML
[10, page 106], which does not make use of the folklore im-
plementation technique that uses exceptions to implement
an extensible datatype.

Recently, Leifer et al. have worked on ensuring that in-
variants on distributed abstract data types are not violated
by checking the identity of modules implementing the oper-
ations on the abstract datatype [13].

Also related to this work is work on garbage collection
algorithms for introducing sharing to save space by the use
of hash-consing [3].

The Zephyr Abstract Syntax Description Language (ASDL)
project [19] aims at providing a language independent data
exchange format by, for a series of languages, generating
type declarations and serialization code from generic datatype
specifications. Whereas generated ASDL serialization code
does not maintain sharing, it does avoid storing of redun-
dant type information by employing a type specialized pre-
fix encoding of tree values. This approach is similar to the
Packed Encoding Rules (PER) of ASN.1 [18] (in contrast to
the Basic Encoding Rules (BER) of ASN.1).

Independently of the present work, Kennedy has devel-
oped a very similar combinator library for serializing data
structures in Standard ML. His combinator library is used in

the SML.NET compiler [12] for serializing type information
to disk so as to support separate compilation. Although
the approaches share many of the same ideas, Kennedy’s
share combinator is more complicated to use than ours in
that it requires the programmer to provide functionality for
mapping values to integers, which in principle violates ab-
straction principles. In our approach, hashing functionality
and equality predicates are constructed inductively on the
type of the serializer, which leads to efficient and easy to
use combinators. Moreover, Kennedy’s fix combinators for
constructing serializers for datatypes do not support shar-
ing of subparts of datatypes, as our datatype combinators,
as illustrated in Figure 2.

6. CONCLUSION AND FUTURE WORK
In this paper, we have presented a Standard ML com-

binator library for serializing values to character streams
and deserializing character streams into Standard ML val-
ues. The combinator library may introduce sharing in dese-
rialized values even in cases where sharing was not present
in the value that was serialized.

An obvious candidate for future work is to investigate if it
is possible to use multiset discrimination [11] to distinguish
references more efficiently. Although multiset discrimina-
tion of references requires runtime system support in that
it requires language implementors to provide a generaliza-
tion of equality on references (in terms of a discriminator),
better support for distinguishing references could eliminate
the need for the linear reference combinator, described in
Section 3.8.

Another obvious candidate for future work is to implement
a tool for generating serializers and deserializers for a given
datatype, using the combinator library.

Acknowledgments
I would like to thank Henning Niss and Ken Friis Larsen
for many interesting discussions about this work and Clau-
dio Russo for letting me know (at POPL’2004) that Andrew
Kennedy independently has written an almost identical seri-
alization combinator library for Standard ML, which is used
in the SML.NET compiler.

7. REFERENCES
[1] Mart́ın Abadi, Luca Cardelli, Benjamin Pierce, and

Gordon Plotkin. Dynamic typing in a statically typed
language. ACM Transactions on Programming
Languages and Systems, 13(2):237–268, April 1991.

[2] Andrew W. Appel. Compiling with Continuations.
Cambridge University Press, 1992.

[3] Andrew W. Appel and Marcelo J. R. Gonçalves.
Hash-consing garbage collection. Technical Report
CS-TR-412-93, Princeton University, February 1993.

[4] Lars Birkedal, Mads Tofte, and Magnus Vejlstrup.
From region inference to von Neumann machines via
region representation inference. In Procedings of ACM
Symposium on Principles of Programming Languages
(POPL’96), pages 171–183. ACM Press, January 1996.

[5] Dominic Duggan. A type-based semantics for
user-defined marshalling in polymorphic languages. In
Second International Workshop on Types in
Compilation (TIC’98), March 1998.

[6] Dominic Duggan. Dynamic typing for distributed
programming in polymorphic languages. Transactions
on Programming Languages and Systems, 21(1):11–45,
January 1999.

[7] Martin Elsman. Polymorphic equality—no tags
required. In Second International Workshop on Types
in Compilation (TIC’98), March 1998.

[8] Martin Elsman. Program Modules, Separate
Compilation, and Intermodule Optimisation. PhD
thesis, Department of Computer Science, University of
Copenhagen, January 1999.

[9] Martin Elsman. Static interpretation of modules. In
Procedings of Fourth International Conference on
Functional Programming (ICFP’99), pages 208–219.
ACM Press, September 1999.

[10] Andrzej Filinski. Controlling Effects. PhD thesis,
School of Computer Science, Carnegie Mellon
University, Pittsburgh, Pennsylvania, USA, May 1996.

[11] Fritz Henglein. Multiset discrimination. In
preparation, September 2003. Available from
http://www.plan-x.org/msd/.

[12] Andrew Kennedy, Claudio Russo, and Nick Benton.
SML.NET 1.1 User Guide, November 2003. Microsoft
Research Ltd. Cambridge, UK.

[13] James Leifer, Gilles Peskine, Peter Sewell, and Keith
Wansbrough. Global abstraction-safe marshalling with
hash types. In International Conference on Functional
Programming (ICFP’03), August 2003.

[14] Xavier Leroy and Michel Mauny. Dynamics in ML.
Journal of Functional Programming, 3(4), 1993.

[15] Mads Tofte and Lars Birkedal. A region inference
algorithm. ACM Transactions on Programming
Languages and Systems, 20(4):734–767, July 1998.
(plus 24 pages of electronic appendix).

[16] Mads Tofte, Lars Birkedal, Martin Elsman, Niels
Hallenberg, Tommy Højfeld Olesen, and Peter Sestoft.
Programming with regions in the ML Kit (for
version 4). Technical Report TR-2001-07, IT
University of Copenhagen, October 2001.

[17] Mads Tofte and Jean-Pierre Talpin. Region-based
memory management. Information and Computation,
132(2):109–176, 1997.

[18] International Telecommunication Union. ASN.1
encoding rules: Specification of Packed Encoding
Rules (PER). Information Technology. SERIES-X:
Data Networks and Open Systems Communications.
X.691, July 2002.

[19] Daniel C. Wang, Andrew W. Appel, Jeff L. Korn, and
Christopher S. Serra. The Zephyr abstract syntax
description language. In USENIX Conference on
Domain-Specific Languages, October 1997.

